1 // SPDX-License-Identifier: GPL-2.0
3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
25 #include "../dmaengine.h"
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
34 struct rcar_dmac_xfer_chunk
{
35 struct list_head node
;
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
48 struct rcar_dmac_hw_desc
{
53 } __attribute__((__packed__
));
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
72 struct rcar_dmac_desc
{
73 struct dma_async_tx_descriptor async_tx
;
74 enum dma_transfer_direction direction
;
75 unsigned int xfer_shift
;
78 struct list_head node
;
79 struct list_head chunks
;
80 struct rcar_dmac_xfer_chunk
*running
;
85 struct rcar_dmac_hw_desc
*mem
;
94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
102 struct rcar_dmac_desc_page
{
103 struct list_head node
;
106 struct rcar_dmac_desc descs
[0];
107 struct rcar_dmac_xfer_chunk chunks
[0];
111 #define RCAR_DMAC_DESCS_PER_PAGE \
112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
113 sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
116 sizeof(struct rcar_dmac_xfer_chunk))
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
123 struct rcar_dmac_chan_slave
{
124 phys_addr_t slave_addr
;
125 unsigned int xfer_size
;
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
134 struct rcar_dmac_chan_map
{
136 enum dma_data_direction dir
;
137 struct rcar_dmac_chan_slave slave
;
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
159 struct rcar_dmac_chan
{
160 struct dma_chan chan
;
165 struct rcar_dmac_chan_slave src
;
166 struct rcar_dmac_chan_slave dst
;
167 struct rcar_dmac_chan_map map
;
173 struct list_head free
;
174 struct list_head pending
;
175 struct list_head active
;
176 struct list_head done
;
177 struct list_head wait
;
178 struct rcar_dmac_desc
*running
;
180 struct list_head chunks_free
;
182 struct list_head pages
;
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @channels_mask: bitfield of which DMA channels are managed by this driver
196 * @modules: bitmask of client modules in use
199 struct dma_device engine
;
202 struct device_dma_parameters parms
;
204 unsigned int n_channels
;
205 struct rcar_dmac_chan
*channels
;
208 DECLARE_BITMAP(modules
, 256);
211 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
214 * struct rcar_dmac_of_data - This driver's OF data
215 * @chan_offset_base: DMAC channels base offset
216 * @chan_offset_stride: DMAC channels offset stride
218 struct rcar_dmac_of_data
{
219 u32 chan_offset_base
;
220 u32 chan_offset_stride
;
223 /* -----------------------------------------------------------------------------
227 #define RCAR_DMAISTA 0x0020
228 #define RCAR_DMASEC 0x0030
229 #define RCAR_DMAOR 0x0060
230 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
231 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
232 #define RCAR_DMAOR_AE (1 << 2)
233 #define RCAR_DMAOR_DME (1 << 0)
234 #define RCAR_DMACHCLR 0x0080
235 #define RCAR_DMADPSEC 0x00a0
237 #define RCAR_DMASAR 0x0000
238 #define RCAR_DMADAR 0x0004
239 #define RCAR_DMATCR 0x0008
240 #define RCAR_DMATCR_MASK 0x00ffffff
241 #define RCAR_DMATSR 0x0028
242 #define RCAR_DMACHCR 0x000c
243 #define RCAR_DMACHCR_CAE (1 << 31)
244 #define RCAR_DMACHCR_CAIE (1 << 30)
245 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
246 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
247 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
248 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
249 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
250 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
251 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
252 #define RCAR_DMACHCR_DPB (1 << 22)
253 #define RCAR_DMACHCR_DSE (1 << 19)
254 #define RCAR_DMACHCR_DSIE (1 << 18)
255 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
256 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
257 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
258 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
259 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
260 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
261 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
262 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
263 #define RCAR_DMACHCR_DM_INC (1 << 14)
264 #define RCAR_DMACHCR_DM_DEC (2 << 14)
265 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
266 #define RCAR_DMACHCR_SM_INC (1 << 12)
267 #define RCAR_DMACHCR_SM_DEC (2 << 12)
268 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
269 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
270 #define RCAR_DMACHCR_IE (1 << 2)
271 #define RCAR_DMACHCR_TE (1 << 1)
272 #define RCAR_DMACHCR_DE (1 << 0)
273 #define RCAR_DMATCRB 0x0018
274 #define RCAR_DMATSRB 0x0038
275 #define RCAR_DMACHCRB 0x001c
276 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
277 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
278 #define RCAR_DMACHCRB_DPTR_SHIFT 16
279 #define RCAR_DMACHCRB_DRST (1 << 15)
280 #define RCAR_DMACHCRB_DTS (1 << 8)
281 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
282 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
283 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
284 #define RCAR_DMARS 0x0040
285 #define RCAR_DMABUFCR 0x0048
286 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
287 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
288 #define RCAR_DMADPBASE 0x0050
289 #define RCAR_DMADPBASE_MASK 0xfffffff0
290 #define RCAR_DMADPBASE_SEL (1 << 0)
291 #define RCAR_DMADPCR 0x0054
292 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
293 #define RCAR_DMAFIXSAR 0x0010
294 #define RCAR_DMAFIXDAR 0x0014
295 #define RCAR_DMAFIXDPBASE 0x0060
297 /* Hardcode the MEMCPY transfer size to 4 bytes. */
298 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
300 /* -----------------------------------------------------------------------------
304 static void rcar_dmac_write(struct rcar_dmac
*dmac
, u32 reg
, u32 data
)
306 if (reg
== RCAR_DMAOR
)
307 writew(data
, dmac
->iomem
+ reg
);
309 writel(data
, dmac
->iomem
+ reg
);
312 static u32
rcar_dmac_read(struct rcar_dmac
*dmac
, u32 reg
)
314 if (reg
== RCAR_DMAOR
)
315 return readw(dmac
->iomem
+ reg
);
317 return readl(dmac
->iomem
+ reg
);
320 static u32
rcar_dmac_chan_read(struct rcar_dmac_chan
*chan
, u32 reg
)
322 if (reg
== RCAR_DMARS
)
323 return readw(chan
->iomem
+ reg
);
325 return readl(chan
->iomem
+ reg
);
328 static void rcar_dmac_chan_write(struct rcar_dmac_chan
*chan
, u32 reg
, u32 data
)
330 if (reg
== RCAR_DMARS
)
331 writew(data
, chan
->iomem
+ reg
);
333 writel(data
, chan
->iomem
+ reg
);
336 /* -----------------------------------------------------------------------------
337 * Initialization and configuration
340 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan
*chan
)
342 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
344 return !!(chcr
& (RCAR_DMACHCR_DE
| RCAR_DMACHCR_TE
));
347 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan
*chan
)
349 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
350 u32 chcr
= desc
->chcr
;
352 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan
));
354 if (chan
->mid_rid
>= 0)
355 rcar_dmac_chan_write(chan
, RCAR_DMARS
, chan
->mid_rid
);
357 if (desc
->hwdescs
.use
) {
358 struct rcar_dmac_xfer_chunk
*chunk
=
359 list_first_entry(&desc
->chunks
,
360 struct rcar_dmac_xfer_chunk
, node
);
362 dev_dbg(chan
->chan
.device
->dev
,
363 "chan%u: queue desc %p: %u@%pad\n",
364 chan
->index
, desc
, desc
->nchunks
, &desc
->hwdescs
.dma
);
366 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
367 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
368 chunk
->src_addr
>> 32);
369 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
370 chunk
->dst_addr
>> 32);
371 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDPBASE
,
372 desc
->hwdescs
.dma
>> 32);
374 rcar_dmac_chan_write(chan
, RCAR_DMADPBASE
,
375 (desc
->hwdescs
.dma
& 0xfffffff0) |
377 rcar_dmac_chan_write(chan
, RCAR_DMACHCRB
,
378 RCAR_DMACHCRB_DCNT(desc
->nchunks
- 1) |
382 * Errata: When descriptor memory is accessed through an IOMMU
383 * the DMADAR register isn't initialized automatically from the
384 * first descriptor at beginning of transfer by the DMAC like it
385 * should. Initialize it manually with the destination address
386 * of the first chunk.
