1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
31 #include <clocksource/arm_arch_timer.h>
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
47 #define CNTP_TVAL 0x28
49 #define CNTV_TVAL 0x38
52 static unsigned arch_timers_present __initdata
;
54 static void __iomem
*arch_counter_base
;
58 struct clock_event_device evt
;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate
;
64 static int arch_timer_ppi
[ARCH_TIMER_MAX_TIMER_PPI
];
66 static struct clock_event_device __percpu
*arch_timer_evt
;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi
= ARCH_TIMER_VIRT_PPI
;
69 static bool arch_timer_c3stop
;
70 static bool arch_timer_mem_use_virtual
;
71 static bool arch_counter_suspend_stop
;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_ARCHTIMER
;
75 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_NONE
;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78 static cpumask_t evtstrm_available
= CPU_MASK_NONE
;
79 static bool evtstrm_enable
= IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
);
81 static int __init
early_evtstrm_cfg(char *buf
)
83 return strtobool(buf
, &evtstrm_enable
);
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg
);
88 * Architected system timer support.
91 static __always_inline
92 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
93 struct clock_event_device
*clk
)
95 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
96 struct arch_timer
*timer
= to_arch_timer(clk
);
98 case ARCH_TIMER_REG_CTRL
:
99 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
101 case ARCH_TIMER_REG_TVAL
:
102 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
105 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
106 struct arch_timer
*timer
= to_arch_timer(clk
);
108 case ARCH_TIMER_REG_CTRL
:
109 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
111 case ARCH_TIMER_REG_TVAL
:
112 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
116 arch_timer_reg_write_cp15(access
, reg
, val
);
120 static __always_inline
121 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
122 struct clock_event_device
*clk
)
126 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
127 struct arch_timer
*timer
= to_arch_timer(clk
);
129 case ARCH_TIMER_REG_CTRL
:
130 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
132 case ARCH_TIMER_REG_TVAL
:
133 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
136 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
137 struct arch_timer
*timer
= to_arch_timer(clk
);
139 case ARCH_TIMER_REG_CTRL
:
140 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
142 case ARCH_TIMER_REG_TVAL
:
143 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
147 val
= arch_timer_reg_read_cp15(access
, reg
);
153 static notrace u64
arch_counter_get_cntpct_stable(void)
155 return __arch_counter_get_cntpct_stable();
158 static notrace u64
arch_counter_get_cntpct(void)
160 return __arch_counter_get_cntpct();
163 static notrace u64
arch_counter_get_cntvct_stable(void)
165 return __arch_counter_get_cntvct_stable();
168 static notrace u64
arch_counter_get_cntvct(void)
170 return __arch_counter_get_cntvct();
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
179 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter
);
182 static u64
arch_counter_read(struct clocksource
*cs
)
184 return arch_timer_read_counter();
187 static u64
arch_counter_read_cc(const struct cyclecounter
*cc
)
189 return arch_timer_read_counter();
192 static struct clocksource clocksource_counter
= {
193 .name
= "arch_sys_counter",
195 .read
= arch_counter_read
,
196 .mask
= CLOCKSOURCE_MASK(56),
197 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
200 static struct cyclecounter cyclecounter __ro_after_init
= {
201 .read
= arch_counter_read_cc
,
202 .mask
= CLOCKSOURCE_MASK(56),
205 struct ate_acpi_oem_info
{
206 char oem_id
[ACPI_OEM_ID_SIZE
+ 1];
207 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
+ 1];
211 #ifdef CONFIG_FSL_ERRATUM_A008585
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
216 #define __fsl_a008585_read_reg(reg) ({ \
218 int _retries = 200; \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
224 } while (unlikely(_old != _new) && _retries); \
226 WARN_ON_ONCE(!_retries); \
230 static u32 notrace
fsl_a008585_read_cntp_tval_el0(void)
232 return __fsl_a008585_read_reg(cntp_tval_el0
);
235 static u32 notrace
fsl_a008585_read_cntv_tval_el0(void)
237 return __fsl_a008585_read_reg(cntv_tval_el0
);
240 static u64 notrace
fsl_a008585_read_cntpct_el0(void)
242 return __fsl_a008585_read_reg(cntpct_el0
);
245 static u64 notrace
fsl_a008585_read_cntvct_el0(void)
247 return __fsl_a008585_read_reg(cntvct_el0
);
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
262 #define __hisi_161010101_read_reg(reg) ({ \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
272 WARN_ON_ONCE(!_retries); \
276 static u32 notrace
hisi_161010101_read_cntp_tval_el0(void)
278 return __hisi_161010101_read_reg(cntp_tval_el0
);
281 static u32 notrace
hisi_161010101_read_cntv_tval_el0(void)
283 return __hisi_161010101_read_reg(cntv_tval_el0
);
286 static u64 notrace
hisi_161010101_read_cntpct_el0(void)
288 return __hisi_161010101_read_reg(cntpct_el0
