gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / dma / tegra20-apb-dma.c
blobf6a2f42ffc514414965f40dae2be5143c37c87cc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
5 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved.
6 */
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
29 #include "dmaengine.h"
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
34 #define TEGRA_APBDMA_GENERAL 0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
37 #define TEGRA_APBDMA_CONTROL 0x010
38 #define TEGRA_APBDMA_IRQ_MASK 0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR 0x00
43 #define TEGRA_APBDMA_CSR_ENB BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS 0x004
55 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
62 #define TEGRA_APBDMA_CHAN_CSRE 0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE BIT(31)
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24
103 * If any burst is in flight and DMA paused then this is the time to complete
104 * on-flight burst and update DMA status register.
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
113 struct tegra_dma;
116 * tegra_dma_chip_data Tegra chip specific DMA data
117 * @nr_channels: Number of channels available in the controller.
118 * @channel_reg_size: Channel register size/stride.
119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120 * @support_channel_pause: Support channel wise pause of dma.
121 * @support_separate_wcount_reg: Support separate word count register.
123 struct tegra_dma_chip_data {
124 unsigned int nr_channels;
125 unsigned int channel_reg_size;
126 unsigned int max_dma_count;
127 bool support_channel_pause;
128 bool support_separate_wcount_reg;
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133 u32 csr;
134 u32 ahb_ptr;
135 u32 apb_ptr;
136 u32 ahb_seq;
137 u32 apb_seq;
138 u32 wcount;
142 * tegra_dma_sg_req: DMA request details to configure hardware. This
143 * contains the details for one transfer to configure DMA hw.
144 * The client's request for data transfer can be broken into multiple
145 * sub-transfer as per requester details and hw support.
146 * This sub transfer get added in the list of transfer and point to Tegra
147 * DMA descriptor which manages the transfer details.
149 struct tegra_dma_sg_req {
150 struct tegra_dma_channel_regs ch_regs;
151 unsigned int req_len;
152 bool configured;
153 bool last_sg;
154 struct list_head node;
155 struct tegra_dma_desc *dma_desc;
156 unsigned int words_xferred;
160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161 * This descriptor keep track of transfer status, callbacks and request
162 * counts etc.
164 struct tegra_dma_desc {
165 struct dma_async_tx_descriptor txd;
166 unsigned int bytes_requested;
167 unsigned int bytes_transferred;
168 enum dma_status dma_status;
169 struct list_head node;
170 struct list_head tx_list;
171 struct list_head cb_node;
172 unsigned int cb_count;
175 struct tegra_dma_channel;
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178 bool to_terminate);
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182 struct dma_chan dma_chan;
183 char name[12];
184 bool config_init;
185 unsigned int id;
186 void __iomem *chan_addr;
187 spinlock_t lock;
188 bool busy;
189 struct tegra_dma *tdma;
190 bool cyclic;
192 /* Different lists for managing the requests */
193 struct list_head free_sg_req;
194 struct list_head pending_sg_req;
195 struct list_head free_dma_desc;
196 struct list_head cb_desc;
198 /* ISR handler and tasklet for bottom half of isr handling */
199 dma_isr_handler isr_handler;
200 struct tasklet_struct tasklet;
202 /* Channel-slave specific configuration */
203 unsigned int slave_id;
204 struct dma_slave_config dma_sconfig;
205 struct tegra_dma_channel_regs channel_reg;
207 struct wait_queue_head wq;
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212 struct dma_device dma_dev;
213 struct device *dev;
214 struct clk *dma_clk;
215 struct reset_control *rst;
216 spinlock_t global_lock;
217 void __iomem *base_addr;
218 const struct tegra_dma_chip_data *chip_data;
221 * Counter for managing global pausing of the DMA controller.
222 * Only applicable for devices that don't support individual
223 * channel pausing.
