1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) Copyright 2009 Intel Corporation
4 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 * Shared with ARM platforms, Jamie Iles, Picochip 2011
8 * Support for the Synopsys DesignWare APB Timers.
10 #include <linux/dw_apb_timer.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
16 #include <linux/slab.h>
18 #define APBT_MIN_PERIOD 4
19 #define APBT_MIN_DELTA_USEC 200
21 #define APBTMR_N_LOAD_COUNT 0x00
22 #define APBTMR_N_CURRENT_VALUE 0x04
23 #define APBTMR_N_CONTROL 0x08
24 #define APBTMR_N_EOI 0x0c
25 #define APBTMR_N_INT_STATUS 0x10
27 #define APBTMRS_INT_STATUS 0xa0
28 #define APBTMRS_EOI 0xa4
29 #define APBTMRS_RAW_INT_STATUS 0xa8
30 #define APBTMRS_COMP_VERSION 0xac
32 #define APBTMR_CONTROL_ENABLE (1 << 0)
33 /* 1: periodic, 0:free running. */
34 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
35 #define APBTMR_CONTROL_INT (1 << 2)
37 static inline struct dw_apb_clock_event_device
*
38 ced_to_dw_apb_ced(struct clock_event_device
*evt
)
40 return container_of(evt
, struct dw_apb_clock_event_device
, ced
);
43 static inline struct dw_apb_clocksource
*
44 clocksource_to_dw_apb_clocksource(struct clocksource
*cs
)
46 return container_of(cs
, struct dw_apb_clocksource
, cs
);
49 static inline u32
apbt_readl(struct dw_apb_timer
*timer
, unsigned long offs
)
51 return readl(timer
->base
+ offs
);
54 static inline void apbt_writel(struct dw_apb_timer
*timer
, u32 val
,
57 writel(val
, timer
->base
+ offs
);
60 static inline u32
apbt_readl_relaxed(struct dw_apb_timer
*timer
, unsigned long offs
)
62 return readl_relaxed(timer
->base
+ offs
);
65 static inline void apbt_writel_relaxed(struct dw_apb_timer
*timer
, u32 val
,
68 writel_relaxed(val
, timer
->base
+ offs
);
71 static void apbt_disable_int(struct dw_apb_timer
*timer
)
73 u32 ctrl
= apbt_readl(timer
, APBTMR_N_CONTROL
);
75 ctrl
|= APBTMR_CONTROL_INT
;
76 apbt_writel(timer
, ctrl
, APBTMR_N_CONTROL
);
80 * dw_apb_clockevent_pause() - stop the clock_event_device from running
82 * @dw_ced: The APB clock to stop generating events.
84 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device
*dw_ced
)
86 disable_irq(dw_ced
->timer
.irq
);
87 apbt_disable_int(&dw_ced
->timer
);
90 static void apbt_eoi(struct dw_apb_timer
*timer
)
92 apbt_readl_relaxed(timer
, APBTMR_N_EOI
);
95 static irqreturn_t
dw_apb_clockevent_irq(int irq
, void *data
)
97 struct clock_event_device
*evt
= data
;
98 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
100 if (!evt
->event_handler
) {
101 pr_info("Spurious APBT timer interrupt %d\n", irq
);
106 dw_ced
->eoi(&dw_ced
->timer
);
108 evt
->event_handler(evt
);
112 static void apbt_enable_int(struct dw_apb_timer
*timer
)
114 u32 ctrl
= apbt_readl(timer
, APBTMR_N_CONTROL
);
115 /* clear pending intr */
116 apbt_readl(timer
, APBTMR_N_EOI
);
117 ctrl
&= ~APBTMR_CONTROL_INT
;
118 apbt_writel(timer
, ctrl
, APBTMR_N_CONTROL
);
121 static int apbt_shutdown(struct clock_event_device
*evt
)
123 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
126 pr_debug("%s CPU %d state=shutdown\n", __func__
,
127 cpumask_first(evt
->cpumask
));
129 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
130 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
131 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
135 static int apbt_set_oneshot(struct clock_event_device
*evt
)
137 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
140 pr_debug("%s CPU %d state=oneshot\n", __func__
,
141 cpumask_first(evt
->cpumask
));
143 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
145 * set free running mode, this mode will let timer reload max
146 * timeout which will give time (3min on 25MHz clock) to rearm
147 * the next event, therefore emulate the one-shot mode.