388 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
389 chunk
->dst_addr
& 0xffffffff);
392 * Program the descriptor stage interrupt to occur after the end
393 * of the first stage.
395 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(1));
397 chcr
|= RCAR_DMACHCR_RPT_SAR
| RCAR_DMACHCR_RPT_DAR
398 | RCAR_DMACHCR_RPT_TCR
| RCAR_DMACHCR_DPB
;
401 * If the descriptor isn't cyclic enable normal descriptor mode
402 * and the transfer completion interrupt.
405 chcr
|= RCAR_DMACHCR_DPM_ENABLED
| RCAR_DMACHCR_IE
;
407 * If the descriptor is cyclic and has a callback enable the
408 * descriptor stage interrupt in infinite repeat mode.
410 else if (desc
->async_tx
.callback
)
411 chcr
|= RCAR_DMACHCR_DPM_INFINITE
| RCAR_DMACHCR_DSIE
;
413 * Otherwise just select infinite repeat mode without any
417 chcr
|= RCAR_DMACHCR_DPM_INFINITE
;
419 struct rcar_dmac_xfer_chunk
*chunk
= desc
->running
;
421 dev_dbg(chan
->chan
.device
->dev
,
422 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
423 chan
->index
, chunk
, chunk
->size
, &chunk
->src_addr
,
426 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
427 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
428 chunk
->src_addr
>> 32);
429 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
430 chunk
->dst_addr
>> 32);
432 rcar_dmac_chan_write(chan
, RCAR_DMASAR
,
433 chunk
->src_addr
& 0xffffffff);
434 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
435 chunk
->dst_addr
& 0xffffffff);
436 rcar_dmac_chan_write(chan
, RCAR_DMATCR
,
437 chunk
->size
>> desc
->xfer_shift
);
439 chcr
|= RCAR_DMACHCR_DPM_DISABLED
| RCAR_DMACHCR_IE
;
442 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
,
443 chcr
| RCAR_DMACHCR_DE
| RCAR_DMACHCR_CAIE
);
446 static int rcar_dmac_init(struct rcar_dmac
*dmac
)
450 /* Clear all channels and enable the DMAC globally. */
451 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, dmac
->channels_mask
);
452 rcar_dmac_write(dmac
, RCAR_DMAOR
,
453 RCAR_DMAOR_PRI_FIXED
| RCAR_DMAOR_DME
);
455 dmaor
= rcar_dmac_read(dmac
, RCAR_DMAOR
);
456 if ((dmaor
& (RCAR_DMAOR_AE
| RCAR_DMAOR_DME
)) != RCAR_DMAOR_DME
) {
457 dev_warn(dmac
->dev
, "DMAOR initialization failed.\n");
464 /* -----------------------------------------------------------------------------
465 * Descriptors submission
468 static dma_cookie_t
rcar_dmac_tx_submit(struct dma_async_tx_descriptor
*tx
)
470 struct rcar_dmac_chan
*chan
= to_rcar_dmac_chan(tx
->chan
);
471 struct rcar_dmac_desc
*desc
= to_rcar_dmac_desc(tx
);
475 spin_lock_irqsave(&chan
->lock
, flags
);
477 cookie
= dma_cookie_assign(tx
);
479 dev_dbg(chan
->chan
.device
->dev
, "chan%u: submit #%d@%p\n",
480 chan
->index
, tx
->cookie
, desc
);
482 list_add_tail(&desc
->node
, &chan
->desc
.pending
);
483 desc
->running
= list_first_entry(&desc
->chunks
,
484 struct rcar_dmac_xfer_chunk
, node
);
486 spin_unlock_irqrestore(&chan
->lock
, flags
);
491 /* -----------------------------------------------------------------------------
492 * Descriptors allocation and free
496 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
497 * @chan: the DMA channel
498 * @gfp: allocation flags
500 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
502 struct rcar_dmac_desc_page
*page
;
507 page
= (void *)get_zeroed_page(gfp
);
511 for (i
= 0; i
< RCAR_DMAC_DESCS_PER_PAGE
; ++i
) {
512 struct rcar_dmac_desc
*desc
= &page
->descs
[i
];
514 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->chan
);
515 desc
->async_tx
.tx_submit
= rcar_dmac_tx_submit
;
516 INIT_LIST_HEAD(&desc
->chunks
);
518 list_add_tail(&desc
->node
, &list
);
521 spin_lock_irqsave(&chan
->lock
, flags
);
522 list_splice_tail(&list
, &chan
->desc
.free
);
523 list_add_tail(&page
->node
, &chan
->desc
.pages
);
524 spin_unlock_irqrestore(&chan
->lock
, flags
);
530 * rcar_dmac_desc_put - Release a DMA transfer descriptor
531 * @chan: the DMA channel
532 * @desc: the descriptor
534 * Put the descriptor and its transfer chunk descriptors back in the channel's
535 * free descriptors lists. The descriptor's chunks list will be reinitialized to
536 * an empty list as a result.
538 * The descriptor must have been removed from the channel's lists before calling
541 static void rcar_dmac_desc_put(struct rcar_dmac_chan
*chan
,
542 struct rcar_dmac_desc
*desc
)
546 spin_lock_irqsave(&chan
->lock
, flags
);
547 list_splice_tail_init(&desc
->chunks
, &chan
->desc
.chunks_free
);
548 list_add(&desc
->node
, &chan
->desc
.free
);
549 spin_unlock_irqrestore(&chan
->lock
, flags
);
552 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan
*chan
)
554 struct rcar_dmac_desc
*desc
, *_desc
;
559 * We have to temporarily move all descriptors from the wait list to a
560 * local list as iterating over the wait list, even with
561 * list_for_each_entry_safe, isn't safe if we release the channel lock
562 * around the rcar_dmac_desc_put() call.
564 spin_lock_irqsave(&chan
->lock
, flags
);
565 list_splice_init(&chan
->desc
.wait
, &list
);
566 spin_unlock_irqrestore(&chan
->lock
, flags
);
568 list_for_each_entry_safe(desc
, _desc
, &list
, node
) {
569 if (async_tx_test_ack(&desc
->async_tx
)) {
570 list_del(&desc
->node
);
571 rcar_dmac_desc_put(chan
, desc
);
575 if (list_empty(&list
))
578 /* Put the remaining descriptors back in the wait list. */
579 spin_lock_irqsave(&chan
->lock
, flags
);
580 list_splice(&list
, &chan
->desc
.wait
);
581 spin_unlock_irqrestore(&chan
->lock
, flags
);
585 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
586 * @chan: the DMA channel
588 * Locking: This function must be called in a non-atomic context.
