1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Cirrus Logic EP93xx DMA Controller
5 * Copyright (C) 2011 Mika Westerberg
7 * DMA M2P implementation is based on the original
8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
10 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
11 * Copyright (C) 2006 Applied Data Systems
12 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
14 * This driver is based on dw_dmac and amba-pl08x drivers.
17 #include <linux/clk.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/dmaengine.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
26 #include <linux/platform_data/dma-ep93xx.h>
28 #include "dmaengine.h"
31 #define M2P_CONTROL 0x0000
32 #define M2P_CONTROL_STALLINT BIT(0)
33 #define M2P_CONTROL_NFBINT BIT(1)
34 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
35 #define M2P_CONTROL_ENABLE BIT(4)
36 #define M2P_CONTROL_ICE BIT(6)
38 #define M2P_INTERRUPT 0x0004
39 #define M2P_INTERRUPT_STALL BIT(0)
40 #define M2P_INTERRUPT_NFB BIT(1)
41 #define M2P_INTERRUPT_ERROR BIT(3)
43 #define M2P_PPALLOC 0x0008
44 #define M2P_STATUS 0x000c
46 #define M2P_MAXCNT0 0x0020
47 #define M2P_BASE0 0x0024
48 #define M2P_MAXCNT1 0x0030
49 #define M2P_BASE1 0x0034
51 #define M2P_STATE_IDLE 0
52 #define M2P_STATE_STALL 1
53 #define M2P_STATE_ON 2
54 #define M2P_STATE_NEXT 3
57 #define M2M_CONTROL 0x0000
58 #define M2M_CONTROL_DONEINT BIT(2)
59 #define M2M_CONTROL_ENABLE BIT(3)
60 #define M2M_CONTROL_START BIT(4)
61 #define M2M_CONTROL_DAH BIT(11)
62 #define M2M_CONTROL_SAH BIT(12)
63 #define M2M_CONTROL_PW_SHIFT 9
64 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
65 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_TM_SHIFT 13
69 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
70 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_NFBINT BIT(21)
72 #define M2M_CONTROL_RSS_SHIFT 22
73 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT 25
79 #define M2M_INTERRUPT 0x0004
80 #define M2M_INTERRUPT_MASK 6
82 #define M2M_STATUS 0x000c
83 #define M2M_STATUS_CTL_SHIFT 1
84 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
85 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
86 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
87 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_BUF_SHIFT 4
91 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
92 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
93 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
94 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_DONE BIT(6)
97 #define M2M_BCR0 0x0010
98 #define M2M_BCR1 0x0014
99 #define M2M_SAR_BASE0 0x0018
100 #define M2M_SAR_BASE1 0x001c
101 #define M2M_DAR_BASE0 0x002c
102 #define M2M_DAR_BASE1 0x0030
104 #define DMA_MAX_CHAN_BYTES 0xffff
105 #define DMA_MAX_CHAN_DESCRIPTORS 32
107 struct ep93xx_dma_engine
;
108 static int ep93xx_dma_slave_config_write(struct dma_chan
*chan
,
109 enum dma_transfer_direction dir
,
110 struct dma_slave_config
*config
);
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
122 struct ep93xx_dma_desc
{
127 struct dma_async_tx_descriptor txd
;
128 struct list_head tx_list
;
129 struct list_head node
;
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via .device_config before slave operation is
149 * @runtime_ctrl: M2M runtime values for the control register.
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
163 struct ep93xx_dma_chan
{
164 struct dma_chan chan
;
165 const struct ep93xx_dma_engine
*edma
;
169 struct tasklet_struct tasklet
;
170 /* protects the fields following */
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
177 struct list_head active
;
178 struct list_head queue
;
179 struct list_head free_list
;
182 struct dma_slave_config slave_config
;
186 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
187 * @dma_dev: holds the dmaengine device
188 * @m2m: is this an M2M or M2P device
189 * @hw_setup: method which sets the channel up for operation
190 * @hw_shutdown: shuts the channel down and flushes whatever is left
191 * @hw_submit: pushes active descriptor(s) to the hardware
192 * @hw_interrupt: handle the interrupt
193 * @num_channels: number of channels for this instance
194 * @channels: array of channels
196 * There is one instance of this struct for the M2P channels and one for the
197 * M2M channels. hw_xxx() methods are used to perform operations which are
198 * different on M2M and M2P channels. These methods are called with channel
199 * lock held and interrupts disabled so they cannot sleep.
201 struct ep93xx_dma_engine
{
202 struct dma_device dma_dev
;
204 int (*hw_setup
)(struct ep93xx_dma_chan
*);
205 void (*hw_synchronize
)(struct ep93xx_dma_chan
*);
206 void (*hw_shutdown
)(struct ep93xx_dma_chan
*);
207 void (*hw_submit
)(struct ep93xx_dma_chan
*);
208 int (*hw_interrupt
)(struct ep93xx_dma_chan
*);
209 #define INTERRUPT_UNKNOWN 0
210 #define INTERRUPT_DONE 1
211 #define INTERRUPT_NEXT_BUFFER 2
214 struct ep93xx_dma_chan channels
[];
217 static inline struct device
*chan2dev(struct ep93xx_dma_chan
*edmac
)
219 return &edmac
->chan
.dev
->device
;
222 static struct ep93xx_dma_chan
*to_ep93xx_dma_chan(struct dma_chan
*chan
)
224 return container_of(chan
, struct ep93xx_dma_chan
, chan
);
228 * ep93xx_dma_set_active - set new active descriptor chain
230 * @desc: head of the new active descriptor chain
232 * Sets @desc to be the head of the new active descriptor chain. This is the
233 * chain which is processed next. The active list must be empty before calling
236 * Called with @edmac->lock held and interrupts disabled.
