1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI (STM32_DMA_TCI \
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
72 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
76 | STM32_DMA_SCR_MINC \
77 | STM32_DMA_SCR_PINCOS \
78 | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
80 | STM32_DMA_SCR_TEIE \
81 | STM32_DMA_SCR_DMEIE)
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
102 | STM32_DMA_SFCR_DMDIS)
105 #define STM32_DMA_DEV_TO_MEM 0x00
106 #define STM32_DMA_MEM_TO_DEV 0x01
107 #define STM32_DMA_MEM_TO_MEM 0x02
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW 0x00
111 #define STM32_DMA_PRIORITY_MEDIUM 0x01
112 #define STM32_DMA_PRIORITY_HIGH 0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
121 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
123 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
124 * gather at boundary. Thus it's safer to round down this value on FIFO
127 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
128 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
129 #define STM32_DMA_MAX_CHANNELS 0x08
130 #define STM32_DMA_MAX_REQUEST_ID 0x08
131 #define STM32_DMA_MAX_DATA_PARAM 0x03
132 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
133 #define STM32_DMA_MIN_BURST 4
134 #define STM32_DMA_MAX_BURST 16
137 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
138 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 enum stm32_dma_width
{
146 enum stm32_dma_burst_size
{
147 STM32_DMA_BURST_SINGLE
,
148 STM32_DMA_BURST_INCR4
,
149 STM32_DMA_BURST_INCR8
,
150 STM32_DMA_BURST_INCR16
,
154 * struct stm32_dma_cfg - STM32 DMA custom configuration
155 * @channel_id: channel ID
156 * @request_line: DMA request
157 * @stream_config: 32bit mask specifying the DMA channel configuration
158 * @features: 32bit mask specifying the DMA Feature list
160 struct stm32_dma_cfg
{
167 struct stm32_dma_chan_reg
{
180 struct stm32_dma_sg_req
{
182 struct stm32_dma_chan_reg chan_reg
;
185 struct stm32_dma_desc
{
186 struct virt_dma_desc vdesc
;
189 struct stm32_dma_sg_req sg_req
[];
192 struct stm32_dma_chan
{
193 struct virt_dma_chan vchan
;
198 struct stm32_dma_desc
*desc
;
200 struct dma_slave_config dma_sconfig
;
201 struct stm32_dma_chan_reg chan_reg
;
207 struct stm32_dma_device
{
208 struct dma_device ddev
;
212 struct stm32_dma_chan chan
[STM32_DMA_MAX_CHANNELS
];
215 static struct stm32_dma_device
*stm32_dma_get_dev(struct stm32_dma_chan
*chan
)
217 return container_of(chan
->vchan
.chan
.device
, struct stm32_dma_device
,
221 static struct stm32_dma_chan
*to_stm32_dma_chan(struct dma_chan
*c
)
223 return container_of(c
, struct stm32_dma_chan
, vchan
.chan
);
226 static struct stm32_dma_desc
*to_stm32_dma_desc(struct virt_dma_desc
*vdesc
)
228 return container_of(vdesc
, struct stm32_dma_desc
, vdesc
);
231 static struct device
*chan2dev(struct stm32_dma_chan
*chan
)
233 return &chan
->vchan
.chan
.dev
->device
;
236 static u32
stm32_dma_read(struct stm32_dma_device
*dmadev
, u32 reg
)
238 return readl_relaxed(dmadev
->base
+ reg
);
241 static void stm32_dma_write(struct stm32_dma_device
*dmadev
, u32 reg
, u32 val
)
243 writel_relaxed(val
, dmadev
->base
+ reg
);
246 static int stm32_dma_get_width(struct stm32_dma_chan
*chan
,
247 enum dma_slave_buswidth width
)
250 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
251 return STM32_DMA_BYTE
;
252 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
253 return STM32_DMA_HALF_WORD
;
254 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
255 return STM32_DMA_WORD
;
257 dev_err(chan2dev(chan
), "Dma bus width not supported\n");
262 static enum dma_slave_buswidth
stm32_dma_get_max_width(u32 buf_len
,
265 enum dma_slave_buswidth max_width
;
267 if (threshold
== STM32_DMA_FIFO_THRESHOLD_FULL
)
268 max_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
270 max_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
272 while ((buf_len
< max_width
|| buf_len
% max_width
) &&
273 max_width
> DMA_SLAVE_BUSWIDTH_1_BYTE
)
274 max_width
= max_width
>> 1;
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst
, u32 threshold
,
280 enum dma_slave_buswidth width
)
284 if (width
!= DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
287 * If number of beats fit in several whole bursts
288 * this configuration is allowed.
290 remaining
= ((STM32_DMA_FIFO_SIZE
/ width
) *
291 (threshold
+ 1) / 4) % burst
;
303 static bool stm32_dma_is_burst_possible(u32 buf_len
, u32 threshold
)
306 * Buffer or period length has to be aligned on FIFO depth.