590 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
593 static struct rcar_dmac_desc
*rcar_dmac_desc_get(struct rcar_dmac_chan
*chan
)
595 struct rcar_dmac_desc
*desc
;
599 /* Recycle acked descriptors before attempting allocation. */
600 rcar_dmac_desc_recycle_acked(chan
);
602 spin_lock_irqsave(&chan
->lock
, flags
);
604 while (list_empty(&chan
->desc
.free
)) {
606 * No free descriptors, allocate a page worth of them and try
607 * again, as someone else could race us to get the newly
608 * allocated descriptors. If the allocation fails return an
611 spin_unlock_irqrestore(&chan
->lock
, flags
);
612 ret
= rcar_dmac_desc_alloc(chan
, GFP_NOWAIT
);
615 spin_lock_irqsave(&chan
->lock
, flags
);
618 desc
= list_first_entry(&chan
->desc
.free
, struct rcar_dmac_desc
, node
);
619 list_del(&desc
->node
);
621 spin_unlock_irqrestore(&chan
->lock
, flags
);
627 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
628 * @chan: the DMA channel
629 * @gfp: allocation flags
631 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
633 struct rcar_dmac_desc_page
*page
;
638 page
= (void *)get_zeroed_page(gfp
);
642 for (i
= 0; i
< RCAR_DMAC_XFER_CHUNKS_PER_PAGE
; ++i
) {
643 struct rcar_dmac_xfer_chunk
*chunk
= &page
->chunks
[i
];
645 list_add_tail(&chunk
->node
, &list
);
648 spin_lock_irqsave(&chan
->lock
, flags
);
649 list_splice_tail(&list
, &chan
->desc
.chunks_free
);
650 list_add_tail(&page
->node
, &chan
->desc
.pages
);
651 spin_unlock_irqrestore(&chan
->lock
, flags
);
657 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
658 * @chan: the DMA channel
660 * Locking: This function must be called in a non-atomic context.
662 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
663 * descriptor can be allocated.
665 static struct rcar_dmac_xfer_chunk
*
666 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan
*chan
)
668 struct rcar_dmac_xfer_chunk
*chunk
;
672 spin_lock_irqsave(&chan
->lock
, flags
);
674 while (list_empty(&chan
->desc
.chunks_free
)) {
676 * No free descriptors, allocate a page worth of them and try
677 * again, as someone else could race us to get the newly
678 * allocated descriptors. If the allocation fails return an
681 spin_unlock_irqrestore(&chan
->lock
, flags
);
682 ret
= rcar_dmac_xfer_chunk_alloc(chan
, GFP_NOWAIT
);
685 spin_lock_irqsave(&chan
->lock
, flags
);
688 chunk
= list_first_entry(&chan
->desc
.chunks_free
,
689 struct rcar_dmac_xfer_chunk
, node
);
690 list_del(&chunk
->node
);
692 spin_unlock_irqrestore(&chan
->lock
, flags
);
697 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan
*chan
,
698 struct rcar_dmac_desc
*desc
, size_t size
)
701 * dma_alloc_coherent() allocates memory in page size increments. To
702 * avoid reallocating the hardware descriptors when the allocated size
703 * wouldn't change align the requested size to a multiple of the page
706 size
= PAGE_ALIGN(size
);
708 if (desc
->hwdescs
.size
== size
)
711 if (desc
->hwdescs
.mem
) {
712 dma_free_coherent(chan
->chan
.device
->dev
, desc
->hwdescs
.size
,
713 desc
->hwdescs
.mem
, desc
->hwdescs
.dma
);
714 desc
->hwdescs
.mem
= NULL
;
715 desc
->hwdescs
.size
= 0;
721 desc
->hwdescs
.mem
= dma_alloc_coherent(chan
->chan
.device
->dev
, size
,
722 &desc
->hwdescs
.dma
, GFP_NOWAIT
);
723 if (!desc
->hwdescs
.mem
)
726 desc
->hwdescs
.size
= size
;
729 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan
*chan
,
730 struct rcar_dmac_desc
*desc
)
732 struct rcar_dmac_xfer_chunk
*chunk
;
733 struct rcar_dmac_hw_desc
*hwdesc
;
735 rcar_dmac_realloc_hwdesc(chan
, desc
, desc
->nchunks
* sizeof(*hwdesc
));
737 hwdesc
= desc
->hwdescs
.mem
;
741 list_for_each_entry(chunk
, &desc
->chunks
, node
) {
742 hwdesc
->sar
= chunk
->src_addr
;
743 hwdesc
->dar
= chunk
->dst_addr
;
744 hwdesc
->tcr
= chunk
->size
>> desc
->xfer_shift
;
751 /* -----------------------------------------------------------------------------
754 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan
*chan
)
760 * Ensure that the setting of the DE bit is actually 0 after
763 for (i
= 0; i
< 1024; i
++) {
764 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
765 if (!(chcr
& RCAR_DMACHCR_DE
))
770 dev_err(chan
->chan
.device
->dev
, "CHCR DE check error\n");
773 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan
*chan
)
775 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
777 /* set DE=0 and flush remaining data */
778 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, (chcr
& ~RCAR_DMACHCR_DE
));
780 /* make sure all remaining data was flushed */
781 rcar_dmac_chcr_de_barrier(chan
);
784 static void rcar_dmac_chan_halt(struct rcar_dmac_chan
*chan
)
786 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
788 chcr
&= ~(RCAR_DMACHCR_DSE
| RCAR_DMACHCR_DSIE
| RCAR_DMACHCR_IE
|
789 RCAR_DMACHCR_TE
| RCAR_DMACHCR_DE
|
790 RCAR_DMACHCR_CAE
| RCAR_DMACHCR_CAIE
);
791 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
);
792 rcar_dmac_chcr_de_barrier(chan
);
795 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan
*chan
)
797 struct rcar_dmac_desc
*desc
, *_desc
;
801 spin_lock_irqsave(&chan
->lock
, flags
);
803 /* Move all non-free descriptors to the local lists. */
804 list_splice_init(&chan
->desc
.pending
, &descs
);
805 list_splice_init(&chan
->desc
.active
, &descs
);
806 list_splice_init(&chan
->desc
.done
, &descs
);
807 list_splice_init(&chan
->desc
.wait
, &descs
);
809 chan
->desc
.running
= NULL
;
811 spin_unlock_irqrestore(&chan
->lock
, flags
);
813 list_for_each_entry_safe(desc
, _desc
, &descs
, node
) {
814 list_del(&desc
->node
);
815 rcar_dmac_desc_put(chan
, desc
);
819 static void rcar_dmac_stop_all_chan(struct rcar_dmac
*dmac
)
823 /* Stop all channels. */
824 for (i
= 0; i
< dmac
->n_channels
; ++i
) {
825 struct rcar_dmac_chan
*chan
= &dmac
->channels
[i
];
827 if (!(dmac
->channels_mask
& BIT(i
)))
830 /* Stop and reinitialize the channel. */
831 spin_lock_irq(&chan
->lock
);
832 rcar_dmac_chan_halt(chan
);
833 spin_unlock_irq(&chan
->lock
);
837 static int rcar_dmac_chan_pause(struct dma_chan
*chan
)
840 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
842 spin_lock_irqsave(&rchan
->lock
, flags
);
843 rcar_dmac_clear_chcr_de(rchan
);
844 spin_unlock_irqrestore(&rchan
->lock
, flags
);
849 /* -----------------------------------------------------------------------------
850 * Descriptors preparation
853 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan
*chan
,
854 struct rcar_dmac_desc
*desc
)
856 static const u32 chcr_ts
[] = {
857 RCAR_DMACHCR_TS_1B
, RCAR_DMACHCR_TS_2B
,
858 RCAR_DMACHCR_TS_4B
, RCAR_DMACHCR_TS_8B
,
859 RCAR_DMACHCR_TS_16B
, RCAR_DMACHCR_TS_32B
,
863 unsigned int xfer_size
;
866 switch (desc
->direction
) {
868 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_FIXED
869 | RCAR_DMACHCR_RS_DMARS
;
870 xfer_size
= chan
->src
.xfer_size
;
874 chcr
= RCAR_DMACHCR_DM_FIXED
| RCAR_DMACHCR_SM_INC
875 | RCAR_DMACHCR_RS_DMARS
;
876 xfer_size
= chan
->dst
.xfer_size
;
881 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_INC
882 | RCAR_DMACHCR_RS_AUTO
;
883 xfer_size
= RCAR_DMAC_MEMCPY_XFER_SIZE
;
887 desc
->xfer_shift
= ilog2(xfer_size
);
888 desc
->chcr
= chcr
| chcr_ts
[desc
->xfer_shift
];
892 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
894 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
895 * converted to scatter-gather to guarantee consistent locking and a correct
896 * list manipulation. For slave DMA direction carries the usual meaning, and,
897 * logically, the SG list is RAM and the addr variable contains slave address,
898 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
899 * and the SG list contains only one element and points at the source buffer.
