gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / crypto / mxs-dcp.c
blobd8453029303640d101cbce1623299dec79b9e53d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/scatterwalk.h>
25 #define DCP_MAX_CHANS 4
26 #define DCP_BUF_SZ PAGE_SIZE
27 #define DCP_SHA_PAY_SZ 64
29 #define DCP_ALIGNMENT 64
32 * Null hashes to align with hw behavior on imx6sl and ull
33 * these are flipped for consistency with hw output
35 static const uint8_t sha1_null_hash[] =
36 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
37 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
39 static const uint8_t sha256_null_hash[] =
40 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
41 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
42 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
43 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
45 /* DCP DMA descriptor. */
46 struct dcp_dma_desc {
47 uint32_t next_cmd_addr;
48 uint32_t control0;
49 uint32_t control1;
50 uint32_t source;
51 uint32_t destination;
52 uint32_t size;
53 uint32_t payload;
54 uint32_t status;
57 /* Coherent aligned block for bounce buffering. */
58 struct dcp_coherent_block {
59 uint8_t aes_in_buf[DCP_BUF_SZ];
60 uint8_t aes_out_buf[DCP_BUF_SZ];
61 uint8_t sha_in_buf[DCP_BUF_SZ];
62 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
64 uint8_t aes_key[2 * AES_KEYSIZE_128];
66 struct dcp_dma_desc desc[DCP_MAX_CHANS];
69 struct dcp {
70 struct device *dev;
71 void __iomem *base;
73 uint32_t caps;
75 struct dcp_coherent_block *coh;
77 struct completion completion[DCP_MAX_CHANS];
78 spinlock_t lock[DCP_MAX_CHANS];
79 struct task_struct *thread[DCP_MAX_CHANS];
80 struct crypto_queue queue[DCP_MAX_CHANS];
81 struct clk *dcp_clk;
84 enum dcp_chan {
85 DCP_CHAN_HASH_SHA = 0,
86 DCP_CHAN_CRYPTO = 2,
89 struct dcp_async_ctx {
90 /* Common context */
91 enum dcp_chan chan;
92 uint32_t fill;
94 /* SHA Hash-specific context */
95 struct mutex mutex;
96 uint32_t alg;
97 unsigned int hot:1;
99 /* Crypto-specific context */
100 struct crypto_sync_skcipher *fallback;
101 unsigned int key_len;
102 uint8_t key[AES_KEYSIZE_128];
105 struct dcp_aes_req_ctx {
106 unsigned int enc:1;
107 unsigned int ecb:1;
110 struct dcp_sha_req_ctx {
111 unsigned int init:1;
112 unsigned int fini:1;
115 struct dcp_export_state {
116 struct dcp_sha_req_ctx req_ctx;
117 struct dcp_async_ctx async_ctx;
121 * There can even be only one instance of the MXS DCP due to the
122 * design of Linux Crypto API.