225 u32 global_pause_count;
227 /* Last member of the structure */
228 struct tegra_dma_channel channels[0];
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
233 writel(val, tdma->base_addr + reg);
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
238 return readl(tdma->base_addr + reg);
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242 u32 reg, u32 val)
244 writel(val, tdc->chan_addr + reg);
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
249 return readl(tdc->chan_addr + reg);
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
254 return container_of(dc, struct tegra_dma_channel, dma_chan);
257 static inline struct tegra_dma_desc *
258 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
260 return container_of(td, struct tegra_dma_desc, txd);
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
265 return &tdc->dma_chan.dev->device;
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
270 /* Get DMA desc from free list, if not there then allocate it. */
271 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
273 struct tegra_dma_desc *dma_desc;
274 unsigned long flags;
276 spin_lock_irqsave(&tdc->lock, flags);
278 /* Do not allocate if desc are waiting for ack */
279 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281 list_del(&dma_desc->node);
282 spin_unlock_irqrestore(&tdc->lock, flags);
283 dma_desc->txd.flags = 0;
284 return dma_desc;
288 spin_unlock_irqrestore(&tdc->lock, flags);
290 /* Allocate DMA desc */
291 dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292 if (!dma_desc)
293 return NULL;
295 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296 dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297 dma_desc->txd.flags = 0;
299 return dma_desc;
302 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303 struct tegra_dma_desc *dma_desc)
305 unsigned long flags;
307 spin_lock_irqsave(&tdc->lock, flags);
308 if (!list_empty(&dma_desc->tx_list))
309 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311 spin_unlock_irqrestore(&tdc->lock, flags);
314 static struct tegra_dma_sg_req *
315 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
317 struct tegra_dma_sg_req *sg_req;
318 unsigned long flags;
320 spin_lock_irqsave(&tdc->lock, flags);
321 if (!list_empty(&tdc->free_sg_req)) {
322 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323 node);
324 list_del(&sg_req->node);
325 spin_unlock_irqrestore(&tdc->lock, flags);
326 return sg_req;
328 spin_unlock_irqrestore(&tdc->lock, flags);
330 sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
332 return sg_req;
335 static int tegra_dma_slave_config(struct dma_chan *dc,
336 struct dma_slave_config *sconfig)
338 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
340 if (!list_empty(&tdc->pending_sg_req)) {
341 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342 return -EBUSY;
345 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346 if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
347 sconfig->device_fc) {
348 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
349 return -EINVAL;
350 tdc->slave_id = sconfig->slave_id;
352 tdc->config_init = true;
354 return 0;
357 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
358 bool wait_for_burst_complete)
360 struct tegra_dma *tdma = tdc->tdma;
362 spin_lock(&tdma->global_lock);
364 if (tdc->tdma->global_pause_count == 0) {
365 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
366 if (wait_for_burst_complete)
367 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
370 tdc->tdma->global_pause_count++;
372 spin_unlock(&tdma->global_lock);
375 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
377 struct tegra_dma *tdma = tdc->tdma;
379 spin_lock(&tdma->global_lock);
381 if (WARN_ON(tdc->tdma->global_pause_count == 0))
382 goto out;
384 if (--tdc->tdma->global_pause_count == 0)
385 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
386 TEGRA_APBDMA_GENERAL_ENABLE);
388 out:
389 spin_unlock(&tdma->global_lock);
392 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
393 bool wait_for_burst_complete)
395 struct tegra_dma *tdma = tdc->tdma;
397 if (tdma->chip_data->support_channel_pause) {
398 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
399 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
400 if (wait_for_burst_complete)
401 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
402 } else {
403 tegra_dma_global_pause(tdc, wait_for_burst_complete);
407 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
409 struct tegra_dma *tdma = tdc->tdma;
411 if (tdma->chip_data->support_channel_pause)
412 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
413 else
414 tegra_dma_global_resume(tdc);
417 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
419 u32 csr, status;
421 /* Disable interrupts */
422 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
423 csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
424 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
426 /* Disable DMA */
427 csr &= ~TEGRA_APBDMA_CSR_ENB;
428 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
430 /* Clear interrupt status if it is there */
431 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
432 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
433 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
434 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
436 tdc->busy = false;
439 static void tegra_dma_start(struct tegra_dma_channel *tdc,
440 struct tegra_dma_sg_req *sg_req)
442 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
444 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
445 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
446 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
447 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
448 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
449 if (tdc->tdma->chip_data->support_separate_wcount_reg)
450 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
452 /* Start DMA */
453 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
454 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
457 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
458 struct tegra_dma_sg_req *nsg_req)
460 unsigned long status;
463 * The DMA controller reloads the new configuration for next transfer
464 * after last burst of current transfer completes.
