gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / base / cacheinfo.c
blob8d553c92cd3225761a78f113d8caf8a75988bdd6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
31 return ci_cacheinfo(cpu);
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 struct cacheinfo *sib_leaf)
38 return sib_leaf->fw_token == this_leaf->fw_token;
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 const char *size_prop;
44 const char *line_size_props[2];
45 const char *nr_sets_prop;
48 static const struct cache_type_info cache_type_info[] = {
50 .size_prop = "cache-size",
51 .line_size_props = { "cache-line-size",
52 "cache-block-size", },
53 .nr_sets_prop = "cache-sets",
54 }, {
55 .size_prop = "i-cache-size",
56 .line_size_props = { "i-cache-line-size",
57 "i-cache-block-size", },
58 .nr_sets_prop = "i-cache-sets",
59 }, {
60 .size_prop = "d-cache-size",
61 .line_size_props = { "d-cache-line-size",
62 "d-cache-block-size", },
63 .nr_sets_prop = "d-cache-sets",
67 static inline int get_cacheinfo_idx(enum cache_type type)
69 if (type == CACHE_TYPE_UNIFIED)
70 return 0;
71 return type;
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
76 const char *propname;
77 int ct_idx;
79 ct_idx = get_cacheinfo_idx(this_leaf->type);
80 propname = cache_type_info[ct_idx].size_prop;
82 of_property_read_u32(np, propname, &this_leaf->size);
85 /* not cache_line_size() because that's a macro in include/linux/cache.h */
86 static void cache_get_line_size(struct cacheinfo *this_leaf,
87 struct device_node *np)
89 int i, lim, ct_idx;
91 ct_idx = get_cacheinfo_idx(this_leaf->type);
92 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
94 for (i = 0; i < lim; i++) {
95 int ret;
96 u32 line_size;
97 const char *propname;
99 propname = cache_type_info[ct_idx].line_size_props[i];
100 ret = of_property_read_u32(np, propname, &line_size);
101 if (!ret) {
102 this_leaf->coherency_line_size = line_size;
103 break;
108 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
110 const char *propname;
111 int ct_idx;
113 ct_idx = get_cacheinfo_idx(this_leaf->type);
114 propname = cache_type_info[ct_idx].nr_sets_prop;
116 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
119 static void cache_associativity(struct cacheinfo *this_leaf)
121 unsigned int line_size = this_leaf->coherency_line_size;
122 unsigned int nr_sets = this_leaf->number_of_sets;
123 unsigned int size = this_leaf->size;
126 * If the cache is fully associative, there is no need to
127 * check the other properties.
129 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
133 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134 struct device_node *np)
136 return of_property_read_bool(np, "cache-unified");
139 static void cache_of_set_props(struct cacheinfo *this_leaf,
140 struct device_node *np)
143 * init_cache_level must setup the cache level correctly
144 * overriding the architecturally specified levels, so
145 * if type is NONE at this stage, it should be unified
147 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148 cache_node_is_unified(this_leaf, np))
149 this_leaf->type = CACHE_TYPE_UNIFIED;
150 cache_size(this_leaf, np);
151 cache_get_line_size(this_leaf, np);
152 cache_nr_sets(this_leaf, np);
153 cache_associativity(this_leaf);
156 static int cache_setup_of_node(unsigned int cpu)
158 struct device_node *np;
159 struct cacheinfo *this_leaf;
160 struct device *cpu_dev = get_cpu_device(cpu);
161 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162 unsigned int index = 0;
164 /* skip if fw_token is already populated */
165 if (this_cpu_ci->info_list->fw_token) {
166 return 0;
169 if (!cpu_dev) {
170 pr_err("No cpu device for CPU %d\n", cpu);
171 return -ENODEV;
173 np = cpu_dev->of_node;
174 if (!np) {