901 static struct dma_async_tx_descriptor
*
902 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan
*chan
, struct scatterlist
*sgl
,
903 unsigned int sg_len
, dma_addr_t dev_addr
,
904 enum dma_transfer_direction dir
, unsigned long dma_flags
,
907 struct rcar_dmac_xfer_chunk
*chunk
;
908 struct rcar_dmac_desc
*desc
;
909 struct scatterlist
*sg
;
910 unsigned int nchunks
= 0;
911 unsigned int max_chunk_size
;
912 unsigned int full_size
= 0;
913 bool cross_boundary
= false;
915 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
920 desc
= rcar_dmac_desc_get(chan
);
924 desc
->async_tx
.flags
= dma_flags
;
925 desc
->async_tx
.cookie
= -EBUSY
;
927 desc
->cyclic
= cyclic
;
928 desc
->direction
= dir
;
930 rcar_dmac_chan_configure_desc(chan
, desc
);
932 max_chunk_size
= RCAR_DMATCR_MASK
<< desc
->xfer_shift
;
935 * Allocate and fill the transfer chunk descriptors. We own the only
936 * reference to the DMA descriptor, there's no need for locking.
938 for_each_sg(sgl
, sg
, sg_len
, i
) {
939 dma_addr_t mem_addr
= sg_dma_address(sg
);
940 unsigned int len
= sg_dma_len(sg
);
944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
946 high_dev_addr
= dev_addr
>> 32;
947 high_mem_addr
= mem_addr
>> 32;
950 if ((dev_addr
>> 32 != high_dev_addr
) ||
951 (mem_addr
>> 32 != high_mem_addr
))
952 cross_boundary
= true;
955 unsigned int size
= min(len
, max_chunk_size
);
957 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
959 * Prevent individual transfers from crossing 4GB
962 if (dev_addr
>> 32 != (dev_addr
+ size
- 1) >> 32) {
963 size
= ALIGN(dev_addr
, 1ULL << 32) - dev_addr
;
964 cross_boundary
= true;
966 if (mem_addr
>> 32 != (mem_addr
+ size
- 1) >> 32) {
967 size
= ALIGN(mem_addr
, 1ULL << 32) - mem_addr
;
968 cross_boundary
= true;
972 chunk
= rcar_dmac_xfer_chunk_get(chan
);
974 rcar_dmac_desc_put(chan
, desc
);
978 if (dir
== DMA_DEV_TO_MEM
) {
979 chunk
->src_addr
= dev_addr
;
980 chunk
->dst_addr
= mem_addr
;
982 chunk
->src_addr
= mem_addr
;
983 chunk
->dst_addr
= dev_addr
;
988 dev_dbg(chan
->chan
.device
->dev
,
989 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
990 chan
->index
, chunk
, desc
, i
, sg
, size
, len
,
991 &chunk
->src_addr
, &chunk
->dst_addr
);
994 if (dir
== DMA_MEM_TO_MEM
)
999 list_add_tail(&chunk
->node
, &desc
->chunks
);
1004 desc
->nchunks
= nchunks
;
1005 desc
->size
= full_size
;
1008 * Use hardware descriptor lists if possible when more than one chunk
1009 * needs to be transferred (otherwise they don't make much sense).
1011 * Source/Destination address should be located in same 4GiB region
1012 * in the 40bit address space when it uses Hardware descriptor,
1013 * and cross_boundary is checking it.
1015 desc
->hwdescs
.use
= !cross_boundary
&& nchunks
> 1;
1016 if (desc
->hwdescs
.use
) {
1017 if (rcar_dmac_fill_hwdesc(chan
, desc
) < 0)
1018 desc
->hwdescs
.use
= false;
1021 return &desc
->async_tx
;
1024 /* -----------------------------------------------------------------------------
1025 * DMA engine operations
1028 static int rcar_dmac_alloc_chan_resources(struct dma_chan
*chan
)
1030 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1033 INIT_LIST_HEAD(&rchan
->desc
.chunks_free
);
1034 INIT_LIST_HEAD(&rchan
->desc
.pages
);
1036 /* Preallocate descriptors. */
1037 ret
= rcar_dmac_xfer_chunk_alloc(rchan
, GFP_KERNEL
);
1041 ret
= rcar_dmac_desc_alloc(rchan
, GFP_KERNEL
);
1045 return pm_runtime_get_sync(chan
->device
->dev
);
1048 static void rcar_dmac_free_chan_resources(struct dma_chan
*chan
)
1050 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1051 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1052 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1053 struct rcar_dmac_desc_page
*page
, *_page
;
1054 struct rcar_dmac_desc
*desc
;
1057 /* Protect against ISR */
1058 spin_lock_irq(&rchan
->lock
);
1059 rcar_dmac_chan_halt(rchan
);
1060 spin_unlock_irq(&rchan
->lock
);
1063 * Now no new interrupts will occur, but one might already be
1064 * running. Wait for it to finish before freeing resources.