124 static struct dcp *global_sdcp;
126 /* DCP register layout. */
127 #define MXS_DCP_CTRL 0x00
128 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
129 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
131 #define MXS_DCP_STAT 0x10
132 #define MXS_DCP_STAT_CLR 0x18
133 #define MXS_DCP_STAT_IRQ_MASK 0xf
135 #define MXS_DCP_CHANNELCTRL 0x20
136 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
138 #define MXS_DCP_CAPABILITY1 0x40
139 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
140 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
141 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
143 #define MXS_DCP_CONTEXT 0x50
145 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
147 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
150 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
152 /* DMA descriptor bits. */
153 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
154 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
155 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
156 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
157 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
158 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
159 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
160 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
161 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
164 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
167 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
169 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
171 struct dcp *sdcp = global_sdcp;
172 const int chan = actx->chan;
173 uint32_t stat;
174 unsigned long ret;
175 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
177 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
178 DMA_TO_DEVICE);
180 reinit_completion(&sdcp->completion[chan]);
182 /* Clear status register. */
183 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
185 /* Load the DMA descriptor. */
186 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
188 /* Increment the semaphore to start the DMA transfer. */
189 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
191 ret = wait_for_completion_timeout(&sdcp->completion[chan],
192 msecs_to_jiffies(1000));
193 if (!ret) {
194 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
195 chan, readl(sdcp->base + MXS_DCP_STAT));
196 return -ETIMEDOUT;
199 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
200 if (stat & 0xff) {
201 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
202 chan, stat);
203 return -EINVAL;
206 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
208 return 0;
212 * Encryption (AES128)
214 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
215 struct skcipher_request *req, int init)
217 struct dcp *sdcp = global_sdcp;
218 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
219 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
220 int ret;
222 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
223 2 * AES_KEYSIZE_128,
224 DMA_TO_DEVICE);
225 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
226 DCP_BUF_SZ, DMA_TO_DEVICE);
227 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
228 DCP_BUF_SZ, DMA_FROM_DEVICE);
230 if (actx->fill % AES_BLOCK_SIZE) {
231 dev_err(sdcp->dev, "Invalid block size!\n");
232 ret = -EINVAL;
233 goto aes_done_run;
236 /* Fill in the DMA descriptor. */
237 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
238 MXS_DCP_CONTROL0_INTERRUPT |
239 MXS_DCP_CONTROL0_ENABLE_CIPHER;
241 /* Payload contains the key. */
242 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
244 if (rctx->enc)
245 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
246 if (init)
247 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
249 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
251 if (rctx->ecb)
252 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
253 else
254 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
256 desc->next_cmd_addr = 0;
257 desc->source = src_phys;
258 desc->destination = dst_phys;
259 desc->size = actx->fill;
260 desc->payload = key_phys;
261 desc->status = 0;
263 ret = mxs_dcp_start_dma(actx);
265 aes_done_run:
266 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
267 DMA_TO_DEVICE);
268 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
269 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
271 return ret;
274 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
276 struct dcp *sdcp = global_sdcp;
278 struct skcipher_request *req = skcipher_request_cast(arq);
279 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
280 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
282 struct scatterlist *dst = req->dst;
283 struct scatterlist *src = req->src;
284 const int nents = sg_nents(req->src);
286 const int out_off = DCP_BUF_SZ;
287 uint8_t *in_buf = sdcp->coh->aes_in_buf;
288 uint8_t *out_buf = sdcp->coh->aes_out_buf;
290 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
291 uint32_t dst_off = 0;
292 uint32_t last_out_len = 0;
294 uint8_t *key = sdcp->coh->aes_key;
296 int ret = 0;
297 int split = 0;
298 unsigned int i, len, clen, rem = 0, tlen = 0;
299 int init = 0;
300 bool limit_hit = false;
302 actx->fill = 0;
304 /* Copy the key from the temporary location. */
305 memcpy(key, actx->key, actx->key_len);
307 if (!rctx->ecb) {
308 /* Copy the CBC IV just past the key. */
309 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
310 /* CBC needs the INIT set. */
311 init = 1;
312 } else {
313 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
316 for_each_sg(req->src, src, nents, i) {
317 src_buf = sg_virt(src);
318 len = sg_dma_len(src);
319 tlen += len;
320 limit_hit = tlen > req->cryptlen;
322 if (limit_hit)
323 len = req->cryptlen - (tlen - len);
325 do {
326 if (actx->fill + len > out_off)
327 clen = out_off - actx->fill;
328 else
329 clen = len;
331 memcpy(in_buf + actx->fill, src_buf, clen);
332 len -= clen;
333 src_buf += clen;
334 actx->fill += clen;
337 * If we filled the buffer or this is the last SG,
338 * submit the buffer.
