gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / crypto / atmel-sha.c
blobe536e2a6bbd8536395a9dc1e1a4bab52232b9e8d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
10 * Some ideas are from omap-sham.c drivers.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <linux/cryptohash.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/algapi.h>
37 #include <crypto/sha.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
43 #define ATMEL_SHA_PRIORITY 300
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY BIT(0)
47 #define SHA_FLAGS_FINAL BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY BIT(3)
50 #define SHA_FLAGS_INIT BIT(4)
51 #define SHA_FLAGS_CPU BIT(5)
52 #define SHA_FLAGS_DMA_READY BIT(6)
53 #define SHA_FLAGS_DUMP_REG BIT(7)
55 /* bits[11:8] are reserved. */
57 #define SHA_FLAGS_FINUP BIT(16)
58 #define SHA_FLAGS_SG BIT(17)
59 #define SHA_FLAGS_ERROR BIT(23)
60 #define SHA_FLAGS_PAD BIT(24)
61 #define SHA_FLAGS_RESTORE BIT(25)
62 #define SHA_FLAGS_IDATAR0 BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
65 #define SHA_OP_INIT 0
66 #define SHA_OP_UPDATE 1
67 #define SHA_OP_FINAL 2
68 #define SHA_OP_DIGEST 3
70 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
72 #define ATMEL_SHA_DMA_THRESHOLD 56
74 struct atmel_sha_caps {
75 bool has_dma;
76 bool has_dualbuff;
77 bool has_sha224;
78 bool has_sha_384_512;
79 bool has_uihv;
80 bool has_hmac;
83 struct atmel_sha_dev;
86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87 * tested by the ahash_prepare_alg() function.
89 struct atmel_sha_reqctx {
90 struct atmel_sha_dev *dd;
91 unsigned long flags;
92 unsigned long op;
94 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95 u64 digcnt[2];
96 size_t bufcnt;
97 size_t buflen;
98 dma_addr_t dma_addr;
100 /* walk state */
101 struct scatterlist *sg;
102 unsigned int offset; /* offset in current sg */
103 unsigned int total; /* total request */
105 size_t block_size;
106 size_t hash_size;
108 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
113 struct atmel_sha_ctx {
114 struct atmel_sha_dev *dd;
115 atmel_sha_fn_t start;
117 unsigned long flags;
120 #define ATMEL_SHA_QUEUE_LENGTH 50
122 struct atmel_sha_dma {
123 struct dma_chan *chan;
124 struct dma_slave_config dma_conf;
125 struct scatterlist *sg;
126 int nents;
127 unsigned int last_sg_length;
130 struct atmel_sha_dev {
131 struct list_head list;
132 unsigned long phys_base;
133 struct device *dev;
134 struct clk *iclk;
135 int irq;
136 void __iomem *io_base;
138 spinlock_t lock;
139 struct tasklet_struct done_task;
140 struct tasklet_struct queue_task;
142 unsigned long flags;
143 struct crypto_queue queue;
144 struct ahash_request *req;
145 bool is_async;
146 bool force_complete;
147 atmel_sha_fn_t resume;
148 atmel_sha_fn_t cpu_transfer_complete;
150 struct atmel_sha_dma dma_lch_in;
152 struct atmel_sha_caps caps;
154 struct scatterlist tmp;
156 u32 hw_version;
159 struct atmel_sha_drv {
160 struct list_head dev_list;
161 spinlock_t lock;
164 static struct atmel_sha_drv atmel_sha = {
165 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
169 #ifdef VERBOSE_DEBUG
170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
172 switch (offset) {
173 case SHA_CR:
174 return "CR";
176 case SHA_MR:
177 return "MR";
179 case SHA_IER:
180 return "IER";
182 case SHA_IDR:
183 return "IDR";
185 case SHA_IMR:
186 return "IMR";
188 case SHA_ISR:
189 return "ISR";
191 case SHA_MSR:
192 return "MSR";
194 case SHA_BCR:
195 return "BCR";
197 case SHA_REG_DIN(0):
198 case SHA_REG_DIN(1):
199 case SHA_REG_DIN(2):
200 case SHA_REG_DIN(3):
201 case SHA_REG_DIN(4):
202 case SHA_REG_DIN(5):
203 case SHA_REG_DIN(6):
204 case SHA_REG_DIN(7):
205 case SHA_REG_DIN(8):
206 case SHA_REG_DIN(9):
207 case SHA_REG_DIN(10):
208 case SHA_REG_DIN(11):
209 case SHA_REG_DIN(12):
210 case SHA_REG_DIN(13):
211 case SHA_REG_DIN(14):
212 case SHA_REG_DIN(15):
213 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214 break;
216 case SHA_REG_DIGEST(0):
217 case SHA_REG_DIGEST(1):
218 case SHA_REG_DIGEST(2):
219 case SHA_REG_DIGEST(3):
220 case SHA_REG_DIGEST(4):
221 case SHA_REG_DIGEST(5):
222 case SHA_REG_DIGEST(6):
223 case SHA_REG_DIGEST(7):
224 case SHA_REG_DIGEST(8):
225 case SHA_REG_DIGEST(9):
226 case SHA_REG_DIGEST(10):
227 case SHA_REG_DIGEST(11):
228 case SHA_REG_DIGEST(12):
229 case SHA_REG_DIGEST(13):
230 case SHA_REG_DIGEST(14):
231 case SHA_REG_DIGEST(15):
232 if (wr)
233 snprintf(tmp, sz, "IDATAR[%u]",
234 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235 else
236 snprintf(tmp, sz, "ODATAR[%u]",
237 (offset - SHA_REG_DIGEST(0)) >> 2);
238 break;
240 case SHA_HW_VERSION:
241 return "HWVER";
243 default:
244 snprintf(tmp, sz, "0x%02x", offset);
245 break;
248 return tmp;
251 #endif /* VERBOSE_DEBUG */
253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
255 u32 value = readl_relaxed(dd->io_base + offset);
257 #ifdef VERBOSE_DEBUG
258 if (dd->flags & SHA_FLAGS_DUMP_REG) {
259 char tmp[16];
261 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
264 #endif /* VERBOSE_DEBUG */
266 return value;
269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270 u32 offset, u32 value)
272 #ifdef VERBOSE_DEBUG
273 if (dd->flags & SHA_FLAGS_DUMP_REG) {
274 char tmp[16];
276 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
279 #endif /* VERBOSE_DEBUG */
281 writel_relaxed(value, dd->io_base + offset);
284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
286 struct ahash_request *req = dd->req;
288 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290 SHA_FLAGS_DUMP_REG);
292 clk_disable(dd->iclk);
294 if ((dd->is_async || dd->force_complete) && req->base.complete)
295 req->base.complete(&req->base, err);
297 /* handle new request */
298 tasklet_schedule(&dd->queue_task);
300 return err;
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
305 size_t count;
307 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308 count = min(ctx->sg->length - ctx->offset, ctx->total);
309 count = min(count, ctx->buflen - ctx->bufcnt);
311 if (count <= 0) {
313 * Check if count <= 0 because the buffer is full or
314 * because the sg length is 0. In the latest case,
315 * check if there is another sg in the list, a 0 length
316 * sg doesn't necessarily mean the end of the sg list.
318 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319 ctx->sg = sg_next(ctx->sg);
320 continue;
321 } else {
322 break;
326 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327 ctx->offset, count, 0);
329 ctx->bufcnt += count;
330 ctx->offset += count;
331 ctx->total -= count;
333 if (ctx->offset == ctx->sg->length) {
334 ctx->sg = sg_next(ctx->sg);
335 if (ctx->sg)
336 ctx->offset = 0;
337 else
338 ctx->total = 0;
342 return 0;
346 * The purpose of this padding is to ensure that the padded message is a
347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348 * The bit "1" is appended at the end of the message followed by
349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
351 * is appended.
