gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / clk / clk-si5341.c
blob3c228b0181161ff0c2a811fd4609cf37c8ff7bca
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Silicon Labs Si5341/Si5340 Clock generator
4 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
6 */
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/delay.h>
11 #include <linux/gcd.h>
12 #include <linux/math64.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <asm/unaligned.h>
19 #define SI5341_NUM_INPUTS 4
21 #define SI5341_MAX_NUM_OUTPUTS 10
22 #define SI5340_MAX_NUM_OUTPUTS 4
24 #define SI5341_NUM_SYNTH 5
25 #define SI5340_NUM_SYNTH 4
27 /* Range of the synthesizer fractional divider */
28 #define SI5341_SYNTH_N_MIN 10
29 #define SI5341_SYNTH_N_MAX 4095
31 /* The chip can get its input clock from 3 input pins or an XTAL */
33 /* There is one PLL running at 13500–14256 MHz */
34 #define SI5341_PLL_VCO_MIN 13500000000ull
35 #define SI5341_PLL_VCO_MAX 14256000000ull
37 /* The 5 frequency synthesizers obtain their input from the PLL */
38 struct clk_si5341_synth {
39 struct clk_hw hw;
40 struct clk_si5341 *data;
41 u8 index;
43 #define to_clk_si5341_synth(_hw) \
44 container_of(_hw, struct clk_si5341_synth, hw)
46 /* The output stages can be connected to any synth (full mux) */
47 struct clk_si5341_output {
48 struct clk_hw hw;
49 struct clk_si5341 *data;
50 u8 index;
52 #define to_clk_si5341_output(_hw) \
53 container_of(_hw, struct clk_si5341_output, hw)
55 struct clk_si5341 {
56 struct clk_hw hw;
57 struct regmap *regmap;
58 struct i2c_client *i2c_client;
59 struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
60 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
61 struct clk *input_clk[SI5341_NUM_INPUTS];
62 const char *input_clk_name[SI5341_NUM_INPUTS];
63 const u16 *reg_output_offset;
64 const u16 *reg_rdiv_offset;
65 u64 freq_vco; /* 13500–14256 MHz */
66 u8 num_outputs;
67 u8 num_synth;
69 #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
71 struct clk_si5341_output_config {
72 u8 out_format_drv_bits;
73 u8 out_cm_ampl_bits;
74 bool synth_master;
75 bool always_on;
78 #define SI5341_PAGE 0x0001
79 #define SI5341_PN_BASE 0x0002
80 #define SI5341_DEVICE_REV 0x0005
81 #define SI5341_STATUS 0x000C
82 #define SI5341_SOFT_RST 0x001C
83 #define SI5341_IN_SEL 0x0021
84 #define SI5341_XAXB_CFG 0x090E
85 #define SI5341_IN_EN 0x0949
86 #define SI5341_INX_TO_PFD_EN 0x094A
88 /* Input selection */
89 #define SI5341_IN_SEL_MASK 0x06
90 #define SI5341_IN_SEL_SHIFT 1
91 #define SI5341_IN_SEL_REGCTRL 0x01
92 #define SI5341_INX_TO_PFD_SHIFT 4
94 /* XTAL config bits */
95 #define SI5341_XAXB_CFG_EXTCLK_EN BIT(0)
96 #define SI5341_XAXB_CFG_PDNB BIT(1)
98 /* Input dividers (48-bit) */
99 #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
100 #define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
101 #define SI5341_PX_UPD 0x0230
103 /* PLL configuration */
104 #define SI5341_PLL_M_NUM 0x0235
105 #define SI5341_PLL_M_DEN 0x023B
107 /* Output configuration */
108 #define SI5341_OUT_CONFIG(output) \
109 ((output)->data->reg_output_offset[(output)->index])
110 #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
111 #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
112 #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
113 #define SI5341_OUT_R_REG(output) \
114 ((output)->data->reg_rdiv_offset[(output)->index])
116 /* Synthesize N divider */
117 #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
118 #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
119 #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
121 /* Synthesizer output enable, phase bypass, power mode */
122 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
123 #define SI5341_SYNTH_N_PIBYP 0x0A04
124 #define SI5341_SYNTH_N_PDNB 0x0A05
125 #define SI5341_SYNTH_N_CLK_DIS 0x0B4A
127 #define SI5341_REGISTER_MAX 0xBFF
129 /* SI5341_OUT_CONFIG bits */
130 #define SI5341_OUT_CFG_PDN BIT(0)
131 #define SI5341_OUT_CFG_OE BIT(1)
132 #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
134 /* Static configuration (to be moved to firmware) */
135 struct si5341_reg_default {
136 u16 address;
137 u8 value;
140 static const char * const si5341_input_clock_names[] = {
141 "in0", "in1", "in2", "xtal"
144 /* Output configuration registers 0..9 are not quite logically organized */
145 static const u16 si5341_reg_output_offset[] = {
146 0x0108,
147 0x010D,
148 0x0112,
149 0x0117,
150 0x011C,
151 0x0121,
152 0x0126,
153 0x012B,
154 0x0130,
155 0x013A,
158 static const u16 si5340_reg_output_offset[] = {
159 0x0112,
160 0x0117,
161 0x0126,
162 0x012B,
165 /* The location of the R divider registers */
166 static const u16 si5341_reg_rdiv_offset[] = {
167 0x024A,
168 0x024D,
169 0x0250,
170 0x0253,
171 0x0256,
172 0x0259,
173 0x025C,
174 0x025F,
175 0x0262,
176 0x0268,
178 static const u16 si5340_reg_rdiv_offset[] = {
179 0x0250,
180 0x0253,
181 0x025C,
182 0x025F,
186 * Programming sequence from ClockBuilder, settings to initialize the system
187 * using only the XTAL input, without pre-divider.