307 * Otherwise bytes may be stuck within FIFO at buffer or period
310 return ((buf_len
% ((threshold
+ 1) * 4)) == 0);
313 static u32
stm32_dma_get_best_burst(u32 buf_len
, u32 max_burst
, u32 threshold
,
314 enum dma_slave_buswidth width
)
316 u32 best_burst
= max_burst
;
318 if (best_burst
== 1 || !stm32_dma_is_burst_possible(buf_len
, threshold
))
321 while ((buf_len
< best_burst
* width
&& best_burst
> 1) ||
322 !stm32_dma_fifo_threshold_is_allowed(best_burst
, threshold
,
324 if (best_burst
> STM32_DMA_MIN_BURST
)
325 best_burst
= best_burst
>> 1;
333 static int stm32_dma_get_burst(struct stm32_dma_chan
*chan
, u32 maxburst
)
338 return STM32_DMA_BURST_SINGLE
;
340 return STM32_DMA_BURST_INCR4
;
342 return STM32_DMA_BURST_INCR8
;
344 return STM32_DMA_BURST_INCR16
;
346 dev_err(chan2dev(chan
), "Dma burst size not supported\n");
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan
*chan
,
352 u32 src_burst
, u32 dst_burst
)
354 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_MASK
;
355 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_DMEIE
;
357 if (!src_burst
&& !dst_burst
) {
358 /* Using direct mode */
359 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_DMEIE
;
361 /* Using FIFO mode */
362 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_MASK
;
366 static int stm32_dma_slave_config(struct dma_chan
*c
,
367 struct dma_slave_config
*config
)
369 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
371 memcpy(&chan
->dma_sconfig
, config
, sizeof(*config
));
373 chan
->config_init
= true;
378 static u32
stm32_dma_irq_status(struct stm32_dma_chan
*chan
)
380 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
384 * Read "flags" from DMA_xISR register corresponding to the selected
385 * DMA channel at the correct bit offset inside that register.
387 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
392 dma_isr
= stm32_dma_read(dmadev
, STM32_DMA_HISR
);
394 dma_isr
= stm32_dma_read(dmadev
, STM32_DMA_LISR
);
396 flags
= dma_isr
>> (((chan
->id
& 2) << 3) | ((chan
->id
& 1) * 6));
398 return flags
& STM32_DMA_MASKI
;
401 static void stm32_dma_irq_clear(struct stm32_dma_chan
*chan
, u32 flags
)
403 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
407 * Write "flags" to the DMA_xIFCR register corresponding to the selected
408 * DMA channel at the correct bit offset inside that register.
410 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
413 flags
&= STM32_DMA_MASKI
;
414 dma_ifcr
= flags
<< (((chan
->id
& 2) << 3) | ((chan
->id
& 1) * 6));
417 stm32_dma_write(dmadev
, STM32_DMA_HIFCR
, dma_ifcr
);
419 stm32_dma_write(dmadev
, STM32_DMA_LIFCR
, dma_ifcr
);
422 static int stm32_dma_disable_chan(struct stm32_dma_chan
*chan
)
424 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
425 u32 dma_scr
, id
, reg
;
428 reg
= STM32_DMA_SCR(id
);
429 dma_scr
= stm32_dma_read(dmadev
, reg
);
431 if (dma_scr
& STM32_DMA_SCR_EN
) {
432 dma_scr
&= ~STM32_DMA_SCR_EN
;
433 stm32_dma_write(dmadev
, reg
, dma_scr
);
435 return readl_relaxed_poll_timeout_atomic(dmadev
->base
+ reg
,
436 dma_scr
, !(dma_scr
& STM32_DMA_SCR_EN
),
443 static void stm32_dma_stop(struct stm32_dma_chan
*chan
)
445 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
446 u32 dma_scr
, dma_sfcr
, status
;
449 /* Disable interrupts */
450 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
451 dma_scr
&= ~STM32_DMA_SCR_IRQ_MASK
;
452 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), dma_scr
);
453 dma_sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
454 dma_sfcr
&= ~STM32_DMA_SFCR_FEIE
;
455 stm32_dma_write(dmadev
, STM32_DMA_SFCR(chan
->id
), dma_sfcr
);
458 ret
= stm32_dma_disable_chan(chan
);
462 /* Clear interrupt status if it is there */
463 status
= stm32_dma_irq_status(chan
);
465 dev_dbg(chan2dev(chan
), "%s(): clearing interrupt: 0x%08x\n",
467 stm32_dma_irq_clear(chan
, status
);
473 static int stm32_dma_terminate_all(struct dma_chan
*c
)
475 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
479 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
482 vchan_terminate_vdesc(&chan
->desc
->vdesc
);
484 stm32_dma_stop(chan
);
488 vchan_get_all_descriptors(&chan
->vchan
, &head
);
489 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
490 vchan_dma_desc_free_list(&chan
->vchan
, &head
);
495 static void stm32_dma_synchronize(struct dma_chan
*c
)
497 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
499 vchan_synchronize(&chan
->vchan
);
502 static void stm32_dma_dump_reg(struct stm32_dma_chan