175 pr_err("Failed to find cpu%d device node\n", cpu);
176 return -ENOENT;
179 while (index < cache_leaves(cpu)) {
180 this_leaf = this_cpu_ci->info_list + index;
181 if (this_leaf->level != 1)
182 np = of_find_next_cache_node(np);
183 else
184 np = of_node_get(np);/* cpu node itself */
185 if (!np)
186 break;
187 cache_of_set_props(this_leaf, np);
188 this_leaf->fw_token = np;
189 index++;
192 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193 return -ENOENT;
195 return 0;
197 #else
198 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
199 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200 struct cacheinfo *sib_leaf)
203 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204 * shared caches for all other levels. This will be used only if
205 * arch specific code has not populated shared_cpu_map
207 return !(this_leaf->level == 1);
209 #endif
211 int __weak cache_setup_acpi(unsigned int cpu)
213 return -ENOTSUPP;
216 unsigned int coherency_max_size;
218 static int cache_shared_cpu_map_setup(unsigned int cpu)
220 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 struct cacheinfo *this_leaf, *sib_leaf;
222 unsigned int index;
223 int ret = 0;
225 if (this_cpu_ci->cpu_map_populated)
226 return 0;
228 if (of_have_populated_dt())
229 ret = cache_setup_of_node(cpu);
230 else if (!acpi_disabled)
231 ret = cache_setup_acpi(cpu);
233 if (ret)
234 return ret;
236 for (index = 0; index < cache_leaves(cpu); index++) {
237 unsigned int i;
239 this_leaf = this_cpu_ci->info_list + index;
240 /* skip if shared_cpu_map is already populated */
241 if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 continue;
244 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 for_each_online_cpu(i) {
246 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
248 if (i == cpu || !sib_cpu_ci->info_list)
249 continue;/* skip if itself or no cacheinfo */
250 sib_leaf = sib_cpu_ci->info_list + index;
251 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
256 /* record the maximum cache line size */
257 if (this_leaf->coherency_line_size > coherency_max_size)
258 coherency_max_size = this_leaf->coherency_line_size;
261 return 0;
264 static void cache_shared_cpu_map_remove(unsigned int cpu)
266 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
267 struct cacheinfo *this_leaf, *sib_leaf;
268 unsigned int sibling, index;
270 for (index = 0; index < cache_leaves(cpu); index++) {
271 this_leaf = this_cpu_ci->info_list + index;
272 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
273 struct cpu_cacheinfo *sib_cpu_ci;
275 if (sibling == cpu) /* skip itself */
276 continue;
278 sib_cpu_ci = get_cpu_cacheinfo(sibling);
279 if (!sib_cpu_ci->info_list)
280 continue;
282 sib_leaf = sib_cpu_ci->info_list + index;
283 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
284 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
286 if (of_have_populated_dt())
287 of_node_put(this_leaf->fw_token);
291 static void free_cache_attributes(unsigned int cpu)
293 if (!per_cpu_cacheinfo(cpu))
294 return;
296 cache_shared_cpu_map_remove(cpu);
298 kfree(per_cpu_cacheinfo(cpu));
299 per_cpu_cacheinfo(cpu) = NULL;
302 int __weak init_cache_level(unsigned int cpu)
304 return -ENOENT;
307 int __weak populate_cache_leaves(unsigned int cpu)
309 return -ENOENT;
312 static int detect_cache_attributes(unsigned int cpu)
314 int ret;
316 if (init_cache_level(cpu) || !cache_leaves(cpu))
317 return -ENOENT;
319 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
320 sizeof(struct cacheinfo), GFP_KERNEL);
321 if (per_cpu_cacheinfo(cpu) == NULL)
322 return -ENOMEM;
325 * populate_cache_leaves() may completely setup the cache leaves and
326 * shared_cpu_map or it may leave it partially setup.