);
291 static u64 notrace
hisi_161010101_read_cntvct_el0(void)
293 return __hisi_161010101_read_reg(cntvct_el0
);
296 static struct ate_acpi_oem_info hisi_161010101_oem_info
[] = {
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
303 .oem_table_id
= "HIP05 ",
308 .oem_table_id
= "HIP06 ",
313 .oem_table_id
= "HIP07 ",
316 { /* Sentinel indicating the end of the OEM array */ },
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace
arm64_858921_read_cntpct_el0(void)
325 old
= read_sysreg(cntpct_el0
);
326 new = read_sysreg(cntpct_el0
);
327 return (((old
^ new) >> 32) & 1) ? old
: new;
330 static u64 notrace
arm64_858921_read_cntvct_el0(void)
334 old
= read_sysreg(cntvct_el0
);
335 new = read_sysreg(cntvct_el0
);
336 return (((old
^ new) >> 32) & 1) ? old
: new;
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
348 #define __sun50i_a64_read_reg(reg) ({ \
350 int _retries = 150; \
353 _val = read_sysreg(reg); \
355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
357 WARN_ON_ONCE(!_retries); \
361 static u64 notrace
sun50i_a64_read_cntpct_el0(void)
363 return __sun50i_a64_read_reg(cntpct_el0
);
366 static u64 notrace
sun50i_a64_read_cntvct_el0(void)
368 return __sun50i_a64_read_reg(cntvct_el0
);
371 static u32 notrace
sun50i_a64_read_cntp_tval_el0(void)
373 return read_sysreg(cntp_cval_el0
) - sun50i_a64_read_cntpct_el0();
376 static u32 notrace
sun50i_a64_read_cntv_tval_el0(void)
378 return read_sysreg(cntv_cval_el0
) - sun50i_a64_read_cntvct_el0();
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround
*, timer_unstable_counter_workaround
);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround
);
386 static atomic_t timer_unstable_counter_workaround_in_use
= ATOMIC_INIT(0);
388 static void erratum_set_next_event_tval_generic(const int access
, unsigned long evt
,
389 struct clock_event_device
*clk
)
394 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
395 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
396 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
398 if (access
== ARCH_TIMER_PHYS_ACCESS
) {
399 cval
= evt
+ arch_counter_get_cntpct();
400 write_sysreg(cval
, cntp_cval_el0
);
402 cval
= evt
+ arch_counter_get_cntvct();
403 write_sysreg(cval
, cntv_cval_el0
);
406 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
409 static __maybe_unused
int erratum_set_next_event_tval_virt(unsigned long evt
,
410 struct clock_event_device
*clk
)
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
416 static __maybe_unused
int erratum_set_next_event_tval_phys(unsigned long evt
,
417 struct clock_event_device
*clk
)
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
423 static const struct arch_timer_erratum_workaround ool_workarounds
[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
426 .match_type
= ate_match_dt
,
427 .id
= "fsl,erratum-a008585",
428 .desc
= "Freescale erratum a005858",
429 .read_cntp_tval_el0
= fsl_a008585_read_cntp_tval_el0
,
430 .read_cntv_tval_el0
= fsl_a008585_read_cntv_tval_el0
,
431 .read_cntpct_el0
= fsl_a008585_read_cntpct_el0
,
432 .read_cntvct_el0
= fsl_a008585_read_cntvct_el0
,
433 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
434 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
439 .match_type
= ate_match_dt
,
440 .id
= "hisilicon,erratum-161010101",
441 .desc
= "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
443 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
444 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
445 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
446 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
447 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
450 .match_type
= ate_match_acpi_oem_info
,
451 .id
= hisi_161010101_oem_info
,
452 .desc
= "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
454 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
455 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
456 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
457 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
458 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
461 #ifdef CONFIG_ARM64_ERRATUM_858921
463 .match_type
= ate_match_local_cap_id
,
464 .id
= (void *)ARM64_WORKAROUND_858921
,
465 .desc
= "ARM erratum 858921",
466 .read_cntpct_el0
= arm64_858921_read_cntpct_el0
,
467 .read_cntvct_el0
= arm64_858921_read_cntvct_el0
,
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
472 .match_type
= ate_match_dt
,
473 .id
= "allwinner,erratum-unknown1",
474 .desc
= "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0
= sun50i_a64_read_cntp_tval_el0
,
476 .read_cntv_tval_el0
= sun50i_a64_read_cntv_tval_el0
,
477 .read_cntpct_el0
= sun50i_a64_read_cntpct_el0
,
478 .read_cntvct_el0
= sun50i_a64_read_cntvct_el0
,
479 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
480 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
485 typedef bool (*ate_match_fn_t
)(const struct arch_timer_erratum_workaround
*,
489 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround
*wa
,
492 const struct device_node
*np
= arg
;
494 return of_property_read_bool(np
, wa
->id
);
498 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround
*wa
,