465 * If there is no IEC status then this makes sure that last burst
466 * has not be completed. There may be case that last burst is on
467 * flight and so it can complete but because DMA is paused, it
468 * will not generates interrupt as well as not reload the new
469 * configuration.
470 * If there is already IEC status then interrupt handler need to
471 * load new configuration.
473 tegra_dma_pause(tdc, false);
474 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
477 * If interrupt is pending then do nothing as the ISR will handle
478 * the programing for new request.
480 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
481 dev_err(tdc2dev(tdc),
482 "Skipping new configuration as interrupt is pending\n");
483 tegra_dma_resume(tdc);
484 return;
487 /* Safe to program new configuration */
488 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
489 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
490 if (tdc->tdma->chip_data->support_separate_wcount_reg)
491 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
492 nsg_req->ch_regs.wcount);
493 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
494 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
495 nsg_req->configured = true;
496 nsg_req->words_xferred = 0;
498 tegra_dma_resume(tdc);
501 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
503 struct tegra_dma_sg_req *sg_req;
505 sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
506 tegra_dma_start(tdc, sg_req);
507 sg_req->configured = true;
508 sg_req->words_xferred = 0;
509 tdc->busy = true;
512 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
514 struct tegra_dma_sg_req *hsgreq, *hnsgreq;
516 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
517 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
518 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
519 node);
520 tegra_dma_configure_for_next(tdc, hnsgreq);
524 static inline unsigned int
525 get_current_xferred_count(struct tegra_dma_channel *tdc,
526 struct tegra_dma_sg_req *sg_req,
527 unsigned long status)
529 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
532 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
534 struct tegra_dma_desc *dma_desc;
535 struct tegra_dma_sg_req *sgreq;
537 while (!list_empty(&tdc->pending_sg_req)) {
538 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
539 node);
540 list_move_tail(&sgreq->node, &tdc->free_sg_req);
541 if (sgreq->last_sg) {
542 dma_desc = sgreq->dma_desc;
543 dma_desc->dma_status = DMA_ERROR;
544 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
546 /* Add in cb list if it is not there. */
547 if (!dma_desc->cb_count)
548 list_add_tail(&dma_desc->cb_node,
549 &tdc->cb_desc);
550 dma_desc->cb_count++;
553 tdc->isr_handler = NULL;
556 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
557 bool to_terminate)
559 struct tegra_dma_sg_req *hsgreq;
562 * Check that head req on list should be in flight.
563 * If it is not in flight then abort transfer as
564 * looping of transfer can not continue.
566 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
567 if (!hsgreq->configured) {
568 tegra_dma_stop(tdc);
569 pm_runtime_put(tdc->tdma->dev);
570 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
571 tegra_dma_abort_all(tdc);
572 return false;
575 /* Configure next request */
576 if (!to_terminate)
577 tdc_configure_next_head_desc(tdc);
579 return true;
582 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
583 bool to_terminate)
585 struct tegra_dma_desc *dma_desc;
586 struct tegra_dma_sg_req *sgreq;
588 tdc->busy = false;
589 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
590 dma_desc = sgreq->dma_desc;
591 dma_desc->bytes_transferred += sgreq->req_len;
593 list_del(&sgreq->node);
594 if (sgreq->last_sg) {
595 dma_desc->dma_status = DMA_COMPLETE;
596 dma_cookie_complete(&dma_desc->txd);
597 if (!dma_desc->cb_count)
598 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
599 dma_desc->cb_count++;
600 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
602 list_add_tail(&sgreq->node, &tdc->free_sg_req);
604 /* Do not start DMA if it is going to be terminate */
605 if (to_terminate)
606 return;
608 if (list_empty(&tdc->pending_sg_req)) {
609 pm_runtime_put(tdc->tdma->dev);
610 return;
613 tdc_start_head_req(tdc);
616 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
617 bool to_terminate)
619 struct tegra_dma_desc *dma_desc;
620 struct tegra_dma_sg_req *sgreq;
621 bool st;
623 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
624 dma_desc = sgreq->dma_desc;
625 /* if we dma for long enough the transfer count will wrap */
626 dma_desc->bytes_transferred =
627 (dma_desc->bytes_transferred + sgreq->req_len) %
628 dma_desc->bytes_requested;
630 /* Callback need to be call */
631 if (!dma_desc->cb_count)
632 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
633 dma_desc->cb_count++;
635 sgreq->words_xferred = 0;
637 /* If not last req then put at end of pending list */
