1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/scatterwalk.h>
25 #define DCP_MAX_CHANS 4
26 #define DCP_BUF_SZ PAGE_SIZE
27 #define DCP_SHA_PAY_SZ 64
29 #define DCP_ALIGNMENT 64
32 * Null hashes to align with hw behavior on imx6sl and ull
33 * these are flipped for consistency with hw output
35 static const uint8_t sha1_null_hash
[] =
36 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
37 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
39 static const uint8_t sha256_null_hash
[] =
40 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
41 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
42 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
43 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
45 /* DCP DMA descriptor. */
47 uint32_t next_cmd_addr
;
57 /* Coherent aligned block for bounce buffering. */
58 struct dcp_coherent_block
{
59 uint8_t aes_in_buf
[DCP_BUF_SZ
];
60 uint8_t aes_out_buf
[DCP_BUF_SZ
];
61 uint8_t sha_in_buf
[DCP_BUF_SZ
];
62 uint8_t sha_out_buf
[DCP_SHA_PAY_SZ
];
64 uint8_t aes_key
[2 * AES_KEYSIZE_128
];
66 struct dcp_dma_desc desc
[DCP_MAX_CHANS
];
75 struct dcp_coherent_block
*coh
;
77 struct completion completion
[DCP_MAX_CHANS
];
78 spinlock_t lock
[DCP_MAX_CHANS
];
79 struct task_struct
*thread
[DCP_MAX_CHANS
];
80 struct crypto_queue queue
[DCP_MAX_CHANS
];
85 DCP_CHAN_HASH_SHA
= 0,
89 struct dcp_async_ctx
{
94 /* SHA Hash-specific context */
99 /* Crypto-specific context */
100 struct crypto_sync_skcipher
*fallback
;
101 unsigned int key_len
;
102 uint8_t key
[AES_KEYSIZE_128
];
105 struct dcp_aes_req_ctx
{
110 struct dcp_sha_req_ctx
{
115 struct dcp_export_state
{
116 struct dcp_sha_req_ctx req_ctx
;
117 struct dcp_async_ctx async_ctx
;
121 * There can even be only one instance of the MXS DCP due to the
122 * design of Linux Crypto API.
124 static struct dcp
*global_sdcp
;
126 /* DCP register layout. */
127 #define MXS_DCP_CTRL 0x00
128 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
129 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
131 #define MXS_DCP_STAT 0x10
132 #define MXS_DCP_STAT_CLR 0x18
133 #define MXS_DCP_STAT_IRQ_MASK 0xf
135 #define MXS_DCP_CHANNELCTRL 0x20
136 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
138 #define MXS_DCP_CAPABILITY1 0x40
139 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
140 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
141 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
143 #define MXS_DCP_CONTEXT 0x50
145 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
147 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
150 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
152 /* DMA descriptor bits. */
153 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
154 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
155 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
156 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
157 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
158 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
159 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
160 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
161 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
164 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
167 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
169 static int mxs_dcp_start_dma(struct dcp_async_ctx
*actx
)
171 struct dcp
*sdcp
= global_sdcp
;
172 const int chan
= actx
->chan
;
175 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