340 if (actx->fill == out_off || sg_is_last(src) ||
341 limit_hit) {
342 ret = mxs_dcp_run_aes(actx, req, init);
343 if (ret)
344 return ret;
345 init = 0;
347 out_tmp = out_buf;
348 last_out_len = actx->fill;
349 while (dst && actx->fill) {
350 if (!split) {
351 dst_buf = sg_virt(dst);
352 dst_off = 0;
354 rem = min(sg_dma_len(dst) - dst_off,
355 actx->fill);
357 memcpy(dst_buf + dst_off, out_tmp, rem);
358 out_tmp += rem;
359 dst_off += rem;
360 actx->fill -= rem;
362 if (dst_off == sg_dma_len(dst)) {
363 dst = sg_next(dst);
364 split = 0;
365 } else {
366 split = 1;
370 } while (len);
372 if (limit_hit)
373 break;
376 /* Copy the IV for CBC for chaining */
377 if (!rctx->ecb) {
378 if (rctx->enc)
379 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
380 AES_BLOCK_SIZE);
381 else
382 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
383 AES_BLOCK_SIZE);
386 return ret;
389 static int dcp_chan_thread_aes(void *data)
391 struct dcp *sdcp = global_sdcp;
392 const int chan = DCP_CHAN_CRYPTO;
394 struct crypto_async_request *backlog;
395 struct crypto_async_request *arq;
397 int ret;
399 while (!kthread_should_stop()) {
400 set_current_state(TASK_INTERRUPTIBLE);
402 spin_lock(&sdcp->lock[chan]);
403 backlog = crypto_get_backlog(&sdcp->queue[chan]);
404 arq = crypto_dequeue_request(&sdcp->queue[chan]);
405 spin_unlock(&sdcp->lock[chan]);
407 if (!backlog && !arq) {
408 schedule();
409 continue;
412 set_current_state(TASK_RUNNING);
414 if (backlog)
415 backlog->complete(backlog, -EINPROGRESS);
417 if (arq) {
418 ret = mxs_dcp_aes_block_crypt(arq);
419 arq->complete(arq, ret);
423 return 0;
426 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
428 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
429 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
430 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
431 int ret;
433 skcipher_request_set_sync_tfm(subreq, ctx->fallback);
434 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
435 skcipher_request_set_crypt(subreq, req->src, req->dst,
436 req->cryptlen, req->iv);
438 if (enc)
439 ret = crypto_skcipher_encrypt(subreq);
440 else
441 ret = crypto_skcipher_decrypt(subreq);
443 skcipher_request_zero(subreq);
445 return ret;
448 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
450 struct dcp *sdcp = global_sdcp;
451 struct crypto_async_request *arq = &req->base;
452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
454 int ret;
456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
457 return mxs_dcp_block_fallback(req, enc);
459 rctx->enc = enc;
460 rctx->ecb = ecb;
461 actx->chan = DCP_CHAN_CRYPTO;
463 spin_lock(&sdcp->lock[actx->chan]);
464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
465 spin_unlock(&sdcp->lock[actx->chan]);
467 wake_up_process(sdcp->thread[actx->chan]);
469 return ret;
472 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
474 return mxs_dcp_aes_enqueue(req, 0, 1);
477 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
479 return mxs_dcp_aes_enqueue(req, 1, 1);
482 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
484 return mxs_dcp_aes_enqueue(req, 0, 0);
487 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
489 return mxs_dcp_aes_enqueue(req, 1, 0);
492 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
493 unsigned int len)
495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
513 crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_sync_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 return crypto_sync_skcipher_setkey(actx->fallback, key, len);
519 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
523 struct crypto_sync_skcipher *blk;
525 blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
526 if (IS_ERR(blk))
527 return PTR_ERR(blk);
529 actx->fallback = blk;
530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
531 return 0;
534 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
536 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
538 crypto_free_sync_skcipher(actx->fallback);
542 * Hashing (SHA1/SHA256)
544 static int mxs_dcp_run_sha(struct ahash_request *req)
546 struct dcp *sdcp = global_sdcp;
547 int ret;
549 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
550 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
551 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
552 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
554 dma_addr_t digest_phys = 0;
555 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
556 DCP_BUF_SZ, DMA_TO_DEVICE);
558 /* Fill in the DMA descriptor. */