638 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
639 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
640 sgreq->configured = false;
641 st = handle_continuous_head_request(tdc, to_terminate);
642 if (!st)
643 dma_desc->dma_status = DMA_ERROR;
647 static void tegra_dma_tasklet(unsigned long data)
649 struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
650 struct dmaengine_desc_callback cb;
651 struct tegra_dma_desc *dma_desc;
652 unsigned int cb_count;
653 unsigned long flags;
655 spin_lock_irqsave(&tdc->lock, flags);
656 while (!list_empty(&tdc->cb_desc)) {
657 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
658 cb_node);
659 list_del(&dma_desc->cb_node);
660 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
661 cb_count = dma_desc->cb_count;
662 dma_desc->cb_count = 0;
663 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
664 cb.callback);
665 spin_unlock_irqrestore(&tdc->lock, flags);
666 while (cb_count--)
667 dmaengine_desc_callback_invoke(&cb, NULL);
668 spin_lock_irqsave(&tdc->lock, flags);
670 spin_unlock_irqrestore(&tdc->lock, flags);
673 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
675 struct tegra_dma_channel *tdc = dev_id;
676 u32 status;
678 spin_lock(&tdc->lock);
680 trace_tegra_dma_isr(&tdc->dma_chan, irq);
681 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
682 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
683 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
684 tdc->isr_handler(tdc, false);
685 tasklet_schedule(&tdc->tasklet);
686 wake_up_all(&tdc->wq);
687 spin_unlock(&tdc->lock);
688 return IRQ_HANDLED;
691 spin_unlock(&tdc->lock);
692 dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
693 status);
695 return IRQ_NONE;
698 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
700 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
701 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
702 unsigned long flags;
703 dma_cookie_t cookie;
705 spin_lock_irqsave(&tdc->lock, flags);
706 dma_desc->dma_status = DMA_IN_PROGRESS;
707 cookie = dma_cookie_assign(&dma_desc->txd);
708 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
709 spin_unlock_irqrestore(&tdc->lock, flags);
711 return cookie;
714 static void tegra_dma_issue_pending(struct dma_chan *dc)
716 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
717 unsigned long flags;
718 int err;
720 spin_lock_irqsave(&tdc->lock, flags);
721 if (list_empty(&tdc->pending_sg_req)) {
722 dev_err(tdc2dev(tdc), "No DMA request\n");
723 goto end;
725 if (!tdc->busy) {
726 err = pm_runtime_get_sync(tdc->tdma->dev);
727 if (err < 0) {
728 dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
729 goto end;
732 tdc_start_head_req(tdc);
734 /* Continuous single mode: Configure next req */
735 if (tdc->cyclic) {
737 * Wait for 1 burst time for configure DMA for
738 * next transfer.
740 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741 tdc_configure_next_head_desc(tdc);
744 end:
745 spin_unlock_irqrestore(&tdc->lock, flags);
748 static int tegra_dma_terminate_all(struct dma_chan *dc)
750 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751 struct tegra_dma_desc *dma_desc;
752 struct tegra_dma_sg_req *sgreq;
753 unsigned long flags;
754 u32 status, wcount;
755 bool was_busy;
757 spin_lock_irqsave(&tdc->lock, flags);
759 if (!tdc->busy)
760 goto skip_dma_stop;
762 /* Pause DMA before checking the queue status */
763 tegra_dma_pause(tdc, true);
765 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768 tdc->isr_handler(tdc, true);
769 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
771 if (tdc->tdma->chip_data->support_separate_wcount_reg)
772 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773 else
774 wcount = status;
776 was_busy = tdc->busy;
777 tegra_dma_stop(tdc);
779 if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
781 node);
782 sgreq->dma_desc->bytes_transferred +=
783 get_current_xferred_count(tdc, sgreq, wcount);
785 tegra_dma_resume(tdc);
787 pm_runtime_put(tdc->tdma->dev);
788 wake_up_all(&tdc->wq);
790 skip_dma_stop:
791 tegra_dma_abort_all(tdc);
793 while (!list_empty(&tdc->cb_desc)) {
794 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
795 cb_node);
796 list_del(&dma_desc->cb_node);
797 dma_desc->cb_count = 0;
799 spin_unlock_irqrestore(&tdc->lock, flags);
801 return 0;
804 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
806 unsigned long flags;
807 u32 status;
809 spin_lock_irqsave(&tdc->lock, flags);
810 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
811 spin_unlock_irqrestore(&tdc->lock, flags);
813 return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
816 static void tegra_dma_synchronize(struct dma_chan *dc)
818 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
821 * CPU, which handles interrupt, could be busy in
822 * uninterruptible state, in this case sibling CPU
823 * should wait until interrupt is handled.