353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354 * - if message length < 56 bytes then padlen = 56 - message length
355 * - else padlen = 64 + 56 - message length
357 * For SHA384/SHA512, padlen is calculated as followed:
358 * - if message length < 112 bytes then padlen = 112 - message length
359 * - else padlen = 128 + 112 - message length
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
363 unsigned int index, padlen;
364 __be64 bits[2];
365 u64 size[2];
367 size[0] = ctx->digcnt[0];
368 size[1] = ctx->digcnt[1];
370 size[0] += ctx->bufcnt;
371 if (size[0] < ctx->bufcnt)
372 size[1]++;
374 size[0] += length;
375 if (size[0] < length)
376 size[1]++;
378 bits[1] = cpu_to_be64(size[0] << 3);
379 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
381 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382 case SHA_FLAGS_SHA384:
383 case SHA_FLAGS_SHA512:
384 index = ctx->bufcnt & 0x7f;
385 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386 *(ctx->buffer + ctx->bufcnt) = 0x80;
387 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389 ctx->bufcnt += padlen + 16;
390 ctx->flags |= SHA_FLAGS_PAD;
391 break;
393 default:
394 index = ctx->bufcnt & 0x3f;
395 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396 *(ctx->buffer + ctx->bufcnt) = 0x80;
397 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399 ctx->bufcnt += padlen + 8;
400 ctx->flags |= SHA_FLAGS_PAD;
401 break;
405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
407 struct atmel_sha_dev *dd = NULL;
408 struct atmel_sha_dev *tmp;
410 spin_lock_bh(&atmel_sha.lock);
411 if (!tctx->dd) {
412 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413 dd = tmp;
414 break;
416 tctx->dd = dd;
417 } else {
418 dd = tctx->dd;
421 spin_unlock_bh(&atmel_sha.lock);
423 return dd;
426 static int atmel_sha_init(struct ahash_request *req)
428 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431 struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
433 ctx->dd = dd;
435 ctx->flags = 0;
437 dev_dbg(dd->dev, "init: digest size: %d\n",
438 crypto_ahash_digestsize(tfm));
440 switch (crypto_ahash_digestsize(tfm)) {
441 case SHA1_DIGEST_SIZE:
442 ctx->flags |= SHA_FLAGS_SHA1;
443 ctx->block_size = SHA1_BLOCK_SIZE;
444 break;
445 case SHA224_DIGEST_SIZE:
446 ctx->flags |= SHA_FLAGS_SHA224;
447 ctx->block_size = SHA224_BLOCK_SIZE;
448 break;
449 case SHA256_DIGEST_SIZE:
450 ctx->flags |= SHA_FLAGS_SHA256;
451 ctx->block_size = SHA256_BLOCK_SIZE;
452 break;
453 case SHA384_DIGEST_SIZE:
454 ctx->flags |= SHA_FLAGS_SHA384;
455 ctx->block_size = SHA384_BLOCK_SIZE;
456 break;
457 case SHA512_DIGEST_SIZE:
458 ctx->flags |= SHA_FLAGS_SHA512;
459 ctx->block_size = SHA512_BLOCK_SIZE;
460 break;
461 default:
462 return -EINVAL;
463 break;
466 ctx->bufcnt = 0;
467 ctx->digcnt[0] = 0;
468 ctx->digcnt[1] = 0;
469 ctx->buflen = SHA_BUFFER_LEN;
471 return 0;
474 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
476 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
477 u32 valmr = SHA_MR_MODE_AUTO;
478 unsigned int i, hashsize = 0;
480 if (likely(dma)) {
481 if (!dd->caps.has_dma)
482 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
483 valmr = SHA_MR_MODE_PDC;
484 if (dd->caps.has_dualbuff)
485 valmr |= SHA_MR_DUALBUFF;
486 } else {
487 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
490 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
491 case SHA_FLAGS_SHA1:
492 valmr |= SHA_MR_ALGO_SHA1;
493 hashsize = SHA1_DIGEST_SIZE;
494 break;
496 case SHA_FLAGS_SHA224:
497 valmr |= SHA_MR_ALGO_SHA224;
498 hashsize = SHA256_DIGEST_SIZE;
499 break;
501 case SHA_FLAGS_SHA256:
502 valmr |= SHA_MR_ALGO_SHA256;
503 hashsize = SHA256_DIGEST_SIZE;
504 break;
506 case SHA_FLAGS_SHA384:
507 valmr |= SHA_MR_ALGO_SHA384;
508 hashsize = SHA512_DIGEST_SIZE;
509 break;
511 case SHA_FLAGS_SHA512:
512 valmr |= SHA_MR_ALGO_SHA512;
513 hashsize = SHA512_DIGEST_SIZE;
514 break;
516 default:
517 break;
520 /* Setting CR_FIRST only for the first iteration */
521 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
522 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
523 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
524 const u32 *hash = (const u32 *)ctx->digest;
527 * Restore the hardware context: update the User Initialize
528 * Hash Value (UIHV) with the value saved when the latest
529 * 'update' operation completed on this very same crypto
530 * request.
532 ctx->flags &= ~SHA_FLAGS_RESTORE;
533 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
534 for (i = 0; i < hashsize / sizeof(u32); ++i)
535 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
536 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
537 valmr |= SHA_MR_UIHV;
540 * WARNING: If the UIHV feature is not available, the hardware CANNOT
541 * process concurrent requests: the internal registers used to store
542 * the hash/digest are still set to the partial digest output values
543 * computed during the latest round.
546 atmel_sha_write(dd, SHA_MR, valmr);
549 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
550 atmel_sha_fn_t resume)
552 u32 isr = atmel_sha_read(dd, SHA_ISR);
554 if (unlikely(isr & SHA_INT_DATARDY))
555 return resume(dd);
557 dd->resume = resume;
558 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
559 return -EINPROGRESS;
562 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
563 size_t length, int final)
565 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
566 int count, len32;
567 const u32 *buffer = (const u32 *)buf;
569 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
570 ctx->digcnt[1], ctx->digcnt[0], length, final);
572 atmel_sha_write_ctrl(dd, 0);
574 /* should be non-zero before next lines to disable clocks later */
575 ctx->digcnt[0] += length;
576 if (ctx->digcnt[0] < length)
577 ctx->digcnt[1]++;
579 if (final)
580 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
582 len32 = DIV_ROUND_UP(length, sizeof(u32));
584 dd->flags |= SHA_FLAGS_CPU;
586 for (count = 0; count < len32; count++)
587 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
589 return -EINPROGRESS;
592 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
593 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
595 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
596 int len32;
598 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
599 ctx->digcnt[1], ctx->digcnt[0], length1, final);
601 len32 = DIV_ROUND_UP(length1, sizeof(u32));
602 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
603 atmel_sha_write(dd, SHA_TPR, dma_addr1);
604 atmel_sha_write(dd, SHA_TCR, len32);
606 len32 = DIV_ROUND_UP(length2, sizeof(u32));
607 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
608 atmel_sha_write(dd, SHA_TNCR, len32);
610 atmel_sha_write_ctrl(dd, 1);
612 /* should be non-zero before next lines to disable clocks later */
613 ctx->digcnt[0] += length1;
614 if (ctx->digcnt[0] < length1)
615 ctx->digcnt[1]++;
617 if (final)
618 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
620 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
622 /* Start DMA transfer */
623 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
625 return -EINPROGRESS;
628 static void atmel_sha_dma_callback(void *data)
630 struct atmel_sha_dev *dd = data;
632 dd->is_async = true;
634 /* dma_lch_in - completed - wait DATRDY */
635 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
638 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
639 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
641 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
642 struct dma_async_tx_descriptor *in_desc;
643 struct scatterlist sg[2];
645 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
646 ctx->digcnt[1], ctx->digcnt[0], length1, final);
648 dd->dma_lch_in.dma_conf.src_maxburst = 16;
649 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
651 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
653 if (length2) {
654 sg_init_table(sg, 2);
655 sg_dma_address(&sg[0]) = dma_addr1;
656 sg_dma_len(&sg[0]) = length1;
657 sg_dma_address(&sg[1]) = dma_addr2;
658 sg_dma_len(&sg[1]) = length2;
659 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
660 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
661 } else {
662 sg_init_table(sg, 1);
663 sg_dma_address(&sg[0]) = dma_addr1;
664 sg_dma_len(&sg[0]) = length1;
665 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
666 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
668 if (!in_desc)
669 return atmel_sha_complete(dd, -EINVAL);
671 in_desc->callback = atmel_sha_dma_callback;
672 in_desc->callback_param = dd;
674 atmel_sha_write_ctrl(dd, 1);
676 /* should be non-zero before next lines to disable clocks later */
677 ctx->digcnt[0] += length1;
678 if (ctx->digcnt[0] < length1)
679 ctx->digcnt[1]++;
681 if (final)
682 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
684 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
686 /* Start DMA transfer */
687 dmaengine_submit(in_desc);
688 dma_async_issue_pending(dd->dma_lch_in.chan);
690 return -EINPROGRESS;
693 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
694 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
696 if (dd->caps.has_dma)
697 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
698 dma_addr2, length2, final);
699 else
700 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
701 dma_addr2, length2, final);
704 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
706 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
707 int bufcnt;
709 atmel_sha_append_sg(ctx);
710 atmel_sha_fill_padding(ctx, 0);
711 bufcnt = ctx->bufcnt;
712 ctx->bufcnt = 0;
714 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
717 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
718 struct atmel_sha_reqctx *ctx,
719 size_t length, int final)
721 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