177 dma_addr_t desc_phys
= dma_map_single(sdcp
->dev
, desc
, sizeof(*desc
),
180 reinit_completion(&sdcp
->completion
[chan
]);
182 /* Clear status register. */
183 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(chan
));
185 /* Load the DMA descriptor. */
186 writel(desc_phys
, sdcp
->base
+ MXS_DCP_CH_N_CMDPTR(chan
));
188 /* Increment the semaphore to start the DMA transfer. */
189 writel(1, sdcp
->base
+ MXS_DCP_CH_N_SEMA(chan
));
191 ret
= wait_for_completion_timeout(&sdcp
->completion
[chan
],
192 msecs_to_jiffies(1000));
194 dev_err(sdcp
->dev
, "Channel %i timeout (DCP_STAT=0x%08x)\n",
195 chan
, readl(sdcp
->base
+ MXS_DCP_STAT
));
199 stat
= readl(sdcp
->base
+ MXS_DCP_CH_N_STAT(chan
));
201 dev_err(sdcp
->dev
, "Channel %i error (CH_STAT=0x%08x)\n",
206 dma_unmap_single(sdcp
->dev
, desc_phys
, sizeof(*desc
), DMA_TO_DEVICE
);
212 * Encryption (AES128)
214 static int mxs_dcp_run_aes(struct dcp_async_ctx
*actx
,
215 struct skcipher_request
*req
, int init
)
217 struct dcp
*sdcp
= global_sdcp
;
218 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
219 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
222 dma_addr_t key_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_key
,
225 dma_addr_t src_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_in_buf
,
226 DCP_BUF_SZ
, DMA_TO_DEVICE
);
227 dma_addr_t dst_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_out_buf
,
228 DCP_BUF_SZ
, DMA_FROM_DEVICE
);
230 if (actx
->fill
% AES_BLOCK_SIZE
) {
231 dev_err(sdcp
->dev
, "Invalid block size!\n");
236 /* Fill in the DMA descriptor. */
237 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
238 MXS_DCP_CONTROL0_INTERRUPT
|
239 MXS_DCP_CONTROL0_ENABLE_CIPHER
;
241 /* Payload contains the key. */
242 desc
->control0
|= MXS_DCP_CONTROL0_PAYLOAD_KEY
;
245 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_ENCRYPT
;
247 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_INIT
;
249 desc
->control1
= MXS_DCP_CONTROL1_CIPHER_SELECT_AES128
;
252 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_ECB
;
254 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_CBC
;
256 desc
->next_cmd_addr
= 0;
257 desc
->source
= src_phys
;
258 desc
->destination
= dst_phys
;
259 desc
->size
= actx
->fill
;
260 desc
->payload
= key_phys
;
263 ret
= mxs_dcp_start_dma(actx
);
266 dma_unmap_single(sdcp
->dev
, key_phys
, 2 * AES_KEYSIZE_128
,
268 dma_unmap_single(sdcp
->dev
, src_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
269 dma_unmap_single(sdcp
->dev
, dst_phys
, DCP_BUF_SZ
, DMA_FROM_DEVICE
);
274 static int mxs_dcp_aes_block_crypt(struct crypto_async_request
*arq
)
276 struct dcp
*sdcp
= global_sdcp
;
278 struct skcipher_request
*req
= skcipher_request_cast(arq
);
279 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
280 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
282 struct scatterlist
*dst
= req
->dst
;
283 struct scatterlist
*src
= req
->src
;
284 const int nents
= sg_nents(req
->src
);
286 const int out_off
= DCP_BUF_SZ
;
287 uint8_t *in_buf
= sdcp
->coh
->aes_in_buf
;
288 uint8_t *out_buf
= sdcp
->coh
->aes_out_buf
;
290 uint8_t *out_tmp
, *src_buf
, *dst_buf
= NULL
;
291 uint32_t dst_off
= 0;
292 uint32_t last_out_len
= 0;
294 uint8_t *key
= sdcp
->coh
->aes_key
;
298 unsigned int i
, len
, clen
, rem
= 0, tlen
= 0;
300 bool limit_hit
= false;
304 /* Copy the key from the temporary location. */
305 memcpy(key
, actx
->key
, actx
->key_len
);
308 /* Copy the CBC IV just past the key. */
309 memcpy(key
+ AES_KEYSIZE_128
, req