825 wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
827 tasklet_kill(&tdc->tasklet);
830 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
831 struct tegra_dma_sg_req *sg_req)
833 u32 status, wcount = 0;
835 if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
836 return 0;
838 if (tdc->tdma->chip_data->support_separate_wcount_reg)
839 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
841 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
843 if (!tdc->tdma->chip_data->support_separate_wcount_reg)
844 wcount = status;
846 if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
847 return sg_req->req_len;
849 wcount = get_current_xferred_count(tdc, sg_req, wcount);
851 if (!wcount) {
853 * If wcount wasn't ever polled for this SG before, then
854 * simply assume that transfer hasn't started yet.
856 * Otherwise it's the end of the transfer.
858 * The alternative would be to poll the status register
859 * until EOC bit is set or wcount goes UP. That's so
860 * because EOC bit is getting set only after the last
861 * burst's completion and counter is less than the actual
862 * transfer size by 4 bytes. The counter value wraps around
863 * in a cyclic mode before EOC is set(!), so we can't easily
864 * distinguish start of transfer from its end.
866 if (sg_req->words_xferred)
867 wcount = sg_req->req_len - 4;
869 } else if (wcount < sg_req->words_xferred) {
871 * This case will never happen for a non-cyclic transfer.
873 * For a cyclic transfer, although it is possible for the
874 * next transfer to have already started (resetting the word
875 * count), this case should still not happen because we should
876 * have detected that the EOC bit is set and hence the transfer
877 * was completed.
879 WARN_ON_ONCE(1);
881 wcount = sg_req->req_len - 4;
882 } else {
883 sg_req->words_xferred = wcount;
886 return wcount;
889 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
890 dma_cookie_t cookie,
891 struct dma_tx_state *txstate)
893 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
894 struct tegra_dma_desc *dma_desc;
895 struct tegra_dma_sg_req *sg_req;
896 enum dma_status ret;
897 unsigned long flags;
898 unsigned int residual;
899 unsigned int bytes = 0;
901 ret = dma_cookie_status(dc, cookie, txstate);
902 if (ret == DMA_COMPLETE)
903 return ret;
905 spin_lock_irqsave(&tdc->lock, flags);
907 /* Check on wait_ack desc status */
908 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
909 if (dma_desc->txd.cookie == cookie) {
910 ret = dma_desc->dma_status;
911 goto found;
915 /* Check in pending list */
916 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
917 dma_desc = sg_req->dma_desc;
918 if (dma_desc->txd.cookie == cookie) {
919 bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
920 ret = dma_desc->dma_status;
921 goto found;
925 dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
926 dma_desc = NULL;
928 found:
929 if (dma_desc && txstate) {
930 residual = dma_desc->bytes_requested -
931 ((dma_desc->bytes_transferred + bytes) %
932 dma_desc->bytes_requested);
933 dma_set_residue(txstate, residual);
936 trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
937 spin_unlock_irqrestore(&tdc->lock, flags);
939 return ret;
942 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
943 enum dma_slave_buswidth slave_bw)
945 switch (slave_bw) {
946 case DMA_SLAVE_BUSWIDTH_1_BYTE:
947 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
948 case DMA_SLAVE_BUSWIDTH_2_BYTES:
949 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
950 case DMA_SLAVE_BUSWIDTH_4_BYTES:
951 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
952 case DMA_SLAVE_BUSWIDTH_8_BYTES:
953 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
954 default:
955 dev_warn(tdc2dev(tdc),
956 "slave bw is not supported, using 32bits\n");
957 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
962 u32 burst_size,
963 enum dma_slave_buswidth slave_bw,
964 u32 len)
966 unsigned int burst_byte, burst_ahb_width;
969 * burst_size from client is in terms of the bus_width.
