gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / crypto / marvell / octeontx / otx_cptvf_reqmgr.c
blobdf839b8803547057478edabeea37f0fb6ad1c977
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
4 * Copyright (C) 2019 Marvell International Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include "otx_cptvf.h"
12 #include "otx_cptvf_algs.h"
14 /* Completion code size and initial value */
15 #define COMPLETION_CODE_SIZE 8
16 #define COMPLETION_CODE_INIT 0
18 /* SG list header size in bytes */
19 #define SG_LIST_HDR_SIZE 8
21 /* Default timeout when waiting for free pending entry in us */
22 #define CPT_PENTRY_TIMEOUT 1000
23 #define CPT_PENTRY_STEP 50
25 /* Default threshold for stopping and resuming sender requests */
26 #define CPT_IQ_STOP_MARGIN 128
27 #define CPT_IQ_RESUME_MARGIN 512
29 #define CPT_DMA_ALIGN 128
31 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
33 int i;
35 pr_debug("Gather list size %d\n", req->incnt);
36 for (i = 0; i < req->incnt; i++) {
37 pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
38 req->in[i].size, req->in[i].vptr,
39 (void *) req->in[i].dma_addr);
40 pr_debug("Buffer hexdump (%d bytes)\n",
41 req->in[i].size);
42 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
43 req->in[i].vptr, req->in[i].size, false);
46 pr_debug("Scatter list size %d\n", req->outcnt);
47 for (i = 0; i < req->outcnt; i++) {
48 pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
49 req->out[i].size, req->out[i].vptr,
50 (void *) req->out[i].dma_addr);
51 pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
52 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
53 req->out[i].vptr, req->out[i].size, false);
57 static inline struct otx_cpt_pending_entry *get_free_pending_entry(
58 struct otx_cpt_pending_queue *q,
59 int qlen)
61 struct otx_cpt_pending_entry *ent = NULL;
63 ent = &q->head[q->rear];
64 if (unlikely(ent->busy))
65 return NULL;
67 q->rear++;
68 if (unlikely(q->rear == qlen))
69 q->rear = 0;
71 return ent;
74 static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
76 if (WARN_ON(inc > length))
77 inc = length;
79 index += inc;
80 if (unlikely(index >= length))
81 index -= length;
83 return index;
86 static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
88 pentry->completion_addr = NULL;
89 pentry->info = NULL;
90 pentry->callback = NULL;
91 pentry->areq = NULL;
92 pentry->resume_sender = false;
93 pentry->busy = false;
96 static inline int setup_sgio_components(struct pci_dev *pdev,
97 struct otx_cpt_buf_ptr *list,
98 int buf_count, u8 *buffer)
100 struct otx_cpt_sglist_component *sg_ptr = NULL;
101 int ret = 0, i, j;
102 int components;
104 if (unlikely(!list)) {
105 dev_err(&pdev->dev, "Input list pointer is NULL\n");
106 return -EFAULT;
109 for (i = 0; i < buf_count; i++) {
110 if (likely(list[i].vptr)) {
111 list[i].dma_addr = dma_map_single(&pdev->dev,
112 list[i].vptr,
113 list[i].size,
114 DMA_BIDIRECTIONAL);
115 if (unlikely(dma_mapping_error(&pdev->dev,
116 list[i].dma_addr))) {
117 dev_err(&pdev->dev, "Dma mapping failed\n");
118 ret = -EIO;
119 goto sg_cleanup;
124 components = buf_count / 4;
125 sg_ptr = (struct otx_cpt_sglist_component *)buffer;
126 for (i = 0; i < components; i++) {
127 sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
128 sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
129 sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
130 sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
131 sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
132 sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
133 sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
134 sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
135 sg_ptr++;
137 components = buf_count % 4;
139 switch (components) {
140 case 3:
141 sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
142 sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
143 /* Fall through */
144 case 2:
145 sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
146 sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
147 /* Fall through */
148 case 1:
149 sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
150 sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
151 break;
152 default:
153 break;
155 return ret;
157 sg_cleanup:
158 for (j = 0; j < i; j++) {
159 if (list[j].dma_addr) {
160 dma_unmap_single(&pdev->dev, list[i].dma_addr,
161 list[i].size, DMA_BIDIRECTIONAL);
164 list[j].dma_addr = 0;
166 return ret;
169 static inline int setup_sgio_list(struct pci_dev *pdev,
170 struct otx_cpt_info_buffer **pinfo,
171 struct otx_cpt_req_info *req, gfp_t gfp)
173 u32 dlen, align_dlen, info_len, rlen;
174 struct otx_cpt_info_buffer *info;
175 u16 g_sz_bytes, s_sz_bytes;
176 int align = CPT_DMA_ALIGN;