->iv
, AES_KEYSIZE_128
);
310 /* CBC needs the INIT set. */
313 memset(key
+ AES_KEYSIZE_128
, 0, AES_KEYSIZE_128
);
316 for_each_sg(req
->src
, src
, nents
, i
) {
317 src_buf
= sg_virt(src
);
318 len
= sg_dma_len(src
);
320 limit_hit
= tlen
> req
->cryptlen
;
323 len
= req
->cryptlen
- (tlen
- len
);
326 if (actx
->fill
+ len
> out_off
)
327 clen
= out_off
- actx
->fill
;
331 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
337 * If we filled the buffer or this is the last SG,
340 if (actx
->fill
== out_off
|| sg_is_last(src
) ||
342 ret
= mxs_dcp_run_aes(actx
, req
, init
);
348 last_out_len
= actx
->fill
;
349 while (dst
&& actx
->fill
) {
351 dst_buf
= sg_virt(dst
);
354 rem
= min(sg_dma_len(dst
) - dst_off
,
357 memcpy(dst_buf
+ dst_off
, out_tmp
, rem
);
362 if (dst_off
== sg_dma_len(dst
)) {
376 /* Copy the IV for CBC for chaining */
379 memcpy(req
->iv
, out_buf
+(last_out_len
-AES_BLOCK_SIZE
),
382 memcpy(req
->iv
, in_buf
+(last_out_len
-AES_BLOCK_SIZE
),
389 static int dcp_chan_thread_aes(void *data
)
391 struct dcp
*sdcp
= global_sdcp
;
392 const int chan
= DCP_CHAN_CRYPTO
;
394 struct crypto_async_request
*backlog
;
395 struct crypto_async_request
*arq
;
399 while (!kthread_should_stop()) {
400 set_current_state(TASK_INTERRUPTIBLE
);
402 spin_lock(&sdcp
->lock
[chan
]);
403 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
404 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
405 spin_unlock(&sdcp
->lock
[chan
]);
407 if (!backlog
&& !arq
) {
412 set_current_state(TASK_RUNNING
);
415 backlog
->complete(backlog
, -EINPROGRESS
);
418 ret
= mxs_dcp_aes_block_crypt(arq
);
419 arq
->complete(arq
, ret
);
426 static int mxs_dcp_block_fallback(struct skcipher_request
*req
, int enc
)
428 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
429 struct dcp_async_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
430 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq
, ctx
->fallback
);
433 skcipher_request_set_sync_tfm(subreq
, ctx
->fallback
);
434 skcipher_request_set_callback(subreq
, req
->base
.flags
, NULL
, NULL
);
435 skcipher_request_set_crypt(subreq
, req
->src
, req
->dst
,
436 req
->cryptlen
, req
->iv
);
439 ret
= crypto_skcipher_encrypt(subreq
);
441 ret
= crypto_skcipher_decrypt(subreq
);
443 skcipher_request_zero(subreq
);
448 static int mxs_dcp_aes_enqueue(struct skcipher_request
*req
, int enc
, int ecb
)
450 struct dcp
*sdcp
= global_sdcp
;
451 struct crypto_async_request
*arq
= &req
->base
;
452 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
453 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
456 if (unlikely(actx
->key_len
!= AES_KEYSIZE_128
))
457 return mxs_dcp_block_fallback(req
, enc
);
461 actx
->chan
= DCP_CHAN_CRYPTO
;
463 spin_lock(&sdcp
->lock
[actx
->chan
]);
464 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
465 spin_unlock(&sdcp
->lock
[actx
->chan
]);
467 wake_up_process(sdcp
->thread
[actx
->chan
]);
472 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request
*req
)
474 return mxs_dcp_aes_enqueue(req
, 0, 1);
477 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request
*req
)
479 return mxs_dcp_aes_enqueue(req
, 1, 1);
482 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request
*req
)
484 return mxs_dcp_aes_enqueue(req
, 0, 0);
487 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request
*req
)
489 return mxs_dcp_aes_enqueue(req
, 1, 0);
492 static int mxs_dcp_aes_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
495 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