722 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
723 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
724 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
725 ctx->block_size);
726 return atmel_sha_complete(dd, -EINVAL);
729 ctx->flags &= ~SHA_FLAGS_SG;
731 /* next call does not fail... so no unmap in the case of error */
732 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
735 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
737 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
738 unsigned int final;
739 size_t count;
741 atmel_sha_append_sg(ctx);
743 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
745 dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
746 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
748 if (final)
749 atmel_sha_fill_padding(ctx, 0);
751 if (final || (ctx->bufcnt == ctx->buflen)) {
752 count = ctx->bufcnt;
753 ctx->bufcnt = 0;
754 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
757 return 0;
760 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
762 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
763 unsigned int length, final, tail;
764 struct scatterlist *sg;
765 unsigned int count;
767 if (!ctx->total)
768 return 0;
770 if (ctx->bufcnt || ctx->offset)
771 return atmel_sha_update_dma_slow(dd);
773 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
774 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
776 sg = ctx->sg;
778 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
779 return atmel_sha_update_dma_slow(dd);
781 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
782 /* size is not ctx->block_size aligned */
783 return atmel_sha_update_dma_slow(dd);
785 length = min(ctx->total, sg->length);
787 if (sg_is_last(sg)) {
788 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
789 /* not last sg must be ctx->block_size aligned */
790 tail = length & (ctx->block_size - 1);
791 length -= tail;
795 ctx->total -= length;
796 ctx->offset = length; /* offset where to start slow */
798 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
800 /* Add padding */
801 if (final) {
802 tail = length & (ctx->block_size - 1);
803 length -= tail;
804 ctx->total += tail;
805 ctx->offset = length; /* offset where to start slow */
807 sg = ctx->sg;
808 atmel_sha_append_sg(ctx);
810 atmel_sha_fill_padding(ctx, length);
812 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
813 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
814 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
815 dev_err(dd->dev, "dma %zu bytes error\n",
816 ctx->buflen + ctx->block_size);
817 return atmel_sha_complete(dd, -EINVAL);
820 if (length == 0) {
821 ctx->flags &= ~SHA_FLAGS_SG;
822 count = ctx->bufcnt;
823 ctx->bufcnt = 0;
824 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
825 0, final);
826 } else {
827 ctx->sg = sg;
828 if (!dma_map_sg(dd->dev, ctx->sg, 1,
829 DMA_TO_DEVICE)) {
830 dev_err(dd->dev, "dma_map_sg error\n");
831 return atmel_sha_complete(dd, -EINVAL);
834 ctx->flags |= SHA_FLAGS_SG;
836 count = ctx->bufcnt;
837 ctx->bufcnt = 0;
838 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
839 length, ctx->dma_addr, count, final);
843 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
844 dev_err(dd->dev, "dma_map_sg error\n");
845 return atmel_sha_complete(dd, -EINVAL);
848 ctx->flags |= SHA_FLAGS_SG;
850 /* next call does not fail... so no unmap in the case of error */
851 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
852 0, final);
855 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
857 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
859 if (ctx->flags & SHA_FLAGS_SG) {
860 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
861 if (ctx->sg->length == ctx->offset) {
862 ctx->sg = sg_next(ctx->sg);
863 if (ctx->sg)
864 ctx->offset = 0;
866 if (ctx->flags & SHA_FLAGS_PAD) {
867 dma_unmap_single(dd->dev, ctx->dma_addr,
868 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
870 } else {
871 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
872 ctx->block_size, DMA_TO_DEVICE);
876 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
878 struct ahash_request *req = dd->req;
879 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
880 int err;
882 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
883 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
885 if (ctx->flags & SHA_FLAGS_CPU)
886 err = atmel_sha_update_cpu(dd);
887 else
888 err = atmel_sha_update_dma_start(dd);
890 /* wait for dma completion before can take more data */
891 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
892 err, ctx->digcnt[1], ctx->digcnt[0]);
894 return err;
897 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
899 struct ahash_request *req = dd->req;
900 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
901 int err = 0;
902 int count;
904 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
905 atmel_sha_fill_padding(ctx, 0);
906 count = ctx->bufcnt;
907 ctx->bufcnt = 0;
908 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
910 /* faster to handle last block with cpu */
911 else {
912 atmel_sha_fill_padding(ctx, 0);
913 count = ctx->bufcnt;
914 ctx->bufcnt = 0;
915 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
918 dev_dbg(dd->dev, "final_req: err: %d\n", err);
920 return err;
923 static void atmel_sha_copy_hash(struct ahash_request *req)
925 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
926 u32 *hash = (u32 *)ctx->digest;
927 unsigned int i, hashsize;
929 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
930 case SHA_FLAGS_SHA1:
931 hashsize = SHA1_DIGEST_SIZE;
932 break;
934 case SHA_FLAGS_SHA224:
935 case SHA_FLAGS_SHA256:
936 hashsize = SHA256_DIGEST_SIZE;
937 break;
939 case SHA_FLAGS_SHA384:
940 case SHA_FLAGS_SHA512:
941 hashsize = SHA512_DIGEST_SIZE;
942 break;
944 default:
945 /* Should not happen... */
946 return;
949 for (i = 0; i < hashsize / sizeof(u32); ++i)
950 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
951 ctx->flags |= SHA_FLAGS_RESTORE;
954 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
956 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
958 if (!req->result)
959 return;
961 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
962 default:
963 case SHA_FLAGS_SHA1:
964 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
965 break;
967 case SHA_FLAGS_SHA224:
968 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
969 break;
971 case SHA_FLAGS_SHA256:
972 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
973 break;
975 case SHA_FLAGS_SHA384:
976 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
977 break;
979 case SHA_FLAGS_SHA512:
980 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
981 break;
985 static int atmel_sha_finish(struct ahash_request *req)
987 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
988 struct atmel_sha_dev *dd = ctx->dd;
990 if (ctx->digcnt[0] || ctx->digcnt[1])
991 atmel_sha_copy_ready_hash(req);
993 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
994 ctx->digcnt[0], ctx->bufcnt);
996 return 0;
999 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1001 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1002 struct atmel_sha_dev *dd = ctx->dd;
1004 if (!err) {
1005 atmel_sha_copy_hash(req);
1006 if (SHA_FLAGS_FINAL & dd->flags)
1007 err = atmel_sha_finish(req);
1008 } else {
1009 ctx->flags |= SHA_FLAGS_ERROR;
1012 /* atomic operation is not needed here */
1013 (void)atmel_sha_complete(dd, err);
1016 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1018 int err;
1020 err = clk_enable(dd->iclk);
1021 if (err)
1022 return err;
1024 if (!(SHA_FLAGS_INIT & dd->flags)) {
1025 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1026 dd->flags |= SHA_FLAGS_INIT;
1029 return 0;
1032 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1034 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1037 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1039 int err;
1041 err = atmel_sha_hw_init(dd);
1042 if (err)
1043 return err;
1045 dd->hw_version = atmel_sha_get_version(dd);
1047 dev_info(dd->dev,
1048 "version: 0x%x\n", dd->hw_version);
1050 clk_disable(dd->iclk);
1052 return 0;
1055 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1056 struct ahash_request *req)
1058 struct crypto_async_request *async_req, *backlog;
1059 struct atmel_sha_ctx *ctx;
1060 unsigned long flags;
1061 bool start_async;
1062 int err = 0, ret = 0;
1064 spin_lock_irqsave(&dd->lock, flags);
1065 if (req)
1066 ret = ahash_enqueue_request(&dd->queue, req);
1068 if (SHA_FLAGS_BUSY & dd->flags) {
1069 spin_unlock_irqrestore(&dd->lock, flags);
1070 return ret;
1073 backlog = crypto_get_backlog(&dd->queue);
1074 async_req = crypto_dequeue_request(&dd->queue);
1075 if (async_req)
1076 dd->flags |= SHA_FLAGS_BUSY;
1078 spin_unlock_irqrestore(&dd->lock, flags);
1080 if (!async_req)
1081 return ret;
1083 if (backlog)
1084 backlog->complete(backlog, -EINPROGRESS);
1086 ctx = crypto_tfm_ctx(async_req->tfm);
1088 dd->req = ahash_request_cast(async_req);
1089 start_async = (dd->req != req);
1090 dd->is_async = start_async;
1091 dd->force_complete = false;
1093 /* WARNING: ctx->start() MAY change dd->is_async. */
1094 err = ctx->start(dd);
1095 return (start_async) ? ret : err;
1098 static int atmel_sha_done(struct atmel_sha_dev *dd);
1100 static int atmel_sha_start(struct atmel_sha_dev *dd)
1102 struct ahash_request *req = dd->req;
1103 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1104 int err;
1106 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1107 ctx->op, req->nbytes);
1109 err = atmel_sha_hw_init(dd);
1110 if (err)
1111 return atmel_sha_complete(dd, err);
1114 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1115 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1116 * its job later in the done_task.