188 * This also contains settings that aren't mentioned anywhere in the datasheet.
189 * The "known" settings like synth and output configuration are done later.
191 static const struct si5341_reg_default si5341_reg_defaults[] = {
192 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
193 { 0x0018, 0xFF }, /* INT mask */
194 { 0x0021, 0x0F }, /* Select XTAL as input */
195 { 0x0022, 0x00 }, /* Not in datasheet */
196 { 0x002B, 0x02 }, /* SPI config */
197 { 0x002C, 0x20 }, /* LOS enable for XTAL */
198 { 0x002D, 0x00 }, /* LOS timing */
199 { 0x002E, 0x00 },
200 { 0x002F, 0x00 },
201 { 0x0030, 0x00 },
202 { 0x0031, 0x00 },
203 { 0x0032, 0x00 },
204 { 0x0033, 0x00 },
205 { 0x0034, 0x00 },
206 { 0x0035, 0x00 },
207 { 0x0036, 0x00 },
208 { 0x0037, 0x00 },
209 { 0x0038, 0x00 }, /* LOS setting (thresholds) */
210 { 0x0039, 0x00 },
211 { 0x003A, 0x00 },
212 { 0x003B, 0x00 },
213 { 0x003C, 0x00 },
214 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
215 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
216 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
217 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
218 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
219 { 0x009E, 0x00 }, /* Not in datasheet */
220 { 0x0102, 0x01 }, /* Enable outputs */
221 { 0x013F, 0x00 }, /* Not in datasheet */
222 { 0x0140, 0x00 }, /* Not in datasheet */
223 { 0x0141, 0x40 }, /* OUT LOS */
224 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
225 { 0x0203, 0x00 },
226 { 0x0204, 0x00 },
227 { 0x0205, 0x00 },
228 { 0x0206, 0x00 }, /* PXAXB (2^x) */
229 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
230 { 0x0209, 0x00 },
231 { 0x020A, 0x00 },
232 { 0x020B, 0x00 },
233 { 0x020C, 0x00 },
234 { 0x020D, 0x00 },
235 { 0x020E, 0x00 },
236 { 0x020F, 0x00 },
237 { 0x0210, 0x00 },
238 { 0x0211, 0x00 },
239 { 0x0212, 0x00 },
240 { 0x0213, 0x00 },
241 { 0x0214, 0x00 },
242 { 0x0215, 0x00 },
243 { 0x0216, 0x00 },
244 { 0x0217, 0x00 },
245 { 0x0218, 0x00 },
246 { 0x0219, 0x00 },
247 { 0x021A, 0x00 },
248 { 0x021B, 0x00 },
249 { 0x021C, 0x00 },
250 { 0x021D, 0x00 },
251 { 0x021E, 0x00 },
252 { 0x021F, 0x00 },
253 { 0x0220, 0x00 },
254 { 0x0221, 0x00 },
255 { 0x0222, 0x00 },
256 { 0x0223, 0x00 },
257 { 0x0224, 0x00 },
258 { 0x0225, 0x00 },
259 { 0x0226, 0x00 },
260 { 0x0227, 0x00 },
261 { 0x0228, 0x00 },
262 { 0x0229, 0x00 },
263 { 0x022A, 0x00 },
264 { 0x022B, 0x00 },
265 { 0x022C, 0x00 },
266 { 0x022D, 0x00 },
267 { 0x022E, 0x00 },
268 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
269 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
270 { 0x026C, 0x00 },
271 { 0x026D, 0x00 },
272 { 0x026E, 0x00 },
273 { 0x026F, 0x00 },
274 { 0x0270, 0x00 },
275 { 0x0271, 0x00 },
276 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
277 { 0x0339, 0x1F }, /* N_FSTEP_MSK */
278 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
279 { 0x033C, 0x00 },
280 { 0x033D, 0x00 },
281 { 0x033E, 0x00 },
282 { 0x033F, 0x00 },
283 { 0x0340, 0x00 },
284 { 0x0341, 0x00 },
285 { 0x0342, 0x00 },
286 { 0x0343, 0x00 },
287 { 0x0344, 0x00 },
288 { 0x0345, 0x00 },
289 { 0x0346, 0x00 },
290 { 0x0347, 0x00 },
291 { 0x0348, 0x00 },
292 { 0x0349, 0x00 },
293 { 0x034A, 0x00 },
294 { 0x034B, 0x00 },
295 { 0x034C, 0x00 },
296 { 0x034D, 0x00 },
297 { 0x034E, 0x00 },
298 { 0x034F, 0x00 },
299 { 0x0350, 0x00 },
300 { 0x0351, 0x00 },
301 { 0x0352, 0x00 },
302 { 0x0353, 0x00 },
303 { 0x0354, 0x00 },
304 { 0x0355, 0x00 },
305 { 0x0356, 0x00 },
306 { 0x0357, 0x00 },
307 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
308 { 0x0359, 0x00 }, /* Nx_DELAY */
309 { 0x035A, 0x00 },
310 { 0x035B, 0x00 },
311 { 0x035C, 0x00 },
312 { 0x035D, 0x00 },
313 { 0x035E, 0x00 },
314 { 0x035F, 0x00 },
315 { 0x0360, 0x00 },
316 { 0x0361, 0x00 },
317 { 0x0362, 0x00 }, /* Nx_DELAY end */
318 { 0x0802, 0x00 }, /* Not in datasheet */
319 { 0x0803, 0x00 }, /* Not in datasheet */
320 { 0x0804, 0x00 }, /* Not in datasheet */
321 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