149 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
150 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
152 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
153 /* write again to set free running mode */
154 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
157 * DW APB p. 46, load counter with all 1s before starting free
160 apbt_writel(&dw_ced
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
161 ctrl
&= ~APBTMR_CONTROL_INT
;
162 ctrl
|= APBTMR_CONTROL_ENABLE
;
163 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
167 static int apbt_set_periodic(struct clock_event_device
*evt
)
169 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
170 unsigned long period
= DIV_ROUND_UP(dw_ced
->timer
.freq
, HZ
);
173 pr_debug("%s CPU %d state=periodic\n", __func__
,
174 cpumask_first(evt
->cpumask
));
176 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
177 ctrl
|= APBTMR_CONTROL_MODE_PERIODIC
;
178 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
180 * DW APB p. 46, have to disable timer before load counter,
181 * may cause sync problem.
183 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
184 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
186 pr_debug("Setting clock period %lu for HZ %d\n", period
, HZ
);
187 apbt_writel(&dw_ced
->timer
, period
, APBTMR_N_LOAD_COUNT
);
188 ctrl
|= APBTMR_CONTROL_ENABLE
;
189 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
193 static int apbt_resume(struct clock_event_device
*evt
)
195 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
197 pr_debug("%s CPU %d state=resume\n", __func__
,
198 cpumask_first(evt
->cpumask
));
200 apbt_enable_int(&dw_ced
->timer
);
204 static int apbt_next_event(unsigned long delta
,
205 struct clock_event_device
*evt
)
208 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
211 ctrl
= apbt_readl_relaxed(&dw_ced
->timer
, APBTMR_N_CONTROL
);
212 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
213 apbt_writel_relaxed(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
214 /* write new count */
215 apbt_writel_relaxed(&dw_ced
->timer
, delta
, APBTMR_N_LOAD_COUNT
);
216 ctrl
|= APBTMR_CONTROL_ENABLE
;
217 apbt_writel_relaxed(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
223 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
225 * @cpu: The CPU the events will be targeted at.
226 * @name: The name used for the timer and the IRQ for it.
227 * @rating: The rating to give the timer.
228 * @base: I/O base for the timer registers.
229 * @irq: The interrupt number to use for the timer.
230 * @freq: The frequency that the timer counts at.
232 * This creates a clock_event_device for using with the generic clock layer
233 * but does not start and register it. This should be done with
234 * dw_apb_clockevent_register() as the next step. If this is the first time
235 * it has been called for a timer then the IRQ will be requested, if not it
236 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
239 struct dw_apb_clock_event_device
*
240 dw_apb_clockevent_init(int cpu
, const char *name
, unsigned rating
,
241 void __iomem
*base
, int irq
, unsigned long freq
)
243 struct dw_apb_clock_event_device
*dw_ced
=
244 kzalloc(sizeof(*dw_ced
), GFP_KERNEL
);
250 dw_ced
->timer
.base
= base
;
251 dw_ced
->timer
.irq
= irq
;
252 dw_ced
->timer
.freq
= freq
;
254 clockevents_calc_mult_shift(&dw_ced
->ced
, freq
, APBT_MIN_PERIOD
);
255 dw_ced
->ced
.max_delta_ns
= clockevent_delta2ns(0x7fffffff,
257 dw_ced
->ced
.max_delta_ticks
= 0x7fffffff;
258 dw_ced
->ced
.min_delta_ns
= clockevent_delta2ns(5000, &dw_ced
->ced
);
259 dw_ced
->ced
.min_delta_ticks
= 5000;
260 dw_ced
->ced
.cpumask
= cpumask_of(cpu
);
261 dw_ced
->ced
.features
= CLOCK_EVT_FEAT_PERIODIC
|
262 CLOCK_EVT_FEAT_ONESHOT
| CLOCK_EVT_FEAT_DYNIRQ
;
263 dw_ced
->ced
.set_state_shutdown
= apbt_shutdown
;
264 dw_ced
->ced
.set_state_periodic
= apbt_set_periodic
;
265 dw_ced
->ced
.set_state_oneshot
= apbt_set_oneshot
;
266 dw_ced
->ced
.set_state_oneshot_stopped
= apbt_shutdown
;
267 dw_ced
->ced
.tick_resume
= apbt_resume
;
268 dw_ced
->ced
.set_next_event
= apbt_next_event
;
269 dw_ced
->ced
.irq
= dw_ced
->timer
.irq
;
270 dw_ced
->ced
.rating
= rating
;
271 dw_ced
->ced
.name
= name
;
273 dw_ced
->eoi
= apbt_eoi
;
274 err
= request_irq(irq
, dw_apb_clockevent_irq
,
275 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
276 dw_ced
->ced
.name
, &dw_ced
->ced
);
278 pr_err("failed to request timer irq\n");
287 * dw_apb_clockevent_resume() - resume a clock that has been paused.