328 ret = populate_cache_leaves(cpu);
329 if (ret)
330 goto free_ci;
332 * For systems using DT for cache hierarchy, fw_token
333 * and shared_cpu_map will be set up here only if they are
334 * not populated already
336 ret = cache_shared_cpu_map_setup(cpu);
337 if (ret) {
338 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
339 goto free_ci;
342 return 0;
344 free_ci:
345 free_cache_attributes(cpu);
346 return ret;
349 /* pointer to cpuX/cache device */
350 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
353 static cpumask_t cache_dev_map;
355 /* pointer to array of devices for cpuX/cache/indexY */
356 static DEFINE_PER_CPU(struct device **, ci_index_dev);
357 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
358 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
360 #define show_one(file_name, object) \
361 static ssize_t file_name##_show(struct device *dev, \
362 struct device_attribute *attr, char *buf) \
364 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
365 return sprintf(buf, "%u\n", this_leaf->object); \
368 show_one(id, id);
369 show_one(level, level);
370 show_one(coherency_line_size, coherency_line_size);
371 show_one(number_of_sets, number_of_sets);
372 show_one(physical_line_partition, physical_line_partition);
373 show_one(ways_of_associativity, ways_of_associativity);
375 static ssize_t size_show(struct device *dev,
376 struct device_attribute *attr, char *buf)
378 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
380 return sprintf(buf, "%uK\n", this_leaf->size >> 10);
383 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
385 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
386 const struct cpumask *mask = &this_leaf->shared_cpu_map;
388 return cpumap_print_to_pagebuf(list, buf, mask);
391 static ssize_t shared_cpu_map_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
394 return shared_cpumap_show_func(dev, false, buf);
397 static ssize_t shared_cpu_list_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 return shared_cpumap_show_func(dev, true, buf);
403 static ssize_t type_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
406 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
408 switch (this_leaf->type) {
409 case CACHE_TYPE_DATA:
410 return sprintf(buf, "Data\n");
411 case CACHE_TYPE_INST:
412 return sprintf(buf, "Instruction\n");
413 case CACHE_TYPE_UNIFIED:
414 return sprintf(buf, "Unified\n");
415 default:
416 return -EINVAL;
420 static ssize_t allocation_policy_show(struct device *dev,
421 struct device_attribute *attr, char *buf)
423 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
424 unsigned int ci_attr = this_leaf->attributes;
425 int n = 0;
427 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
428 n = sprintf(buf, "ReadWriteAllocate\n");
429 else if (ci_attr & CACHE_READ_ALLOCATE)
430 n = sprintf(buf, "ReadAllocate\n");
431 else if (ci_attr & CACHE_WRITE_ALLOCATE)
432 n = sprintf(buf, "WriteAllocate\n");
433 return n;
436 static ssize_t write_policy_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
439 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
440 unsigned int ci_attr = this_leaf->attributes;
441 int n = 0;
443 if (ci_attr & CACHE_WRITE_THROUGH)
444 n = sprintf(buf, "WriteThrough\n");
445 else if (ci_attr & CACHE_WRITE_BACK)
446 n = sprintf(buf, "WriteBack\n");
447 return n;
450 static DEVICE_ATTR_RO(id);
451 static DEVICE_ATTR_RO(level);
452 static DEVICE_ATTR_RO(type);
453 static DEVICE_ATTR_RO(coherency_line_size);
454 static DEVICE_ATTR_RO(ways_of_associativity);
455 static DEVICE_ATTR_RO(number_of_sets);
456 static DEVICE_ATTR_RO(size);
457 static DEVICE_ATTR_RO(allocation_policy);
458 static DEVICE_ATTR_RO(write_policy);
459 static DEVICE_ATTR_RO(shared_cpu_map);
460 static DEVICE_ATTR_RO(shared_cpu_list);
461 static DEVICE_ATTR_RO(physical_line_partition);
463 static struct attribute *cache_default_attrs[] = {
464 &dev_attr_id.attr,
465 &dev_attr_type.attr,
466 &dev_attr_level.attr,
467 &dev_attr_shared_cpu_map.attr,
468 &dev_attr_shared_cpu_list.attr,
469 &dev_attr_coherency_line_size.attr,
470 &dev_attr_ways_of_associativity.attr,
471 &dev_attr_number_of_sets.attr,
472 &dev_attr_size.attr,
473 &dev_attr_allocation_policy.attr,
474 &dev_attr_write_policy.attr,
475 &dev_attr_physical_line_partition.attr,
476 NULL
479 static umode_t
480 cache_default_attrs_is_visible(struct kobject *kobj,
481 struct attribute *attr, int unused)
483 struct device *dev = kobj_to_dev(kobj);
484 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485 const struct cpumask *mask = &this_leaf->shared_cpu_map;
486 umode_t mode = attr->mode;