1117 * This is the main path.
1119 * 0: the SHA driver can continue its job then release the hardware
1120 * later, if needed, with atmel_sha_finish_req().
1121 * This is the alternate path.
1123 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1124 * been called, hence the hardware has been released.
1125 * The SHA driver must stop its job without calling
1126 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1127 * called a second time.
1129 * Please note that currently, atmel_sha_final_req() never returns 0.
1132 dd->resume = atmel_sha_done;
1133 if (ctx->op == SHA_OP_UPDATE) {
1134 err = atmel_sha_update_req(dd);
1135 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1136 /* no final() after finup() */
1137 err = atmel_sha_final_req(dd);
1138 } else if (ctx->op == SHA_OP_FINAL) {
1139 err = atmel_sha_final_req(dd);
1142 if (!err)
1143 /* done_task will not finish it, so do it here */
1144 atmel_sha_finish_req(req, err);
1146 dev_dbg(dd->dev, "exit, err: %d\n", err);
1148 return err;
1151 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1153 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1154 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1155 struct atmel_sha_dev *dd = tctx->dd;
1157 ctx->op = op;
1159 return atmel_sha_handle_queue(dd, req);
1162 static int atmel_sha_update(struct ahash_request *req)
1164 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1166 if (!req->nbytes)
1167 return 0;
1169 ctx->total = req->nbytes;
1170 ctx->sg = req->src;
1171 ctx->offset = 0;
1173 if (ctx->flags & SHA_FLAGS_FINUP) {
1174 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1175 /* faster to use CPU for short transfers */
1176 ctx->flags |= SHA_FLAGS_CPU;
1177 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1178 atmel_sha_append_sg(ctx);
1179 return 0;
1181 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1184 static int atmel_sha_final(struct ahash_request *req)
1186 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1188 ctx->flags |= SHA_FLAGS_FINUP;
1190 if (ctx->flags & SHA_FLAGS_ERROR)
1191 return 0; /* uncompleted hash is not needed */
1193 if (ctx->flags & SHA_FLAGS_PAD)
1194 /* copy ready hash (+ finalize hmac) */
1195 return atmel_sha_finish(req);
1197 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1200 static int atmel_sha_finup(struct ahash_request *req)
1202 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1203 int err1, err2;
1205 ctx->flags |= SHA_FLAGS_FINUP;
1207 err1 = atmel_sha_update(req);
1208 if (err1 == -EINPROGRESS ||
1209 (err1 == -EBUSY && (ahash_request_flags(req) &
1210 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1211 return err1;
1214 * final() has to be always called to cleanup resources
1215 * even if udpate() failed, except EINPROGRESS
1217 err2 = atmel_sha_final(req);
1219 return err1 ?: err2;
1222 static int atmel_sha_digest(struct ahash_request *req)
1224 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1228 static int atmel_sha_export(struct ahash_request *req, void *out)
1230 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1232 memcpy(out, ctx, sizeof(*ctx));
1233 return 0;
1236 static int atmel_sha_import(struct ahash_request *req, const void *in)
1238 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1240 memcpy(ctx, in, sizeof(*ctx));
1241 return 0;
1244 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1246 struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1248 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1249 sizeof(struct atmel_sha_reqctx));
1250 ctx->start = atmel_sha_start;
1252 return 0;
1255 static void atmel_sha_alg_init(struct ahash_alg *alg)
1257 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1258 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1259 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1260 alg->halg.base.cra_module = THIS_MODULE;
1261 alg->halg.base.cra_init = atmel_sha_cra_init;
1263 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1265 alg->init = atmel_sha_init;
1266 alg->update = atmel_sha_update;
1267 alg->final = atmel_sha_final;
1268 alg->finup = atmel_sha_finup;
1269 alg->digest = atmel_sha_digest;
1270 alg->export = atmel_sha_export;
1271 alg->import = atmel_sha_import;
1274 static struct ahash_alg sha_1_256_algs[] = {
1276 .halg.base.cra_name = "sha1",
1277 .halg.base.cra_driver_name = "atmel-sha1",
1278 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
1280 .halg.digestsize = SHA1_DIGEST_SIZE,
1283 .halg.base.cra_name = "sha256",
1284 .halg.base.cra_driver_name = "atmel-sha256",
1285 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
1287 .halg.digestsize = SHA256_DIGEST_SIZE,
1291 static struct ahash_alg sha_224_alg = {
1292 .halg.base.cra_name = "sha224",
1293 .halg.base.cra_driver_name = "atmel-sha224",
1294 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
1296 .halg.digestsize = SHA224_DIGEST_SIZE,
1299 static struct ahash_alg sha_384_512_algs[] = {
1301 .halg.base.cra_name = "sha384",
1302 .halg.base.cra_driver_name = "atmel-sha384",
1303 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
1304 .halg.base.cra_alignmask = 0x3,
1306 .halg.digestsize = SHA384_DIGEST_SIZE,
1309 .halg.base.cra_name = "sha512",
1310 .halg.base.cra_driver_name = "atmel-sha512",
1311 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
1312 .halg.base.cra_alignmask = 0x3,
1314 .halg.digestsize = SHA512_DIGEST_SIZE,
1318 static void atmel_sha_queue_task(unsigned long data)
1320 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1322 atmel_sha_handle_queue(dd, NULL);
1325 static int atmel_sha_done(struct atmel_sha_dev *dd)
1327 int err = 0;
1329 if (SHA_FLAGS_CPU & dd->flags) {
1330 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1331 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1332 goto finish;
1334 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1335 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1336 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1337 atmel_sha_update_dma_stop(dd);
1339 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1340 /* hash or semi-hash ready */
1341 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1342 SHA_FLAGS_OUTPUT_READY);
1343 err = atmel_sha_update_dma_start(dd);
1344 if (err != -EINPROGRESS)
1345 goto finish;
1348 return err;
1350 finish:
1351 /* finish curent request */
1352 atmel_sha_finish_req(dd->req, err);
1354 return err;
1357 static void atmel_sha_done_task(unsigned long data)
1359 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1361 dd->is_async = true;
1362 (void)dd->resume(dd);
1365 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1367 struct atmel_sha_dev *sha_dd = dev_id;
1368 u32 reg;
1370 reg = atmel_sha_read(sha_dd, SHA_ISR);
1371 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1372 atmel_sha_write(sha_dd, SHA_IDR, reg);
1373 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1374 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1375 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1376 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1377 tasklet_schedule(&sha_dd->done_task);
1378 } else {
1379 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1381 return IRQ_HANDLED;
1384 return IRQ_NONE;
1388 /* DMA transfer functions */
1390 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1391 struct scatterlist *sg,
1392 size_t len)
1394 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1395 struct ahash_request *req = dd->req;
1396 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1397 size_t bs = ctx->block_size;
1398 int nents;
1400 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1401 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1402 return false;
1405 * This is the last sg, the only one that is allowed to
1406 * have an unaligned length.