501 return this_cpu_has_cap((uintptr_t)wa
->id
);
506 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround
*wa
,
509 static const struct ate_acpi_oem_info empty_oem_info
= {};
510 const struct ate_acpi_oem_info
*info
= wa
->id
;
511 const struct acpi_table_header
*table
= arg
;
513 /* Iterate over the ACPI OEM info array, looking for a match */
514 while (memcmp(info
, &empty_oem_info
, sizeof(*info
))) {
515 if (!memcmp(info
->oem_id
, table
->oem_id
, ACPI_OEM_ID_SIZE
) &&
516 !memcmp(info
->oem_table_id
, table
->oem_table_id
, ACPI_OEM_TABLE_ID_SIZE
) &&
517 info
->oem_revision
== table
->oem_revision
)
526 static const struct arch_timer_erratum_workaround
*
527 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type
,
528 ate_match_fn_t match_fn
,
533 for (i
= 0; i
< ARRAY_SIZE(ool_workarounds
); i
++) {
534 if (ool_workarounds
[i
].match_type
!= type
)
537 if (match_fn(&ool_workarounds
[i
], arg
))
538 return &ool_workarounds
[i
];
545 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround
*wa
,
551 __this_cpu_write(timer_unstable_counter_workaround
, wa
);
553 for_each_possible_cpu(i
)
554 per_cpu(timer_unstable_counter_workaround
, i
) = wa
;
557 if (wa
->read_cntvct_el0
|| wa
->read_cntpct_el0
)
558 atomic_set(&timer_unstable_counter_workaround_in_use
, 1);
561 * Don't use the vdso fastpath if errata require using the
562 * out-of-line counter accessor. We may change our mind pretty
563 * late in the game (with a per-CPU erratum, for example), so
564 * change both the default value and the vdso itself.
566 if (wa
->read_cntvct_el0
) {
567 clocksource_counter
.vdso_clock_mode
= VDSO_CLOCKMODE_NONE
;
568 vdso_default
= VDSO_CLOCKMODE_NONE
;
572 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type
,
575 const struct arch_timer_erratum_workaround
*wa
, *__wa
;
576 ate_match_fn_t match_fn
= NULL
;
581 match_fn
= arch_timer_check_dt_erratum
;
583 case ate_match_local_cap_id
:
584 match_fn
= arch_timer_check_local_cap_erratum
;
587 case ate_match_acpi_oem_info
:
588 match_fn
= arch_timer_check_acpi_oem_erratum
;
595 wa
= arch_timer_iterate_errata(type
, match_fn
, arg
);
599 __wa
= __this_cpu_read(timer_unstable_counter_workaround
);
600 if (__wa
&& wa
!= __wa
)
601 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
602 wa
->desc
, __wa
->desc
);
607 arch_timer_enable_workaround(wa
, local
);
608 pr_info("Enabling %s workaround for %s\n",
609 local
? "local" : "global", wa
->desc
);
612 static bool arch_timer_this_cpu_has_cntvct_wa(void)
614 return has_erratum_handler(read_cntvct_el0
);
617 static bool arch_timer_counter_has_wa(void)
619 return atomic_read(&timer_unstable_counter_workaround_in_use
);
622 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
623 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
624 #define arch_timer_counter_has_wa() ({false;})
625 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
627 static __always_inline irqreturn_t
timer_handler(const int access
,
628 struct clock_event_device
*evt
)
632 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
633 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
634 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
635 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
636 evt
->event_handler(evt
);
643 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
645 struct clock_event_device
*evt
= dev_id
;
647 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
650 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
652 struct clock_event_device
*evt
= dev_id
;
654 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
657 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
659 struct clock_event_device
*evt
= dev_id
;
661 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
664 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
666 struct clock_event_device
*evt
= dev_id
;
668 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
671 static __always_inline
int timer_shutdown(const int access
,
672 struct clock_event_device
*clk
)
676 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
677 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
678 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
683 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
685 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
688 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
690 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
693 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
695 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
698 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
700 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
703 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
704 struct clock_event_device
*clk
)
707 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
708 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
709 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
710 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
711 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
714 static int arch_timer_set_next_event_virt(unsigned long evt
,
715 struct clock_event_device
*clk
)
717 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