1066 synchronize_irq(rchan
->irq
);
1068 if (rchan
->mid_rid
>= 0) {
1069 /* The caller is holding dma_list_mutex */
1070 clear_bit(rchan
->mid_rid
, dmac
->modules
);
1071 rchan
->mid_rid
= -EINVAL
;
1074 list_splice_init(&rchan
->desc
.free
, &list
);
1075 list_splice_init(&rchan
->desc
.pending
, &list
);
1076 list_splice_init(&rchan
->desc
.active
, &list
);
1077 list_splice_init(&rchan
->desc
.done
, &list
);
1078 list_splice_init(&rchan
->desc
.wait
, &list
);
1080 rchan
->desc
.running
= NULL
;
1082 list_for_each_entry(desc
, &list
, node
)
1083 rcar_dmac_realloc_hwdesc(rchan
, desc
, 0);
1085 list_for_each_entry_safe(page
, _page
, &rchan
->desc
.pages
, node
) {
1086 list_del(&page
->node
);
1087 free_page((unsigned long)page
);
1090 /* Remove slave mapping if present. */
1091 if (map
->slave
.xfer_size
) {
1092 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1093 map
->slave
.xfer_size
, map
->dir
, 0);
1094 map
->slave
.xfer_size
= 0;
1097 pm_runtime_put(chan
->device
->dev
);
1100 static struct dma_async_tx_descriptor
*
1101 rcar_dmac_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dma_dest
,
1102 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1104 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1105 struct scatterlist sgl
;
1110 sg_init_table(&sgl
, 1);
1111 sg_set_page(&sgl
, pfn_to_page(PFN_DOWN(dma_src
)), len
,
1112 offset_in_page(dma_src
));
1113 sg_dma_address(&sgl
) = dma_src
;
1114 sg_dma_len(&sgl
) = len
;
1116 return rcar_dmac_chan_prep_sg(rchan
, &sgl
, 1, dma_dest
,
1117 DMA_MEM_TO_MEM
, flags
, false);
1120 static int rcar_dmac_map_slave_addr(struct dma_chan
*chan
,
1121 enum dma_transfer_direction dir
)
1123 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1124 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1125 phys_addr_t dev_addr
;
1127 enum dma_data_direction dev_dir
;
1129 if (dir
== DMA_DEV_TO_MEM
) {
1130 dev_addr
= rchan
->src
.slave_addr
;
1131 dev_size
= rchan
->src
.xfer_size
;
1132 dev_dir
= DMA_TO_DEVICE
;
1134 dev_addr
= rchan
->dst
.slave_addr
;
1135 dev_size
= rchan
->dst
.xfer_size
;
1136 dev_dir
= DMA_FROM_DEVICE
;
1139 /* Reuse current map if possible. */
1140 if (dev_addr
== map
->slave
.slave_addr
&&
1141 dev_size
== map
->slave
.xfer_size
&&
1142 dev_dir
== map
->dir
)
1145 /* Remove old mapping if present. */
1146 if (map
->slave
.xfer_size
)
1147 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1148 map
->slave
.xfer_size
, map
->dir
, 0);
1149 map
->slave
.xfer_size
= 0;
1151 /* Create new slave address map. */
1152 map
->addr
= dma_map_resource(chan
->device
->dev
, dev_addr
, dev_size
,
1155 if (dma_mapping_error(chan
->device
->dev
, map
->addr
)) {
1156 dev_err(chan
->device
->dev
,
1157 "chan%u: failed to map %zx@%pap", rchan
->index
,
1158 dev_size
, &dev_addr
);
1162 dev_dbg(chan
->device
->dev
, "chan%u: map %zx@%pap to %pad dir: %s\n",
1163 rchan
->index
, dev_size
, &dev_addr
, &map
->addr
,
1164 dev_dir
== DMA_TO_DEVICE
? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1166 map
->slave
.slave_addr
= dev_addr
;
1167 map
->slave
.xfer_size
= dev_size
;
1173 static struct dma_async_tx_descriptor
*
1174 rcar_dmac_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1175 unsigned int sg_len
, enum dma_transfer_direction dir
,
1176 unsigned long flags
, void *context
)
1178 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1180 /* Someone calling slave DMA on a generic channel? */
1181 if (rchan
->mid_rid
< 0 || !sg_len
|| !sg_dma_len(sgl
)) {
1182 dev_warn(chan
->device
->dev
,
1183 "%s: bad parameter: len=%d, id=%d\n",
1184 __func__
, sg_len
, rchan
->mid_rid
);
1188 if (rcar_dmac_map_slave_addr(chan
, dir
))
1191 return rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1195 #define RCAR_DMAC_MAX_SG_LEN 32
1197 static struct dma_async_tx_descriptor
*
1198 rcar_dmac_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t buf_addr
,
1199 size_t buf_len
, size_t period_len
,
1200 enum dma_transfer_direction dir
, unsigned long flags
)
1202 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1203 struct dma_async_tx_descriptor
*desc
;
1204 struct scatterlist
*sgl
;
1205 unsigned int sg_len
;
1208 /* Someone calling slave DMA on a generic channel? */
1209 if (rchan
->mid_rid
< 0 || buf_len
< period_len
) {
1210 dev_warn(chan
->device
->dev
,
1211 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1212 __func__
, buf_len
, period_len
, rchan
->mid_rid
);
1216 if (rcar_dmac_map_slave_addr(chan
, dir
))
1219 sg_len
= buf_len
/ period_len
;
1220 if (sg_len
> RCAR_DMAC_MAX_SG_LEN
) {
1221 dev_err(chan
->device
->dev
,
1222 "chan%u: sg length %d exceeds limit %d",
1223 rchan
->index
, sg_len
, RCAR_DMAC_MAX_SG_LEN
);
1228 * Allocate the sg list dynamically as it would consume too much stack
1231 sgl
= kcalloc(sg_len
, sizeof(*sgl
), GFP_NOWAIT
);
1235 sg_init_table(sgl
, sg_len
);
1237 for (i
= 0; i
< sg_len
; ++i
) {
1238 dma_addr_t src
= buf_addr
+ (period_len
* i
);
1240 sg_set_page(&sgl
[i
], pfn_to_page(PFN_DOWN(src
)), period_len
,
1241 offset_in_page(src
));
1242 sg_dma_address(&sgl
[i
]) = src
;
1243 sg_dma_len(&sgl
[i
]) = period_len
;
1246 desc
= rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1253 static int rcar_dmac_device_config(struct dma_chan
*chan
,
1254 struct dma_slave_config
*cfg
)
1256 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1259 * We could lock this, but you shouldn't be configuring the
1260 * channel, while using it...
1262 rchan
->src
.slave_addr
= cfg
->src_addr
;
1263 rchan
->dst
.slave_addr
= cfg
->dst_addr
;
1264 rchan
->src
.xfer_size
= cfg
->src_addr_width
;
1265 rchan
->dst
.xfer_size
= cfg
->dst_addr_width
;
1270 static int rcar_dmac_chan_terminate_all(struct dma_chan
*chan
)
1272 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1273 unsigned long flags
;
1275 spin_lock_irqsave(&rchan
->lock
, flags
);
1276 rcar_dmac_chan_halt(rchan
);
1277 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1280 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1284 rcar_dmac_chan_reinit(rchan
);
1289 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan
*chan
,
1290 dma_cookie_t cookie
)
1292 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1293 struct rcar_dmac_xfer_chunk
*running
= NULL
;
1294 struct rcar_dmac_xfer_chunk
*chunk
;
1295 enum dma_status status
;
1296 unsigned int residue
= 0;
1297 unsigned int dptr
= 0;
1306 * If the cookie corresponds to a descriptor that has been completed
1307 * there is no residue. The same check has already been performed by the
1308 * caller but without holding the channel lock, so the descriptor could
1311 status
= dma_cookie_status(&chan
->chan
, cookie
, NULL
);
1312 if (status
== DMA_COMPLETE
)
1316 * If the cookie doesn't correspond to the currently running transfer
1317 * then the descriptor hasn't been processed yet, and the residue is
1318 * equal to the full descriptor size.