177 u32 total_mem_len;
179 if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
180 req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
181 dev_err(&pdev->dev, "Error too many sg components\n");
182 return -EINVAL;
185 g_sz_bytes = ((req->incnt + 3) / 4) *
186 sizeof(struct otx_cpt_sglist_component);
187 s_sz_bytes = ((req->outcnt + 3) / 4) *
188 sizeof(struct otx_cpt_sglist_component);
190 dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
191 align_dlen = ALIGN(dlen, align);
192 info_len = ALIGN(sizeof(*info), align);
193 rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
194 total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
196 info = kzalloc(total_mem_len, gfp);
197 if (unlikely(!info)) {
198 dev_err(&pdev->dev, "Memory allocation failed\n");
199 return -ENOMEM;
201 *pinfo = info;
202 info->dlen = dlen;
203 info->in_buffer = (u8 *)info + info_len;
205 ((u16 *)info->in_buffer)[0] = req->outcnt;
206 ((u16 *)info->in_buffer)[1] = req->incnt;
207 ((u16 *)info->in_buffer)[2] = 0;
208 ((u16 *)info->in_buffer)[3] = 0;
209 *(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer);
211 /* Setup gather (input) components */
212 if (setup_sgio_components(pdev, req->in, req->incnt,
213 &info->in_buffer[8])) {
214 dev_err(&pdev->dev, "Failed to setup gather list\n");
215 return -EFAULT;
218 if (setup_sgio_components(pdev, req->out, req->outcnt,
219 &info->in_buffer[8 + g_sz_bytes])) {
220 dev_err(&pdev->dev, "Failed to setup scatter list\n");
221 return -EFAULT;
224 info->dma_len = total_mem_len - info_len;
225 info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
226 info->dma_len, DMA_BIDIRECTIONAL);
227 if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
228 dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
229 return -EIO;
232 * Get buffer for union otx_cpt_res_s response
233 * structure and its physical address
235 info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
236 info->comp_baddr = info->dptr_baddr + align_dlen;
238 /* Create and initialize RPTR */
239 info->out_buffer = (u8 *)info->completion_addr + rlen;
240 info->rptr_baddr = info->comp_baddr + rlen;
242 *((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
244 return 0;
248 static void cpt_fill_inst(union otx_cpt_inst_s *inst,
249 struct otx_cpt_info_buffer *info,
250 struct otx_cpt_iq_cmd *cmd)
252 inst->u[0] = 0x0;
253 inst->s.doneint = true;
254 inst->s.res_addr = (u64)info->comp_baddr;
255 inst->u[2] = 0x0;
256 inst->s.wq_ptr = 0;
257 inst->s.ei0 = cmd->cmd.u64;
258 inst->s.ei1 = cmd->dptr;
259 inst->s.ei2 = cmd->rptr;
260 inst->s.ei3 = cmd->cptr.u64;
264 * On OcteonTX platform the parameter db_count is used as a count for ringing
265 * door bell. The valid values for db_count are:
266 * 0 - 1 CPT instruction will be enqueued however CPT will not be informed
267 * 1 - 1 CPT instruction will be enqueued and CPT will be informed
269 static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
271 struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
272 struct otx_cpt_cmd_queue *queue;
273 struct otx_cpt_cmd_chunk *curr;
274 u8 *ent;
276 queue = &qinfo->queue[0];
278 * cpt_send_cmd is currently called only from critical section
279 * therefore no locking is required for accessing instruction queue
281 ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
282 memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
284 if (++queue->idx >= queue->qhead->size / 64) {
285 curr = queue->qhead;
287 if (list_is_last(&curr->nextchunk, &queue->chead))
288 queue->qhead = queue->base;
289 else
290 queue->qhead = list_next_entry(queue->qhead, nextchunk);
291 queue->idx = 0;
293 /* make sure all memory stores are done before ringing doorbell */
294 smp_wmb();
295 otx_cptvf_write_vq_doorbell(cptvf, 1);
298 static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
299 struct otx_cpt_pending_queue *pqueue,
300 struct otx_cptvf *cptvf)
302 struct otx_cptvf_request *cpt_req = &req->req;
303 struct otx_cpt_pending_entry *pentry = NULL;
304 union otx_cpt_ctrl_info *ctrl = &req->ctrl;
305 struct otx_cpt_info_buffer *info = NULL;
306 union otx_cpt_res_s *result = NULL;
307 struct otx_cpt_iq_cmd iq_cmd;
308 union otx_cpt_inst_s cptinst;
309 int retry, ret = 0;
310 u8 resume_sender;
311 gfp_t gfp;
313 gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
314 GFP_ATOMIC;
315 ret = setup_sgio_list(pdev, &info, req, gfp);
316 if (unlikely(ret)) {
317 dev_err(&pdev->dev, "Setting up SG list failed");
318 goto request_cleanup;
320 cpt_req->dlen = info->dlen;
322 result = (union otx_cpt_res_s *) info->completion_addr;
323 result->s.compcode = COMPLETION_CODE_INIT;
325 spin_lock_bh(&pqueue->lock);
326 pentry = get_free_pending_entry(pqueue, pqueue->qlen);