503 if (len
== AES_KEYSIZE_128
) {
504 memcpy(actx
->key
, key
, len
);
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
513 crypto_sync_skcipher_clear_flags(actx
->fallback
, CRYPTO_TFM_REQ_MASK
);
514 crypto_sync_skcipher_set_flags(actx
->fallback
,
515 tfm
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
);
516 return crypto_sync_skcipher_setkey(actx
->fallback
, key
, len
);
519 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher
*tfm
)
521 const char *name
= crypto_tfm_alg_name(crypto_skcipher_tfm(tfm
));
522 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
523 struct crypto_sync_skcipher
*blk
;
525 blk
= crypto_alloc_sync_skcipher(name
, 0, CRYPTO_ALG_NEED_FALLBACK
);
529 actx
->fallback
= blk
;
530 crypto_skcipher_set_reqsize(tfm
, sizeof(struct dcp_aes_req_ctx
));
534 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher
*tfm
)
536 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
538 crypto_free_sync_skcipher(actx
->fallback
);
542 * Hashing (SHA1/SHA256)
544 static int mxs_dcp_run_sha(struct ahash_request
*req
)
546 struct dcp
*sdcp
= global_sdcp
;
549 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
550 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
551 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
552 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
554 dma_addr_t digest_phys
= 0;
555 dma_addr_t buf_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_in_buf
,
556 DCP_BUF_SZ
, DMA_TO_DEVICE
);
558 /* Fill in the DMA descriptor. */
559 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
560 MXS_DCP_CONTROL0_INTERRUPT
|
561 MXS_DCP_CONTROL0_ENABLE_HASH
;
563 desc
->control0
|= MXS_DCP_CONTROL0_HASH_INIT
;
565 desc
->control1
= actx
->alg
;
566 desc
->next_cmd_addr
= 0;
567 desc
->source
= buf_phys
;
568 desc
->destination
= 0;
569 desc
->size
= actx
->fill
;
574 * Align driver with hw behavior when generating null hashes
576 if (rctx
->init
&& rctx
->fini
&& desc
->size
== 0) {
577 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
578 const uint8_t *sha_buf
=
579 (actx
->alg
== MXS_DCP_CONTROL1_HASH_SELECT_SHA1
) ?
580 sha1_null_hash
: sha256_null_hash
;
581 memcpy(sdcp
->coh
->sha_out_buf
, sha_buf
, halg
->digestsize
);
586 /* Set HASH_TERM bit for last transfer block. */
588 digest_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_out_buf
,
589 DCP_SHA_PAY_SZ
, DMA_FROM_DEVICE
);
590 desc
->control0
|= MXS_DCP_CONTROL0_HASH_TERM
;
591 desc
->payload
= digest_phys
;
594 ret
= mxs_dcp_start_dma(actx
);
597 dma_unmap_single(sdcp
->dev
, digest_phys
, DCP_SHA_PAY_SZ
,
601 dma_unmap_single(sdcp
->dev
, buf_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
606 static int dcp_sha_req_to_buf(struct crypto_async_request
*arq
)
608 struct dcp
*sdcp
= global_sdcp
;
610 struct ahash_request
*req
= ahash_request_cast(arq
);
611 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
612 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
613 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
614 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
616 uint8_t *in_buf
= sdcp
->coh
->sha_in_buf
;
617 uint8_t *out_buf
= sdcp
->coh
->sha_out_buf
;
619 struct scatterlist
*src
;
621 unsigned int i
, len
, clen
, oft
= 0;
624 int fin
= rctx
->fini
;
632 if (actx
->fill
+ len
> DCP_BUF_SZ
)
633 clen
= DCP_BUF_SZ
- actx
->fill
;
637 scatterwalk_map_and_copy(in_buf
+ actx
->fill
, src
, oft
, clen
,
645 * If we filled the buffer and still have some
646 * more data, submit the buffer.