970 * convert them into AHB memory width which is 4 byte.
972 burst_byte = burst_size * slave_bw;
973 burst_ahb_width = burst_byte / 4;
975 /* If burst size is 0 then calculate the burst size based on length */
976 if (!burst_ahb_width) {
977 if (len & 0xF)
978 return TEGRA_APBDMA_AHBSEQ_BURST_1;
979 else if ((len >> 4) & 0x1)
980 return TEGRA_APBDMA_AHBSEQ_BURST_4;
981 else
982 return TEGRA_APBDMA_AHBSEQ_BURST_8;
984 if (burst_ahb_width < 4)
985 return TEGRA_APBDMA_AHBSEQ_BURST_1;
986 else if (burst_ahb_width < 8)
987 return TEGRA_APBDMA_AHBSEQ_BURST_4;
988 else
989 return TEGRA_APBDMA_AHBSEQ_BURST_8;
992 static int get_transfer_param(struct tegra_dma_channel *tdc,
993 enum dma_transfer_direction direction,
994 u32 *apb_addr,
995 u32 *apb_seq,
996 u32 *csr,
997 unsigned int *burst_size,
998 enum dma_slave_buswidth *slave_bw)
1000 switch (direction) {
1001 case DMA_MEM_TO_DEV:
1002 *apb_addr = tdc->dma_sconfig.dst_addr;
1003 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1004 *burst_size = tdc->dma_sconfig.dst_maxburst;
1005 *slave_bw = tdc->dma_sconfig.dst_addr_width;
1006 *csr = TEGRA_APBDMA_CSR_DIR;
1007 return 0;
1009 case DMA_DEV_TO_MEM:
1010 *apb_addr = tdc->dma_sconfig.src_addr;
1011 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1012 *burst_size = tdc->dma_sconfig.src_maxburst;
1013 *slave_bw = tdc->dma_sconfig.src_addr_width;
1014 *csr = 0;
1015 return 0;
1017 default:
1018 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1019 break;
1022 return -EINVAL;
1025 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1026 struct tegra_dma_channel_regs *ch_regs,
1027 u32 len)
1029 u32 len_field = (len - 4) & 0xFFFC;
1031 if (tdc->tdma->chip_data->support_separate_wcount_reg)
1032 ch_regs->wcount = len_field;
1033 else
1034 ch_regs->csr |= len_field;
1037 static struct dma_async_tx_descriptor *
1038 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1039 struct scatterlist *sgl,
1040 unsigned int sg_len,
1041 enum dma_transfer_direction direction,
1042 unsigned long flags,
1043 void *context)
1045 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1046 struct tegra_dma_sg_req *sg_req = NULL;
1047 u32 csr, ahb_seq, apb_ptr, apb_seq;
1048 enum dma_slave_buswidth slave_bw;
1049 struct tegra_dma_desc *dma_desc;
1050 struct list_head req_list;
1051 struct scatterlist *sg;
1052 unsigned int burst_size;
1053 unsigned int i;
1055 if (!tdc->config_init) {
1056 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1057 return NULL;
1059 if (sg_len < 1) {
1060 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1061 return NULL;
1064 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1065 &burst_size, &slave_bw) < 0)
1066 return NULL;
1068 INIT_LIST_HEAD(&req_list);
1070 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1071 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1072 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1073 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1075 csr |= TEGRA_APBDMA_CSR_ONCE;
1077 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1078 csr |= TEGRA_APBDMA_CSR_FLOW;
1079 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1082 if (flags & DMA_PREP_INTERRUPT) {