322 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
323 { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
324 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
325 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
326 { 0x0A02, 0x00 }, /* Not in datasheet */
327 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
330 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
331 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
332 u64 *val1, u32 *val2)
334 int err;
335 u8 r[10];
337 err = regmap_bulk_read(regmap, reg, r, 10);
338 if (err < 0)
339 return err;
341 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
342 (get_unaligned_le32(r));
343 *val2 = get_unaligned_le32(&r[6]);
345 return 0;
348 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
349 u64 n_num, u32 n_den)
351 u8 r[10];
353 /* Shift left as far as possible without overflowing */
354 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
355 n_num <<= 1;
356 n_den <<= 1;
359 /* 44 bits (6 bytes) numerator */
360 put_unaligned_le32(n_num, r);
361 r[4] = (n_num >> 32) & 0xff;
362 r[5] = (n_num >> 40) & 0x0f;
363 /* 32 bits denominator */
364 put_unaligned_le32(n_den, &r[6]);
366 /* Program the fraction */
367 return regmap_bulk_write(regmap, reg, r, sizeof(r));
370 /* VCO, we assume it runs at a constant frequency */
371 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
372 unsigned long parent_rate)
374 struct clk_si5341 *data = to_clk_si5341(hw);
375 int err;
376 u64 res;
377 u64 m_num;
378 u32 m_den;
379 unsigned int shift;
381 /* Assume that PDIV is not being used, just read the PLL setting */
382 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
383 &m_num, &m_den);
384 if (err < 0)
385 return 0;
387 if (!m_num || !m_den)
388 return 0;
391 * Though m_num is 64-bit, only the upper bits are actually used. While
392 * calculating m_num and m_den, they are shifted as far as possible to
393 * the left. To avoid 96-bit division here, we just shift them back so
394 * we can do with just 64 bits.
396 shift = 0;
397 res = m_num;
398 while (res & 0xffff00000000ULL) {
399 ++shift;
400 res >>= 1;
402 res *= parent_rate;
403 do_div(res, (m_den >> shift));
405 /* We cannot return the actual frequency in 32 bit, store it locally */
406 data->freq_vco = res;
408 /* Report kHz since the value is out of range */
409 do_div(res, 1000);
411 return (unsigned long)res;
414 static int si5341_clk_get_selected_input(struct clk_si5341 *data)
416 int err;
417 u32 val;
419 err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
420 if (err < 0)
421 return err;
423 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
426 static u8 si5341_clk_get_parent(struct clk_hw *hw)
428 struct clk_si5341 *data = to_clk_si5341(hw);
429 int res = si5341_clk_get_selected_input(data);
431 if (res < 0)
432 return 0; /* Apparently we cannot report errors */
434 return res;
437 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
439 int err;
440 u8 val;
442 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
443 /* Enable register-based input selection */
444 val |= SI5341_IN_SEL_REGCTRL;
446 err = regmap_update_bits(data->regmap,
447 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
448 if (err < 0)
449 return err;
451 if (index < 3) {
452 /* Enable input buffer for selected input */
453 err = regmap_update_bits(data->regmap,
454 SI5341_IN_EN, 0x07, BIT(index));
455 if (err < 0)
456 return err;
458 /* Enables the input to phase detector */
459 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
460 0x7 << SI5341_INX_TO_PFD_SHIFT,
461 BIT(index + SI5341_INX_TO_PFD_SHIFT));
462 if (err < 0)
463 return err;
465 /* Power down XTAL oscillator and buffer */
466 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
467 SI5341_XAXB_CFG_PDNB, 0);
468 if (err < 0)
469 return err;
472 * Set the P divider to "1". There's no explanation in the
473 * datasheet of these registers, but the clockbuilder software
474 * programs a "1" when the input is being used.