*chan
)
504 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
505 u32 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
506 u32 ndtr
= stm32_dma_read(dmadev
, STM32_DMA_SNDTR(chan
->id
));
507 u32 spar
= stm32_dma_read(dmadev
, STM32_DMA_SPAR(chan
->id
));
508 u32 sm0ar
= stm32_dma_read(dmadev
, STM32_DMA_SM0AR(chan
->id
));
509 u32 sm1ar
= stm32_dma_read(dmadev
, STM32_DMA_SM1AR(chan
->id
));
510 u32 sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
512 dev_dbg(chan2dev(chan
), "SCR: 0x%08x\n", scr
);
513 dev_dbg(chan2dev(chan
), "NDTR: 0x%08x\n", ndtr
);
514 dev_dbg(chan2dev(chan
), "SPAR: 0x%08x\n", spar
);
515 dev_dbg(chan2dev(chan
), "SM0AR: 0x%08x\n", sm0ar
);
516 dev_dbg(chan2dev(chan
), "SM1AR: 0x%08x\n", sm1ar
);
517 dev_dbg(chan2dev(chan
), "SFCR: 0x%08x\n", sfcr
);
520 static void stm32_dma_configure_next_sg(struct stm32_dma_chan
*chan
);
522 static void stm32_dma_start_transfer(struct stm32_dma_chan
*chan
)
524 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
525 struct virt_dma_desc
*vdesc
;
526 struct stm32_dma_sg_req
*sg_req
;
527 struct stm32_dma_chan_reg
*reg
;
531 ret
= stm32_dma_disable_chan(chan
);
536 vdesc
= vchan_next_desc(&chan
->vchan
);
540 list_del(&vdesc
->node
);
542 chan
->desc
= to_stm32_dma_desc(vdesc
);
546 if (chan
->next_sg
== chan
->desc
->num_sgs
)
549 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
550 reg
= &sg_req
->chan_reg
;
552 reg
->dma_scr
&= ~STM32_DMA_SCR_EN
;
553 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), reg
->dma_scr
);
554 stm32_dma_write(dmadev
, STM32_DMA_SPAR(chan
->id
), reg
->dma_spar
);
555 stm32_dma_write(dmadev
, STM32_DMA_SM0AR(chan
->id
), reg
->dma_sm0ar
);
556 stm32_dma_write(dmadev
, STM32_DMA_SFCR(chan
->id
), reg
->dma_sfcr
);
557 stm32_dma_write(dmadev
, STM32_DMA_SM1AR(chan
->id
), reg
->dma_sm1ar
);
558 stm32_dma_write(dmadev
, STM32_DMA_SNDTR(chan
->id
), reg
->dma_sndtr
);
562 /* Clear interrupt status if it is there */
563 status
= stm32_dma_irq_status(chan
);
565 stm32_dma_irq_clear(chan
, status
);
567 if (chan
->desc
->cyclic
)
568 stm32_dma_configure_next_sg(chan
);
570 stm32_dma_dump_reg(chan
);
573 reg
->dma_scr
|= STM32_DMA_SCR_EN
;
574 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), reg
->dma_scr
);
578 dev_dbg(chan2dev(chan
), "vchan %pK: started\n", &chan
->vchan
);
581 static void stm32_dma_configure_next_sg(struct stm32_dma_chan
*chan
)
583 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
584 struct stm32_dma_sg_req
*sg_req
;
585 u32 dma_scr
, dma_sm0ar
, dma_sm1ar
, id
;
588 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
590 if (dma_scr
& STM32_DMA_SCR_DBM
) {
591 if (chan
->next_sg
== chan
->desc
->num_sgs
)
594 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
596 if (dma_scr
& STM32_DMA_SCR_CT
) {
597 dma_sm0ar
= sg_req
->chan_reg
.dma_sm0ar
;
598 stm32_dma_write(dmadev
, STM32_DMA_SM0AR(id
), dma_sm0ar
);
599 dev_dbg(chan2dev(chan
), "CT=1 <=> SM0AR: 0x%08x\n",
600 stm32_dma_read(dmadev
, STM32_DMA_SM0AR(id
)));
602 dma_sm1ar
= sg_req
->chan_reg
.dma_sm1ar
;
603 stm32_dma_write(dmadev
, STM32_DMA_SM1AR(id
), dma_sm1ar
);
604 dev_dbg(chan2dev(chan
), "CT=0 <=> SM1AR: 0x%08x\n",
605 stm32_dma_read(dmadev
, STM32_DMA_SM1AR(id
)));
610 static void stm32_dma_handle_chan_done(struct stm32_dma_chan
*chan
)
613 if (chan
->desc
->cyclic
) {
614 vchan_cyclic_callback(&chan
->desc
->vdesc
);
616 stm32_dma_configure_next_sg(chan
);
619 if (chan
->next_sg
== chan
->desc
->num_sgs
) {
620 vchan_cookie_complete(&chan
->desc
->vdesc
);
623 stm32_dma_start_transfer(chan
);
628 static irqreturn_t
stm32_dma_chan_irq(int irq
, void *devid
)
630 struct stm32_dma_chan
*chan
= devid
;
631 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
632 u32 status
, scr
, sfcr
;
634 spin_lock(&chan
->vchan
.lock
);
636 status
= stm32_dma_irq_status(chan
);
637 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
638 sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
640 if (status
& STM32_DMA_TCI
) {
641 stm32_dma_irq_clear(chan
, STM32_DMA_TCI
);
642 if (scr
& STM32_DMA_SCR_TCIE
)
643 stm32_dma_handle_chan_done(chan
);
644 status
&= ~STM32_DMA_TCI
;
646 if (status
& STM32_DMA_HTI
) {
647 stm32_dma_irq_clear(chan
, STM32_DMA_HTI
);
648 status
&= ~STM32_DMA_HTI
;
650 if (status
& STM32_DMA_FEI
) {
651 stm32_dma_irq_clear(chan
, STM32_DMA_FEI
);
652 status
&= ~STM32_DMA_FEI
;
653 if (sfcr
& STM32_DMA_SFCR_FEIE
) {
654 if (!(scr
& STM32_DMA_SCR_EN
))