559 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
560 MXS_DCP_CONTROL0_INTERRUPT |
561 MXS_DCP_CONTROL0_ENABLE_HASH;
562 if (rctx->init)
563 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
565 desc->control1 = actx->alg;
566 desc->next_cmd_addr = 0;
567 desc->source = buf_phys;
568 desc->destination = 0;
569 desc->size = actx->fill;
570 desc->payload = 0;
571 desc->status = 0;
574 * Align driver with hw behavior when generating null hashes
576 if (rctx->init && rctx->fini && desc->size == 0) {
577 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
578 const uint8_t *sha_buf =
579 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
580 sha1_null_hash : sha256_null_hash;
581 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
582 ret = 0;
583 goto done_run;
586 /* Set HASH_TERM bit for last transfer block. */
587 if (rctx->fini) {
588 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
589 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
590 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
591 desc->payload = digest_phys;
594 ret = mxs_dcp_start_dma(actx);
596 if (rctx->fini)
597 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
598 DMA_FROM_DEVICE);
600 done_run:
601 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
603 return ret;
606 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
608 struct dcp *sdcp = global_sdcp;
610 struct ahash_request *req = ahash_request_cast(arq);
611 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
612 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
613 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
614 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
616 uint8_t *in_buf = sdcp->coh->sha_in_buf;
617 uint8_t *out_buf = sdcp->coh->sha_out_buf;
619 struct scatterlist *src;
621 unsigned int i, len, clen, oft = 0;
622 int ret;
624 int fin = rctx->fini;
625 if (fin)
626 rctx->fini = 0;
628 src = req->src;
629 len = req->nbytes;
631 while (len) {
632 if (actx->fill + len > DCP_BUF_SZ)
633 clen = DCP_BUF_SZ - actx->fill;
634 else
635 clen = len;
637 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
640 len -= clen;
641 oft += clen;
642 actx->fill += clen;
645 * If we filled the buffer and still have some
646 * more data, submit the buffer.
648 if (len && actx->fill == DCP_BUF_SZ) {
649 ret = mxs_dcp_run_sha(req);
650 if (ret)
651 return ret;
652 actx->fill = 0;
653 rctx->init = 0;
657 if (fin) {
658 rctx->fini = 1;
660 /* Submit whatever is left. */
661 if (!req->result)
662 return -EINVAL;
664 ret = mxs_dcp_run_sha(req);
665 if (ret)
666 return ret;
668 actx->fill = 0;
670 /* For some reason the result is flipped */
671 for (i = 0; i < halg->digestsize; i++)
672 req->result[i] = out_buf[halg->digestsize - i - 1];
675 return 0;
678 static int dcp_chan_thread_sha(void *data)
680 struct dcp *sdcp = global_sdcp;
681 const int chan = DCP_CHAN_HASH_SHA;
683 struct crypto_async_request *backlog;
684 struct crypto_async_request *arq;
685 int ret;
687 while (!kthread_should_stop()) {
688 set_current_state(TASK_INTERRUPTIBLE);
690 spin_lock(&sdcp->lock[chan]);
691 backlog = crypto_get_backlog(&sdcp->queue[chan]);
692 arq = crypto_dequeue_request(&sdcp->queue[chan]);
693 spin_unlock(&sdcp->lock[chan]);
695 if (!backlog && !arq) {
696 schedule();
697 continue;
700 set_current_state(TASK_RUNNING);
702 if (backlog)
703 backlog->complete(backlog, -EINPROGRESS);
705 if (arq) {
706 ret = dcp_sha_req_to_buf(arq);
707 arq->complete(arq, ret);
711 return 0;
714 static int dcp_sha_init(struct ahash_request *req)
716 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
717 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
719 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
722 * Start hashing session. The code below only inits the
723 * hashing session context, nothing more.
725 memset(actx, 0, sizeof(*actx));
727 if (strcmp(halg->base.cra_name, "sha1") == 0)
728 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
729 else
730 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
732 actx->fill = 0;
733 actx->hot = 0;
734 actx->chan = DCP_CHAN_HASH_SHA;
736 mutex_init(&actx->mutex);
738 return 0;
741 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
743 struct dcp *sdcp = global_sdcp;
745 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
746 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
747 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
749 int ret;
752 * Ignore requests that have no data in them and are not
753 * the trailing requests in the stream of requests.