1408 if (len <= sg->length) {
1409 dma->nents = nents + 1;
1410 dma->last_sg_length = sg->length;
1411 sg->length = ALIGN(len, sizeof(u32));
1412 return true;
1415 /* All other sg lengths MUST be aligned to the block size. */
1416 if (!IS_ALIGNED(sg->length, bs))
1417 return false;
1419 len -= sg->length;
1422 return false;
1425 static void atmel_sha_dma_callback2(void *data)
1427 struct atmel_sha_dev *dd = data;
1428 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1429 struct scatterlist *sg;
1430 int nents;
1432 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1434 sg = dma->sg;
1435 for (nents = 0; nents < dma->nents - 1; ++nents)
1436 sg = sg_next(sg);
1437 sg->length = dma->last_sg_length;
1439 dd->is_async = true;
1440 (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1443 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1444 struct scatterlist *src,
1445 size_t len,
1446 atmel_sha_fn_t resume)
1448 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1449 struct dma_slave_config *config = &dma->dma_conf;
1450 struct dma_chan *chan = dma->chan;
1451 struct dma_async_tx_descriptor *desc;
1452 dma_cookie_t cookie;
1453 unsigned int sg_len;
1454 int err;
1456 dd->resume = resume;
1459 * dma->nents has already been initialized by
1460 * atmel_sha_dma_check_aligned().
1462 dma->sg = src;
1463 sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1464 if (!sg_len) {
1465 err = -ENOMEM;
1466 goto exit;
1469 config->src_maxburst = 16;
1470 config->dst_maxburst = 16;
1471 err = dmaengine_slave_config(chan, config);
1472 if (err)
1473 goto unmap_sg;
1475 desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1476 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1477 if (!desc) {
1478 err = -ENOMEM;
1479 goto unmap_sg;
1482 desc->callback = atmel_sha_dma_callback2;
1483 desc->callback_param = dd;
1484 cookie = dmaengine_submit(desc);
1485 err = dma_submit_error(cookie);
1486 if (err)
1487 goto unmap_sg;
1489 dma_async_issue_pending(chan);
1491 return -EINPROGRESS;
1493 unmap_sg:
1494 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1495 exit:
1496 return atmel_sha_complete(dd, err);
1500 /* CPU transfer functions */
1502 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1504 struct ahash_request *req = dd->req;
1505 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1506 const u32 *words = (const u32 *)ctx->buffer;
1507 size_t i, num_words;
1508 u32 isr, din, din_inc;
1510 din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1511 for (;;) {
1512 /* Write data into the Input Data Registers. */
1513 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1514 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1515 atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1517 ctx->offset += ctx->bufcnt;
1518 ctx->total -= ctx->bufcnt;
1520 if (!ctx->total)
1521 break;
1524 * Prepare next block:
1525 * Fill ctx->buffer now with the next data to be written into
1526 * IDATARx: it gives time for the SHA hardware to process
1527 * the current data so the SHA_INT_DATARDY flag might be set
1528 * in SHA_ISR when polling this register at the beginning of
1529 * the next loop.
1531 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1532 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1533 ctx->offset, ctx->bufcnt, 0);
1535 /* Wait for hardware to be ready again. */
1536 isr = atmel_sha_read(dd, SHA_ISR);
1537 if (!(isr & SHA_INT_DATARDY)) {
1538 /* Not ready yet. */
1539 dd->resume = atmel_sha_cpu_transfer;
1540 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1541 return -EINPROGRESS;
1545 if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1546 return dd->cpu_transfer_complete(dd);
1548 return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1551 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1552 struct scatterlist *sg,
1553 unsigned int len,
1554 bool idatar0_only,
1555 bool wait_data_ready,
1556 atmel_sha_fn_t resume)
1558 struct ahash_request *req = dd->req;
1559 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1561 if (!len)
1562 return resume(dd);
1564 ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1566 if (idatar0_only)
1567 ctx->flags |= SHA_FLAGS_IDATAR0;
1569 if (wait_data_ready)
1570 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1572 ctx->sg = sg;
1573 ctx->total = len;
1574 ctx->offset = 0;
1576 /* Prepare the first block to be written. */
1577 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1578 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1579 ctx->offset, ctx->bufcnt, 0);
1581 dd->cpu_transfer_complete = resume;
1582 return atmel_sha_cpu_transfer(dd);
1585 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1586 const void *data, unsigned int datalen,
1587 bool auto_padding,
1588 atmel_sha_fn_t resume)
1590 struct ahash_request *req = dd->req;
1591 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1592 u32 msglen = (auto_padding) ? datalen : 0;
1593 u32 mr = SHA_MR_MODE_AUTO;
1595 if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1596 return atmel_sha_complete(dd, -EINVAL);
1598 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1599 atmel_sha_write(dd, SHA_MR, mr);
1600 atmel_sha_write(dd, SHA_MSR, msglen);
1601 atmel_sha_write(dd, SHA_BCR, msglen);
1602 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1604 sg_init_one(&dd->tmp, data, datalen);
1605 return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1609 /* hmac functions */
1611 struct atmel_sha_hmac_key {
1612 bool valid;
1613 unsigned int keylen;
1614 u8 buffer[SHA512_BLOCK_SIZE];
1615 u8 *keydup;
1618 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1620 memset(hkey, 0, sizeof(*hkey));
1623 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1625 kfree(hkey->keydup);
1626 memset(hkey, 0, sizeof(*hkey));
1629 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1630 const u8 *key,
1631 unsigned int keylen)
1633 atmel_sha_hmac_key_release(hkey);
1635 if (keylen > sizeof(hkey->buffer)) {
1636 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1637 if (!hkey->keydup)
1638 return -ENOMEM;
1640 } else {
1641 memcpy(hkey->buffer, key, keylen);
1644 hkey->valid = true;
1645 hkey->keylen = keylen;
1646 return 0;
1649 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1650 const u8 **key,
1651 unsigned int *keylen)
1653 if (!hkey->valid)
1654 return false;
1656 *keylen = hkey->keylen;
1657 *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1658 return true;
1662 struct atmel_sha_hmac_ctx {
1663 struct atmel_sha_ctx base;
1665 struct atmel_sha_hmac_key hkey;
1666 u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667 u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1668 atmel_sha_fn_t resume;
1671 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1672 atmel_sha_fn_t resume);
1673 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1674 const u8 *key, unsigned int keylen);
1675 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1678 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1683 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1685 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1686 atmel_sha_fn_t resume)
1688 struct ahash_request *req = dd->req;
1689 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1690 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1691 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1692 unsigned int keylen;
1693 const u8 *key;
1694 size_t bs;
1696 hmac->resume = resume;
1697 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1698 case SHA_FLAGS_SHA1:
1699 ctx->block_size = SHA1_BLOCK_SIZE;
1700 ctx->hash_size = SHA1_DIGEST_SIZE;
1701 break;
1703 case SHA_FLAGS_SHA224:
1704 ctx->block_size = SHA224_BLOCK_SIZE;
1705 ctx->hash_size = SHA256_DIGEST_SIZE;
1706 break;
1708 case SHA_FLAGS_SHA256:
1709 ctx->block_size = SHA256_BLOCK_SIZE;
1710 ctx->hash_size = SHA256_DIGEST_SIZE;
1711 break;
1713 case SHA_FLAGS_SHA384:
1714 ctx->block_size = SHA384_BLOCK_SIZE;
1715 ctx->hash_size = SHA512_DIGEST_SIZE;
1716 break;
1718 case SHA_FLAGS_SHA512:
1719 ctx->block_size = SHA512_BLOCK_SIZE;
1720 ctx->hash_size = SHA512_DIGEST_SIZE;
1721 break;
1723 default:
1724 return atmel_sha_complete(dd, -EINVAL);
1726 bs = ctx->block_size;
1728 if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1729 return resume(dd);
1731 /* Compute K' from K. */
1732 if (unlikely(keylen > bs))
1733 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1735 /* Prepare ipad. */
1736 memcpy((u8 *)hmac->ipad, key, keylen);
1737 memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1738 return atmel_sha_hmac_compute_ipad_hash(dd);
1741 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742 const u8 *key, unsigned int keylen)