655 dev_err(chan2dev(chan
), "FIFO Error\n");
657 dev_dbg(chan2dev(chan
), "FIFO over/underrun\n");
661 stm32_dma_irq_clear(chan
, status
);
662 dev_err(chan2dev(chan
), "DMA error: status=0x%08x\n", status
);
663 if (!(scr
& STM32_DMA_SCR_EN
))
664 dev_err(chan2dev(chan
), "chan disabled by HW\n");
667 spin_unlock(&chan
->vchan
.lock
);
672 static void stm32_dma_issue_pending(struct dma_chan
*c
)
674 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
677 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
678 if (vchan_issue_pending(&chan
->vchan
) && !chan
->desc
&& !chan
->busy
) {
679 dev_dbg(chan2dev(chan
), "vchan %pK: issued\n", &chan
->vchan
);
680 stm32_dma_start_transfer(chan
);
683 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
686 static int stm32_dma_set_xfer_param(struct stm32_dma_chan
*chan
,
687 enum dma_transfer_direction direction
,
688 enum dma_slave_buswidth
*buswidth
,
691 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
692 int src_bus_width
, dst_bus_width
;
693 int src_burst_size
, dst_burst_size
;
694 u32 src_maxburst
, dst_maxburst
, src_best_burst
, dst_best_burst
;
695 u32 dma_scr
, threshold
;
697 src_addr_width
= chan
->dma_sconfig
.src_addr_width
;
698 dst_addr_width
= chan
->dma_sconfig
.dst_addr_width
;
699 src_maxburst
= chan
->dma_sconfig
.src_maxburst
;
700 dst_maxburst
= chan
->dma_sconfig
.dst_maxburst
;
701 threshold
= chan
->threshold
;
705 /* Set device data size */
706 dst_bus_width
= stm32_dma_get_width(chan
, dst_addr_width
);
707 if (dst_bus_width
< 0)
708 return dst_bus_width
;
710 /* Set device burst size */
711 dst_best_burst
= stm32_dma_get_best_burst(buf_len
,
716 dst_burst_size
= stm32_dma_get_burst(chan
, dst_best_burst
);
717 if (dst_burst_size
< 0)
718 return dst_burst_size
;
720 /* Set memory data size */
721 src_addr_width
= stm32_dma_get_max_width(buf_len
, threshold
);
722 chan
->mem_width
= src_addr_width
;
723 src_bus_width
= stm32_dma_get_width(chan
, src_addr_width
);
724 if (src_bus_width
< 0)
725 return src_bus_width
;
727 /* Set memory burst size */
728 src_maxburst
= STM32_DMA_MAX_BURST
;
729 src_best_burst
= stm32_dma_get_best_burst(buf_len
,
733 src_burst_size
= stm32_dma_get_burst(chan
, src_best_burst
);
734 if (src_burst_size
< 0)
735 return src_burst_size
;
737 dma_scr
= STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV
) |
738 STM32_DMA_SCR_PSIZE(dst_bus_width
) |
739 STM32_DMA_SCR_MSIZE(src_bus_width
) |
740 STM32_DMA_SCR_PBURST(dst_burst_size
) |
741 STM32_DMA_SCR_MBURST(src_burst_size
);
743 /* Set FIFO threshold */
744 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_FTH_MASK
;
745 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_FTH(threshold
);
747 /* Set peripheral address */
748 chan
->chan_reg
.dma_spar
= chan
->dma_sconfig
.dst_addr
;
749 *buswidth
= dst_addr_width
;
753 /* Set device data size */
754 src_bus_width
= stm32_dma_get_width(chan
, src_addr_width
);
755 if (src_bus_width
< 0)
756 return src_bus_width
;
758 /* Set device burst size */
759 src_best_burst
= stm32_dma_get_best_burst(buf_len
,
763 chan
->mem_burst
= src_best_burst
;
764 src_burst_size
= stm32_dma_get_burst(chan
, src_best_burst
);
765 if (src_burst_size
< 0)
766 return src_burst_size
;
768 /* Set memory data size */
769 dst_addr_width
= stm32_dma_get_max_width(buf_len
, threshold
);
770 chan
->mem_width
= dst_addr_width
;
771 dst_bus_width
= stm32_dma_get_width(chan
, dst_addr_width
);
772 if (dst_bus_width
< 0)
773 return dst_bus_width
;
775 /* Set memory burst size */
776 dst_maxburst
= STM32_DMA_MAX_BURST
;
777 dst_best_burst
= stm32_dma_get_best_burst(buf_len
,
781 chan
->mem_burst
= dst_best_burst
;
782 dst_burst_size
= stm32_dma_get_burst(chan
, dst_best_burst
);
783 if (dst_burst_size
< 0)
784 return dst_burst_size
;
786 dma_scr
= STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM
) |
787 STM32_DMA_SCR_PSIZE(src_bus_width
) |
788 STM32_DMA_SCR_MSIZE(dst_bus_width
) |
789 STM32_DMA_SCR_PBURST(src_burst_size
) |
790 STM32_DMA_SCR_MBURST(dst_burst_size
);
792 /* Set FIFO threshold */
793 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_FTH_MASK
;
794 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_FTH(threshold
);
796 /* Set peripheral address */
797 chan
->chan_reg
.dma_spar
= chan
->dma_sconfig
.src_addr
;
798 *buswidth
= chan
->dma_sconfig
.src_addr_width
;
802 dev_err(chan2dev(chan
), "Dma direction is not supported\n");
806 stm32_dma_set_fifo_config(chan
, src_best_burst
, dst_best_burst
);