755 if (!req->nbytes && !fini)
756 return 0;
758 mutex_lock(&actx->mutex);
760 rctx->fini = fini;
762 if (!actx->hot) {
763 actx->hot = 1;
764 rctx->init = 1;
767 spin_lock(&sdcp->lock[actx->chan]);
768 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
769 spin_unlock(&sdcp->lock[actx->chan]);
771 wake_up_process(sdcp->thread[actx->chan]);
772 mutex_unlock(&actx->mutex);
774 return ret;
777 static int dcp_sha_update(struct ahash_request *req)
779 return dcp_sha_update_fx(req, 0);
782 static int dcp_sha_final(struct ahash_request *req)
784 ahash_request_set_crypt(req, NULL, req->result, 0);
785 req->nbytes = 0;
786 return dcp_sha_update_fx(req, 1);
789 static int dcp_sha_finup(struct ahash_request *req)
791 return dcp_sha_update_fx(req, 1);
794 static int dcp_sha_digest(struct ahash_request *req)
796 int ret;
798 ret = dcp_sha_init(req);
799 if (ret)
800 return ret;
802 return dcp_sha_finup(req);
805 static int dcp_sha_import(struct ahash_request *req, const void *in)
807 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
808 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
809 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
810 const struct dcp_export_state *export = in;
812 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
813 memset(actx, 0, sizeof(struct dcp_async_ctx));
814 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
815 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
817 return 0;
820 static int dcp_sha_export(struct ahash_request *req, void *out)
822 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
823 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
824 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
825 struct dcp_export_state *export = out;
827 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
828 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
830 return 0;
833 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
835 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
836 sizeof(struct dcp_sha_req_ctx));
837 return 0;
840 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
844 /* AES 128 ECB and AES 128 CBC */
845 static struct skcipher_alg dcp_aes_algs[] = {
847 .base.cra_name = "ecb(aes)",
848 .base.cra_driver_name = "ecb-aes-dcp",
849 .base.cra_priority = 400,
850 .base.cra_alignmask = 15,
851 .base.cra_flags = CRYPTO_ALG_ASYNC |
852 CRYPTO_ALG_NEED_FALLBACK,
853 .base.cra_blocksize = AES_BLOCK_SIZE,
854 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
855 .base.cra_module = THIS_MODULE,
857 .min_keysize = AES_MIN_KEY_SIZE,
858 .max_keysize = AES_MAX_KEY_SIZE,
859 .setkey = mxs_dcp_aes_setkey,
860 .encrypt = mxs_dcp_aes_ecb_encrypt,
861 .decrypt = mxs_dcp_aes_ecb_decrypt,
862 .init = mxs_dcp_aes_fallback_init_tfm,
863 .exit = mxs_dcp_aes_fallback_exit_tfm,
864 }, {
865 .base.cra_name = "cbc(aes)",
866 .base.cra_driver_name = "cbc-aes-dcp",
867 .base.cra_priority = 400,
868 .base.cra_alignmask = 15,
869 .base.cra_flags = CRYPTO_ALG_ASYNC |
870 CRYPTO_ALG_NEED_FALLBACK,
871 .base.cra_blocksize = AES_BLOCK_SIZE,
872 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
873 .base.cra_module = THIS_MODULE,
875 .min_keysize = AES_MIN_KEY_SIZE,
876 .max_keysize = AES_MAX_KEY_SIZE,
877 .setkey = mxs_dcp_aes_setkey,
878 .encrypt = mxs_dcp_aes_cbc_encrypt,
879 .decrypt = mxs_dcp_aes_cbc_decrypt,
880 .ivsize = AES_BLOCK_SIZE,
881 .init = mxs_dcp_aes_fallback_init_tfm,
882 .exit = mxs_dcp_aes_fallback_exit_tfm,
886 /* SHA1 */
887 static struct ahash_alg dcp_sha1_alg = {
888 .init = dcp_sha_init,
889 .update = dcp_sha_update,
890 .final = dcp_sha_final,
891 .finup = dcp_sha_finup,
892 .digest = dcp_sha_digest,
893 .import = dcp_sha_import,
894 .export = dcp_sha_export,
895 .halg = {
896 .digestsize = SHA1_DIGEST_SIZE,
897 .statesize = sizeof(struct dcp_export_state),
898 .base = {
899 .cra_name = "sha1",
900 .cra_driver_name = "sha1-dcp",
901 .cra_priority = 400,