1744 return atmel_sha_cpu_hash(dd, key, keylen, true,
1745 atmel_sha_hmac_prehash_key_done);
1748 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1750 struct ahash_request *req = dd->req;
1751 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1752 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1753 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1754 size_t ds = crypto_ahash_digestsize(tfm);
1755 size_t bs = ctx->block_size;
1756 size_t i, num_words = ds / sizeof(u32);
1758 /* Prepare ipad. */
1759 for (i = 0; i < num_words; ++i)
1760 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1761 memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1762 return atmel_sha_hmac_compute_ipad_hash(dd);
1765 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1767 struct ahash_request *req = dd->req;
1768 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1769 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1770 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1771 size_t bs = ctx->block_size;
1772 size_t i, num_words = bs / sizeof(u32);
1774 memcpy(hmac->opad, hmac->ipad, bs);
1775 for (i = 0; i < num_words; ++i) {
1776 hmac->ipad[i] ^= 0x36363636;
1777 hmac->opad[i] ^= 0x5c5c5c5c;
1780 return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781 atmel_sha_hmac_compute_opad_hash);
1784 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1786 struct ahash_request *req = dd->req;
1787 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790 size_t bs = ctx->block_size;
1791 size_t hs = ctx->hash_size;
1792 size_t i, num_words = hs / sizeof(u32);
1794 for (i = 0; i < num_words; ++i)
1795 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796 return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797 atmel_sha_hmac_setup_done);
1800 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1802 struct ahash_request *req = dd->req;
1803 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806 size_t hs = ctx->hash_size;
1807 size_t i, num_words = hs / sizeof(u32);
1809 for (i = 0; i < num_words; ++i)
1810 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811 atmel_sha_hmac_key_release(&hmac->hkey);
1812 return hmac->resume(dd);
1815 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1817 struct ahash_request *req = dd->req;
1818 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819 int err;
1821 err = atmel_sha_hw_init(dd);
1822 if (err)
1823 return atmel_sha_complete(dd, err);
1825 switch (ctx->op) {
1826 case SHA_OP_INIT:
1827 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828 break;
1830 case SHA_OP_UPDATE:
1831 dd->resume = atmel_sha_done;
1832 err = atmel_sha_update_req(dd);
1833 break;
1835 case SHA_OP_FINAL:
1836 dd->resume = atmel_sha_hmac_final;
1837 err = atmel_sha_final_req(dd);
1838 break;
1840 case SHA_OP_DIGEST:
1841 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842 break;
1844 default:
1845 return atmel_sha_complete(dd, -EINVAL);
1848 return err;
1851 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852 unsigned int keylen)
1854 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1856 return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1859 static int atmel_sha_hmac_init(struct ahash_request *req)
1861 int err;
1863 err = atmel_sha_init(req);
1864 if (err)
1865 return err;
1867 return atmel_sha_enqueue(req, SHA_OP_INIT);
1870 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1872 struct ahash_request *req = dd->req;
1873 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876 size_t bs = ctx->block_size;
1877 size_t hs = ctx->hash_size;
1879 ctx->bufcnt = 0;
1880 ctx->digcnt[0] = bs;
1881 ctx->digcnt[1] = 0;
1882 ctx->flags |= SHA_FLAGS_RESTORE;
1883 memcpy(ctx->digest, hmac->ipad, hs);
1884 return atmel_sha_complete(dd, 0);
1887 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1889 struct ahash_request *req = dd->req;
1890 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893 u32 *digest = (u32 *)ctx->digest;
1894 size_t ds = crypto_ahash_digestsize(tfm);
1895 size_t bs = ctx->block_size;
1896 size_t hs = ctx->hash_size;
1897 size_t i, num_words;
1898 u32 mr;
1900 /* Save d = SHA((K' + ipad) | msg). */
1901 num_words = ds / sizeof(u32);
1902 for (i = 0; i < num_words; ++i)
1903 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1905 /* Restore context to finish computing SHA((K' + opad) | d). */
1906 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907 num_words = hs / sizeof(u32);
1908 for (i = 0; i < num_words; ++i)
1909 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1911 mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913 atmel_sha_write(dd, SHA_MR, mr);
1914 atmel_sha_write(dd, SHA_MSR, bs + ds);
1915 atmel_sha_write(dd, SHA_BCR, ds);
1916 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1918 sg_init_one(&dd->tmp, digest, ds);
1919 return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920 atmel_sha_hmac_final_done);
1923 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1926 * req->result might not be sizeof(u32) aligned, so copy the
1927 * digest into ctx->digest[] before memcpy() the data into
1928 * req->result.
1930 atmel_sha_copy_hash(dd->req);
1931 atmel_sha_copy_ready_hash(dd->req);
1932 return atmel_sha_complete(dd, 0);
1935 static int atmel_sha_hmac_digest(struct ahash_request *req)
1937 int err;
1939 err = atmel_sha_init(req);
1940 if (err)
1941 return err;
1943 return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1946 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1948 struct ahash_request *req = dd->req;
1949 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952 size_t hs = ctx->hash_size;
1953 size_t i, num_words = hs / sizeof(u32);
1954 bool use_dma = false;
1955 u32 mr;
1957 /* Special case for empty message. */
1958 if (!req->nbytes)
1959 return atmel_sha_complete(dd, -EINVAL); // TODO:
1961 /* Check DMA threshold and alignment. */
1962 if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1963 atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1964 use_dma = true;
1966 /* Write both initial hash values to compute a HMAC. */
1967 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1968 for (i = 0; i < num_words; ++i)
1969 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1971 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1972 for (i = 0; i < num_words; ++i)
1973 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1975 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1976 mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1977 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1978 if (use_dma)
1979 mr |= SHA_MR_MODE_IDATAR0;
1980 else
1981 mr |= SHA_MR_MODE_AUTO;
1982 atmel_sha_write(dd, SHA_MR, mr);
1984 atmel_sha_write(dd, SHA_MSR, req->nbytes);
1985 atmel_sha_write(dd, SHA_BCR, req->nbytes);
1987 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1989 /* Process data. */
1990 if (use_dma)
1991 return atmel_sha_dma_start(dd, req->src, req->nbytes,
1992 atmel_sha_hmac_final_done);
1994 return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1995 atmel_sha_hmac_final_done);
1998 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2000 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2002 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2003 sizeof(struct atmel_sha_reqctx));
2004 hmac->base.start = atmel_sha_hmac_start;
2005 atmel_sha_hmac_key_init(&hmac->hkey);
2007 return 0;
2010 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2012 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2014 atmel_sha_hmac_key_release(&hmac->hkey);
2017 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2019 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2020 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2021 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2022 alg->halg.base.cra_module = THIS_MODULE;
2023 alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2024 alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2026 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2028 alg->init = atmel_sha_hmac_init;
2029 alg->update = atmel_sha_update;
2030 alg->final = atmel_sha_final;
2031 alg->digest = atmel_sha_hmac_digest;
2032 alg->setkey = atmel_sha_hmac_setkey;
2033 alg->export = atmel_sha_export;
2034 alg->import = atmel_sha_import;
2037 static struct ahash_alg sha_hmac_algs[] = {
2039 .halg.base.cra_name = "hmac(sha1)",
2040 .halg.base.cra_driver_name = "atmel-hmac-sha1",
2041 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
2043 .halg.digestsize = SHA1_DIGEST_SIZE,
2046 .halg.base.cra_name = "hmac(sha224)",