238 static void ep93xx_dma_set_active(struct ep93xx_dma_chan
*edmac
,
239 struct ep93xx_dma_desc
*desc
)
241 BUG_ON(!list_empty(&edmac
->active
));
243 list_add_tail(&desc
->node
, &edmac
->active
);
245 /* Flatten the @desc->tx_list chain into @edmac->active list */
246 while (!list_empty(&desc
->tx_list
)) {
247 struct ep93xx_dma_desc
*d
= list_first_entry(&desc
->tx_list
,
248 struct ep93xx_dma_desc
, node
);
251 * We copy the callback parameters from the first descriptor
252 * to all the chained descriptors. This way we can call the
253 * callback without having to find out the first descriptor in
254 * the chain. Useful for cyclic transfers.
256 d
->txd
.callback
= desc
->txd
.callback
;
257 d
->txd
.callback_param
= desc
->txd
.callback_param
;
259 list_move_tail(&d
->node
, &edmac
->active
);
263 /* Called with @edmac->lock held and interrupts disabled */
264 static struct ep93xx_dma_desc
*
265 ep93xx_dma_get_active(struct ep93xx_dma_chan
*edmac
)
267 return list_first_entry_or_null(&edmac
->active
,
268 struct ep93xx_dma_desc
, node
);
272 * ep93xx_dma_advance_active - advances to the next active descriptor
275 * Function advances active descriptor to the next in the @edmac->active and
276 * returns %true if we still have descriptors in the chain to process.
277 * Otherwise returns %false.
279 * When the channel is in cyclic mode always returns %true.
281 * Called with @edmac->lock held and interrupts disabled.
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan
*edmac
)
285 struct ep93xx_dma_desc
*desc
;
287 list_rotate_left(&edmac
->active
);
289 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
292 desc
= ep93xx_dma_get_active(edmac
);
297 * If txd.cookie is set it means that we are back in the first
298 * descriptor in the chain and hence done with it.
300 return !desc
->txd
.cookie
;
304 * M2P DMA implementation
307 static void m2p_set_control(struct ep93xx_dma_chan
*edmac
, u32 control
)
309 writel(control
, edmac
->regs
+ M2P_CONTROL
);
311 * EP93xx User's Guide states that we must perform a dummy read after
312 * write to the control register.
314 readl(edmac
->regs
+ M2P_CONTROL
);
317 static int m2p_hw_setup(struct ep93xx_dma_chan
*edmac
)
319 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
322 writel(data
->port
& 0xf, edmac
->regs
+ M2P_PPALLOC
);
324 control
= M2P_CONTROL_CH_ERROR_INT
| M2P_CONTROL_ICE
325 | M2P_CONTROL_ENABLE
;
326 m2p_set_control(edmac
, control
);
333 static inline u32
m2p_channel_state(struct ep93xx_dma_chan
*edmac
)
335 return (readl(edmac
->regs
+ M2P_STATUS
) >> 4) & 0x3;
338 static void m2p_hw_synchronize(struct ep93xx_dma_chan
*edmac
)
343 spin_lock_irqsave(&edmac
->lock
, flags
);
344 control
= readl(edmac
->regs
+ M2P_CONTROL
);
345 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
346 m2p_set_control(edmac
, control
);
347 spin_unlock_irqrestore(&edmac
->lock
, flags
);
349 while (m2p_channel_state(edmac
) >= M2P_STATE_ON
)
353 static void m2p_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
355 m2p_set_control(edmac
, 0);
357 while (m2p_channel_state(edmac
) != M2P_STATE_IDLE
)
358 dev_warn(chan2dev(edmac
), "M2P: Not yet IDLE\n");
361 static void m2p_fill_desc(struct ep93xx_dma_chan
*edmac
)
363 struct ep93xx_dma_desc
*desc
;
366 desc
= ep93xx_dma_get_active(edmac
);
368 dev_warn(chan2dev(edmac
), "M2P: empty descriptor list\n");
372 if (ep93xx_dma_chan_direction(&edmac
->chan
) == DMA_MEM_TO_DEV
)
373 bus_addr
= desc
->src_addr
;
375 bus_addr
= desc
->dst_addr
;
377 if (edmac
->buffer
== 0) {
378 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT0
);
379 writel(bus_addr
, edmac
->regs
+ M2P_BASE0
);
381 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT1
);
382 writel(bus_addr
, edmac
->regs
+ M2P_BASE1
);
388 static void m2p_hw_submit(struct ep93xx_dma_chan
*edmac
)
390 u32 control
= readl(edmac
->regs
+ M2P_CONTROL
);
392 m2p_fill_desc(edmac
);
393 control
|= M2P_CONTROL_STALLINT
;
395 if (ep93xx_dma_advance_active(edmac
)) {
396 m2p_fill_desc(edmac
);
397 control
|= M2P_CONTROL_NFBINT
;
400 m2p_set_control(edmac
, control
);
403 static int m2p_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
405 u32 irq_status
= readl(edmac
->regs
+ M2P_INTERRUPT
);
408 if (irq_status
& M2P_INTERRUPT_ERROR
) {
409 struct ep93xx_dma_desc
*desc
= ep93xx_dma_get_active(edmac
);
411 /* Clear the error interrupt */
412 writel(1, edmac
->regs
+ M2P_INTERRUPT
);
415 * It seems that there is no easy way of reporting errors back
416 * to client so we just report the error here and continue as
419 * Revisit this when there is a mechanism to report back the
422 dev_err(chan2dev(edmac
),
423 "DMA transfer failed! Details:\n"
425 "\tsrc_addr : 0x%08x\n"
426 "\tdst_addr : 0x%08x\n"
428 desc
->txd
.cookie
, desc
->src_addr
, desc
->dst_addr
,
433 * Even latest E2 silicon revision sometimes assert STALL interrupt
434 * instead of NFB. Therefore we treat them equally, basing on the
435 * amount of data we still have to transfer.