721 static int arch_timer_set_next_event_phys(unsigned long evt
,
722 struct clock_event_device
*clk
)
724 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
728 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
729 struct clock_event_device
*clk
)
731 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
735 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
736 struct clock_event_device
*clk
)
738 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
742 static void __arch_timer_setup(unsigned type
,
743 struct clock_event_device
*clk
)
745 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
747 if (type
== ARCH_TIMER_TYPE_CP15
) {
748 typeof(clk
->set_next_event
) sne
;
750 arch_timer_check_ool_workaround(ate_match_local_cap_id
, NULL
);
752 if (arch_timer_c3stop
)
753 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
754 clk
->name
= "arch_sys_timer";
756 clk
->cpumask
= cpumask_of(smp_processor_id());
757 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
758 switch (arch_timer_uses_ppi
) {
759 case ARCH_TIMER_VIRT_PPI
:
760 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
761 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
762 sne
= erratum_handler(set_next_event_virt
);
764 case ARCH_TIMER_PHYS_SECURE_PPI
:
765 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
766 case ARCH_TIMER_HYP_PPI
:
767 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
768 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
769 sne
= erratum_handler(set_next_event_phys
);
775 clk
->set_next_event
= sne
;
777 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
778 clk
->name
= "arch_mem_timer";
780 clk
->cpumask
= cpu_possible_mask
;
781 if (arch_timer_mem_use_virtual
) {
782 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
783 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
784 clk
->set_next_event
=
785 arch_timer_set_next_event_virt_mem
;
787 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
788 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
789 clk
->set_next_event
=
790 arch_timer_set_next_event_phys_mem
;
794 clk
->set_state_shutdown(clk
);
796 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
799 static void arch_timer_evtstrm_enable(int divider
)
801 u32 cntkctl
= arch_timer_get_cntkctl();
803 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
804 /* Set the divider and enable virtual event stream */
805 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
806 | ARCH_TIMER_VIRT_EVT_EN
;
807 arch_timer_set_cntkctl(cntkctl
);
808 arch_timer_set_evtstrm_feature();
809 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
812 static void arch_timer_configure_evtstream(void)
814 int evt_stream_div
, pos
;
816 /* Find the closest power of two to the divisor */
817 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
818 pos
= fls(evt_stream_div
);
819 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
821 /* enable event stream */
822 arch_timer_evtstrm_enable(min(pos
, 15));
825 static void arch_counter_set_user_access(void)
827 u32 cntkctl
= arch_timer_get_cntkctl();
829 /* Disable user access to the timers and both counters */
830 /* Also disable virtual event stream */
831 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
832 | ARCH_TIMER_USR_VT_ACCESS_EN
833 | ARCH_TIMER_USR_VCT_ACCESS_EN
834 | ARCH_TIMER_VIRT_EVT_EN
835 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
838 * Enable user access to the virtual counter if it doesn't
839 * need to be workaround. The vdso may have been already
842 if (arch_timer_this_cpu_has_cntvct_wa())
843 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
845 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
847 arch_timer_set_cntkctl(cntkctl
);
850 static bool arch_timer_has_nonsecure_ppi(void)
852 return (arch_timer_uses_ppi
== ARCH_TIMER_PHYS_SECURE_PPI
&&
853 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
856 static u32
check_ppi_trigger(int irq
)
858 u32 flags
= irq_get_trigger_type(irq
);
860 if (flags
!= IRQF_TRIGGER_HIGH
&& flags
!= IRQF_TRIGGER_LOW
) {
861 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq
);
862 pr_warn("WARNING: Please fix your firmware\n");
863 flags
= IRQF_TRIGGER_LOW
;
869 static int arch_timer_starting_cpu(unsigned int cpu
)
871 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
874 __arch_timer_setup(ARCH_TIMER_TYPE_CP15
, clk
);
876 flags
= check_ppi_trigger(arch_timer_ppi
[arch_timer_uses_ppi
]);
877 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], flags
);
879 if (arch_timer_has_nonsecure_ppi()) {
880 flags
= check_ppi_trigger(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
881 enable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
885 arch_counter_set_user_access();
887 arch_timer_configure_evtstream();
892 static int validate_timer_rate(void)
894 if (!arch_timer_rate
)
897 /* Arch timer frequency < 1MHz can cause trouble */
898 WARN_ON(arch_timer_rate
< 1000000);
904 * For historical reasons, when probing with DT we use whichever (non-zero)
905 * rate was probed first, and don't verify that others match. If the first node
906 * probed has a clock-frequency property, this overrides the HW register.