2047 .halg.base.cra_driver_name = "atmel-hmac-sha224",
2048 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
2050 .halg.digestsize = SHA224_DIGEST_SIZE,
2053 .halg.base.cra_name = "hmac(sha256)",
2054 .halg.base.cra_driver_name = "atmel-hmac-sha256",
2055 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
2057 .halg.digestsize = SHA256_DIGEST_SIZE,
2060 .halg.base.cra_name = "hmac(sha384)",
2061 .halg.base.cra_driver_name = "atmel-hmac-sha384",
2062 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
2064 .halg.digestsize = SHA384_DIGEST_SIZE,
2067 .halg.base.cra_name = "hmac(sha512)",
2068 .halg.base.cra_driver_name = "atmel-hmac-sha512",
2069 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
2071 .halg.digestsize = SHA512_DIGEST_SIZE,
2075 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2076 /* authenc functions */
2078 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2079 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2080 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2083 struct atmel_sha_authenc_ctx {
2084 struct crypto_ahash *tfm;
2087 struct atmel_sha_authenc_reqctx {
2088 struct atmel_sha_reqctx base;
2090 atmel_aes_authenc_fn_t cb;
2091 struct atmel_aes_dev *aes_dev;
2093 /* _init() parameters. */
2094 struct scatterlist *assoc;
2095 u32 assoclen;
2096 u32 textlen;
2098 /* _final() parameters. */
2099 u32 *digest;
2100 unsigned int digestlen;
2103 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2104 int err)
2106 struct ahash_request *req = areq->data;
2107 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2109 authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2112 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2114 struct ahash_request *req = dd->req;
2115 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2116 int err;
2119 * Force atmel_sha_complete() to call req->base.complete(), ie
2120 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2122 dd->force_complete = true;
2124 err = atmel_sha_hw_init(dd);
2125 return authctx->cb(authctx->aes_dev, err, dd->is_async);
2128 bool atmel_sha_authenc_is_ready(void)
2130 struct atmel_sha_ctx dummy;
2132 dummy.dd = NULL;
2133 return (atmel_sha_find_dev(&dummy) != NULL);
2135 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2137 unsigned int atmel_sha_authenc_get_reqsize(void)
2139 return sizeof(struct atmel_sha_authenc_reqctx);
2141 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2143 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2145 struct atmel_sha_authenc_ctx *auth;
2146 struct crypto_ahash *tfm;
2147 struct atmel_sha_ctx *tctx;
2148 const char *name;
2149 int err = -EINVAL;
2151 switch (mode & SHA_FLAGS_MODE_MASK) {
2152 case SHA_FLAGS_HMAC_SHA1:
2153 name = "atmel-hmac-sha1";
2154 break;
2156 case SHA_FLAGS_HMAC_SHA224:
2157 name = "atmel-hmac-sha224";
2158 break;
2160 case SHA_FLAGS_HMAC_SHA256:
2161 name = "atmel-hmac-sha256";
2162 break;
2164 case SHA_FLAGS_HMAC_SHA384:
2165 name = "atmel-hmac-sha384";
2166 break;
2168 case SHA_FLAGS_HMAC_SHA512:
2169 name = "atmel-hmac-sha512";
2170 break;
2172 default:
2173 goto error;
2176 tfm = crypto_alloc_ahash(name, 0, 0);
2177 if (IS_ERR(tfm)) {
2178 err = PTR_ERR(tfm);
2179 goto error;
2181 tctx = crypto_ahash_ctx(tfm);
2182 tctx->start = atmel_sha_authenc_start;
2183 tctx->flags = mode;
2185 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2186 if (!auth) {
2187 err = -ENOMEM;
2188 goto err_free_ahash;
2190 auth->tfm = tfm;
2192 return auth;
2194 err_free_ahash:
2195 crypto_free_ahash(tfm);
2196 error:
2197 return ERR_PTR(err);
2199 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2201 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2203 if (auth)
2204 crypto_free_ahash(auth->tfm);
2205 kfree(auth);
2207 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2209 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2210 const u8 *key, unsigned int keylen, u32 flags)
2212 struct crypto_ahash *tfm = auth->tfm;
2214 crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2215 crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2216 return crypto_ahash_setkey(tfm, key, keylen);
2218 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2220 int atmel_sha_authenc_schedule(struct ahash_request *req,
2221 struct atmel_sha_authenc_ctx *auth,
2222 atmel_aes_authenc_fn_t cb,
2223 struct atmel_aes_dev *aes_dev)
2225 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2226 struct atmel_sha_reqctx *ctx = &authctx->base;
2227 struct crypto_ahash *tfm = auth->tfm;
2228 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2229 struct atmel_sha_dev *dd;
2231 /* Reset request context (MUST be done first). */
2232 memset(authctx, 0, sizeof(*authctx));
2234 /* Get SHA device. */
2235 dd = atmel_sha_find_dev(tctx);
2236 if (!dd)
2237 return cb(aes_dev, -ENODEV, false);
2239 /* Init request context. */
2240 ctx->dd = dd;
2241 ctx->buflen = SHA_BUFFER_LEN;
2242 authctx->cb = cb;
2243 authctx->aes_dev = aes_dev;
2244 ahash_request_set_tfm(req, tfm);
2245 ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2247 return atmel_sha_handle_queue(dd, req);
2249 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2251 int atmel_sha_authenc_init(struct ahash_request *req,
2252 struct scatterlist *assoc, unsigned int assoclen,
2253 unsigned int textlen,
2254 atmel_aes_authenc_fn_t cb,
2255 struct atmel_aes_dev *aes_dev)
2257 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2258 struct atmel_sha_reqctx *ctx = &authctx->base;
2259 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2260 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2261 struct atmel_sha_dev *dd = ctx->dd;
2263 if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2264 return atmel_sha_complete(dd, -EINVAL);
2266 authctx->cb = cb;
2267 authctx->aes_dev = aes_dev;
2268 authctx->assoc = assoc;
2269 authctx->assoclen = assoclen;
2270 authctx->textlen = textlen;
2272 ctx->flags = hmac->base.flags;
2273 return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2275 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2277 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2279 struct ahash_request *req = dd->req;
2280 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281 struct atmel_sha_reqctx *ctx = &authctx->base;
2282 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284 size_t hs = ctx->hash_size;
2285 size_t i, num_words = hs / sizeof(u32);
2286 u32 mr, msg_size;
2288 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2289 for (i = 0; i < num_words; ++i)
2290 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2292 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2293 for (i = 0; i < num_words; ++i)
2294 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2296 mr = (SHA_MR_MODE_IDATAR0 |
2297 SHA_MR_HMAC |
2298 SHA_MR_DUALBUFF);
2299 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2300 atmel_sha_write(dd, SHA_MR, mr);
2302 msg_size = authctx->assoclen + authctx->textlen;
2303 atmel_sha_write(dd, SHA_MSR, msg_size);
2304 atmel_sha_write(dd, SHA_BCR, msg_size);
2306 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2308 /* Process assoc data. */
2309 return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2310 true, false,
2311 atmel_sha_authenc_init_done);
2314 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2316 struct ahash_request *req = dd->req;
2317 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2319 return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2322 int atmel_sha_authenc_final(struct ahash_request *req,
2323 u32 *digest, unsigned int digestlen,
2324 atmel_aes_authenc_fn_t cb,
2325 struct atmel_aes_dev *aes_dev)
2327 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2328 struct atmel_sha_reqctx *ctx = &authctx->base;
2329 struct atmel_sha_dev *dd = ctx->dd;
2331 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2332 case SHA_FLAGS_SHA1:
2333 authctx->digestlen = SHA1_DIGEST_SIZE;
2334 break;
2336 case SHA_FLAGS_SHA224:
2337 authctx->digestlen = SHA224_DIGEST_SIZE;
2338 break;
2340 case SHA_FLAGS_SHA256:
2341 authctx->digestlen = SHA256_DIGEST_SIZE;
2342 break;
2344 case SHA_FLAGS_SHA384:
2345 authctx->digestlen = SHA384_DIGEST_SIZE;
2346 break;
2348 case SHA_FLAGS_SHA512:
2349 authctx->digestlen = SHA512_DIGEST_SIZE;
2350 break;
2352 default:
2353 return atmel_sha_complete(dd, -EINVAL);
2355 if (authctx->digestlen > digestlen)
2356 authctx->digestlen = digestlen;
2358 authctx->cb = cb;
2359 authctx->aes_dev = aes_dev;
2360 authctx->digest = digest;
2361 return atmel_sha_wait_for_data_ready(dd,
2362 atmel_sha_authenc_final_done);