476 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
477 if (err < 0)
478 return err;
480 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
481 if (err < 0)
482 return err;
484 /* Set update PDIV bit */
485 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
486 if (err < 0)
487 return err;
488 } else {
489 /* Disable all input buffers */
490 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
491 if (err < 0)
492 return err;
494 /* Disable input to phase detector */
495 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
496 0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
497 if (err < 0)
498 return err;
500 /* Power up XTAL oscillator and buffer */
501 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
502 SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
503 if (err < 0)
504 return err;
507 return 0;
510 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
512 struct clk_si5341 *data = to_clk_si5341(hw);
514 return si5341_clk_reparent(data, index);
517 static const struct clk_ops si5341_clk_ops = {
518 .set_parent = si5341_clk_set_parent,
519 .get_parent = si5341_clk_get_parent,
520 .recalc_rate = si5341_clk_recalc_rate,
523 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
525 /* The synthesizer is on if all power and enable bits are set */
526 static int si5341_synth_clk_is_on(struct clk_hw *hw)
528 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
529 int err;
530 u32 val;
531 u8 index = synth->index;
533 err = regmap_read(synth->data->regmap,
534 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
535 if (err < 0)
536 return 0;
538 if (!(val & BIT(index)))
539 return 0;
541 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
542 if (err < 0)
543 return 0;
545 if (!(val & BIT(index)))
546 return 0;
548 /* This bit must be 0 for the synthesizer to receive clock input */
549 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
550 if (err < 0)
551 return 0;
553 return !(val & BIT(index));
556 static void si5341_synth_clk_unprepare(struct clk_hw *hw)
558 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
559 u8 index = synth->index; /* In range 0..5 */
560 u8 mask = BIT(index);
562 /* Disable output */
563 regmap_update_bits(synth->data->regmap,
564 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
565 /* Power down */
566 regmap_update_bits(synth->data->regmap,
567 SI5341_SYNTH_N_PDNB, mask, 0);
568 /* Disable clock input to synth (set to 1 to disable) */
569 regmap_update_bits(synth->data->regmap,
570 SI5341_SYNTH_N_CLK_DIS, mask, mask);
573 static int si5341_synth_clk_prepare(struct clk_hw *hw)
575 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
576 int err;
577 u8 index = synth->index;
578 u8 mask = BIT(index);
580 /* Power up */
581 err = regmap_update_bits(synth->data->regmap,
582 SI5341_SYNTH_N_PDNB, mask, mask);
583 if (err < 0)
584 return err;
586 /* Enable clock input to synth (set bit to 0 to enable) */
587 err = regmap_update_bits(synth->data->regmap,
588 SI5341_SYNTH_N_CLK_DIS, mask, 0);
589 if (err < 0)
590 return err;
592 /* Enable output */
593 return regmap_update_bits(synth->data->regmap,
594 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
597 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
598 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
599 unsigned long parent_rate)
601 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
602 u64 f;
603 u64 n_num;
604 u32 n_den;
605 int err;
607 err = si5341_decode_44_32(synth->data->regmap,
608 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
609 if (err < 0)
610 return err;
613 * n_num and n_den are shifted left as much as possible, so to prevent
614 * overflow in 64-bit math, we shift n_den 4 bits to the right
616 f = synth->data->freq_vco;
617 f *= n_den >> 4;
619 /* Now we need to to 64-bit division: f/n_num */
620 /* And compensate for the 4 bits we dropped */
621 f = div64_u64(f, (n_num >> 4));
623 return f;
626 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
627 unsigned long *parent_rate)
629 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
630 u64 f;
632 /* The synthesizer accuracy is such that anything in range will work */
633 f = synth->data->freq_vco;
634 do_div(f, SI5341_SYNTH_N_MAX);
635 if (rate < f)
636 return f;
638 f = synth->data->freq_vco;
639 do_div(f, SI5341_SYNTH_N_MIN);
640 if (rate > f)
641 return f;
643 return rate;
646 static int si5341_synth_program(struct clk_si5341_synth *synth,
647 u64 n_num, u32 n_den, bool is_integer)
649 int err;
650 u8 index = synth->index;
652 err = si5341_encode_44_32(synth->data->regmap,
653 SI5341_SYNTH_N_NUM(index), n_num, n_den);
655 err = regmap_update_bits(synth->data->regmap,
656 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
657 if (err < 0)
658 return err;
660 return regmap_write(synth->data->regmap,
661 SI5341_SYNTH_N_UPD(index), 0x01);
665 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
666 unsigned long parent_rate)
668 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
669 u64 n_num;
670 u32 n_den;
671 u32 r;
672 u32 g;
673 bool is_integer;
675 n_num = synth->data->freq_vco;
677 /* see if there's an integer solution */
678 r = do_div(n_num, rate);
679 is_integer = (r == 0);
680 if (is_integer) {
681 /* Integer divider equal to n_num */
682 n_den = 1;
683 } else {
684 /* Calculate a fractional solution */
685 g = gcd(r, rate);
686 n_den = rate / g;
687 n_num *= n_den;
688 n_num += r / g;
691 dev_dbg(&synth->data->i2c_client->dev,