908 static void arch_timer_of_configure_rate(u32 rate
, struct device_node
*np
)
910 /* Who has more than one independent system counter? */
914 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
))
915 arch_timer_rate
= rate
;
917 /* Check the timer frequency. */
918 if (validate_timer_rate())
919 pr_warn("frequency not available\n");
922 static void arch_timer_banner(unsigned type
)
924 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
925 type
& ARCH_TIMER_TYPE_CP15
? "cp15" : "",
926 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ?
928 type
& ARCH_TIMER_TYPE_MEM
? "mmio" : "",
929 (unsigned long)arch_timer_rate
/ 1000000,
930 (unsigned long)(arch_timer_rate
/ 10000) % 100,
931 type
& ARCH_TIMER_TYPE_CP15
?
932 (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) ? "virt" : "phys" :
934 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ? "/" : "",
935 type
& ARCH_TIMER_TYPE_MEM
?
936 arch_timer_mem_use_virtual
? "virt" : "phys" :
940 u32
arch_timer_get_rate(void)
942 return arch_timer_rate
;
945 bool arch_timer_evtstrm_available(void)
948 * We might get called from a preemptible context. This is fine
949 * because availability of the event stream should be always the same
950 * for a preemptible context and context where we might resume a task.
952 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available
);
955 static u64
arch_counter_get_cntvct_mem(void)
957 u32 vct_lo
, vct_hi
, tmp_hi
;
960 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
961 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
962 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
963 } while (vct_hi
!= tmp_hi
);
965 return ((u64
) vct_hi
<< 32) | vct_lo
;
968 static struct arch_timer_kvm_info arch_timer_kvm_info
;
970 struct arch_timer_kvm_info
*arch_timer_get_kvm_info(void)
972 return &arch_timer_kvm_info
;
975 static void __init
arch_counter_register(unsigned type
)
979 /* Register the CP15 based counter if we have one */
980 if (type
& ARCH_TIMER_TYPE_CP15
) {
983 if ((IS_ENABLED(CONFIG_ARM64
) && !is_hyp_mode_available()) ||
984 arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) {
985 if (arch_timer_counter_has_wa())
986 rd
= arch_counter_get_cntvct_stable
;
988 rd
= arch_counter_get_cntvct
;
990 if (arch_timer_counter_has_wa())
991 rd
= arch_counter_get_cntpct_stable
;
993 rd
= arch_counter_get_cntpct
;
996 arch_timer_read_counter
= rd
;
997 clocksource_counter
.vdso_clock_mode
= vdso_default
;
999 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
1002 if (!arch_counter_suspend_stop
)
1003 clocksource_counter
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1004 start_count
= arch_timer_read_counter();
1005 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
1006 cyclecounter
.mult
= clocksource_counter
.mult
;
1007 cyclecounter
.shift
= clocksource_counter
.shift
;
1008 timecounter_init(&arch_timer_kvm_info
.timecounter
,
1009 &cyclecounter
, start_count
);
1011 /* 56 bits minimum, so we assume worst case rollover */
1012 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
1015 static void arch_timer_stop(struct clock_event_device
*clk
)
1017 pr_debug("disable IRQ%d cpu #%d\n", clk
->irq
, smp_processor_id());
1019 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
1020 if (arch_timer_has_nonsecure_ppi())
1021 disable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1023 clk
->set_state_shutdown(clk
);
1026 static int arch_timer_dying_cpu(unsigned int cpu
)
1028 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
1030 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1032 arch_timer_stop(clk
);
1036 #ifdef CONFIG_CPU_PM
1037 static DEFINE_PER_CPU(unsigned long, saved_cntkctl
);
1038 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
1039 unsigned long action
, void *hcpu
)
1041 if (action
== CPU_PM_ENTER
) {
1042 __this_cpu_write(saved_cntkctl
, arch_timer_get_cntkctl());
1044 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1045 } else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
) {
1046 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl
));
1048 if (arch_timer_have_evtstrm_feature())
1049 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
1054 static struct notifier_block arch_timer_cpu_pm_notifier