808 /* Set DMA control register */
809 chan
->chan_reg
.dma_scr
&= ~(STM32_DMA_SCR_DIR_MASK
|
810 STM32_DMA_SCR_PSIZE_MASK
| STM32_DMA_SCR_MSIZE_MASK
|
811 STM32_DMA_SCR_PBURST_MASK
| STM32_DMA_SCR_MBURST_MASK
);
812 chan
->chan_reg
.dma_scr
|= dma_scr
;
817 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg
*regs
)
819 memset(regs
, 0, sizeof(struct stm32_dma_chan_reg
));
822 static struct dma_async_tx_descriptor
*stm32_dma_prep_slave_sg(
823 struct dma_chan
*c
, struct scatterlist
*sgl
,
824 u32 sg_len
, enum dma_transfer_direction direction
,
825 unsigned long flags
, void *context
)
827 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
828 struct stm32_dma_desc
*desc
;
829 struct scatterlist
*sg
;
830 enum dma_slave_buswidth buswidth
;
834 if (!chan
->config_init
) {
835 dev_err(chan2dev(chan
), "dma channel is not configured\n");
840 dev_err(chan2dev(chan
), "Invalid segment length %d\n", sg_len
);
844 desc
= kzalloc(struct_size(desc
, sg_req
, sg_len
), GFP_NOWAIT
);
848 /* Set peripheral flow controller */
849 if (chan
->dma_sconfig
.device_fc
)
850 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_PFCTRL
;
852 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_PFCTRL
;
854 for_each_sg(sgl
, sg
, sg_len
, i
) {
855 ret
= stm32_dma_set_xfer_param(chan
, direction
, &buswidth
,
860 desc
->sg_req
[i
].len
= sg_dma_len(sg
);
862 nb_data_items
= desc
->sg_req
[i
].len
/ buswidth
;
863 if (nb_data_items
> STM32_DMA_ALIGNED_MAX_DATA_ITEMS
) {
864 dev_err(chan2dev(chan
), "nb items not supported\n");
868 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
869 desc
->sg_req
[i
].chan_reg
.dma_scr
= chan
->chan_reg
.dma_scr
;
870 desc
->sg_req
[i
].chan_reg
.dma_sfcr
= chan
->chan_reg
.dma_sfcr
;
871 desc
->sg_req
[i
].chan_reg
.dma_spar
= chan
->chan_reg
.dma_spar
;
872 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= sg_dma_address(sg
);
873 desc
->sg_req
[i
].chan_reg
.dma_sm1ar
= sg_dma_address(sg
);
874 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= nb_data_items
;
877 desc
->num_sgs
= sg_len
;
878 desc
->cyclic
= false;
880 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
887 static struct dma_async_tx_descriptor
*stm32_dma_prep_dma_cyclic(
888 struct dma_chan
*c
, dma_addr_t buf_addr
, size_t buf_len
,
889 size_t period_len
, enum dma_transfer_direction direction
,
892 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
893 struct stm32_dma_desc
*desc
;
894 enum dma_slave_buswidth buswidth
;
895 u32 num_periods
, nb_data_items
;
898 if (!buf_len
|| !period_len
) {
899 dev_err(chan2dev(chan
), "Invalid buffer/period len\n");
903 if (!chan
->config_init
) {
904 dev_err(chan2dev(chan
), "dma channel is not configured\n");
908 if (buf_len
% period_len
) {
909 dev_err(chan2dev(chan
), "buf_len not multiple of period_len\n");
914 * We allow to take more number of requests till DMA is
915 * not started. The driver will loop over all requests.
916 * Once DMA is started then new requests can be queued only after
917 * terminating the DMA.
920 dev_err(chan2dev(chan
), "Request not allowed when dma busy\n");
924 ret
= stm32_dma_set_xfer_param(chan
, direction
, &buswidth
, period_len
);
928 nb_data_items
= period_len
/ buswidth
;
929 if (nb_data_items
> STM32_DMA_ALIGNED_MAX_DATA_ITEMS
) {
930 dev_err(chan2dev(chan
), "number of items not supported\n");
934 /* Enable Circular mode or double buffer mode */
935 if (buf_len
== period_len
)
936 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_CIRC
;
938 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_DBM
;
940 /* Clear periph ctrl if client set it */
941 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_PFCTRL
;
943 num_periods
= buf_len
/ period_len
;
945 desc
= kzalloc(struct_size(desc
, sg_req
, num_periods
), GFP_NOWAIT
);
949 for (i
= 0; i
< num_periods
; i
++) {
950 desc
->sg_req
[i
].len
= period_len
;
952 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
953 desc
->sg_req
[i
].chan_reg
.dma_scr
= chan
->chan_reg
.dma_scr
;
954 desc
->sg_req
[i
].chan_reg
.dma_sfcr
= chan
->chan_reg
.dma_sfcr
;
955 desc
->sg_req
[i
].chan_reg
.dma_spar
= chan
->chan_reg
.dma_spar
;
956 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= buf_addr
;
957 desc
->sg_req
[i
].chan_reg
.dma_sm1ar
= buf_addr
;
958 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= nb_data_items
;
959 buf_addr
+= period_len
;
962 desc
->num_sgs
= num_periods
;
965 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
968 static struct dma_async_tx_descriptor