437 if (!(irq_status
& (M2P_INTERRUPT_STALL
| M2P_INTERRUPT_NFB
)))
438 return INTERRUPT_UNKNOWN
;
440 if (ep93xx_dma_advance_active(edmac
)) {
441 m2p_fill_desc(edmac
);
442 return INTERRUPT_NEXT_BUFFER
;
445 /* Disable interrupts */
446 control
= readl(edmac
->regs
+ M2P_CONTROL
);
447 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
448 m2p_set_control(edmac
, control
);
450 return INTERRUPT_DONE
;
454 * M2M DMA implementation
457 static int m2m_hw_setup(struct ep93xx_dma_chan
*edmac
)
459 const struct ep93xx_dma_data
*data
= edmac
->chan
.private;
463 /* This is memcpy channel, nothing to configure */
464 writel(control
, edmac
->regs
+ M2M_CONTROL
);
468 switch (data
->port
) {
471 * This was found via experimenting - anything less than 5
472 * causes the channel to perform only a partial transfer which
473 * leads to problems since we don't get DONE interrupt then.
475 control
= (5 << M2M_CONTROL_PWSC_SHIFT
);
476 control
|= M2M_CONTROL_NO_HDSK
;
478 if (data
->direction
== DMA_MEM_TO_DEV
) {
479 control
|= M2M_CONTROL_DAH
;
480 control
|= M2M_CONTROL_TM_TX
;
481 control
|= M2M_CONTROL_RSS_SSPTX
;
483 control
|= M2M_CONTROL_SAH
;
484 control
|= M2M_CONTROL_TM_RX
;
485 control
|= M2M_CONTROL_RSS_SSPRX
;
491 * This IDE part is totally untested. Values below are taken
492 * from the EP93xx Users's Guide and might not be correct.
494 if (data
->direction
== DMA_MEM_TO_DEV
) {
495 /* Worst case from the UG */
496 control
= (3 << M2M_CONTROL_PWSC_SHIFT
);
497 control
|= M2M_CONTROL_DAH
;
498 control
|= M2M_CONTROL_TM_TX
;
500 control
= (2 << M2M_CONTROL_PWSC_SHIFT
);
501 control
|= M2M_CONTROL_SAH
;
502 control
|= M2M_CONTROL_TM_RX
;
505 control
|= M2M_CONTROL_NO_HDSK
;
506 control
|= M2M_CONTROL_RSS_IDE
;
507 control
|= M2M_CONTROL_PW_16
;
514 writel(control
, edmac
->regs
+ M2M_CONTROL
);
518 static void m2m_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
520 /* Just disable the channel */
521 writel(0, edmac
->regs
+ M2M_CONTROL
);
524 static void m2m_fill_desc(struct ep93xx_dma_chan
*edmac
)
526 struct ep93xx_dma_desc
*desc
;
528 desc
= ep93xx_dma_get_active(edmac
);
530 dev_warn(chan2dev(edmac
), "M2M: empty descriptor list\n");
534 if (edmac
->buffer
== 0) {
535 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE0
);
536 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE0
);
537 writel(desc
->size
, edmac
->regs
+ M2M_BCR0
);
539 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE1
);
540 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE1
);
541 writel(desc
->size
, edmac
->regs
+ M2M_BCR1
);
547 static void m2m_hw_submit(struct ep93xx_dma_chan
*edmac
)
549 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
550 u32 control
= readl(edmac
->regs
+ M2M_CONTROL
);
553 * Since we allow clients to configure PW (peripheral width) we always
554 * clear PW bits here and then set them according what is given in
555 * the runtime configuration.
557 control
&= ~M2M_CONTROL_PW_MASK
;
558 control
|= edmac
->runtime_ctrl
;
560 m2m_fill_desc(edmac
);
561 control
|= M2M_CONTROL_DONEINT
;
563 if (ep93xx_dma_advance_active(edmac
)) {
564 m2m_fill_desc(edmac
);
565 control
|= M2M_CONTROL_NFBINT
;
569 * Now we can finally enable the channel. For M2M channel this must be
570 * done _after_ the BCRx registers are programmed.