327 retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
328 while (unlikely(!pentry) && retry--) {
329 spin_unlock_bh(&pqueue->lock);
330 udelay(CPT_PENTRY_STEP);
331 spin_lock_bh(&pqueue->lock);
332 pentry = get_free_pending_entry(pqueue, pqueue->qlen);
335 if (unlikely(!pentry)) {
336 ret = -ENOSPC;
337 spin_unlock_bh(&pqueue->lock);
338 goto request_cleanup;
342 * Check if we are close to filling in entire pending queue,
343 * if so then tell the sender to stop/sleep by returning -EBUSY
344 * We do it only for context which can sleep (GFP_KERNEL)
346 if (gfp == GFP_KERNEL &&
347 pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
348 pentry->resume_sender = true;
349 } else
350 pentry->resume_sender = false;
351 resume_sender = pentry->resume_sender;
352 pqueue->pending_count++;
354 pentry->completion_addr = info->completion_addr;
355 pentry->info = info;
356 pentry->callback = req->callback;
357 pentry->areq = req->areq;
358 pentry->busy = true;
359 info->pentry = pentry;
360 info->time_in = jiffies;
361 info->req = req;
363 /* Fill in the command */
364 iq_cmd.cmd.u64 = 0;
365 iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
366 iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
367 iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
368 iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
370 /* 64-bit swap for microcode data reads, not needed for addresses*/
371 iq_cmd.cmd.u64 = cpu_to_be64(iq_cmd.cmd.u64);
372 iq_cmd.dptr = info->dptr_baddr;
373 iq_cmd.rptr = info->rptr_baddr;
374 iq_cmd.cptr.u64 = 0;
375 iq_cmd.cptr.s.grp = ctrl->s.grp;
377 /* Fill in the CPT_INST_S type command for HW interpretation */
378 cpt_fill_inst(&cptinst, info, &iq_cmd);
380 /* Print debug info if enabled */
381 otx_cpt_dump_sg_list(pdev, req);
382 pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
383 print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
384 pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
385 print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
386 cpt_req->dlen, false);
388 /* Send CPT command */
389 cpt_send_cmd(&cptinst, cptvf);
392 * We allocate and prepare pending queue entry in critical section
393 * together with submitting CPT instruction to CPT instruction queue
394 * to make sure that order of CPT requests is the same in both
395 * pending and instruction queues
397 spin_unlock_bh(&pqueue->lock);
399 ret = resume_sender ? -EBUSY : -EINPROGRESS;
400 return ret;
402 request_cleanup:
403 do_request_cleanup(pdev, info);
404 return ret;
407 int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
408 int cpu_num)
410 struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
412 if (!otx_cpt_device_ready(cptvf)) {
413 dev_err(&pdev->dev, "CPT Device is not ready");
414 return -ENODEV;
417 if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
418 dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request",
419 cptvf->vfid);
420 return -EINVAL;
421 } else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
422 (req->ctrl.s.se_req)) {
423 dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request",
424 cptvf->vfid);
425 return -EINVAL;
428 return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
431 static int cpt_process_ccode(struct pci_dev *pdev,
432 union otx_cpt_res_s *cpt_status,
433 struct otx_cpt_info_buffer *cpt_info,
434 struct otx_cpt_req_info *req, u32 *res_code)
436 u8 ccode = cpt_status->s.compcode;
437 union otx_cpt_error_code ecode;
439 ecode.u = be64_to_cpu(*((u64 *) cpt_info->out_buffer));
440 switch (ccode) {
441 case CPT_COMP_E_FAULT:
442 dev_err(&pdev->dev,
443 "Request failed with DMA fault\n");
444 otx_cpt_dump_sg_list(pdev, req);
445 break;
447 case CPT_COMP_E_SWERR:
448 dev_err(&pdev->dev,
449 "Request failed with software error code %d\n",
450 ecode.s.ccode);
451 otx_cpt_dump_sg_list(pdev, req);
452 break;
454 case CPT_COMP_E_HWERR:
455 dev_err(&pdev->dev,
456 "Request failed with hardware error\n");
457 otx_cpt_dump_sg_list(pdev, req);
458 break;
460 case COMPLETION_CODE_INIT:
461 /* check for timeout */
462 if (time_after_eq(jiffies, cpt_info->time_in +
463 OTX_CPT_COMMAND_TIMEOUT * HZ))
464 dev_warn(&pdev->dev, "Request timed out 0x%p", req);
465 else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
466 cpt_info->time_in = jiffies;
467 cpt_info->extra_time++;
469 return 1;
471 case CPT_COMP_E_GOOD:
472 /* Check microcode completion code */
473 if (ecode.s.ccode) {
475 * If requested hmac is truncated and ucode returns
476 * s/g write length error then we report success
477 * because ucode writes as many bytes of calculated
478 * hmac as available in gather buffer and reports
479 * s/g write length error if number of bytes in gather
480 * buffer is less than full hmac size.