692 "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
693 synth->index, n_num, n_den,
694 is_integer ? "int" : "frac");
696 return si5341_synth_program(synth, n_num, n_den, is_integer);
699 static const struct clk_ops si5341_synth_clk_ops = {
700 .is_prepared = si5341_synth_clk_is_on,
701 .prepare = si5341_synth_clk_prepare,
702 .unprepare = si5341_synth_clk_unprepare,
703 .recalc_rate = si5341_synth_clk_recalc_rate,
704 .round_rate = si5341_synth_clk_round_rate,
705 .set_rate = si5341_synth_clk_set_rate,
708 static int si5341_output_clk_is_on(struct clk_hw *hw)
710 struct clk_si5341_output *output = to_clk_si5341_output(hw);
711 int err;
712 u32 val;
714 err = regmap_read(output->data->regmap,
715 SI5341_OUT_CONFIG(output), &val);
716 if (err < 0)
717 return err;
719 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
720 return (val & 0x03) == SI5341_OUT_CFG_OE;
723 /* Disables and then powers down the output */
724 static void si5341_output_clk_unprepare(struct clk_hw *hw)
726 struct clk_si5341_output *output = to_clk_si5341_output(hw);
728 regmap_update_bits(output->data->regmap,
729 SI5341_OUT_CONFIG(output),
730 SI5341_OUT_CFG_OE, 0);
731 regmap_update_bits(output->data->regmap,
732 SI5341_OUT_CONFIG(output),
733 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
736 /* Powers up and then enables the output */
737 static int si5341_output_clk_prepare(struct clk_hw *hw)
739 struct clk_si5341_output *output = to_clk_si5341_output(hw);
740 int err;
742 err = regmap_update_bits(output->data->regmap,
743 SI5341_OUT_CONFIG(output),
744 SI5341_OUT_CFG_PDN, 0);
745 if (err < 0)
746 return err;
748 return regmap_update_bits(output->data->regmap,
749 SI5341_OUT_CONFIG(output),
750 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
753 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
754 unsigned long parent_rate)
756 struct clk_si5341_output *output = to_clk_si5341_output(hw);
757 int err;
758 u32 val;
759 u32 r_divider;
760 u8 r[3];
762 err = regmap_bulk_read(output->data->regmap,
763 SI5341_OUT_R_REG(output), r, 3);
764 if (err < 0)
765 return err;
767 /* Calculate value as 24-bit integer*/
768 r_divider = r[2] << 16 | r[1] << 8 | r[0];
770 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
771 if (!r_divider)
772 return 0;
774 /* Divider is 2*(Rx_REG+1) */
775 r_divider += 1;
776 r_divider <<= 1;
778 err = regmap_read(output->data->regmap,
779 SI5341_OUT_CONFIG(output), &val);
780 if (err < 0)
781 return err;
783 if (val & SI5341_OUT_CFG_RDIV_FORCE2)
784 r_divider = 2;
786 return parent_rate / r_divider;
789 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
790 unsigned long *parent_rate)
792 unsigned long r;
794 r = *parent_rate >> 1;
796 /* If rate is an even divisor, no changes to parent required */
797 if (r && !(r % rate))
798 return (long)rate;
800 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
801 if (rate > 200000000) {
802 /* minimum r-divider is 2 */
803 r = 2;
804 } else {
805 /* Take a parent frequency near 400 MHz */
806 r = (400000000u / rate) & ~1;
808 *parent_rate = r * rate;
809 } else {
810 /* We cannot change our parent's rate, report what we can do */
811 r /= rate;
812 rate = *parent_rate / (r << 1);
815 return rate;
818 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
819 unsigned long parent_rate)
821 struct clk_si5341_output *output = to_clk_si5341_output(hw);
822 /* Frequency divider is (r_div + 1) * 2 */
823 u32 r_div = (parent_rate / rate) >> 1;
824 int err;
825 u8 r[3];
827 if (r_div <= 1)
828 r_div = 0;
829 else if (r_div >= BIT(24))
830 r_div = BIT(24) - 1;
831 else
832 --r_div;
834 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
835 err = regmap_update_bits(output->data->regmap,
836 SI5341_OUT_CONFIG(output),
837 SI5341_OUT_CFG_RDIV_FORCE2,
838 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
839 if (err < 0)
840 return err;
842 /* Always write Rx_REG, because a zero value disables the divider */
843 r[0] = r_div ? (r_div & 0xff) : 1;
844 r[1] = (r_div >> 8) & 0xff;
845 r[2] = (r_div >> 16) & 0xff;
846 err = regmap_bulk_write(output->data->regmap,
847 SI5341_OUT_R_REG(output), r, 3);
849 return 0;
852 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
854 return regmap_update_bits(output->data->regmap,
855 SI5341_OUT_MUX_SEL(output), 0x07, index);
858 static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
860 struct clk_si5341_output *output = to_clk_si5341_output(hw);
862 if (index >= output->data->num_synth)
863 return -EINVAL;
865 return si5341_output_reparent(output, index);
868 static u8 si5341_output_get_parent(struct clk_hw *hw)
870 struct clk_si5341_output *output = to_clk_si5341_output(hw);
871 int err;
872 u32 val;
874 err = regmap_read(output->data->regmap,
875 SI5341_OUT_MUX_SEL(output), &val);
877 return val & 0x7;
880 static const struct clk_ops si5341_output_clk_ops = {
881 .is_prepared = si5341_output_clk_is_on,
882 .prepare = si5341_output_clk_prepare,
883 .unprepare = si5341_output_clk_unprepare,
884 .recalc_rate = si5341_output_clk_recalc_rate,
885 .round_rate = si5341_output_clk_round_rate,
886 .set_rate = si5341_output_clk_set_rate,
887 .set_parent = si5341_output_set_parent,
888 .get_parent = si5341_output_get_parent,
892 * The chip can be bought in a pre-programmed version, or one can program the
893 * NVM in the chip to boot up in a preset mode. This routine tries to determine
894 * if that's the case, or if we need to reset and program everything from
895 * scratch. Returns negative error, or true/false.