2364 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2366 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2368 struct ahash_request *req = dd->req;
2369 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2370 size_t i, num_words = authctx->digestlen / sizeof(u32);
2372 for (i = 0; i < num_words; ++i)
2373 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2375 return atmel_sha_complete(dd, 0);
2378 void atmel_sha_authenc_abort(struct ahash_request *req)
2380 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2381 struct atmel_sha_reqctx *ctx = &authctx->base;
2382 struct atmel_sha_dev *dd = ctx->dd;
2384 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2385 dd->is_async = false;
2386 dd->force_complete = false;
2387 (void)atmel_sha_complete(dd, 0);
2389 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2391 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2394 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2396 int i;
2398 if (dd->caps.has_hmac)
2399 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2400 crypto_unregister_ahash(&sha_hmac_algs[i]);
2402 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2403 crypto_unregister_ahash(&sha_1_256_algs[i]);
2405 if (dd->caps.has_sha224)
2406 crypto_unregister_ahash(&sha_224_alg);
2408 if (dd->caps.has_sha_384_512) {
2409 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2410 crypto_unregister_ahash(&sha_384_512_algs[i]);
2414 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2416 int err, i, j;
2418 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2419 atmel_sha_alg_init(&sha_1_256_algs[i]);
2421 err = crypto_register_ahash(&sha_1_256_algs[i]);
2422 if (err)
2423 goto err_sha_1_256_algs;
2426 if (dd->caps.has_sha224) {
2427 atmel_sha_alg_init(&sha_224_alg);
2429 err = crypto_register_ahash(&sha_224_alg);
2430 if (err)
2431 goto err_sha_224_algs;
2434 if (dd->caps.has_sha_384_512) {
2435 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2436 atmel_sha_alg_init(&sha_384_512_algs[i]);
2438 err = crypto_register_ahash(&sha_384_512_algs[i]);
2439 if (err)
2440 goto err_sha_384_512_algs;
2444 if (dd->caps.has_hmac) {
2445 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2446 atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2448 err = crypto_register_ahash(&sha_hmac_algs[i]);
2449 if (err)
2450 goto err_sha_hmac_algs;
2454 return 0;
2456 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2457 err_sha_hmac_algs:
2458 for (j = 0; j < i; j++)
2459 crypto_unregister_ahash(&sha_hmac_algs[j]);
2460 i = ARRAY_SIZE(sha_384_512_algs);
2461 err_sha_384_512_algs:
2462 for (j = 0; j < i; j++)
2463 crypto_unregister_ahash(&sha_384_512_algs[j]);
2464 crypto_unregister_ahash(&sha_224_alg);
2465 err_sha_224_algs:
2466 i = ARRAY_SIZE(sha_1_256_algs);
2467 err_sha_1_256_algs:
2468 for (j = 0; j < i; j++)
2469 crypto_unregister_ahash(&sha_1_256_algs[j]);
2471 return err;
2474 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2476 dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2477 if (IS_ERR(dd->dma_lch_in.chan)) {
2478 dev_err(dd->dev, "DMA channel is not available\n");
2479 return PTR_ERR(dd->dma_lch_in.chan);
2482 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2483 SHA_REG_DIN(0);
2484 dd->dma_lch_in.dma_conf.src_maxburst = 1;
2485 dd->dma_lch_in.dma_conf.src_addr_width =
2486 DMA_SLAVE_BUSWIDTH_4_BYTES;
2487 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2488 dd->dma_lch_in.dma_conf.dst_addr_width =
2489 DMA_SLAVE_BUSWIDTH_4_BYTES;
2490 dd->dma_lch_in.dma_conf.device_fc = false;
2492 return 0;
2495 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2497 dma_release_channel(dd->dma_lch_in.chan);
2500 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2503 dd->caps.has_dma = 0;
2504 dd->caps.has_dualbuff = 0;
2505 dd->caps.has_sha224 = 0;
2506 dd->caps.has_sha_384_512 = 0;
2507 dd->caps.has_uihv = 0;
2508 dd->caps.has_hmac = 0;
2510 /* keep only major version number */
2511 switch (dd->hw_version & 0xff0) {
2512 case 0x510:
2513 dd->caps.has_dma = 1;
2514 dd->caps.has_dualbuff = 1;
2515 dd->caps.has_sha224 = 1;
2516 dd->caps.has_sha_384_512 = 1;
2517 dd->caps.has_uihv = 1;
2518 dd->caps.has_hmac = 1;
2519 break;
2520 case 0x420:
2521 dd->caps.has_dma = 1;
2522 dd->caps.has_dualbuff = 1;
2523 dd->caps.has_sha224 = 1;
2524 dd->caps.has_sha_384_512 = 1;
2525 dd->caps.has_uihv = 1;
2526 break;
2527 case 0x410:
2528 dd->caps.has_dma = 1;
2529 dd->caps.has_dualbuff = 1;
2530 dd->caps.has_sha224 = 1;
2531 dd->caps.has_sha_384_512 = 1;
2532 break;
2533 case 0x400:
2534 dd->caps.has_dma = 1;
2535 dd->caps.has_dualbuff = 1;
2536 dd->caps.has_sha224 = 1;
2537 break;
2538 case 0x320:
2539 break;
2540 default:
2541 dev_warn(dd->dev,
2542 "Unmanaged sha version, set minimum capabilities\n");
2543 break;
2547 #if defined(CONFIG_OF)
2548 static const struct of_device_id atmel_sha_dt_ids[] = {
2549 { .compatible = "atmel,at91sam9g46-sha" },
2550 { /* sentinel */ }
2553 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554 #endif
2556 static int atmel_sha_probe(struct platform_device *pdev)
2558 struct atmel_sha_dev *sha_dd;
2559 struct device *dev = &pdev->dev;
2560 struct resource *sha_res;
2561 int err;
2563 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564 if (!sha_dd)
2565 return -ENOMEM;
2567 sha_dd->dev = dev;
2569 platform_set_drvdata(pdev, sha_dd);
2571 INIT_LIST_HEAD(&sha_dd->list);
2572 spin_lock_init(&sha_dd->lock);
2574 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575 (unsigned long)sha_dd);
2576 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577 (unsigned long)sha_dd);
2579 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2581 /* Get the base address */
2582 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583 if (!sha_res) {
2584 dev_err(dev, "no MEM resource info\n");
2585 err = -ENODEV;
2586 goto err_tasklet_kill;
2588 sha_dd->phys_base = sha_res->start;
2590 /* Get the IRQ */
2591 sha_dd->irq = platform_get_irq(pdev, 0);
2592 if (sha_dd->irq < 0) {
2593 err = sha_dd->irq;
2594 goto err_tasklet_kill;
2597 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598 IRQF_SHARED, "atmel-sha", sha_dd);
2599 if (err) {
2600 dev_err(dev, "unable to request sha irq.\n");
2601 goto err_tasklet_kill;
2604 /* Initializing the clock */
2605 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606 if (IS_ERR(sha_dd->iclk)) {
2607 dev_err(dev, "clock initialization failed.\n");
2608 err = PTR_ERR(sha_dd->iclk);
2609 goto err_tasklet_kill;
2612 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613 if (IS_ERR(sha_dd->io_base)) {
2614 dev_err(dev, "can't ioremap\n");
2615 err = PTR_ERR(sha_dd->io_base);
2616 goto err_tasklet_kill;
2619 err = clk_prepare(sha_dd->iclk);
2620 if (err)
2621 goto err_tasklet_kill;
2623 err = atmel_sha_hw_version_init(sha_dd);
2624 if (err)
2625 goto err_iclk_unprepare;
2627 atmel_sha_get_cap(sha_dd);
2629 if (sha_dd->caps.has_dma) {
2630 err = atmel_sha_dma_init(sha_dd);
2631 if (err)
2632 goto err_iclk_unprepare;
2634 dev_info(dev, "using %s for DMA transfers\n",
2635 dma_chan_name(sha_dd->dma_lch_in.chan));
2638 spin_lock(&atmel_sha.lock);
2639 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640 spin_unlock(&atmel_sha.lock);
2642 err = atmel_sha_register_algs(sha_dd);
2643 if (err)
2644 goto err_algs;
2646 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647 sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2650 return 0;
2652 err_algs:
2653 spin_lock(&atmel_sha.lock);
2654 list_del(&sha_dd->list);
2655 spin_unlock(&atmel_sha.lock);
2656 if (sha_dd->caps.has_dma)
2657 atmel_sha_dma_cleanup(sha_dd);
2658 err_iclk_unprepare:
2659 clk_unprepare(sha_dd->iclk);
2660 err_tasklet_kill:
2661 tasklet_kill(&sha_dd->queue_task);
2662 tasklet_kill(&sha_dd->done_task);
2664 return err;
2667 static int atmel_sha_remove(struct platform_device *pdev)
2669 struct atmel_sha_dev *sha_dd;
2671 sha_dd = platform_get_drvdata(pdev);
2672 if (!sha_dd)
2673 return -ENODEV;
2674 spin_lock(&atmel_sha.lock);
2675 list_del(&sha_dd->list);
2676 spin_unlock(&atmel_sha.lock);
2678 atmel_sha_unregister_algs(sha_dd);
2680 tasklet_kill(&sha_dd->queue_task);
2681 tasklet_kill(&sha_dd->done_task);
2683 if (sha_dd->caps.has_dma)
2684 atmel_sha_dma_cleanup(sha_dd);
2686 clk_unprepare(sha_dd->iclk);
2688 return 0;
2691 static struct platform_driver atmel_sha_driver = {
2692 .probe = atmel_sha_probe,
2693 .remove = atmel_sha_remove,
2694 .driver = {
2695 .name = "atmel_sha",
2696 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2700 module_platform_driver(atmel_sha_driver);
2702 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2703 MODULE_LICENSE("GPL v2");
2704 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");