*stm32_dma_prep_dma_memcpy(
969 struct dma_chan
*c
, dma_addr_t dest
,
970 dma_addr_t src
, size_t len
, unsigned long flags
)
972 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
973 enum dma_slave_buswidth max_width
;
974 struct stm32_dma_desc
*desc
;
975 size_t xfer_count
, offset
;
976 u32 num_sgs
, best_burst
, dma_burst
, threshold
;
979 num_sgs
= DIV_ROUND_UP(len
, STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
980 desc
= kzalloc(struct_size(desc
, sg_req
, num_sgs
), GFP_NOWAIT
);
984 threshold
= chan
->threshold
;
986 for (offset
= 0, i
= 0; offset
< len
; offset
+= xfer_count
, i
++) {
987 xfer_count
= min_t(size_t, len
- offset
,
988 STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
990 /* Compute best burst size */
991 max_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
992 best_burst
= stm32_dma_get_best_burst(len
, STM32_DMA_MAX_BURST
,
993 threshold
, max_width
);
994 dma_burst
= stm32_dma_get_burst(chan
, best_burst
);
996 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
997 desc
->sg_req
[i
].chan_reg
.dma_scr
=
998 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM
) |
999 STM32_DMA_SCR_PBURST(dma_burst
) |
1000 STM32_DMA_SCR_MBURST(dma_burst
) |
1001 STM32_DMA_SCR_MINC
|
1002 STM32_DMA_SCR_PINC
|
1003 STM32_DMA_SCR_TCIE
|
1005 desc
->sg_req
[i
].chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_MASK
;
1006 desc
->sg_req
[i
].chan_reg
.dma_sfcr
|=
1007 STM32_DMA_SFCR_FTH(threshold
);
1008 desc
->sg_req
[i
].chan_reg
.dma_spar
= src
+ offset
;
1009 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= dest
+ offset
;
1010 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= xfer_count
;
1011 desc
->sg_req
[i
].len
= xfer_count
;
1014 desc
->num_sgs
= num_sgs
;
1015 desc
->cyclic
= false;
1017 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
1020 static u32
stm32_dma_get_remaining_bytes(struct stm32_dma_chan
*chan
)
1022 u32 dma_scr
, width
, ndtr
;
1023 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1025 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
1026 width
= STM32_DMA_SCR_PSIZE_GET(dma_scr
);
1027 ndtr
= stm32_dma_read(dmadev
, STM32_DMA_SNDTR(chan
->id
));
1029 return ndtr
<< width
;
1033 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1034 * @chan: dma channel
1036 * This function called when IRQ are disable, checks that the hardware has not
1037 * switched on the next transfer in double buffer mode. The test is done by
1038 * comparing the next_sg memory address with the hardware related register
1039 * (based on CT bit value).
1041 * Returns true if expected current transfer is still running or double
1042 * buffer mode is not activated.
1044 static bool stm32_dma_is_current_sg(struct stm32_dma_chan
*chan
)
1046 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1047 struct stm32_dma_sg_req
*sg_req
;
1048 u32 dma_scr
, dma_smar
, id
;
1051 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
1053 if (!(dma_scr
& STM32_DMA_SCR_DBM
))
1056 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
1058 if (dma_scr
& STM32_DMA_SCR_CT
) {
1059 dma_smar
= stm32_dma_read(dmadev
, STM32_DMA_SM0AR(id
));
1060 return (dma_smar
== sg_req
->chan_reg
.dma_sm0ar
);
1063 dma_smar
= stm32_dma_read(dmadev
, STM32_DMA_SM1AR(id
));
1065 return (dma_smar
== sg_req
->chan_reg
.dma_sm1ar
);
1068 static size_t stm32_dma_desc_residue(struct stm32_dma_chan
*chan
,
1069 struct stm32_dma_desc
*desc
,
1072 u32 modulo
, burst_size
;
1075 struct stm32_dma_sg_req
*sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
1079 * Calculate the residue means compute the descriptors
1081 * - the sg_req currently transferred
1082 * - the Hardware remaining position in this sg (NDTR bits field).
1084 * A race condition may occur if DMA is running in cyclic or double
1085 * buffer mode, since the DMA register are automatically reloaded at end
1086 * of period transfer. The hardware may have switched to the next
1087 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1089 * In this case the SxNDTR reg could (or not) correspond to the new
1090 * transfer position, and not the expected one.
1091 * The strategy implemented in the stm32 driver is to:
1092 * - read the SxNDTR register
1093 * - crosscheck that hardware is still in current transfer.
1094 * In case of switch, we can assume that the DMA is at the beginning of
1095 * the next transfer. So we approximate the residue in consequence, by
1096 * pointing on the beginning of next transfer.