572 control
|= M2M_CONTROL_ENABLE
;
573 writel(control
, edmac
->regs
+ M2M_CONTROL
);
577 * For memcpy channels the software trigger must be asserted
578 * in order to start the memcpy operation.
580 control
|= M2M_CONTROL_START
;
581 writel(control
, edmac
->regs
+ M2M_CONTROL
);
586 * According to EP93xx User's Guide, we should receive DONE interrupt when all
587 * M2M DMA controller transactions complete normally. This is not always the
588 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
589 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
590 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
591 * In effect, disabling the channel when only DONE bit is set could stop
592 * currently running DMA transfer. To avoid this, we use Buffer FSM and
593 * Control FSM to check current state of DMA channel.
595 static int m2m_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
597 u32 status
= readl(edmac
->regs
+ M2M_STATUS
);
598 u32 ctl_fsm
= status
& M2M_STATUS_CTL_MASK
;
599 u32 buf_fsm
= status
& M2M_STATUS_BUF_MASK
;
600 bool done
= status
& M2M_STATUS_DONE
;
603 struct ep93xx_dma_desc
*desc
;
605 /* Accept only DONE and NFB interrupts */
606 if (!(readl(edmac
->regs
+ M2M_INTERRUPT
) & M2M_INTERRUPT_MASK
))
607 return INTERRUPT_UNKNOWN
;
610 /* Clear the DONE bit */
611 writel(0, edmac
->regs
+ M2M_INTERRUPT
);
615 * Check whether we are done with descriptors or not. This, together
616 * with DMA channel state, determines action to take in interrupt.
618 desc
= ep93xx_dma_get_active(edmac
);
619 last_done
= !desc
|| desc
->txd
.cookie
;
622 * Use M2M DMA Buffer FSM and Control FSM to check current state of
623 * DMA channel. Using DONE and NFB bits from channel status register
624 * or bits from channel interrupt register is not reliable.
627 (buf_fsm
== M2M_STATUS_BUF_NO
||
628 buf_fsm
== M2M_STATUS_BUF_ON
)) {
630 * Two buffers are ready for update when Buffer FSM is in
631 * DMA_NO_BUF state. Only one buffer can be prepared without
632 * disabling the channel or polling the DONE bit.
633 * To simplify things, always prepare only one buffer.
635 if (ep93xx_dma_advance_active(edmac
)) {
636 m2m_fill_desc(edmac
);
637 if (done
&& !edmac
->chan
.private) {
638 /* Software trigger for memcpy channel */
639 control
= readl(edmac
->regs
+ M2M_CONTROL
);
640 control
|= M2M_CONTROL_START
;
641 writel(control
, edmac
->regs
+ M2M_CONTROL
);
643 return INTERRUPT_NEXT_BUFFER
;
650 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
651 * and Control FSM is in DMA_STALL state.
654 buf_fsm
== M2M_STATUS_BUF_NO
&&
655 ctl_fsm
== M2M_STATUS_CTL_STALL
) {
656 /* Disable interrupts and the channel */
657 control
= readl(edmac
->regs
+ M2M_CONTROL
);
658 control
&= ~(M2M_CONTROL_DONEINT
| M2M_CONTROL_NFBINT
659 | M2M_CONTROL_ENABLE
);
660 writel(control
, edmac
->regs
+ M2M_CONTROL
);
661 return INTERRUPT_DONE
;
665 * Nothing to do this time.
667 return INTERRUPT_NEXT_BUFFER
;
671 * DMA engine API implementation
674 static struct ep93xx_dma_desc
*
675 ep93xx_dma_desc_get(struct ep93xx_dma_chan
*edmac
)
677 struct ep93xx_dma_desc
*desc
, *_desc
;
678 struct ep93xx_dma_desc
*ret
= NULL
;
681 spin_lock_irqsave(&edmac
->lock
, flags
);
682 list_for_each_entry_safe(desc
, _desc
, &edmac
->free_list
, node
) {
683 if (async_tx_test_ack(&desc
->txd
)) {
684 list_del_init(&desc
->node
);
686 /* Re-initialize the descriptor */
690 desc
->complete
= false;
691 desc
->txd
.cookie
= 0;
692 desc
->txd
.callback
= NULL
;
693 desc
->txd
.callback_param
= NULL
;
699 spin_unlock_irqrestore(&edmac
->lock
, flags
);
703 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan
*edmac
,
704 struct ep93xx_dma_desc
*desc
)
709 spin_lock_irqsave(&edmac
->lock
, flags
);
710 list_splice_init(&desc
->tx_list
, &edmac
->free_list
);
711 list_add(&desc
->node
, &edmac
->free_list
);
712 spin_unlock_irqrestore(&edmac
->lock
, flags
);
717 * ep93xx_dma_advance_work - start processing the next pending transaction
720 * If we have pending transactions queued and we are currently idling, this
721 * function takes the next queued transaction from the @edmac->queue and
722 * pushes it to the hardware for execution.