648 if (len
&& actx
->fill
== DCP_BUF_SZ
) {
649 ret
= mxs_dcp_run_sha(req
);
660 /* Submit whatever is left. */
664 ret
= mxs_dcp_run_sha(req
);
670 /* For some reason the result is flipped */
671 for (i
= 0; i
< halg
->digestsize
; i
++)
672 req
->result
[i
] = out_buf
[halg
->digestsize
- i
- 1];
678 static int dcp_chan_thread_sha(void *data
)
680 struct dcp
*sdcp
= global_sdcp
;
681 const int chan
= DCP_CHAN_HASH_SHA
;
683 struct crypto_async_request
*backlog
;
684 struct crypto_async_request
*arq
;
687 while (!kthread_should_stop()) {
688 set_current_state(TASK_INTERRUPTIBLE
);
690 spin_lock(&sdcp
->lock
[chan
]);
691 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
692 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
693 spin_unlock(&sdcp
->lock
[chan
]);
695 if (!backlog
&& !arq
) {
700 set_current_state(TASK_RUNNING
);
703 backlog
->complete(backlog
, -EINPROGRESS
);
706 ret
= dcp_sha_req_to_buf(arq
);
707 arq
->complete(arq
, ret
);
714 static int dcp_sha_init(struct ahash_request
*req
)
716 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
717 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
719 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
722 * Start hashing session. The code below only inits the
723 * hashing session context, nothing more.
725 memset(actx
, 0, sizeof(*actx
));
727 if (strcmp(halg
->base
.cra_name
, "sha1") == 0)
728 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA1
;
730 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA256
;
734 actx
->chan
= DCP_CHAN_HASH_SHA
;
736 mutex_init(&actx
->mutex
);
741 static int dcp_sha_update_fx(struct ahash_request
*req
, int fini
)
743 struct dcp
*sdcp
= global_sdcp
;
745 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
746 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
747 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
752 * Ignore requests that have no data in them and are not
753 * the trailing requests in the stream of requests.
755 if (!req
->nbytes
&& !fini
)
758 mutex_lock(&actx
->mutex
);
767 spin_lock(&sdcp
->lock
[actx
->chan
]);
768 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
769 spin_unlock(&sdcp
->lock
[actx
->chan
]);
771 wake_up_process(sdcp
->thread
[actx
->chan
]);
772 mutex_unlock(&actx
->mutex
);
777 static int dcp_sha_update(struct ahash_request
*req
)
779 return dcp_sha_update_fx(req
, 0);
782 static int dcp_sha_final(struct ahash_request
*req
)
784 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
786 return dcp_sha_update_fx(req
, 1);
789 static int dcp_sha_finup(struct ahash_request
*req
)
791 return dcp_sha_update_fx(req
, 1);
794 static int dcp_sha_digest(struct ahash_request
*req
)
798 ret
= dcp_sha_init(req
);
802 return dcp_sha_finup(req
);
805 static int dcp_sha_import(struct ahash_request
*req
, const void *in
)
807 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
808 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
809 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
810 const struct dcp_export_state
*export
= in
;
812 memset(rctx
, 0, sizeof(struct dcp_sha_req_ctx
));
813 memset(actx
, 0, sizeof(struct dcp_async_ctx
));
814 memcpy(rctx
, &export
->req_ctx
, sizeof(struct dcp_sha_req_ctx
));
815 memcpy(actx