1098 * This race condition doesn't apply for none cyclic mode, as double
1099 * buffer is not used. In such situation registers are updated by the
1103 residue
= stm32_dma_get_remaining_bytes(chan
);
1105 if (!stm32_dma_is_current_sg(chan
)) {
1107 if (n_sg
== chan
->desc
->num_sgs
)
1109 residue
= sg_req
->len
;
1113 * In cyclic mode, for the last period, residue = remaining bytes
1115 * else for all other periods in cyclic mode, and in sg mode,
1116 * residue = remaining bytes from NDTR + remaining
1117 * periods/sg to be transferred
1119 if (!chan
->desc
->cyclic
|| n_sg
!= 0)
1120 for (i
= n_sg
; i
< desc
->num_sgs
; i
++)
1121 residue
+= desc
->sg_req
[i
].len
;
1123 if (!chan
->mem_burst
)
1126 burst_size
= chan
->mem_burst
* chan
->mem_width
;
1127 modulo
= residue
% burst_size
;
1129 residue
= residue
- modulo
+ burst_size
;
1134 static enum dma_status
stm32_dma_tx_status(struct dma_chan
*c
,
1135 dma_cookie_t cookie
,
1136 struct dma_tx_state
*state
)
1138 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1139 struct virt_dma_desc
*vdesc
;
1140 enum dma_status status
;
1141 unsigned long flags
;
1144 status
= dma_cookie_status(c
, cookie
, state
);
1145 if (status
== DMA_COMPLETE
|| !state
)
1148 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
1149 vdesc
= vchan_find_desc(&chan
->vchan
, cookie
);
1150 if (chan
->desc
&& cookie
== chan
->desc
->vdesc
.tx
.cookie
)
1151 residue
= stm32_dma_desc_residue(chan
, chan
->desc
,
1154 residue
= stm32_dma_desc_residue(chan
,
1155 to_stm32_dma_desc(vdesc
), 0);
1156 dma_set_residue(state
, residue
);
1158 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
1163 static int stm32_dma_alloc_chan_resources(struct dma_chan
*c
)
1165 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1166 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1169 chan
->config_init
= false;
1171 ret
= pm_runtime_get_sync(dmadev
->ddev
.dev
);
1175 ret
= stm32_dma_disable_chan(chan
);
1177 pm_runtime_put(dmadev
->ddev
.dev
);
1182 static void stm32_dma_free_chan_resources(struct dma_chan
*c
)
1184 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1185 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1186 unsigned long flags
;
1188 dev_dbg(chan2dev(chan
), "Freeing channel %d\n", chan
->id
);
1191 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
1192 stm32_dma_stop(chan
);
1194 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
1197 pm_runtime_put(dmadev
->ddev
.dev
);
1199 vchan_free_chan_resources(to_virt_chan(c
));
1202 static void stm32_dma_desc_free(struct virt_dma_desc
*vdesc
)
1204 kfree(container_of(vdesc
, struct stm32_dma_desc
, vdesc
));
1207 static void stm32_dma_set_config(struct stm32_dma_chan
*chan
,
1208 struct stm32_dma_cfg
*cfg
)
1210 stm32_dma_clear_reg(&chan
->chan_reg
);
1212 chan
->chan_reg
.dma_scr
= cfg
->stream_config
& STM32_DMA_SCR_CFG_MASK
;
1213 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_REQ(cfg
->request_line
);
1215 /* Enable Interrupts */
1216 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_TEIE
| STM32_DMA_SCR_TCIE
;
1218 chan
->threshold
= STM32_DMA_THRESHOLD_FTR_GET(cfg
->features
);
1221 static struct dma_chan
*stm32_dma_of_xlate(struct of_phandle_args
*dma_spec
,
1222 struct of_dma
*ofdma
)
1224 struct stm32_dma_device
*dmadev
= ofdma
->of_dma_data
;
1225 struct device
*dev
= dmadev
->ddev
.dev
;
1226 struct stm32_dma_cfg cfg
;
1227 struct stm32_dma_chan
*chan
;
1230 if (dma_spec
->args_count
< 4) {
1231 dev_err(dev
, "Bad number of cells\n");
1235 cfg
.channel_id
= dma_spec
->args
[0];
1236 cfg
.request_line
= dma_spec
->args
[1];
1237 cfg
.stream_config
= dma_spec
->args
[2];
1238 cfg
.features
= dma_spec
->args
[3];
1240 if (cfg
.channel_id
>= STM32_DMA_MAX_CHANNELS
||
1241 cfg
.request_line
>= STM32_DMA_MAX_REQUEST_ID
) {
1242 dev_err(dev
, "Bad channel and/or request id\n");
1246 chan
= &dmadev
->chan
[cfg
.channel_id
];
1248 c
= dma_get_slave_channel(&chan
->vchan
.chan
);
1250 dev_err(dev
, "No more channels available\n");
1254 stm32_dma_set_config(chan
, &cfg
);
1259 static const struct of_device_id stm32_dma_of_match
[] = {
1260 { .compatible
= "st,stm32-dma", },
1263 MODULE_DEVICE_TABLE(of
, stm32_dma_of_match
);
1265 static int stm32_dma_probe(struct platform_device
*pdev
)
1267 struct stm32_dma_chan
*chan
;
1268 struct stm32_dma_device
*dmadev
;
1269 struct dma_device
*dd
;
1270 const struct of_device_id
*match
;
1271 struct resource
*res
;
1272 struct reset_control
*rst
;
1275 match
= of_match_device(stm32_dma_of_match
, &pdev
->dev
);
1277 dev_err(&pdev
->dev
, "Error: No device match found\n");
1281 dmadev
= devm_kzalloc(&pdev
->dev
, sizeof(*dmadev
), GFP_KERNEL
);
1287 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1288 dmadev
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1289 if (IS_ERR(dmadev
->base
))