= {
1055 .notifier_call
= arch_timer_cpu_pm_notify
,
1058 static int __init
arch_timer_cpu_pm_init(void)
1060 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
1063 static void __init
arch_timer_cpu_pm_deinit(void)
1065 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier
));
1069 static int __init
arch_timer_cpu_pm_init(void)
1074 static void __init
arch_timer_cpu_pm_deinit(void)
1079 static int __init
arch_timer_register(void)
1084 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
1085 if (!arch_timer_evt
) {
1090 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
1091 switch (arch_timer_uses_ppi
) {
1092 case ARCH_TIMER_VIRT_PPI
:
1093 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
1094 "arch_timer", arch_timer_evt
);
1096 case ARCH_TIMER_PHYS_SECURE_PPI
:
1097 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
1098 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1099 "arch_timer", arch_timer_evt
);
1100 if (!err
&& arch_timer_has_nonsecure_ppi()) {
1101 ppi
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1102 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1103 "arch_timer", arch_timer_evt
);
1105 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_SECURE_PPI
],
1109 case ARCH_TIMER_HYP_PPI
:
1110 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1111 "arch_timer", arch_timer_evt
);
1118 pr_err("can't register interrupt %d (%d)\n", ppi
, err
);
1122 err
= arch_timer_cpu_pm_init();
1124 goto out_unreg_notify
;
1126 /* Register and immediately configure the timer on the boot CPU */
1127 err
= cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING
,
1128 "clockevents/arm/arch_timer:starting",
1129 arch_timer_starting_cpu
, arch_timer_dying_cpu
);
1131 goto out_unreg_cpupm
;
1135 arch_timer_cpu_pm_deinit();
1138 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
1139 if (arch_timer_has_nonsecure_ppi())
1140 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1144 free_percpu(arch_timer_evt
);
1149 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
1153 struct arch_timer
*t
;
1155 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
1161 __arch_timer_setup(ARCH_TIMER_TYPE_MEM
, &t
->evt
);
1163 if (arch_timer_mem_use_virtual
)
1164 func
= arch_timer_handler_virt_mem
;
1166 func
= arch_timer_handler_phys_mem
;
1168 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
1170 pr_err("Failed to request mem timer irq\n");
1177 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
1178 { .compatible
= "arm,armv7-timer", },
1179 { .compatible
= "arm,armv8-timer", },
1183 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
1184 { .compatible
= "arm,armv7-timer-mem", },
1188 static bool __init
arch_timer_needs_of_probing(void)
1190 struct device_node
*dn
;
1191 bool needs_probing
= false;
1192 unsigned int mask
= ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
;
1194 /* We have two timers, and both device-tree nodes are probed. */
1195 if ((arch_timers_present
& mask
) == mask
)
1199 * Only one type of timer is probed,
1200 * check if we have another type of timer node in device-tree.
1202 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
)
1203 dn
= of_find_matching_node(NULL
, arch_timer_mem_of_match
);
1205 dn
= of_find_matching_node(NULL
, arch_timer_of_match
);
1207 if (dn
&& of_device_is_available(dn
))
1208 needs_probing
= true;
1212 return needs_probing
;
1215 static int __init
arch_timer_common_init(void)
1217 arch_timer_banner(arch_timers_present
);
1218 arch_counter_register(arch_timers_present
);
1219 return arch_timer_arch_init();
1223 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1225 * If HYP mode is available, we know that the physical timer
1226 * has been configured to be accessible from PL1. Use it, so
1227 * that a guest can use the virtual timer instead.
1229 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1230 * accesses to CNTP_*_EL1 registers are silently redirected to
1231 * their CNTHP_*_EL2 counterparts, and use a different PPI
1234 * If no interrupt provided for virtual timer, we'll have to
1235 * stick to the physical timer. It'd better be accessible...
1236 * For arm64 we never use the secure interrupt.
1238 * Return: a suitable PPI type for the current system.