, &export
->async_ctx
, sizeof(struct dcp_async_ctx
));
820 static int dcp_sha_export(struct ahash_request
*req
, void *out
)
822 struct dcp_sha_req_ctx
*rctx_state
= ahash_request_ctx(req
);
823 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
824 struct dcp_async_ctx
*actx_state
= crypto_ahash_ctx(tfm
);
825 struct dcp_export_state
*export
= out
;
827 memcpy(&export
->req_ctx
, rctx_state
, sizeof(struct dcp_sha_req_ctx
));
828 memcpy(&export
->async_ctx
, actx_state
, sizeof(struct dcp_async_ctx
));
833 static int dcp_sha_cra_init(struct crypto_tfm
*tfm
)
835 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
836 sizeof(struct dcp_sha_req_ctx
));
840 static void dcp_sha_cra_exit(struct crypto_tfm
*tfm
)
844 /* AES 128 ECB and AES 128 CBC */
845 static struct skcipher_alg dcp_aes_algs
[] = {
847 .base
.cra_name
= "ecb(aes)",
848 .base
.cra_driver_name
= "ecb-aes-dcp",
849 .base
.cra_priority
= 400,
850 .base
.cra_alignmask
= 15,
851 .base
.cra_flags
= CRYPTO_ALG_ASYNC
|
852 CRYPTO_ALG_NEED_FALLBACK
,
853 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
854 .base
.cra_ctxsize
= sizeof(struct dcp_async_ctx
),
855 .base
.cra_module
= THIS_MODULE
,
857 .min_keysize
= AES_MIN_KEY_SIZE
,
858 .max_keysize
= AES_MAX_KEY_SIZE
,
859 .setkey
= mxs_dcp_aes_setkey
,
860 .encrypt
= mxs_dcp_aes_ecb_encrypt
,
861 .decrypt
= mxs_dcp_aes_ecb_decrypt
,
862 .init
= mxs_dcp_aes_fallback_init_tfm
,
863 .exit
= mxs_dcp_aes_fallback_exit_tfm
,
865 .base
.cra_name
= "cbc(aes)",
866 .base
.cra_driver_name
= "cbc-aes-dcp",
867 .base
.cra_priority
= 400,
868 .base
.cra_alignmask
= 15,
869 .base
.cra_flags
= CRYPTO_ALG_ASYNC
|
870 CRYPTO_ALG_NEED_FALLBACK
,
871 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
872 .base
.cra_ctxsize
= sizeof(struct dcp_async_ctx
),
873 .base
.cra_module
= THIS_MODULE
,
875 .min_keysize
= AES_MIN_KEY_SIZE
,
876 .max_keysize
= AES_MAX_KEY_SIZE
,
877 .setkey
= mxs_dcp_aes_setkey
,
878 .encrypt
= mxs_dcp_aes_cbc_encrypt
,
879 .decrypt
= mxs_dcp_aes_cbc_decrypt
,
880 .ivsize
= AES_BLOCK_SIZE
,
881 .init
= mxs_dcp_aes_fallback_init_tfm
,
882 .exit
= mxs_dcp_aes_fallback_exit_tfm
,
887 static struct ahash_alg dcp_sha1_alg
= {
888 .init
= dcp_sha_init
,
889 .update
= dcp_sha_update
,
890 .final
= dcp_sha_final
,
891 .finup
= dcp_sha_finup
,
892 .digest
= dcp_sha_digest
,
893 .import
= dcp_sha_import
,
894 .export
= dcp_sha_export
,
896 .digestsize
= SHA1_DIGEST_SIZE
,
897 .statesize
= sizeof(struct dcp_export_state
),
900 .cra_driver_name
= "sha1-dcp",
903 .cra_flags
= CRYPTO_ALG_ASYNC
,
904 .cra_blocksize
= SHA1_BLOCK_SIZE
,
905 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
906 .cra_module
= THIS_MODULE
,
907 .cra_init
= dcp_sha_cra_init
,
908 .cra_exit
= dcp_sha_cra_exit
,
914 static struct ahash_alg dcp_sha256_alg
= {
915 .init
= dcp_sha_init
,
916 .update
= dcp_sha_update
,
917 .final
= dcp_sha_final
,
918 .finup
= dcp_sha_finup
,
919 .digest
= dcp_sha_digest
,
920 .import
= dcp_sha_import
,
921 .export
= dcp_sha_export
,
923 .digestsize
= SHA256_DIGEST_SIZE
,
924 .statesize
= sizeof(struct dcp_export_state
),
926 .cra_name
= "sha256",
927 .cra_driver_name
= "sha256-dcp",
930 .cra_flags
= CRYPTO_ALG_ASYNC
,
931 .cra_blocksize
= SHA256_BLOCK_SIZE