482 if (req->is_trunc_hmac &&
483 ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
484 *res_code = 0;
485 break;
488 dev_err(&pdev->dev,
489 "Request failed with software error code 0x%x\n",
490 ecode.s.ccode);
491 otx_cpt_dump_sg_list(pdev, req);
492 break;
495 /* Request has been processed with success */
496 *res_code = 0;
497 break;
499 default:
500 dev_err(&pdev->dev, "Request returned invalid status\n");
501 break;
504 return 0;
507 static inline void process_pending_queue(struct pci_dev *pdev,
508 struct otx_cpt_pending_queue *pqueue)
510 void (*callback)(int status, void *arg1, void *arg2);
511 struct otx_cpt_pending_entry *resume_pentry = NULL;
512 struct otx_cpt_pending_entry *pentry = NULL;
513 struct otx_cpt_info_buffer *cpt_info = NULL;
514 union otx_cpt_res_s *cpt_status = NULL;
515 struct otx_cpt_req_info *req = NULL;
516 struct crypto_async_request *areq;
517 u32 res_code, resume_index;
519 while (1) {
520 spin_lock_bh(&pqueue->lock);
521 pentry = &pqueue->head[pqueue->front];
523 if (WARN_ON(!pentry)) {
524 spin_unlock_bh(&pqueue->lock);
525 break;
528 res_code = -EINVAL;
529 if (unlikely(!pentry->busy)) {
530 spin_unlock_bh(&pqueue->lock);
531 break;
534 if (unlikely(!pentry->callback)) {
535 dev_err(&pdev->dev, "Callback NULL\n");
536 goto process_pentry;
539 cpt_info = pentry->info;
540 if (unlikely(!cpt_info)) {
541 dev_err(&pdev->dev, "Pending entry post arg NULL\n");
542 goto process_pentry;
545 req = cpt_info->req;
546 if (unlikely(!req)) {
547 dev_err(&pdev->dev, "Request NULL\n");
548 goto process_pentry;
551 cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
552 if (unlikely(!cpt_status)) {
553 dev_err(&pdev->dev, "Completion address NULL\n");
554 goto process_pentry;
557 if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
558 &res_code)) {
559 spin_unlock_bh(&pqueue->lock);
560 return;
562 cpt_info->pdev = pdev;
564 process_pentry:
566 * Check if we should inform sending side to resume
567 * We do it CPT_IQ_RESUME_MARGIN elements in advance before
568 * pending queue becomes empty
570 resume_index = modulo_inc(pqueue->front, pqueue->qlen,
571 CPT_IQ_RESUME_MARGIN);
572 resume_pentry = &pqueue->head[resume_index];
573 if (resume_pentry &&
574 resume_pentry->resume_sender) {
575 resume_pentry->resume_sender = false;
576 callback = resume_pentry->callback;
577 areq = resume_pentry->areq;
579 if (callback) {
580 spin_unlock_bh(&pqueue->lock);
583 * EINPROGRESS is an indication for sending
584 * side that it can resume sending requests
586 callback(-EINPROGRESS, areq, cpt_info);
587 spin_lock_bh(&pqueue->lock);
591 callback = pentry->callback;
592 areq = pentry->areq;
593 free_pentry(pentry);
595 pqueue->pending_count--;
596 pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
597 spin_unlock_bh(&pqueue->lock);
600 * Call callback after current pending entry has been
601 * processed, we don't do it if the callback pointer is
602 * invalid.
604 if (callback)
605 callback(res_code, areq, cpt_info);
609 void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
611 process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);