724 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan
*edmac
)
726 struct ep93xx_dma_desc
*new;
729 spin_lock_irqsave(&edmac
->lock
, flags
);
730 if (!list_empty(&edmac
->active
) || list_empty(&edmac
->queue
)) {
731 spin_unlock_irqrestore(&edmac
->lock
, flags
);
735 /* Take the next descriptor from the pending queue */
736 new = list_first_entry(&edmac
->queue
, struct ep93xx_dma_desc
, node
);
737 list_del_init(&new->node
);
739 ep93xx_dma_set_active(edmac
, new);
741 /* Push it to the hardware */
742 edmac
->edma
->hw_submit(edmac
);
743 spin_unlock_irqrestore(&edmac
->lock
, flags
);
746 static void ep93xx_dma_tasklet(unsigned long data
)
748 struct ep93xx_dma_chan
*edmac
= (struct ep93xx_dma_chan
*)data
;
749 struct ep93xx_dma_desc
*desc
, *d
;
750 struct dmaengine_desc_callback cb
;
753 memset(&cb
, 0, sizeof(cb
));
754 spin_lock_irq(&edmac
->lock
);
756 * If dma_terminate_all() was called before we get to run, the active
757 * list has become empty. If that happens we aren't supposed to do
758 * anything more than call ep93xx_dma_advance_work().
760 desc
= ep93xx_dma_get_active(edmac
);
762 if (desc
->complete
) {
763 /* mark descriptor complete for non cyclic case only */
764 if (!test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
765 dma_cookie_complete(&desc
->txd
);
766 list_splice_init(&edmac
->active
, &list
);
768 dmaengine_desc_get_callback(&desc
->txd
, &cb
);
770 spin_unlock_irq(&edmac
->lock
);
772 /* Pick up the next descriptor from the queue */
773 ep93xx_dma_advance_work(edmac
);
775 /* Now we can release all the chained descriptors */
776 list_for_each_entry_safe(desc
, d
, &list
, node
) {
777 dma_descriptor_unmap(&desc
->txd
);
778 ep93xx_dma_desc_put(edmac
, desc
);
781 dmaengine_desc_callback_invoke(&cb
, NULL
);
784 static irqreturn_t
ep93xx_dma_interrupt(int irq
, void *dev_id
)
786 struct ep93xx_dma_chan
*edmac
= dev_id
;
787 struct ep93xx_dma_desc
*desc
;
788 irqreturn_t ret
= IRQ_HANDLED
;
790 spin_lock(&edmac
->lock
);
792 desc
= ep93xx_dma_get_active(edmac
);
794 dev_warn(chan2dev(edmac
),
795 "got interrupt while active list is empty\n");
796 spin_unlock(&edmac
->lock
);
800 switch (edmac
->edma
->hw_interrupt(edmac
)) {
802 desc
->complete
= true;
803 tasklet_schedule(&edmac
->tasklet
);
806 case INTERRUPT_NEXT_BUFFER
:
807 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
808 tasklet_schedule(&edmac
->tasklet
);
812 dev_warn(chan2dev(edmac
), "unknown interrupt!\n");
817 spin_unlock(&edmac
->lock
);
822 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
823 * @tx: descriptor to be executed
825 * Function will execute given descriptor on the hardware or if the hardware
826 * is busy, queue the descriptor to be executed later on. Returns cookie which
827 * can be used to poll the status of the descriptor.
829 static dma_cookie_t
ep93xx_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
831 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(tx
->chan
);
832 struct ep93xx_dma_desc
*desc
;
836 spin_lock_irqsave(&edmac
->lock
, flags
);
837 cookie
= dma_cookie_assign(tx
);
839 desc
= container_of(tx
, struct ep93xx_dma_desc
, txd
);
842 * If nothing is currently prosessed, we push this descriptor
843 * directly to the hardware. Otherwise we put the descriptor
844 * to the pending queue.
846 if (list_empty(&edmac
->active
)) {
847 ep93xx_dma_set_active(edmac
, desc
);
848 edmac
->edma
->hw_submit(edmac
);
850 list_add_tail(&desc
->node
, &edmac
->queue
);
853 spin_unlock_irqrestore(&edmac
->lock
, flags
);
858 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
859 * @chan: channel to allocate resources
861 * Function allocates necessary resources for the given DMA channel and
862 * returns number of allocated descriptors for the channel. Negative errno
863 * is returned in case of failure.
865 static int ep93xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
867 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
868 struct ep93xx_dma_data
*data
= chan
->private;
869 const char *name
= dma_chan_name(chan
);
872 /* Sanity check the channel parameters */
873 if (!edmac
->edma
->m2m
) {
876 if (data
->port
< EP93XX_DMA_I2S1
||
877 data
->port
> EP93XX_DMA_IRDA
)
879 if (data
->direction
!= ep93xx_dma_chan_direction(chan
))
883 switch (data
->port
) {
886 if (!is_slave_direction(data
->direction
))
895 if (data
&& data
->name
)
898 ret
= clk_enable(edmac
->clk
);
902 ret
= request_irq(edmac
->irq
, ep93xx_dma_interrupt
, 0, name
, edmac
);
904 goto fail_clk_disable
;
906 spin_lock_irq(&edmac
->lock
);
907 dma_cookie_init(&edmac
->chan
);
908 ret
= edmac
->edma
->hw_setup(edmac
);
909 spin_unlock_irq(&edmac
->lock
);
914 for (i
= 0; i
< DMA_MAX_CHAN_DESCRIPTORS
; i
++) {
915 struct ep93xx_dma_desc
*desc
;
917 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
919 dev_warn(chan2dev(edmac
), "not enough descriptors\n");
923 INIT_LIST_HEAD(&desc
->tx_list
);
925 dma_async_tx_descriptor_init(&desc
->txd
, chan
);
926 desc
->txd
.flags
= DMA_CTRL_ACK
;
927 desc
->txd
.tx_submit
= ep93xx_dma_tx_submit
;
929 ep93xx_dma_desc_put(edmac
, desc
);
935 free_irq(edmac
->irq
, edmac
);
937 clk_disable(edmac
->clk
);
943 * ep93xx_dma_free_chan_resources - release resources for the channel
946 * Function releases all the resources allocated for the given channel.