,
932 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
933 .cra_module
= THIS_MODULE
,
934 .cra_init
= dcp_sha_cra_init
,
935 .cra_exit
= dcp_sha_cra_exit
,
940 static irqreturn_t
mxs_dcp_irq(int irq
, void *context
)
942 struct dcp
*sdcp
= context
;
946 stat
= readl(sdcp
->base
+ MXS_DCP_STAT
);
947 stat
&= MXS_DCP_STAT_IRQ_MASK
;
951 /* Clear the interrupts. */
952 writel(stat
, sdcp
->base
+ MXS_DCP_STAT_CLR
);
954 /* Complete the DMA requests that finished. */
955 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
957 complete(&sdcp
->completion
[i
]);
962 static int mxs_dcp_probe(struct platform_device
*pdev
)
964 struct device
*dev
= &pdev
->dev
;
965 struct dcp
*sdcp
= NULL
;
967 int dcp_vmi_irq
, dcp_irq
;
970 dev_err(dev
, "Only one DCP instance allowed!\n");
974 dcp_vmi_irq
= platform_get_irq(pdev
, 0);
978 dcp_irq
= platform_get_irq(pdev
, 1);
982 sdcp
= devm_kzalloc(dev
, sizeof(*sdcp
), GFP_KERNEL
);
987 sdcp
->base
= devm_platform_ioremap_resource(pdev
, 0);
988 if (IS_ERR(sdcp
->base
))
989 return PTR_ERR(sdcp
->base
);
992 ret
= devm_request_irq(dev
, dcp_vmi_irq
, mxs_dcp_irq
, 0,
993 "dcp-vmi-irq", sdcp
);
995 dev_err(dev
, "Failed to claim DCP VMI IRQ!\n");
999 ret
= devm_request_irq(dev
, dcp_irq
, mxs_dcp_irq
, 0,
1002 dev_err(dev
, "Failed to claim DCP IRQ!\n");
1006 /* Allocate coherent helper block. */
1007 sdcp
->coh
= devm_kzalloc(dev
, sizeof(*sdcp
->coh
) + DCP_ALIGNMENT
,
1012 /* Re-align the structure so it fits the DCP constraints. */
1013 sdcp
->coh
= PTR_ALIGN(sdcp
->coh
, DCP_ALIGNMENT
);
1015 /* DCP clock is optional, only used on some SOCs */
1016 sdcp
->dcp_clk
= devm_clk_get(dev
, "dcp");
1017 if (IS_ERR(sdcp
->dcp_clk
)) {
1018 if (sdcp
->dcp_clk
!= ERR_PTR(-ENOENT
))
1019 return PTR_ERR(sdcp
->dcp_clk
);
1020 sdcp
->dcp_clk
= NULL
;
1022 ret
= clk_prepare_enable(sdcp
->dcp_clk
);
1026 /* Restart the DCP block. */
1027 ret
= stmp_reset_block(sdcp
->base
);
1029 dev_err(dev
, "Failed reset\n");
1030 goto err_disable_unprepare_clk
;
1033 /* Initialize control register. */
1034 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES
|
1035 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING
| 0xf,
1036 sdcp
->base
+ MXS_DCP_CTRL
);
1038 /* Enable all DCP DMA channels. */
1039 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK
,
1040 sdcp
->base
+ MXS_DCP_CHANNELCTRL
);
1043 * We do not enable context switching. Give the context buffer a
1044 * pointer to an illegal address so if context switching is
1045 * inadvertantly enabled, the DCP will return an error instead of
1046 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1049 writel(0xffff0000, sdcp
->base
+ MXS_DCP_CONTEXT
);
1050 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
1051 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(i
));
1052 writel(0xffffffff, sdcp
->base
+ MXS_DCP_STAT_CLR
);
1056 platform_set_drvdata(pdev
, sdcp
);
1058 for (i
= 0; i
< DCP_MAX_CHANS
; i
++) {
1059 spin_lock_init(&sdcp
->lock
[i
]);
1060 init_completion(&sdcp
->completion
[i
]);
1061 crypto_init_queue(&sdcp
->queue
[i
], 50);
1064 /* Create the SHA and AES handler threads. */
1065 sdcp
->thread
[DCP_CHAN_HASH_SHA
] = kthread_run(dcp_chan_thread_sha
,
1066 NULL
, "mxs_dcp_chan/sha");