897 static int si5341_is_programmed_already(struct clk_si5341 *data)
899 int err;
900 u8 r[4];
902 /* Read the PLL divider value, it must have a non-zero value */
903 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
904 r, ARRAY_SIZE(r));
905 if (err < 0)
906 return err;
908 return !!get_unaligned_le32(r);
911 static struct clk_hw *
912 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
914 struct clk_si5341 *data = _data;
915 unsigned int idx = clkspec->args[1];
916 unsigned int group = clkspec->args[0];
918 switch (group) {
919 case 0:
920 if (idx >= data->num_outputs) {
921 dev_err(&data->i2c_client->dev,
922 "invalid output index %u\n", idx);
923 return ERR_PTR(-EINVAL);
925 return &data->clk[idx].hw;
926 case 1:
927 if (idx >= data->num_synth) {
928 dev_err(&data->i2c_client->dev,
929 "invalid synthesizer index %u\n", idx);
930 return ERR_PTR(-EINVAL);
932 return &data->synth[idx].hw;
933 case 2:
934 if (idx > 0) {
935 dev_err(&data->i2c_client->dev,
936 "invalid PLL index %u\n", idx);
937 return ERR_PTR(-EINVAL);
939 return &data->hw;
940 default:
941 dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
942 return ERR_PTR(-EINVAL);
946 static int si5341_probe_chip_id(struct clk_si5341 *data)
948 int err;
949 u8 reg[4];
950 u16 model;
952 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
953 ARRAY_SIZE(reg));
954 if (err < 0) {
955 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
956 return err;
959 model = get_unaligned_le16(reg);
961 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
962 model, reg[2], reg[3]);
964 switch (model) {
965 case 0x5340:
966 data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
967 data->num_synth = SI5340_NUM_SYNTH;
968 data->reg_output_offset = si5340_reg_output_offset;
969 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
970 break;
971 case 0x5341:
972 data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
973 data->num_synth = SI5341_NUM_SYNTH;
974 data->reg_output_offset = si5341_reg_output_offset;
975 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
976 break;
977 default:
978 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
979 model);
980 return -EINVAL;
983 return 0;
986 /* Read active settings into the regmap cache for later reference */
987 static int si5341_read_settings(struct clk_si5341 *data)
989 int err;
990 u8 i;
991 u8 r[10];
993 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
994 if (err < 0)
995 return err;
997 err = regmap_bulk_read(data->regmap,
998 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
999 if (err < 0)
1000 return err;
1002 err = regmap_bulk_read(data->regmap,
1003 SI5341_SYNTH_N_CLK_DIS, r, 1);
1004 if (err < 0)
1005 return err;
1007 for (i = 0; i < data->num_synth; ++i) {
1008 err = regmap_bulk_read(data->regmap,
1009 SI5341_SYNTH_N_NUM(i), r, 10);
1010 if (err < 0)
1011 return err;
1014 for (i = 0; i < data->num_outputs; ++i) {
1015 err = regmap_bulk_read(data->regmap,
1016 data->reg_output_offset[i], r, 4);
1017 if (err < 0)
1018 return err;
1020 err = regmap_bulk_read(data->regmap,
1021 data->reg_rdiv_offset[i], r, 3);
1022 if (err < 0)
1023 return err;
1026 return 0;
1029 static int si5341_write_multiple(struct clk_si5341 *data,
1030 const struct si5341_reg_default *values, unsigned int num_values)
1032 unsigned int i;
1033 int res;
1035 for (i = 0; i < num_values; ++i) {
1036 res = regmap_write(data->regmap,
1037 values[i].address, values[i].value);
1038 if (res < 0) {
1039 dev_err(&data->i2c_client->dev,
1040 "Failed to write %#x:%#x\n",
1041 values[i].address, values[i].value);
1042 return res;
1046 return 0;
1049 static const struct si5341_reg_default si5341_preamble[] = {
1050 { 0x0B25, 0x00 },
1051 { 0x0502, 0x01 },
1052 { 0x0505, 0x03 },
1053 { 0x0957, 0x1F },
1054 { 0x0B4E, 0x1A },
1057 static int si5341_send_preamble(struct clk_si5341 *data)
1059 int res;
1060 u32 revision;
1062 /* For revision 2 and up, the values are slightly different */
1063 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1064 if (res < 0)
1065 return res;
1067 /* Write "preamble" as specified by datasheet */
1068 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1069 if (res < 0)
1070 return res;
1071 res = si5341_write_multiple(data,
1072 si5341_preamble, ARRAY_SIZE(si5341_preamble));
1073 if (res < 0)
1074 return res;
1076 /* Datasheet specifies a 300ms wait after sending the preamble */
1077 msleep(300);
1079 return 0;
1082 /* Perform a soft reset and write post-amble */
1083 static int si5341_finalize_defaults(struct clk_si5341 *data)
1085 int res;
1086 u32 revision;
1088 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1089 if (res < 0)
1090 return res;
1092 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1094 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1095 if (res < 0)
1096 return res;
1098 /* Datasheet does not explain these nameless registers */
1099 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1100 if (res < 0)
1101 return res;
1102 res = regmap_write(data->regmap, 0x0B25, 0x02);
1103 if (res < 0)
1104 return res;
1106 return 0;
1110 static const struct regmap_range si5341_regmap_volatile_range[] = {
1111 regmap_reg_range(0x000C, 0x0012), /* Status */
1112 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1113 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1114 /* Update bits for P divider and synth config */
1115 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1116 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1117 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1118 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1119 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1120 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1123 static const struct regmap_access_table si5341_regmap_volatile = {
1124 .yes_ranges = si5341_regmap_volatile_range,
1125 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1128 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1129 static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1131 .range_min = 0,
1132 .range_max = SI5341_REGISTER_MAX,
1133 .selector_reg = SI5341_PAGE,
1134 .selector_mask = 0xff,
1135 .selector_shift = 0,
1136 .window_start = 0,
1137 .window_len = 256,
1141 static const struct regmap_config si5341_regmap_config = {
1142 .reg_bits = 8,
1143 .val_bits = 8,
1144 .cache_type = REGCACHE_RBTREE,
1145 .ranges = si5341_regmap_ranges,
1146 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1147 .max_register = SI5341_REGISTER_MAX,