1083 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1084 } else {
1085 WARN_ON_ONCE(1);
1086 return NULL;
1089 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1091 dma_desc = tegra_dma_desc_get(tdc);
1092 if (!dma_desc) {
1093 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1094 return NULL;
1096 INIT_LIST_HEAD(&dma_desc->tx_list);
1097 INIT_LIST_HEAD(&dma_desc->cb_node);
1098 dma_desc->cb_count = 0;
1099 dma_desc->bytes_requested = 0;
1100 dma_desc->bytes_transferred = 0;
1101 dma_desc->dma_status = DMA_IN_PROGRESS;
1103 /* Make transfer requests */
1104 for_each_sg(sgl, sg, sg_len, i) {
1105 u32 len, mem;
1107 mem = sg_dma_address(sg);
1108 len = sg_dma_len(sg);
1110 if ((len & 3) || (mem & 3) ||
1111 len > tdc->tdma->chip_data->max_dma_count) {
1112 dev_err(tdc2dev(tdc),
1113 "DMA length/memory address is not supported\n");
1114 tegra_dma_desc_put(tdc, dma_desc);
1115 return NULL;
1118 sg_req = tegra_dma_sg_req_get(tdc);
1119 if (!sg_req) {
1120 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1121 tegra_dma_desc_put(tdc, dma_desc);
1122 return NULL;
1125 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1126 dma_desc->bytes_requested += len;
1128 sg_req->ch_regs.apb_ptr = apb_ptr;
1129 sg_req->ch_regs.ahb_ptr = mem;
1130 sg_req->ch_regs.csr = csr;
1131 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1132 sg_req->ch_regs.apb_seq = apb_seq;
1133 sg_req->ch_regs.ahb_seq = ahb_seq;
1134 sg_req->configured = false;
1135 sg_req->last_sg = false;
1136 sg_req->dma_desc = dma_desc;
1137 sg_req->req_len = len;
1139 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1141 sg_req->last_sg = true;
1142 if (flags & DMA_CTRL_ACK)
1143 dma_desc->txd.flags = DMA_CTRL_ACK;
1146 * Make sure that mode should not be conflicting with currently
1147 * configured mode.
1149 if (!tdc->isr_handler) {
1150 tdc->isr_handler = handle_once_dma_done;
1151 tdc->cyclic = false;
1152 } else {
1153 if (tdc->cyclic) {
1154 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1155 tegra_dma_desc_put(tdc, dma_desc);
1156 return NULL;
1160 return &dma_desc->txd;
1163 static struct dma_async_tx_descriptor *
1164 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1165 size_t buf_len,
1166 size_t period_len,
1167 enum dma_transfer_direction direction,
1168 unsigned long flags)
1170 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1171 struct tegra_dma_sg_req *sg_req = NULL;
1172 u32 csr, ahb_seq, apb_ptr, apb_seq;
1173 enum dma_slave_buswidth slave_bw;
1174 struct tegra_dma_desc *dma_desc;
1175 dma_addr_t mem = buf_addr;
1176 unsigned int burst_size;
1177 size_t len, remain_len;
1179 if (!buf_len || !period_len) {
1180 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1181 return NULL;
1184 if (!tdc->config_init) {
1185 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1186 return NULL;
1190 * We allow to take more number of requests till DMA is
1191 * not started. The driver will loop over all requests.
1192 * Once DMA is started then new requests can be queued only after
1193 * terminating the DMA.
1195 if (tdc->busy) {
1196 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1197 return NULL;
1201 * We only support cycle transfer when buf_len is multiple of
1202 * period_len.