1240 static enum arch_timer_ppi_nr __init
arch_timer_select_ppi(void)
1242 if (is_kernel_in_hyp_mode())
1243 return ARCH_TIMER_HYP_PPI
;
1245 if (!is_hyp_mode_available() && arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
])
1246 return ARCH_TIMER_VIRT_PPI
;
1248 if (IS_ENABLED(CONFIG_ARM64
))
1249 return ARCH_TIMER_PHYS_NONSECURE_PPI
;
1251 return ARCH_TIMER_PHYS_SECURE_PPI
;
1254 static void __init
arch_timer_populate_kvm_info(void)
1256 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1257 if (is_kernel_in_hyp_mode())
1258 arch_timer_kvm_info
.physical_irq
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1261 static int __init
arch_timer_of_init(struct device_node
*np
)
1266 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1267 pr_warn("multiple nodes in dt, skipping\n");
1271 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1272 for (i
= ARCH_TIMER_PHYS_SECURE_PPI
; i
< ARCH_TIMER_MAX_TIMER_PPI
; i
++)
1273 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
1275 arch_timer_populate_kvm_info();
1277 rate
= arch_timer_get_cntfrq();
1278 arch_timer_of_configure_rate(rate
, np
);
1280 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
1282 /* Check for globally applicable workarounds */
1283 arch_timer_check_ool_workaround(ate_match_dt
, np
);
1286 * If we cannot rely on firmware initializing the timer registers then
1287 * we should use the physical timers instead.
1289 if (IS_ENABLED(CONFIG_ARM
) &&
1290 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
1291 arch_timer_uses_ppi
= ARCH_TIMER_PHYS_SECURE_PPI
;
1293 arch_timer_uses_ppi
= arch_timer_select_ppi();
1295 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1296 pr_err("No interrupt available, giving up\n");
1300 /* On some systems, the counter stops ticking when in suspend. */
1301 arch_counter_suspend_stop
= of_property_read_bool(np
,
1302 "arm,no-tick-in-suspend");
1304 ret
= arch_timer_register();
1308 if (arch_timer_needs_of_probing())
1311 return arch_timer_common_init();
1313 TIMER_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
1314 TIMER_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
1317 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame
*frame
)
1322 base
= ioremap(frame
->cntbase
, frame
->size
);
1324 pr_err("Unable to map frame @ %pa\n", &frame
->cntbase
);
1328 rate
= readl_relaxed(base
+ CNTFRQ
);
1335 static struct arch_timer_mem_frame
* __init
1336 arch_timer_mem_find_best_frame(struct arch_timer_mem
*timer_mem
)
1338 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1339 void __iomem
*cntctlbase
;
1343 cntctlbase
= ioremap(timer_mem
->cntctlbase
, timer_mem
->size
);
1345 pr_err("Can't map CNTCTLBase @ %pa\n",
1346 &timer_mem
->cntctlbase
);
1350 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
1353 * Try to find a virtual capable frame. Otherwise fall back to a
1354 * physical capable frame.
1356 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1357 u32 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
1358 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
1360 frame
= &timer_mem
->frame
[i
];
1364 /* Try enabling everything, and see what sticks */
1365 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(i
));
1366 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(i
));
1368 if ((cnttidr
& CNTTIDR_VIRT(i
)) &&
1369 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
1371 arch_timer_mem_use_virtual
= true;
1375 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
1381 iounmap(cntctlbase
);
1387 arch_timer_mem_frame_register(struct arch_timer_mem_frame
*frame
)
1392 if (arch_timer_mem_use_virtual
)
1393 irq
= frame
->virt_irq
;
1395 irq
= frame
->phys_irq
;
1398 pr_err("Frame missing %s irq.\n",
1399 arch_timer_mem_use_virtual
? "virt" : "phys");
1403 if (!request_mem_region(frame
->cntbase
, frame
->size
,
1407 base
= ioremap(frame
->cntbase
, frame
->size
);
1409 pr_err("Can't map frame's registers\n");
1413 ret
= arch_timer_mem_register(base
, irq
);
1419 arch_counter_base
= base
;
1420 arch_timers_present
|= ARCH_TIMER_TYPE_MEM
;
1425 static int __init
arch_timer_mem_of_init(struct device_node
*np
)
1427 struct arch_timer_mem
*timer_mem
;
1428 struct arch_timer_mem_frame
*frame
;
1429 struct device_node
*frame_node
;
1430 struct resource res
;
1434 timer_mem
= kzalloc(sizeof(*timer_mem
), GFP_KERNEL
);
1438 if (of_address_to_resource(np
, 0, &res
))
1440 timer_mem
->cntctlbase
= res
.start
;
1441 timer_mem
->size
= resource_size(&res
);
1443 for_each_available_child_of_node(np
, frame_node
) {