1148 .volatile_table = &si5341_regmap_volatile,
1151 static int si5341_dt_parse_dt(struct i2c_client *client,
1152 struct clk_si5341_output_config *config)
1154 struct device_node *child;
1155 struct device_node *np = client->dev.of_node;
1156 u32 num;
1157 u32 val;
1159 memset(config, 0, sizeof(struct clk_si5341_output_config) *
1160 SI5341_MAX_NUM_OUTPUTS);
1162 for_each_child_of_node(np, child) {
1163 if (of_property_read_u32(child, "reg", &num)) {
1164 dev_err(&client->dev, "missing reg property of %s\n",
1165 child->name);
1166 goto put_child;
1169 if (num >= SI5341_MAX_NUM_OUTPUTS) {
1170 dev_err(&client->dev, "invalid clkout %d\n", num);
1171 goto put_child;
1174 if (!of_property_read_u32(child, "silabs,format", &val)) {
1175 /* Set cm and ampl conservatively to 3v3 settings */
1176 switch (val) {
1177 case 1: /* normal differential */
1178 config[num].out_cm_ampl_bits = 0x33;
1179 break;
1180 case 2: /* low-power differential */
1181 config[num].out_cm_ampl_bits = 0x13;
1182 break;
1183 case 4: /* LVCMOS */
1184 config[num].out_cm_ampl_bits = 0x33;
1185 /* Set SI recommended impedance for LVCMOS */
1186 config[num].out_format_drv_bits |= 0xc0;
1187 break;
1188 default:
1189 dev_err(&client->dev,
1190 "invalid silabs,format %u for %u\n",
1191 val, num);
1192 goto put_child;
1194 config[num].out_format_drv_bits &= ~0x07;
1195 config[num].out_format_drv_bits |= val & 0x07;
1196 /* Always enable the SYNC feature */
1197 config[num].out_format_drv_bits |= 0x08;
1200 if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1201 if (val > 0xf) {
1202 dev_err(&client->dev,
1203 "invalid silabs,common-mode %u\n",
1204 val);
1205 goto put_child;
1207 config[num].out_cm_ampl_bits &= 0xf0;
1208 config[num].out_cm_ampl_bits |= val & 0x0f;
1211 if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1212 if (val > 0xf) {
1213 dev_err(&client->dev,
1214 "invalid silabs,amplitude %u\n",
1215 val);
1216 goto put_child;
1218 config[num].out_cm_ampl_bits &= 0x0f;
1219 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1222 if (of_property_read_bool(child, "silabs,disable-high"))
1223 config[num].out_format_drv_bits |= 0x10;
1225 config[num].synth_master =
1226 of_property_read_bool(child, "silabs,synth-master");
1228 config[num].always_on =
1229 of_property_read_bool(child, "always-on");
1232 return 0;
1234 put_child:
1235 of_node_put(child);
1236 return -EINVAL;
1240 * If not pre-configured, calculate and set the PLL configuration manually.
1241 * For low-jitter performance, the PLL should be set such that the synthesizers
1242 * only need integer division.
1243 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1244 * the chip to generate any frequency on its outputs, but jitter performance
1245 * may be sub-optimal.
1247 static int si5341_initialize_pll(struct clk_si5341 *data)
1249 struct device_node *np = data->i2c_client->dev.of_node;
1250 u32 m_num = 0;
1251 u32 m_den = 0;
1252 int sel;
1254 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1255 dev_err(&data->i2c_client->dev,
1256 "PLL configuration requires silabs,pll-m-num\n");
1258 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1259 dev_err(&data->i2c_client->dev,
1260 "PLL configuration requires silabs,pll-m-den\n");
1263 if (!m_num || !m_den) {
1264 dev_err(&data->i2c_client->dev,
1265 "PLL configuration invalid, assume 14GHz\n");
1266 sel = si5341_clk_get_selected_input(data);
1267 if (sel < 0)
1268 return sel;
1270 m_den = clk_get_rate(data->input_clk[sel]) / 10;
1271 m_num = 1400000000;
1274 return si5341_encode_44_32(data->regmap,
1275 SI5341_PLL_M_NUM, m_num, m_den);
1278 static int si5341_clk_select_active_input(struct clk_si5341 *data)
1280 int res;
1281 int err;
1282 int i;
1284 res = si5341_clk_get_selected_input(data);
1285 if (res < 0)
1286 return res;
1288 /* If the current register setting is invalid, pick the first input */
1289 if (!data->input_clk[res]) {
1290 dev_dbg(&data->i2c_client->dev,
1291 "Input %d not connected, rerouting\n", res);
1292 res = -ENODEV;
1293 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1294 if (data->input_clk[i]) {
1295 res = i;
1296 break;
1299 if (res < 0) {
1300 dev_err(&data->i2c_client->dev,
1301 "No clock input available\n");
1302 return res;
1306 /* Make sure the selected clock is also enabled and routed */
1307 err = si5341_clk_reparent(data, res);
1308 if (err < 0)
1309 return err;
1311 err = clk_prepare_enable(data->input_clk[res]);
1312 if (err < 0)
1313 return err;
1315 return res;
1318 static int si5341_probe(struct i2c_client *client,
1319 const struct i2c_device_id *id)
1321 struct clk_si5341 *data;
1322 struct clk_init_data init;
1323 struct clk *input;
1324 const char *root_clock_name;
1325 const char *synth_clock_names[SI5341_NUM_SYNTH];
1326 int err;
1327 unsigned int i;
1328 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1329 bool initialization_required;
1331 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1332 if (!data)
1333 return -ENOMEM;
1335 data->i2c_client = client;
1337 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1338 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1339 if (IS_ERR(input)) {
1340 if (PTR_ERR(input) == -EPROBE_DEFER)
1341 return -EPROBE_DEFER;
1342 data->input_clk_name[i] = si5341_input_clock_names[i];
1343 } else {
1344 data->input_clk[i] = input;
1345 data->input_clk_name[i] = __clk_get_name(input);
1349 err = si5341_dt_parse_dt(client, config);
1350 if (err)
1351 return err;
1353 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1354 &init.name))
1355 init.name = client->dev.of_node->name;
1356 root_clock_name = init.name;
1358 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1359 if (IS_ERR(data->regmap))
1360 return PTR_ERR(data->regmap);
1362 i2c_set_clientdata(client, data);
1364 err = si5341_probe_chip_id(data);
1365 if (err < 0)
1366 return err;
1368 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1369 initialization_required = true;
1370 } else {
1371 err = si5341_is_programmed_already(data);
1372 if (err < 0)
1373 return err;
1375 initialization_required = !err;
1378 if (initialization_required) {
1379 /* Populate the regmap cache in preparation for "cache only" */
1380 err = si5341_read_settings(data);
1381 if (err < 0)
1382 return err;
1384 err = si5341_send_preamble(data);
1385 if (err < 0)
1386 return err;
1389 * We intend to send all 'final' register values in a single
1390 * transaction. So cache all register writes until we're done
1391 * configuring.