289 * @dw_ced: The APB clock to resume.
291 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device
*dw_ced
)
293 enable_irq(dw_ced
->timer
.irq
);
297 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
299 * @dw_ced: The APB clock to stop generating the events.
301 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device
*dw_ced
)
303 free_irq(dw_ced
->timer
.irq
, &dw_ced
->ced
);
307 * dw_apb_clockevent_register() - register the clock with the generic layer
309 * @dw_ced: The APB clock to register as a clock_event_device.
311 void dw_apb_clockevent_register(struct dw_apb_clock_event_device
*dw_ced
)
313 apbt_writel(&dw_ced
->timer
, 0, APBTMR_N_CONTROL
);
314 clockevents_register_device(&dw_ced
->ced
);
315 apbt_enable_int(&dw_ced
->timer
);
319 * dw_apb_clocksource_start() - start the clocksource counting.
321 * @dw_cs: The clocksource to start.
323 * This is used to start the clocksource before registration and can be used
324 * to enable calibration of timers.
326 void dw_apb_clocksource_start(struct dw_apb_clocksource
*dw_cs
)
329 * start count down from 0xffff_ffff. this is done by toggling the
330 * enable bit then load initial load count to ~0.
332 u32 ctrl
= apbt_readl(&dw_cs
->timer
, APBTMR_N_CONTROL
);
334 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
335 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
336 apbt_writel(&dw_cs
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
337 /* enable, mask interrupt */
338 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
339 ctrl
|= (APBTMR_CONTROL_ENABLE
| APBTMR_CONTROL_INT
);
340 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
341 /* read it once to get cached counter value initialized */
342 dw_apb_clocksource_read(dw_cs
);
345 static u64
__apbt_read_clocksource(struct clocksource
*cs
)
348 struct dw_apb_clocksource
*dw_cs
=
349 clocksource_to_dw_apb_clocksource(cs
);
351 current_count
= apbt_readl_relaxed(&dw_cs
->timer
,
352 APBTMR_N_CURRENT_VALUE
);
354 return (u64
)~current_count
;
357 static void apbt_restart_clocksource(struct clocksource
*cs
)
359 struct dw_apb_clocksource
*dw_cs
=
360 clocksource_to_dw_apb_clocksource(cs
);
362 dw_apb_clocksource_start(dw_cs
);
366 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
368 * @rating: The rating to give the clocksource.
369 * @name: The name for the clocksource.
370 * @base: The I/O base for the timer registers.
371 * @freq: The frequency that the timer counts at.
373 * This creates a clocksource using an APB timer but does not yet register it
374 * with the clocksource system. This should be done with
375 * dw_apb_clocksource_register() as the next step.
377 struct dw_apb_clocksource
*
378 dw_apb_clocksource_init(unsigned rating
, const char *name
, void __iomem
*base
,
381 struct dw_apb_clocksource
*dw_cs
= kzalloc(sizeof(*dw_cs
), GFP_KERNEL
);
386 dw_cs
->timer
.base
= base
;
387 dw_cs
->timer
.freq
= freq
;
388 dw_cs
->cs
.name
= name
;
389 dw_cs
->cs
.rating
= rating
;
390 dw_cs
->cs
.read
= __apbt_read_clocksource
;
391 dw_cs
->cs
.mask
= CLOCKSOURCE_MASK(32);
392 dw_cs
->cs
.flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
393 dw_cs
->cs
.resume
= apbt_restart_clocksource
;
399 * dw_apb_clocksource_register() - register the APB clocksource.
401 * @dw_cs: The clocksource to register.
403 void dw_apb_clocksource_register(struct dw_apb_clocksource
*dw_cs
)
405 clocksource_register_hz(&dw_cs
->cs
, dw_cs
->timer
.freq
);
409 * dw_apb_clocksource_read() - read the current value of a clocksource.
411 * @dw_cs: The clocksource to read.
413 u64
dw_apb_clocksource_read(struct dw_apb_clocksource
*dw_cs
)
415 return (u64
)~apbt_readl(&dw_cs
->timer
, APBTMR_N_CURRENT_VALUE
);