1445 struct arch_timer_mem_frame
*frame
;
1447 if (of_property_read_u32(frame_node
, "frame-number", &n
)) {
1448 pr_err(FW_BUG
"Missing frame-number.\n");
1449 of_node_put(frame_node
);
1452 if (n
>= ARCH_TIMER_MEM_MAX_FRAMES
) {
1453 pr_err(FW_BUG
"Wrong frame-number, only 0-%u are permitted.\n",
1454 ARCH_TIMER_MEM_MAX_FRAMES
- 1);
1455 of_node_put(frame_node
);
1458 frame
= &timer_mem
->frame
[n
];
1461 pr_err(FW_BUG
"Duplicated frame-number.\n");
1462 of_node_put(frame_node
);
1466 if (of_address_to_resource(frame_node
, 0, &res
)) {
1467 of_node_put(frame_node
);
1470 frame
->cntbase
= res
.start
;
1471 frame
->size
= resource_size(&res
);
1473 frame
->virt_irq
= irq_of_parse_and_map(frame_node
,
1474 ARCH_TIMER_VIRT_SPI
);
1475 frame
->phys_irq
= irq_of_parse_and_map(frame_node
,
1476 ARCH_TIMER_PHYS_SPI
);
1478 frame
->valid
= true;
1481 frame
= arch_timer_mem_find_best_frame(timer_mem
);
1483 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1484 &timer_mem
->cntctlbase
);
1489 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1490 arch_timer_of_configure_rate(rate
, np
);
1492 ret
= arch_timer_mem_frame_register(frame
);
1493 if (!ret
&& !arch_timer_needs_of_probing())
1494 ret
= arch_timer_common_init();
1499 TIMER_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
1500 arch_timer_mem_of_init
);
1502 #ifdef CONFIG_ACPI_GTDT
1504 arch_timer_mem_verify_cntfrq(struct arch_timer_mem
*timer_mem
)
1506 struct arch_timer_mem_frame
*frame
;
1510 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1511 frame
= &timer_mem
->frame
[i
];
1516 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1517 if (rate
== arch_timer_rate
)
1520 pr_err(FW_BUG
"CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1522 (unsigned long)rate
, (unsigned long)arch_timer_rate
);
1530 static int __init
arch_timer_mem_acpi_init(int platform_timer_count
)
1532 struct arch_timer_mem
*timers
, *timer
;
1533 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1534 int timer_count
, i
, ret
= 0;
1536 timers
= kcalloc(platform_timer_count
, sizeof(*timers
),
1541 ret
= acpi_arch_timer_mem_init(timers
, &timer_count
);
1542 if (ret
|| !timer_count
)
1546 * While unlikely, it's theoretically possible that none of the frames
1547 * in a timer expose the combination of feature we want.
1549 for (i
= 0; i
< timer_count
; i
++) {
1552 frame
= arch_timer_mem_find_best_frame(timer
);
1556 ret
= arch_timer_mem_verify_cntfrq(timer
);
1558 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1562 if (!best_frame
) /* implies !frame */
1564 * Only complain about missing suitable frames if we
1565 * haven't already found one in a previous iteration.
1567 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1568 &timer
->cntctlbase
);
1572 ret
= arch_timer_mem_frame_register(best_frame
);
1578 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1579 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
1581 int ret
, platform_timer_count
;
1583 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1584 pr_warn("already initialized, skipping\n");
1588 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1590 ret
= acpi_gtdt_init(table
, &platform_timer_count
);
1592 pr_err("Failed to init GTDT table.\n");
1596 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
] =
1597 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI
);
1599 arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
] =
1600 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI
);
1602 arch_timer_ppi
[ARCH_TIMER_HYP_PPI
] =
1603 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI
);
1605 arch_timer_populate_kvm_info();
1608 * When probing via ACPI, we have no mechanism to override the sysreg
1609 * CNTFRQ value. This *must* be correct.
1611 arch_timer_rate
= arch_timer_get_cntfrq();
1612 ret
= validate_timer_rate();
1614 pr_err(FW_BUG
"frequency not available.\n");
1618 arch_timer_uses_ppi
= arch_timer_select_ppi();
1619 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1620 pr_err("No interrupt available, giving up\n");
1624 /* Always-on capability */
1625 arch_timer_c3stop
= acpi_gtdt_c3stop(arch_timer_uses_ppi
);
1627 /* Check for globally applicable workarounds */
1628 arch_timer_check_ool_workaround(ate_match_acpi_oem_info
, table
);
1630 ret
= arch_timer_register();
1634 if (platform_timer_count
&&
1635 arch_timer_mem_acpi_init(platform_timer_count
))
1636 pr_err("Failed to initialize memory-mapped timer.\n");
1638 return arch_timer_common_init();
1640 TIMER_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);