1393 regcache_cache_only(data->regmap, true);
1395 /* Write the configuration pairs from the firmware blob */
1396 err = si5341_write_multiple(data, si5341_reg_defaults,
1397 ARRAY_SIZE(si5341_reg_defaults));
1398 if (err < 0)
1399 return err;
1402 /* Input must be up and running at this point */
1403 err = si5341_clk_select_active_input(data);
1404 if (err < 0)
1405 return err;
1407 if (initialization_required) {
1408 /* PLL configuration is required */
1409 err = si5341_initialize_pll(data);
1410 if (err < 0)
1411 return err;
1414 /* Register the PLL */
1415 init.parent_names = data->input_clk_name;
1416 init.num_parents = SI5341_NUM_INPUTS;
1417 init.ops = &si5341_clk_ops;
1418 init.flags = 0;
1419 data->hw.init = &init;
1421 err = devm_clk_hw_register(&client->dev, &data->hw);
1422 if (err) {
1423 dev_err(&client->dev, "clock registration failed\n");
1424 return err;
1427 init.num_parents = 1;
1428 init.parent_names = &root_clock_name;
1429 init.ops = &si5341_synth_clk_ops;
1430 for (i = 0; i < data->num_synth; ++i) {
1431 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1432 "%s.N%u", client->dev.of_node->name, i);
1433 init.name = synth_clock_names[i];
1434 data->synth[i].index = i;
1435 data->synth[i].data = data;
1436 data->synth[i].hw.init = &init;
1437 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1438 if (err) {
1439 dev_err(&client->dev,
1440 "synth N%u registration failed\n", i);
1444 init.num_parents = data->num_synth;
1445 init.parent_names = synth_clock_names;
1446 init.ops = &si5341_output_clk_ops;
1447 for (i = 0; i < data->num_outputs; ++i) {
1448 init.name = kasprintf(GFP_KERNEL, "%s.%d",
1449 client->dev.of_node->name, i);
1450 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1451 data->clk[i].index = i;
1452 data->clk[i].data = data;
1453 data->clk[i].hw.init = &init;
1454 if (config[i].out_format_drv_bits & 0x07) {
1455 regmap_write(data->regmap,
1456 SI5341_OUT_FORMAT(&data->clk[i]),
1457 config[i].out_format_drv_bits);
1458 regmap_write(data->regmap,
1459 SI5341_OUT_CM(&data->clk[i]),
1460 config[i].out_cm_ampl_bits);
1462 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1463 kfree(init.name); /* clock framework made a copy of the name */
1464 if (err) {
1465 dev_err(&client->dev,
1466 "output %u registration failed\n", i);
1467 return err;
1469 if (config[i].always_on)
1470 clk_prepare(data->clk[i].hw.clk);
1473 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1474 data);
1475 if (err) {
1476 dev_err(&client->dev, "unable to add clk provider\n");
1477 return err;
1480 if (initialization_required) {
1481 /* Synchronize */
1482 regcache_cache_only(data->regmap, false);
1483 err = regcache_sync(data->regmap);
1484 if (err < 0)
1485 return err;
1487 err = si5341_finalize_defaults(data);
1488 if (err < 0)
1489 return err;
1492 /* Free the names, clk framework makes copies */
1493 for (i = 0; i < data->num_synth; ++i)
1494 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1496 return 0;
1499 static const struct i2c_device_id si5341_id[] = {
1500 { "si5340", 0 },
1501 { "si5341", 1 },
1504 MODULE_DEVICE_TABLE(i2c, si5341_id);
1506 static const struct of_device_id clk_si5341_of_match[] = {
1507 { .compatible = "silabs,si5340" },
1508 { .compatible = "silabs,si5341" },
1511 MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1513 static struct i2c_driver si5341_driver = {
1514 .driver = {
1515 .name = "si5341",
1516 .of_match_table = clk_si5341_of_match,
1518 .probe = si5341_probe,
1519 .id_table = si5341_id,
1521 module_i2c_driver(si5341_driver);
1523 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1524 MODULE_DESCRIPTION("Si5341 driver");
1525 MODULE_LICENSE("GPL");