947 * The channel must be idle when this is called.
949 static void ep93xx_dma_free_chan_resources(struct dma_chan
*chan
)
951 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
952 struct ep93xx_dma_desc
*desc
, *d
;
956 BUG_ON(!list_empty(&edmac
->active
));
957 BUG_ON(!list_empty(&edmac
->queue
));
959 spin_lock_irqsave(&edmac
->lock
, flags
);
960 edmac
->edma
->hw_shutdown(edmac
);
961 edmac
->runtime_addr
= 0;
962 edmac
->runtime_ctrl
= 0;
964 list_splice_init(&edmac
->free_list
, &list
);
965 spin_unlock_irqrestore(&edmac
->lock
, flags
);
967 list_for_each_entry_safe(desc
, d
, &list
, node
)
970 clk_disable(edmac
->clk
);
971 free_irq(edmac
->irq
, edmac
);
975 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
977 * @dest: destination bus address
978 * @src: source bus address
979 * @len: size of the transaction
980 * @flags: flags for the descriptor
982 * Returns a valid DMA descriptor or %NULL in case of failure.
984 static struct dma_async_tx_descriptor
*
985 ep93xx_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
986 dma_addr_t src
, size_t len
, unsigned long flags
)
988 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
989 struct ep93xx_dma_desc
*desc
, *first
;
990 size_t bytes
, offset
;
993 for (offset
= 0; offset
< len
; offset
+= bytes
) {
994 desc
= ep93xx_dma_desc_get(edmac
);
996 dev_warn(chan2dev(edmac
), "couldn't get descriptor\n");
1000 bytes
= min_t(size_t, len
- offset
, DMA_MAX_CHAN_BYTES
);
1002 desc
->src_addr
= src
+ offset
;
1003 desc
->dst_addr
= dest
+ offset
;
1009 list_add_tail(&desc
->node
, &first
->tx_list
);
1012 first
->txd
.cookie
= -EBUSY
;
1013 first
->txd
.flags
= flags
;
1017 ep93xx_dma_desc_put(edmac
, first
);
1022 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1024 * @sgl: list of buffers to transfer
1025 * @sg_len: number of entries in @sgl
1026 * @dir: direction of tha DMA transfer
1027 * @flags: flags for the descriptor
1028 * @context: operation context (ignored)
1030 * Returns a valid DMA descriptor or %NULL in case of failure.
1032 static struct dma_async_tx_descriptor
*
1033 ep93xx_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1034 unsigned int sg_len
, enum dma_transfer_direction dir
,
1035 unsigned long flags
, void *context
)
1037 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1038 struct ep93xx_dma_desc
*desc
, *first
;
1039 struct scatterlist
*sg
;
1042 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1043 dev_warn(chan2dev(edmac
),
1044 "channel was configured with different direction\n");
1048 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1049 dev_warn(chan2dev(edmac
),
1050 "channel is already used for cyclic transfers\n");
1054 ep93xx_dma_slave_config_write(chan
, dir
, &edmac
->slave_config
);
1057 for_each_sg(sgl
, sg
, sg_len
, i
) {
1058 size_t len
= sg_dma_len(sg
);
1060 if (len
> DMA_MAX_CHAN_BYTES
) {
1061 dev_warn(chan2dev(edmac
), "too big transfer size %zu\n",
1066 desc
= ep93xx_dma_desc_get(edmac
);
1068 dev_warn(chan2dev(edmac
), "couldn't get descriptor\n");
1072 if (dir
== DMA_MEM_TO_DEV
) {
1073 desc
->src_addr
= sg_dma_address(sg
);
1074 desc
->dst_addr
= edmac
->runtime_addr
;
1076 desc
->src_addr
= edmac
->runtime_addr
;
1077 desc
->dst_addr
= sg_dma_address(sg
);
1084 list_add_tail(&desc
->node
, &first
->tx_list
);
1087 first
->txd
.cookie
= -EBUSY
;
1088 first
->txd
.flags
= flags
;
1093 ep93xx_dma_desc_put(edmac
, first
);
1098 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1100 * @dma_addr: DMA mapped address of the buffer
1101 * @buf_len: length of the buffer (in bytes)
1102 * @period_len: length of a single period
1103 * @dir: direction of the operation
1104 * @flags: tx descriptor status flags
1106 * Prepares a descriptor for cyclic DMA operation. This means that once the
1107 * descriptor is submitted, we will be submitting in a @period_len sized
1108 * buffers and calling callback once the period has been elapsed. Transfer
1109 * terminates only when client calls dmaengine_terminate_all() for this
1112 * Returns a valid DMA descriptor or %NULL in case of failure.