1319 * Also, a client driver is possible to call this function before
1320 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1321 * will be the next descriptor, and the done list will appear. So, if
1322 * the argument cookie matches the done list's cookie, we can assume
1323 * the residue is zero.
1325 if (cookie
!= desc
->async_tx
.cookie
) {
1326 list_for_each_entry(desc
, &chan
->desc
.done
, node
) {
1327 if (cookie
== desc
->async_tx
.cookie
)
1330 list_for_each_entry(desc
, &chan
->desc
.pending
, node
) {
1331 if (cookie
== desc
->async_tx
.cookie
)
1334 list_for_each_entry(desc
, &chan
->desc
.active
, node
) {
1335 if (cookie
== desc
->async_tx
.cookie
)
1340 * No descriptor found for the cookie, there's thus no residue.
1341 * This shouldn't happen if the calling driver passes a correct
1344 WARN(1, "No descriptor for cookie!");
1349 * We need to read two registers.
1350 * Make sure the control register does not skip to next chunk
1351 * while reading the counter.
1352 * Trying it 3 times should be enough: Initial read, retry, retry
1355 for (i
= 0; i
< 3; i
++) {
1356 chcrb
= rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1357 RCAR_DMACHCRB_DPTR_MASK
;
1358 tcrb
= rcar_dmac_chan_read(chan
, RCAR_DMATCRB
);
1359 /* Still the same? */
1360 if (chcrb
== (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1361 RCAR_DMACHCRB_DPTR_MASK
))
1364 WARN_ONCE(i
>= 3, "residue might be not continuous!");
1367 * In descriptor mode the descriptor running pointer is not maintained
1368 * by the interrupt handler, find the running descriptor from the
1369 * descriptor pointer field in the CHCRB register. In non-descriptor
1370 * mode just use the running descriptor pointer.
1372 if (desc
->hwdescs
.use
) {
1373 dptr
= chcrb
>> RCAR_DMACHCRB_DPTR_SHIFT
;
1375 dptr
= desc
->nchunks
;
1377 WARN_ON(dptr
>= desc
->nchunks
);
1379 running
= desc
->running
;
1382 /* Compute the size of all chunks still to be transferred. */
1383 list_for_each_entry_reverse(chunk
, &desc
->chunks
, node
) {
1384 if (chunk
== running
|| ++dptr
== desc
->nchunks
)
1387 residue
+= chunk
->size
;
1390 /* Add the residue for the current chunk. */
1391 residue
+= tcrb
<< desc
->xfer_shift
;
1396 static enum dma_status
rcar_dmac_tx_status(struct dma_chan
*chan
,
1397 dma_cookie_t cookie
,
1398 struct dma_tx_state
*txstate
)
1400 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1401 enum dma_status status
;
1402 unsigned long flags
;
1403 unsigned int residue
;
1406 status
= dma_cookie_status(chan
, cookie
, txstate
);
1407 if (status
== DMA_COMPLETE
|| !txstate
)
1410 spin_lock_irqsave(&rchan
->lock
, flags
);
1411 residue
= rcar_dmac_chan_get_residue(rchan
, cookie
);
1412 cyclic
= rchan
->desc
.running
? rchan
->desc
.running
->cyclic
: false;
1413 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1415 /* if there's no residue, the cookie is complete */
1416 if (!residue
&& !cyclic
)
1417 return DMA_COMPLETE
;
1419 dma_set_residue(txstate
, residue
);
1424 static void rcar_dmac_issue_pending(struct dma_chan
*chan
)
1426 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1427 unsigned long flags
;
1429 spin_lock_irqsave(&rchan
->lock
, flags
);
1431 if (list_empty(&rchan
->desc
.pending
))
1434 /* Append the pending list to the active list. */
1435 list_splice_tail_init(&rchan
->desc
.pending
, &rchan
->desc
.active
);
1438 * If no transfer is running pick the first descriptor from the active
1439 * list and start the transfer.
1441 if (!rchan
->desc
.running
) {
1442 struct rcar_dmac_desc
*desc
;
1444 desc
= list_first_entry(&rchan
->desc
.active
,
1445 struct rcar_dmac_desc
, node
);
1446 rchan
->desc
.running
= desc
;
1448 rcar_dmac_chan_start_xfer(rchan
);
1452 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1455 static void rcar_dmac_device_synchronize(struct dma_chan
*chan
)
1457 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1459 synchronize_irq(rchan
->irq
);
1462 /* -----------------------------------------------------------------------------
1466 static irqreturn_t
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan
*chan
)
1468 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1471 if (WARN_ON(!desc
|| !desc
->cyclic
)) {
1473 * This should never happen, there should always be a running
1474 * cyclic descriptor when a descriptor stage end interrupt is
1475 * triggered. Warn and return.
1480 /* Program the interrupt pointer to the next stage. */
1481 stage
= (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1482 RCAR_DMACHCRB_DPTR_MASK
) >> RCAR_DMACHCRB_DPTR_SHIFT
;
1483 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(stage
));
1485 return IRQ_WAKE_THREAD
;
1488 static irqreturn_t
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan
*chan
)
1490 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1491 irqreturn_t ret
= IRQ_WAKE_THREAD
;
1493 if (WARN_ON_ONCE(!desc
)) {
1495 * This should never happen, there should always be a running
1496 * descriptor when a transfer end interrupt is triggered. Warn
1503 * The transfer end interrupt isn't generated for each chunk when using
1504 * descriptor mode. Only update the running chunk pointer in
1505 * non-descriptor mode.
1507 if (!desc
->hwdescs
.use
) {
1509 * If we haven't completed the last transfer chunk simply move
1510 * to the next one. Only wake the IRQ thread if the transfer is
1513 if (!list_is_last(&desc
->running
->node
, &desc
->chunks
)) {
1514 desc
->running
= list_next_entry(desc
->running
, node
);
1521 * We've completed the last transfer chunk. If the transfer is
1522 * cyclic, move back to the first one.
1526 list_first_entry(&desc
->chunks
,
1527 struct rcar_dmac_xfer_chunk
,
1533 /* The descriptor is complete, move it to the done list. */
1534 list_move_tail(&desc
->node
, &chan
->desc
.done
);
1536 /* Queue the next descriptor, if any. */
1537 if (!list_empty(&chan
->desc
.active
))
1538 chan
->desc
.running
= list_first_entry(&chan
->desc
.active
,
1539 struct rcar_dmac_desc
,
1542 chan
->desc
.running
= NULL
;
1545 if (chan
->desc
.running
)
1546 rcar_dmac_chan_start_xfer(chan
);
1551 static irqreturn_t
rcar_dmac_isr_channel(int irq
, void *dev
)
1553 u32 mask
= RCAR_DMACHCR_DSE
| RCAR_DMACHCR_TE
;
1554 struct rcar_dmac_chan
*chan
= dev
;
1555 irqreturn_t ret
= IRQ_NONE
;
1556 bool reinit
= false;
1559 spin_lock(&chan
->lock
);
1561 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
1562 if (chcr
& RCAR_DMACHCR_CAE
) {
1563 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->chan
.device
);
1566 * We don't need to call rcar_dmac_chan_halt()
1567 * because channel is already stopped in error case.