1067 if (IS_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
])) {
1068 dev_err(dev
, "Error starting SHA thread!\n");
1069 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1070 goto err_disable_unprepare_clk
;
1073 sdcp
->thread
[DCP_CHAN_CRYPTO
] = kthread_run(dcp_chan_thread_aes
,
1074 NULL
, "mxs_dcp_chan/aes");
1075 if (IS_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
])) {
1076 dev_err(dev
, "Error starting SHA thread!\n");
1077 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1078 goto err_destroy_sha_thread
;
1081 /* Register the various crypto algorithms. */
1082 sdcp
->caps
= readl(sdcp
->base
+ MXS_DCP_CAPABILITY1
);
1084 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
) {
1085 ret
= crypto_register_skciphers(dcp_aes_algs
,
1086 ARRAY_SIZE(dcp_aes_algs
));
1088 /* Failed to register algorithm. */
1089 dev_err(dev
, "Failed to register AES crypto!\n");
1090 goto err_destroy_aes_thread
;
1094 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
) {
1095 ret
= crypto_register_ahash(&dcp_sha1_alg
);
1097 dev_err(dev
, "Failed to register %s hash!\n",
1098 dcp_sha1_alg
.halg
.base
.cra_name
);
1099 goto err_unregister_aes
;
1103 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
) {
1104 ret
= crypto_register_ahash(&dcp_sha256_alg
);
1106 dev_err(dev
, "Failed to register %s hash!\n",
1107 dcp_sha256_alg
.halg
.base
.cra_name
);
1108 goto err_unregister_sha1
;
1114 err_unregister_sha1
:
1115 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1116 crypto_unregister_ahash(&dcp_sha1_alg
);
1119 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1120 crypto_unregister_skciphers(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1122 err_destroy_aes_thread
:
1123 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1125 err_destroy_sha_thread
:
1126 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1128 err_disable_unprepare_clk
:
1129 clk_disable_unprepare(sdcp
->dcp_clk
);
1134 static int mxs_dcp_remove(struct platform_device
*pdev
)
1136 struct dcp
*sdcp
= platform_get_drvdata(pdev
);
1138 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
)
1139 crypto_unregister_ahash(&dcp_sha256_alg
);
1141 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1142 crypto_unregister_ahash(&dcp_sha1_alg
);
1144 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1145 crypto_unregister_skciphers(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1147 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1148 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1150 clk_disable_unprepare(sdcp
->dcp_clk
);
1152 platform_set_drvdata(pdev
, NULL
);
1159 static const struct of_device_id mxs_dcp_dt_ids
[] = {
1160 { .compatible
= "fsl,imx23-dcp", .data
= NULL
, },
1161 { .compatible
= "fsl,imx28-dcp", .data
= NULL
, },
1165 MODULE_DEVICE_TABLE(of
, mxs_dcp_dt_ids
);
1167 static struct platform_driver mxs_dcp_driver
= {
1168 .probe
= mxs_dcp_probe
,
1169 .remove
= mxs_dcp_remove
,
1172 .of_match_table
= mxs_dcp_dt_ids
,
1176 module_platform_driver(mxs_dcp_driver
);
1178 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1179 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1180 MODULE_LICENSE("GPL");
1181 MODULE_ALIAS("platform:mxs-dcp");