1114 static struct dma_async_tx_descriptor
*
1115 ep93xx_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
1116 size_t buf_len
, size_t period_len
,
1117 enum dma_transfer_direction dir
, unsigned long flags
)
1119 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1120 struct ep93xx_dma_desc
*desc
, *first
;
1123 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1124 dev_warn(chan2dev(edmac
),
1125 "channel was configured with different direction\n");
1129 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1130 dev_warn(chan2dev(edmac
),
1131 "channel is already used for cyclic transfers\n");
1135 if (period_len
> DMA_MAX_CHAN_BYTES
) {
1136 dev_warn(chan2dev(edmac
), "too big period length %zu\n",
1141 ep93xx_dma_slave_config_write(chan
, dir
, &edmac
->slave_config
);
1143 /* Split the buffer into period size chunks */
1145 for (offset
= 0; offset
< buf_len
; offset
+= period_len
) {
1146 desc
= ep93xx_dma_desc_get(edmac
);
1148 dev_warn(chan2dev(edmac
), "couldn't get descriptor\n");
1152 if (dir
== DMA_MEM_TO_DEV
) {
1153 desc
->src_addr
= dma_addr
+ offset
;
1154 desc
->dst_addr
= edmac
->runtime_addr
;
1156 desc
->src_addr
= edmac
->runtime_addr
;
1157 desc
->dst_addr
= dma_addr
+ offset
;
1160 desc
->size
= period_len
;
1165 list_add_tail(&desc
->node
, &first
->tx_list
);
1168 first
->txd
.cookie
= -EBUSY
;
1173 ep93xx_dma_desc_put(edmac
, first
);
1178 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1182 * Synchronizes the DMA channel termination to the current context. When this
1183 * function returns it is guaranteed that all transfers for previously issued
1184 * descriptors have stopped and and it is safe to free the memory associated
1185 * with them. Furthermore it is guaranteed that all complete callback functions
1186 * for a previously submitted descriptor have finished running and it is safe to
1187 * free resources accessed from within the complete callbacks.
1189 static void ep93xx_dma_synchronize(struct dma_chan
*chan
)
1191 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1193 if (edmac
->edma
->hw_synchronize
)
1194 edmac
->edma
->hw_synchronize(edmac
);
1198 * ep93xx_dma_terminate_all - terminate all transactions
1201 * Stops all DMA transactions. All descriptors are put back to the
1202 * @edmac->free_list and callbacks are _not_ called.
1204 static int ep93xx_dma_terminate_all(struct dma_chan
*chan
)
1206 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1207 struct ep93xx_dma_desc
*desc
, *_d
;
1208 unsigned long flags
;
1211 spin_lock_irqsave(&edmac
->lock
, flags
);
1212 /* First we disable and flush the DMA channel */
1213 edmac
->edma
->hw_shutdown(edmac
);
1214 clear_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
);
1215 list_splice_init(&edmac
->active
, &list
);
1216 list_splice_init(&edmac
->queue
, &list
);
1218 * We then re-enable the channel. This way we can continue submitting
1219 * the descriptors by just calling ->hw_submit() again.
1221 edmac
->edma
->hw_setup(edmac
);
1222 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1224 list_for_each_entry_safe(desc
, _d
, &list
, node
)
1225 ep93xx_dma_desc_put(edmac
, desc
);
1230 static int ep93xx_dma_slave_config(struct dma_chan
*chan
,
1231 struct dma_slave_config
*config
)
1233 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1235 memcpy(&edmac
->slave_config
, config
, sizeof(*config
));
1240 static int ep93xx_dma_slave_config_write(struct dma_chan
*chan
,
1241 enum dma_transfer_direction dir
,
1242 struct dma_slave_config
*config
)
1244 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1245 enum dma_slave_buswidth width
;
1246 unsigned long flags
;
1249 if (!edmac
->edma
->m2m
)
1253 case DMA_DEV_TO_MEM
:
1254 width
= config
->src_addr_width
;
1255 addr
= config
->src_addr
;
1258 case DMA_MEM_TO_DEV
:
1259 width
= config
->dst_addr_width
;
1260 addr
= config
->dst_addr
;
1268 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1271 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1272 ctrl
= M2M_CONTROL_PW_16
;
1274 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1275 ctrl
= M2M_CONTROL_PW_32
;
1281 spin_lock_irqsave(&edmac
->lock
, flags
);
1282 edmac
->runtime_addr
= addr
;
1283 edmac
->runtime_ctrl
= ctrl
;
1284 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1290 * ep93xx_dma_tx_status - check if a transaction is completed
1292 * @cookie: transaction specific cookie
1293 * @state: state of the transaction is stored here if given
1295 * This function can be used to query state of a given transaction.
1297 static enum dma_status
ep93xx_dma_tx_status(struct dma_chan
*chan
,
1298 dma_cookie_t cookie
,
1299 struct dma_tx_state
*state
)
1301 return dma_cookie_status(chan
, cookie
, state
);
1305 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1308 * When this function is called, all pending transactions are pushed to the
1309 * hardware and executed.