902 .cra_alignmask = 63,
903 .cra_flags = CRYPTO_ALG_ASYNC,
904 .cra_blocksize = SHA1_BLOCK_SIZE,
905 .cra_ctxsize = sizeof(struct dcp_async_ctx),
906 .cra_module = THIS_MODULE,
907 .cra_init = dcp_sha_cra_init,
908 .cra_exit = dcp_sha_cra_exit,
913 /* SHA256 */
914 static struct ahash_alg dcp_sha256_alg = {
915 .init = dcp_sha_init,
916 .update = dcp_sha_update,
917 .final = dcp_sha_final,
918 .finup = dcp_sha_finup,
919 .digest = dcp_sha_digest,
920 .import = dcp_sha_import,
921 .export = dcp_sha_export,
922 .halg = {
923 .digestsize = SHA256_DIGEST_SIZE,
924 .statesize = sizeof(struct dcp_export_state),
925 .base = {
926 .cra_name = "sha256",
927 .cra_driver_name = "sha256-dcp",
928 .cra_priority = 400,
929 .cra_alignmask = 63,
930 .cra_flags = CRYPTO_ALG_ASYNC,
931 .cra_blocksize = SHA256_BLOCK_SIZE,
932 .cra_ctxsize = sizeof(struct dcp_async_ctx),
933 .cra_module = THIS_MODULE,
934 .cra_init = dcp_sha_cra_init,
935 .cra_exit = dcp_sha_cra_exit,
940 static irqreturn_t mxs_dcp_irq(int irq, void *context)
942 struct dcp *sdcp = context;
943 uint32_t stat;
944 int i;
946 stat = readl(sdcp->base + MXS_DCP_STAT);
947 stat &= MXS_DCP_STAT_IRQ_MASK;
948 if (!stat)
949 return IRQ_NONE;
951 /* Clear the interrupts. */
952 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
954 /* Complete the DMA requests that finished. */
955 for (i = 0; i < DCP_MAX_CHANS; i++)
956 if (stat & (1 << i))
957 complete(&sdcp->completion[i]);
959 return IRQ_HANDLED;
962 static int mxs_dcp_probe(struct platform_device *pdev)
964 struct device *dev = &pdev->dev;
965 struct dcp *sdcp = NULL;
966 int i, ret;
967 int dcp_vmi_irq, dcp_irq;
969 if (global_sdcp) {
970 dev_err(dev, "Only one DCP instance allowed!\n");
971 return -ENODEV;
974 dcp_vmi_irq = platform_get_irq(pdev, 0);
975 if (dcp_vmi_irq < 0)
976 return dcp_vmi_irq;
978 dcp_irq = platform_get_irq(pdev, 1);
979 if (dcp_irq < 0)
980 return dcp_irq;
982 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
983 if (!sdcp)
984 return -ENOMEM;
986 sdcp->dev = dev;
987 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
988 if (IS_ERR(sdcp->base))
989 return PTR_ERR(sdcp->base);
992 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
993 "dcp-vmi-irq", sdcp);
994 if (ret) {
995 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
996 return ret;
999 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1000 "dcp-irq", sdcp);
1001 if (ret) {
1002 dev_err(dev, "Failed to claim DCP IRQ!\n");
1003 return ret;
1006 /* Allocate coherent helper block. */
1007 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1008 GFP_KERNEL);
1009 if (!sdcp->coh)
1010 return -ENOMEM;
1012 /* Re-align the structure so it fits the DCP constraints. */
1013 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1015 /* DCP clock is optional, only used on some SOCs */
1016 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1017 if (IS_ERR(sdcp->dcp_clk)) {
1018 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1019 return PTR_ERR(sdcp->dcp_clk);
1020 sdcp->dcp_clk = NULL;
1022 ret = clk_prepare_enable(sdcp->dcp_clk);
1023 if (ret)
1024 return ret;
1026 /* Restart the DCP block. */
1027 ret = stmp_reset_block(sdcp->base);
1028 if (ret) {
1029 dev_err(dev, "Failed reset\n");
1030 goto err_disable_unprepare_clk;
1033 /* Initialize control register. */
1034 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1035 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1036 sdcp->base + MXS_DCP_CTRL);
1038 /* Enable all DCP DMA channels. */
1039 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1040 sdcp->base + MXS_DCP_CHANNELCTRL);
1043 * We do not enable context switching. Give the context buffer a
1044 * pointer to an illegal address so if context switching is
1045 * inadvertantly enabled, the DCP will return an error instead of
1046 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1047 * address will do.