1568 * We need to clear register and check DE bit as recovery.
1570 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, 1 << chan
->index
);
1571 rcar_dmac_chcr_de_barrier(chan
);
1576 if (chcr
& RCAR_DMACHCR_TE
)
1577 mask
|= RCAR_DMACHCR_DE
;
1578 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
& ~mask
);
1579 if (mask
& RCAR_DMACHCR_DE
)
1580 rcar_dmac_chcr_de_barrier(chan
);
1582 if (chcr
& RCAR_DMACHCR_DSE
)
1583 ret
|= rcar_dmac_isr_desc_stage_end(chan
);
1585 if (chcr
& RCAR_DMACHCR_TE
)
1586 ret
|= rcar_dmac_isr_transfer_end(chan
);
1589 spin_unlock(&chan
->lock
);
1592 dev_err(chan
->chan
.device
->dev
, "Channel Address Error\n");
1594 rcar_dmac_chan_reinit(chan
);
1601 static irqreturn_t
rcar_dmac_isr_channel_thread(int irq
, void *dev
)
1603 struct rcar_dmac_chan
*chan
= dev
;
1604 struct rcar_dmac_desc
*desc
;
1605 struct dmaengine_desc_callback cb
;
1607 spin_lock_irq(&chan
->lock
);
1609 /* For cyclic transfers notify the user after every chunk. */
1610 if (chan
->desc
.running
&& chan
->desc
.running
->cyclic
) {
1611 desc
= chan
->desc
.running
;
1612 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1614 if (dmaengine_desc_callback_valid(&cb
)) {
1615 spin_unlock_irq(&chan
->lock
);
1616 dmaengine_desc_callback_invoke(&cb
, NULL
);
1617 spin_lock_irq(&chan
->lock
);
1622 * Call the callback function for all descriptors on the done list and
1623 * move them to the ack wait list.
1625 while (!list_empty(&chan
->desc
.done
)) {
1626 desc
= list_first_entry(&chan
->desc
.done
, struct rcar_dmac_desc
,
1628 dma_cookie_complete(&desc
->async_tx
);
1629 list_del(&desc
->node
);
1631 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1632 if (dmaengine_desc_callback_valid(&cb
)) {
1633 spin_unlock_irq(&chan
->lock
);
1635 * We own the only reference to this descriptor, we can
1636 * safely dereference it without holding the channel
1639 dmaengine_desc_callback_invoke(&cb
, NULL
);
1640 spin_lock_irq(&chan
->lock
);
1643 list_add_tail(&desc
->node
, &chan
->desc
.wait
);
1646 spin_unlock_irq(&chan
->lock
);
1648 /* Recycle all acked descriptors. */
1649 rcar_dmac_desc_recycle_acked(chan
);
1654 /* -----------------------------------------------------------------------------
1655 * OF xlate and channel filter
1658 static bool rcar_dmac_chan_filter(struct dma_chan
*chan
, void *arg
)
1660 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1661 struct of_phandle_args
*dma_spec
= arg
;
1664 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1665 * function knows from which device it wants to allocate a channel from,
1666 * and would be perfectly capable of selecting the channel it wants.
1667 * Forcing it to call dma_request_channel() and iterate through all
1668 * channels from all controllers is just pointless.
1670 if (chan
->device
->device_config
!= rcar_dmac_device_config
)
1673 return !test_and_set_bit(dma_spec
->args
[0], dmac
->modules
);
1676 static struct dma_chan
*rcar_dmac_of_xlate(struct of_phandle_args
*dma_spec
,
1677 struct of_dma
*ofdma
)
1679 struct rcar_dmac_chan
*rchan
;
1680 struct dma_chan
*chan
;
1681 dma_cap_mask_t mask
;
1683 if (dma_spec
->args_count
!= 1)
1686 /* Only slave DMA channels can be allocated via DT */
1688 dma_cap_set(DMA_SLAVE
, mask
);
1690 chan
= __dma_request_channel(&mask
, rcar_dmac_chan_filter
, dma_spec
,
1695 rchan
= to_rcar_dmac_chan(chan
);
1696 rchan
->mid_rid
= dma_spec
->args
[0];
1701 /* -----------------------------------------------------------------------------
1706 static int rcar_dmac_runtime_suspend(struct device
*dev
)
1711 static int rcar_dmac_runtime_resume(struct device
*dev
)
1713 struct rcar_dmac
*dmac
= dev_get_drvdata(dev
);
1715 return rcar_dmac_init(dmac
);
1719 static const struct dev_pm_ops rcar_dmac_pm
= {
1721 * TODO for system sleep/resume:
1722 * - Wait for the current transfer to complete and stop the device,
1723 * - Resume transfers, if any.
1725 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1726 pm_runtime_force_resume
)
1727 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend
, rcar_dmac_runtime_resume
,
1731 /* -----------------------------------------------------------------------------
1735 static int rcar_dmac_chan_probe(struct rcar_dmac
*dmac
,
1736 struct rcar_dmac_chan
*rchan
,
1737 const struct rcar_dmac_of_data
*data
,
1740 struct platform_device
*pdev
= to_platform_device(dmac
->dev
);
1741 struct dma_chan
*chan
= &rchan
->chan
;
1742 char pdev_irqname
[5];
1746 rchan
->index
= index
;
1747 rchan
->iomem
= dmac
->iomem
+ data
->chan_offset_base
+
1748 data
->chan_offset_stride
* index
;
1749 rchan
->mid_rid
= -EINVAL
;
1751 spin_lock_init(&rchan
->lock
);
1753 INIT_LIST_HEAD(&rchan
->desc
.free
);
1754 INIT_LIST_HEAD(&rchan
->desc
.pending
);
1755 INIT_LIST_HEAD(&rchan
->desc
.active
);
1756 INIT_LIST_HEAD(&rchan
->desc
.done
);
1757 INIT_LIST_HEAD(&rchan
->desc
.wait
);
1759 /* Request the channel interrupt. */
1760 sprintf(pdev_irqname
, "ch%u", index
);
1761 rchan
->irq
= platform_get_irq_byname(pdev
, pdev_irqname
);
1765 irqname
= devm_kasprintf(dmac
->dev
, GFP_KERNEL
, "%s:%u",
1766 dev_name(dmac
->dev
), index
);
1771 * Initialize the DMA engine channel and add it to the DMA engine
1774 chan
->device
= &dmac
->engine
;
1775 dma_cookie_init(chan
);
1777 list_add_tail(&chan
->device_node
, &dmac
->engine
.channels
);
1779 ret
= devm_request_threaded_irq(dmac
->dev
, rchan
->irq
,
1780 rcar_dmac_isr_channel
,
1781 rcar_dmac_isr_channel_thread
, 0,
1784 dev_err(dmac
->dev
, "failed to request IRQ %u (%d)\n",
1792 #define RCAR_DMAC_MAX_CHANNELS 32
1794 static int rcar_dmac_parse_of(struct device
*dev
, struct rcar_dmac
*dmac
)
1796 struct device_node
*np
= dev
->of_node
;
1799 ret
= of_property_read_u32(np
, "dma-channels", &dmac
->n_channels
);
1801 dev_err(dev
, "unable to read dma-channels property\n");
1805 /* The hardware and driver don't support more than 32 bits in CHCLR */
1806 if (dmac
->n_channels
<= 0 ||
1807 dmac
->n_channels
>= RCAR_DMAC_MAX_CHANNELS
) {
1808 dev_err(dev
, "invalid number of channels %u\n",
1814 * If the driver is unable to read dma-channel-mask property,
1815 * the driver assumes that it can use all channels.