1311 static void ep93xx_dma_issue_pending(struct dma_chan
*chan
)
1313 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan
));
1316 static int __init
ep93xx_dma_probe(struct platform_device
*pdev
)
1318 struct ep93xx_dma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1319 struct ep93xx_dma_engine
*edma
;
1320 struct dma_device
*dma_dev
;
1324 edma_size
= pdata
->num_channels
* sizeof(struct ep93xx_dma_chan
);
1325 edma
= kzalloc(sizeof(*edma
) + edma_size
, GFP_KERNEL
);
1329 dma_dev
= &edma
->dma_dev
;
1330 edma
->m2m
= platform_get_device_id(pdev
)->driver_data
;
1331 edma
->num_channels
= pdata
->num_channels
;
1333 INIT_LIST_HEAD(&dma_dev
->channels
);
1334 for (i
= 0; i
< pdata
->num_channels
; i
++) {
1335 const struct ep93xx_dma_chan_data
*cdata
= &pdata
->channels
[i
];
1336 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1338 edmac
->chan
.device
= dma_dev
;
1339 edmac
->regs
= cdata
->base
;
1340 edmac
->irq
= cdata
->irq
;
1343 edmac
->clk
= clk_get(NULL
, cdata
->name
);
1344 if (IS_ERR(edmac
->clk
)) {
1345 dev_warn(&pdev
->dev
, "failed to get clock for %s\n",
1350 spin_lock_init(&edmac
->lock
);
1351 INIT_LIST_HEAD(&edmac
->active
);
1352 INIT_LIST_HEAD(&edmac
->queue
);
1353 INIT_LIST_HEAD(&edmac
->free_list
);
1354 tasklet_init(&edmac
->tasklet
, ep93xx_dma_tasklet
,
1355 (unsigned long)edmac
);
1357 list_add_tail(&edmac
->chan
.device_node
,
1358 &dma_dev
->channels
);
1361 dma_cap_zero(dma_dev
->cap_mask
);
1362 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1363 dma_cap_set(DMA_CYCLIC
, dma_dev
->cap_mask
);
1365 dma_dev
->dev
= &pdev
->dev
;
1366 dma_dev
->device_alloc_chan_resources
= ep93xx_dma_alloc_chan_resources
;
1367 dma_dev
->device_free_chan_resources
= ep93xx_dma_free_chan_resources
;
1368 dma_dev
->device_prep_slave_sg
= ep93xx_dma_prep_slave_sg
;
1369 dma_dev
->device_prep_dma_cyclic
= ep93xx_dma_prep_dma_cyclic
;
1370 dma_dev
->device_config
= ep93xx_dma_slave_config
;
1371 dma_dev
->device_synchronize
= ep93xx_dma_synchronize
;
1372 dma_dev
->device_terminate_all
= ep93xx_dma_terminate_all
;
1373 dma_dev
->device_issue_pending
= ep93xx_dma_issue_pending
;
1374 dma_dev
->device_tx_status
= ep93xx_dma_tx_status
;
1376 dma_set_max_seg_size(dma_dev
->dev
, DMA_MAX_CHAN_BYTES
);
1379 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1380 dma_dev
->device_prep_dma_memcpy
= ep93xx_dma_prep_dma_memcpy
;
1382 edma
->hw_setup
= m2m_hw_setup
;
1383 edma
->hw_shutdown
= m2m_hw_shutdown
;
1384 edma
->hw_submit
= m2m_hw_submit
;
1385 edma
->hw_interrupt
= m2m_hw_interrupt
;
1387 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1389 edma
->hw_synchronize
= m2p_hw_synchronize
;
1390 edma
->hw_setup
= m2p_hw_setup
;
1391 edma
->hw_shutdown
= m2p_hw_shutdown
;
1392 edma
->hw_submit
= m2p_hw_submit
;
1393 edma
->hw_interrupt
= m2p_hw_interrupt
;
1396 ret
= dma_async_device_register(dma_dev
);
1397 if (unlikely(ret
)) {
1398 for (i
= 0; i
< edma
->num_channels
; i
++) {
1399 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1400 if (!IS_ERR_OR_NULL(edmac
->clk
))
1401 clk_put(edmac
->clk
);
1405 dev_info(dma_dev
->dev
, "EP93xx M2%s DMA ready\n",
1406 edma
->m2m
? "M" : "P");
1412 static const struct platform_device_id ep93xx_dma_driver_ids
[] = {
1413 { "ep93xx-dma-m2p", 0 },
1414 { "ep93xx-dma-m2m", 1 },
1418 static struct platform_driver ep93xx_dma_driver
= {
1420 .name
= "ep93xx-dma",
1422 .id_table
= ep93xx_dma_driver_ids
,
1425 static int __init
ep93xx_dma_module_init(void)
1427 return platform_driver_probe(&ep93xx_dma_driver
, ep93xx_dma_probe
);
1429 subsys_initcall(ep93xx_dma_module_init
);
1431 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1432 MODULE_DESCRIPTION("EP93xx DMA driver");
1433 MODULE_LICENSE("GPL");