488 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
489 return mode;
490 if ((attr == &dev_attr_type.attr) && this_leaf->type)
491 return mode;
492 if ((attr == &dev_attr_level.attr) && this_leaf->level)
493 return mode;
494 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
495 return mode;
496 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
497 return mode;
498 if ((attr == &dev_attr_coherency_line_size.attr) &&
499 this_leaf->coherency_line_size)
500 return mode;
501 if ((attr == &dev_attr_ways_of_associativity.attr) &&
502 this_leaf->size) /* allow 0 = full associativity */
503 return mode;
504 if ((attr == &dev_attr_number_of_sets.attr) &&
505 this_leaf->number_of_sets)
506 return mode;
507 if ((attr == &dev_attr_size.attr) && this_leaf->size)
508 return mode;
509 if ((attr == &dev_attr_write_policy.attr) &&
510 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
511 return mode;
512 if ((attr == &dev_attr_allocation_policy.attr) &&
513 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
514 return mode;
515 if ((attr == &dev_attr_physical_line_partition.attr) &&
516 this_leaf->physical_line_partition)
517 return mode;
519 return 0;
522 static const struct attribute_group cache_default_group = {
523 .attrs = cache_default_attrs,
524 .is_visible = cache_default_attrs_is_visible,
527 static const struct attribute_group *cache_default_groups[] = {
528 &cache_default_group,
529 NULL,
532 static const struct attribute_group *cache_private_groups[] = {
533 &cache_default_group,
534 NULL, /* Place holder for private group */
535 NULL,
538 const struct attribute_group *
539 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
541 return NULL;
544 static const struct attribute_group **
545 cache_get_attribute_groups(struct cacheinfo *this_leaf)
547 const struct attribute_group *priv_group =
548 cache_get_priv_group(this_leaf);
550 if (!priv_group)
551 return cache_default_groups;
553 if (!cache_private_groups[1])
554 cache_private_groups[1] = priv_group;
556 return cache_private_groups;
559 /* Add/Remove cache interface for CPU device */
560 static void cpu_cache_sysfs_exit(unsigned int cpu)
562 int i;
563 struct device *ci_dev;
565 if (per_cpu_index_dev(cpu)) {
566 for (i = 0; i < cache_leaves(cpu); i++) {
567 ci_dev = per_cache_index_dev(cpu, i);
568 if (!ci_dev)
569 continue;
570 device_unregister(ci_dev);
572 kfree(per_cpu_index_dev(cpu));
573 per_cpu_index_dev(cpu) = NULL;
575 device_unregister(per_cpu_cache_dev(cpu));
576 per_cpu_cache_dev(cpu) = NULL;
579 static int cpu_cache_sysfs_init(unsigned int cpu)
581 struct device *dev = get_cpu_device(cpu);
583 if (per_cpu_cacheinfo(cpu) == NULL)
584 return -ENOENT;
586 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
587 if (IS_ERR(per_cpu_cache_dev(cpu)))
588 return PTR_ERR(per_cpu_cache_dev(cpu));
590 /* Allocate all required memory */
591 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
592 sizeof(struct device *), GFP_KERNEL);
593 if (unlikely(per_cpu_index_dev(cpu) == NULL))
594 goto err_out;
596 return 0;
598 err_out:
599 cpu_cache_sysfs_exit(cpu);
600 return -ENOMEM;
603 static int cache_add_dev(unsigned int cpu)
605 unsigned int i;
606 int rc;
607 struct device *ci_dev, *parent;
608 struct cacheinfo *this_leaf;
609 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
610 const struct attribute_group **cache_groups;
612 rc = cpu_cache_sysfs_init(cpu);
613 if (unlikely(rc < 0))
614 return rc;
616 parent = per_cpu_cache_dev(cpu);
617 for (i = 0; i < cache_leaves(cpu); i++) {
618 this_leaf = this_cpu_ci->info_list + i;
619 if (this_leaf->disable_sysfs)
620 continue;
621 if (this_leaf->type == CACHE_TYPE_NOCACHE)
622 break;
623 cache_groups = cache_get_attribute_groups(this_leaf);
624 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
625 "index%1u", i);
626 if (IS_ERR(ci_dev)) {
627 rc = PTR_ERR(ci_dev);
628 goto err;
630 per_cache_index_dev(cpu, i) = ci_dev;
632 cpumask_set_cpu(cpu, &cache_dev_map);
634 return 0;
635 err:
636 cpu_cache_sysfs_exit(cpu);
637 return rc;
640 static int cacheinfo_cpu_online(unsigned int cpu)
642 int rc = detect_cache_attributes(cpu);
644 if (rc)
645 return rc;
646 rc = cache_add_dev(cpu);
647 if (rc)
648 free_cache_attributes(cpu);
649 return rc;
652 static int cacheinfo_cpu_pre_down(unsigned int cpu)
654 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
655 cpu_cache_sysfs_exit(cpu);
657 free_cache_attributes(cpu);
658 return 0;
661 static int __init cacheinfo_sysfs_init(void)
663 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
664 "base/cacheinfo:online",
665 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
667 device_initcall(cacheinfo_sysfs_init);