1049 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1050 for (i = 0; i < DCP_MAX_CHANS; i++)
1051 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1052 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1054 global_sdcp = sdcp;
1056 platform_set_drvdata(pdev, sdcp);
1058 for (i = 0; i < DCP_MAX_CHANS; i++) {
1059 spin_lock_init(&sdcp->lock[i]);
1060 init_completion(&sdcp->completion[i]);
1061 crypto_init_queue(&sdcp->queue[i], 50);
1064 /* Create the SHA and AES handler threads. */
1065 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1066 NULL, "mxs_dcp_chan/sha");
1067 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1068 dev_err(dev, "Error starting SHA thread!\n");
1069 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1070 goto err_disable_unprepare_clk;
1073 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1074 NULL, "mxs_dcp_chan/aes");
1075 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1076 dev_err(dev, "Error starting SHA thread!\n");
1077 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1078 goto err_destroy_sha_thread;
1081 /* Register the various crypto algorithms. */
1082 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1085 ret = crypto_register_skciphers(dcp_aes_algs,
1086 ARRAY_SIZE(dcp_aes_algs));
1087 if (ret) {
1088 /* Failed to register algorithm. */
1089 dev_err(dev, "Failed to register AES crypto!\n");
1090 goto err_destroy_aes_thread;
1094 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1095 ret = crypto_register_ahash(&dcp_sha1_alg);
1096 if (ret) {
1097 dev_err(dev, "Failed to register %s hash!\n",
1098 dcp_sha1_alg.halg.base.cra_name);
1099 goto err_unregister_aes;
1103 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1104 ret = crypto_register_ahash(&dcp_sha256_alg);
1105 if (ret) {
1106 dev_err(dev, "Failed to register %s hash!\n",
1107 dcp_sha256_alg.halg.base.cra_name);
1108 goto err_unregister_sha1;
1112 return 0;
1114 err_unregister_sha1:
1115 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1116 crypto_unregister_ahash(&dcp_sha1_alg);
1118 err_unregister_aes:
1119 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1120 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122 err_destroy_aes_thread:
1123 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125 err_destroy_sha_thread:
1126 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128 err_disable_unprepare_clk:
1129 clk_disable_unprepare(sdcp->dcp_clk);
1131 return ret;
1134 static int mxs_dcp_remove(struct platform_device *pdev)
1136 struct dcp *sdcp = platform_get_drvdata(pdev);
1138 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1139 crypto_unregister_ahash(&dcp_sha256_alg);
1141 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1142 crypto_unregister_ahash(&dcp_sha1_alg);
1144 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1145 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1147 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1148 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1150 clk_disable_unprepare(sdcp->dcp_clk);
1152 platform_set_drvdata(pdev, NULL);
1154 global_sdcp = NULL;
1156 return 0;
1159 static const struct of_device_id mxs_dcp_dt_ids[] = {
1160 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1161 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1162 { /* sentinel */ }
1165 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1167 static struct platform_driver mxs_dcp_driver = {
1168 .probe = mxs_dcp_probe,
1169 .remove = mxs_dcp_remove,
1170 .driver = {
1171 .name = "mxs-dcp",
1172 .of_match_table = mxs_dcp_dt_ids,
1176 module_platform_driver(mxs_dcp_driver);
1178 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1179 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1180 MODULE_LICENSE("GPL");
1181 MODULE_ALIAS("platform:mxs-dcp");