1290 return PTR_ERR(dmadev
->base
);
1292 dmadev
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1293 if (IS_ERR(dmadev
->clk
)) {
1294 ret
= PTR_ERR(dmadev
->clk
);
1295 if (ret
!= -EPROBE_DEFER
)
1296 dev_err(&pdev
->dev
, "Can't get clock\n");
1300 ret
= clk_prepare_enable(dmadev
->clk
);
1302 dev_err(&pdev
->dev
, "clk_prep_enable error: %d\n", ret
);
1306 dmadev
->mem2mem
= of_property_read_bool(pdev
->dev
.of_node
,
1309 rst
= devm_reset_control_get(&pdev
->dev
, NULL
);
1312 if (ret
== -EPROBE_DEFER
)
1315 reset_control_assert(rst
);
1317 reset_control_deassert(rst
);
1320 dma_set_max_seg_size(&pdev
->dev
, STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
1322 dma_cap_set(DMA_SLAVE
, dd
->cap_mask
);
1323 dma_cap_set(DMA_PRIVATE
, dd
->cap_mask
);
1324 dma_cap_set(DMA_CYCLIC
, dd
->cap_mask
);
1325 dd
->device_alloc_chan_resources
= stm32_dma_alloc_chan_resources
;
1326 dd
->device_free_chan_resources
= stm32_dma_free_chan_resources
;
1327 dd
->device_tx_status
= stm32_dma_tx_status
;
1328 dd
->device_issue_pending
= stm32_dma_issue_pending
;
1329 dd
->device_prep_slave_sg
= stm32_dma_prep_slave_sg
;
1330 dd
->device_prep_dma_cyclic
= stm32_dma_prep_dma_cyclic
;
1331 dd
->device_config
= stm32_dma_slave_config
;
1332 dd
->device_terminate_all
= stm32_dma_terminate_all
;
1333 dd
->device_synchronize
= stm32_dma_synchronize
;
1334 dd
->src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1335 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1336 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1337 dd
->dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1338 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1339 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1340 dd
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1341 dd
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1342 dd
->copy_align
= DMAENGINE_ALIGN_32_BYTES
;
1343 dd
->max_burst
= STM32_DMA_MAX_BURST
;
1344 dd
->descriptor_reuse
= true;
1345 dd
->dev
= &pdev
->dev
;
1346 INIT_LIST_HEAD(&dd
->channels
);
1348 if (dmadev
->mem2mem
) {
1349 dma_cap_set(DMA_MEMCPY
, dd
->cap_mask
);
1350 dd
->device_prep_dma_memcpy
= stm32_dma_prep_dma_memcpy
;
1351 dd
->directions
|= BIT(DMA_MEM_TO_MEM
);
1354 for (i
= 0; i
< STM32_DMA_MAX_CHANNELS
; i
++) {
1355 chan
= &dmadev
->chan
[i
];
1357 chan
->vchan
.desc_free
= stm32_dma_desc_free
;
1358 vchan_init(&chan
->vchan
, dd
);
1361 ret
= dma_async_device_register(dd
);
1365 for (i
= 0; i
< STM32_DMA_MAX_CHANNELS
; i
++) {
1366 chan
= &dmadev
->chan
[i
];
1367 ret
= platform_get_irq(pdev
, i
);
1369 goto err_unregister
;
1372 ret
= devm_request_irq(&pdev
->dev
, chan
->irq
,
1373 stm32_dma_chan_irq
, 0,
1374 dev_name(chan2dev(chan
)), chan
);
1377 "request_irq failed with err %d channel %d\n",
1379 goto err_unregister
;
1383 ret
= of_dma_controller_register(pdev
->dev
.of_node
,
1384 stm32_dma_of_xlate
, dmadev
);
1387 "STM32 DMA DMA OF registration failed %d\n", ret
);
1388 goto err_unregister
;
1391 platform_set_drvdata(pdev
, dmadev
);
1393 pm_runtime_set_active(&pdev
->dev
);
1394 pm_runtime_enable(&pdev
->dev
);
1395 pm_runtime_get_noresume(&pdev
->dev
);
1396 pm_runtime_put(&pdev
->dev
);
1398 dev_info(&pdev
->dev
, "STM32 DMA driver registered\n");
1403 dma_async_device_unregister(dd
);
1405 clk_disable_unprepare(dmadev
->clk
);
1411 static int stm32_dma_runtime_suspend(struct device
*dev
)
1413 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1415 clk_disable_unprepare(dmadev
->clk
);
1420 static int stm32_dma_runtime_resume(struct device
*dev
)
1422 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1425 ret
= clk_prepare_enable(dmadev
->clk
);
1427 dev_err(dev
, "failed to prepare_enable clock\n");
1435 #ifdef CONFIG_PM_SLEEP
1436 static int stm32_dma_suspend(struct device
*dev
)
1438 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1441 ret
= pm_runtime_get_sync(dev
);
1445 for (id
= 0; id
< STM32_DMA_MAX_CHANNELS
; id
++) {
1446 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
1447 if (scr
& STM32_DMA_SCR_EN
) {
1448 dev_warn(dev
, "Suspend is prevented by Chan %i\n", id
);
1453 pm_runtime_put_sync(dev
);
1455 pm_runtime_force_suspend(dev
);
1460 static int stm32_dma_resume(struct device
*dev
)
1462 return pm_runtime_force_resume(dev
);
1466 static const struct dev_pm_ops stm32_dma_pm_ops
= {
1467 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend
, stm32_dma_resume
)
1468 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend
,
1469 stm32_dma_runtime_resume
, NULL
)
1472 static struct platform_driver stm32_dma_driver
= {
1474 .name
= "stm32-dma",
1475 .of_match_table
= stm32_dma_of_match
,
1476 .pm
= &stm32_dma_pm_ops
,
1478 .probe
= stm32_dma_probe
,
1481 static int __init
stm32_dma_init(void)
1483 return platform_driver_register(&stm32_dma_driver
);
1485 subsys_initcall(stm32_dma_init
);