1817 dmac
->channels_mask
= GENMASK(dmac
->n_channels
- 1, 0);
1818 of_property_read_u32(np
, "dma-channel-mask", &dmac
->channels_mask
);
1820 /* If the property has out-of-channel mask, this driver clears it */
1821 dmac
->channels_mask
&= GENMASK(dmac
->n_channels
- 1, 0);
1826 static int rcar_dmac_probe(struct platform_device
*pdev
)
1828 const enum dma_slave_buswidth widths
= DMA_SLAVE_BUSWIDTH_1_BYTE
|
1829 DMA_SLAVE_BUSWIDTH_2_BYTES
| DMA_SLAVE_BUSWIDTH_4_BYTES
|
1830 DMA_SLAVE_BUSWIDTH_8_BYTES
| DMA_SLAVE_BUSWIDTH_16_BYTES
|
1831 DMA_SLAVE_BUSWIDTH_32_BYTES
| DMA_SLAVE_BUSWIDTH_64_BYTES
;
1832 struct dma_device
*engine
;
1833 struct rcar_dmac
*dmac
;
1834 const struct rcar_dmac_of_data
*data
;
1838 data
= of_device_get_match_data(&pdev
->dev
);
1842 dmac
= devm_kzalloc(&pdev
->dev
, sizeof(*dmac
), GFP_KERNEL
);
1846 dmac
->dev
= &pdev
->dev
;
1847 platform_set_drvdata(pdev
, dmac
);
1848 dmac
->dev
->dma_parms
= &dmac
->parms
;
1849 dma_set_max_seg_size(dmac
->dev
, RCAR_DMATCR_MASK
);
1850 dma_set_mask_and_coherent(dmac
->dev
, DMA_BIT_MASK(40));
1852 ret
= rcar_dmac_parse_of(&pdev
->dev
, dmac
);
1857 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1858 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1859 * is connected to microTLB 0 on currently supported platforms, so we
1860 * can't use it with the IPMMU. As the IOMMU API operates at the device
1861 * level we can't disable it selectively, so ignore channel 0 for now if
1862 * the device is part of an IOMMU group.
1864 if (device_iommu_mapped(&pdev
->dev
))
1865 dmac
->channels_mask
&= ~BIT(0);
1867 dmac
->channels
= devm_kcalloc(&pdev
->dev
, dmac
->n_channels
,
1868 sizeof(*dmac
->channels
), GFP_KERNEL
);
1869 if (!dmac
->channels
)
1872 /* Request resources. */
1873 dmac
->iomem
= devm_platform_ioremap_resource(pdev
, 0);
1874 if (IS_ERR(dmac
->iomem
))
1875 return PTR_ERR(dmac
->iomem
);
1877 /* Enable runtime PM and initialize the device. */
1878 pm_runtime_enable(&pdev
->dev
);
1879 ret
= pm_runtime_get_sync(&pdev
->dev
);
1881 dev_err(&pdev
->dev
, "runtime PM get sync failed (%d)\n", ret
);
1885 ret
= rcar_dmac_init(dmac
);
1886 pm_runtime_put(&pdev
->dev
);
1889 dev_err(&pdev
->dev
, "failed to reset device\n");
1893 /* Initialize engine */
1894 engine
= &dmac
->engine
;
1896 dma_cap_set(DMA_MEMCPY
, engine
->cap_mask
);
1897 dma_cap_set(DMA_SLAVE
, engine
->cap_mask
);
1899 engine
->dev
= &pdev
->dev
;
1900 engine
->copy_align
= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE
);
1902 engine
->src_addr_widths
= widths
;
1903 engine
->dst_addr_widths
= widths
;
1904 engine
->directions
= BIT(DMA_MEM_TO_DEV
) | BIT(DMA_DEV_TO_MEM
);
1905 engine
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1907 engine
->device_alloc_chan_resources
= rcar_dmac_alloc_chan_resources
;
1908 engine
->device_free_chan_resources
= rcar_dmac_free_chan_resources
;
1909 engine
->device_prep_dma_memcpy
= rcar_dmac_prep_dma_memcpy
;
1910 engine
->device_prep_slave_sg
= rcar_dmac_prep_slave_sg
;
1911 engine
->device_prep_dma_cyclic
= rcar_dmac_prep_dma_cyclic
;
1912 engine
->device_config
= rcar_dmac_device_config
;
1913 engine
->device_pause
= rcar_dmac_chan_pause
;
1914 engine
->device_terminate_all
= rcar_dmac_chan_terminate_all
;
1915 engine
->device_tx_status
= rcar_dmac_tx_status
;
1916 engine
->device_issue_pending
= rcar_dmac_issue_pending
;
1917 engine
->device_synchronize
= rcar_dmac_device_synchronize
;
1919 INIT_LIST_HEAD(&engine
->channels
);
1921 for (i
= 0; i
< dmac
->n_channels
; ++i
) {
1922 if (!(dmac
->channels_mask
& BIT(i
)))
1925 ret
= rcar_dmac_chan_probe(dmac
, &dmac
->channels
[i
], data
, i
);
1930 /* Register the DMAC as a DMA provider for DT. */
1931 ret
= of_dma_controller_register(pdev
->dev
.of_node
, rcar_dmac_of_xlate
,
1937 * Register the DMA engine device.
1939 * Default transfer size of 32 bytes requires 32-byte alignment.
1941 ret
= dma_async_device_register(engine
);
1948 of_dma_controller_free(pdev
->dev
.of_node
);
1949 pm_runtime_disable(&pdev
->dev
);
1953 static int rcar_dmac_remove(struct platform_device
*pdev
)
1955 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
1957 of_dma_controller_free(pdev
->dev
.of_node
);
1958 dma_async_device_unregister(&dmac
->engine
);
1960 pm_runtime_disable(&pdev
->dev
);
1965 static void rcar_dmac_shutdown(struct platform_device
*pdev
)
1967 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
1969 rcar_dmac_stop_all_chan(dmac
);
1972 static const struct rcar_dmac_of_data rcar_dmac_data
= {
1973 .chan_offset_base
= 0x8000,
1974 .chan_offset_stride
= 0x80,
1977 static const struct of_device_id rcar_dmac_of_ids
[] = {
1979 .compatible
= "renesas,rcar-dmac",
1980 .data
= &rcar_dmac_data
,
1984 MODULE_DEVICE_TABLE(of
, rcar_dmac_of_ids
);
1986 static struct platform_driver rcar_dmac_driver
= {
1988 .pm
= &rcar_dmac_pm
,
1989 .name
= "rcar-dmac",
1990 .of_match_table
= rcar_dmac_of_ids
,
1992 .probe
= rcar_dmac_probe
,
1993 .remove
= rcar_dmac_remove
,
1994 .shutdown
= rcar_dmac_shutdown
,
1997 module_platform_driver(rcar_dmac_driver
);
1999 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2000 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2001 MODULE_LICENSE("GPL v2");