1204 if (buf_len % period_len) {
1205 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1206 return NULL;
1209 len = period_len;
1210 if ((len & 3) || (buf_addr & 3) ||
1211 len > tdc->tdma->chip_data->max_dma_count) {
1212 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1213 return NULL;
1216 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1217 &burst_size, &slave_bw) < 0)
1218 return NULL;
1220 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1221 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1222 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1223 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1225 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1226 csr |= TEGRA_APBDMA_CSR_FLOW;
1227 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1230 if (flags & DMA_PREP_INTERRUPT) {
1231 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1232 } else {
1233 WARN_ON_ONCE(1);
1234 return NULL;
1237 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1239 dma_desc = tegra_dma_desc_get(tdc);
1240 if (!dma_desc) {
1241 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1242 return NULL;
1245 INIT_LIST_HEAD(&dma_desc->tx_list);
1246 INIT_LIST_HEAD(&dma_desc->cb_node);
1247 dma_desc->cb_count = 0;
1249 dma_desc->bytes_transferred = 0;
1250 dma_desc->bytes_requested = buf_len;
1251 remain_len = buf_len;
1253 /* Split transfer equal to period size */
1254 while (remain_len) {
1255 sg_req = tegra_dma_sg_req_get(tdc);
1256 if (!sg_req) {
1257 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1258 tegra_dma_desc_put(tdc, dma_desc);
1259 return NULL;
1262 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1263 sg_req->ch_regs.apb_ptr = apb_ptr;
1264 sg_req->ch_regs.ahb_ptr = mem;
1265 sg_req->ch_regs.csr = csr;
1266 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1267 sg_req->ch_regs.apb_seq = apb_seq;
1268 sg_req->ch_regs.ahb_seq = ahb_seq;
1269 sg_req->configured = false;
1270 sg_req->last_sg = false;
1271 sg_req->dma_desc = dma_desc;
1272 sg_req->req_len = len;
1274 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1275 remain_len -= len;
1276 mem += len;
1278 sg_req->last_sg = true;
1279 if (flags & DMA_CTRL_ACK)
1280 dma_desc->txd.flags = DMA_CTRL_ACK;
1283 * Make sure that mode should not be conflicting with currently
1284 * configured mode.
1286 if (!tdc->isr_handler) {
1287 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1288 tdc->cyclic = true;
1289 } else {
1290 if (!tdc->cyclic) {
1291 dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1292 tegra_dma_desc_put(tdc, dma_desc);
1293 return NULL;
1297 return &dma_desc->txd;
1300 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1302 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1304 dma_cookie_init(&tdc->dma_chan);
1306 return 0;
1309 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1311 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1312 struct tegra_dma_desc *dma_desc;
1313 struct tegra_dma_sg_req *sg_req;
1314 struct list_head dma_desc_list;
1315 struct list_head sg_req_list;
1317 INIT_LIST_HEAD(&dma_desc_list);
1318 INIT_LIST_HEAD(&sg_req_list);
1320 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1322 tegra_dma_terminate_all(dc);
1323 tasklet_kill(&tdc->tasklet);
1325 list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1326 list_splice_init(&tdc->free_sg_req, &sg_req_list);
1327 list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1328 INIT_LIST_HEAD(&tdc->cb_desc);
1329 tdc->config_init = false;
1330 tdc->isr_handler = NULL;
1332 while (!list_empty(&dma_desc_list)) {
1333 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1334 node);
1335 list_del(&dma_desc->node);
1336 kfree(dma_desc);
1339 while (!list_empty(&sg_req_list)) {
1340 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1341 list_del(&sg_req->node);
1342 kfree(sg_req);
1345 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1348 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1349 struct of_dma *ofdma)
1351 struct tegra_dma *tdma = ofdma->of_dma_data;
1352 struct tegra_dma_channel *tdc;
1353 struct dma_chan *chan;
1355 if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1356 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1357 return NULL;
1360 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1361 if (!chan)
1362 return NULL;
1364 tdc = to_tegra_dma_chan(chan);
1365 tdc->slave_id = dma_spec->args[0];
1367 return chan;
1370 /* Tegra20 specific DMA controller information */
1371 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1372 .nr_channels = 16,
1373 .channel_reg_size = 0x20,
1374 .max_dma_count = 1024UL * 64,
1375 .support_channel_pause = false,
1376 .support_separate_wcount_reg = false,
1379 /* Tegra30 specific DMA controller information */
1380 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1381 .nr_channels = 32,
1382 .channel_reg_size = 0x20,
1383 .max_dma_count = 1024UL * 64,
1384 .support_channel_pause = false,
1385 .support_separate_wcount_reg = false,
1388 /* Tegra114 specific DMA controller information */
1389 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1390 .nr_channels = 32,
1391 .channel_reg_size = 0x20,
1392 .max_dma_count = 1024UL * 64,
1393 .support_channel_pause = true,
1394 .support_separate_wcount_reg = false,
1397 /* Tegra148 specific DMA controller information */
1398 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1399 .nr_channels = 32,
1400 .channel_reg_size = 0x40,
1401 .max_dma_count = 1024UL * 64,
1402 .support_channel_pause = true,
1403 .support_separate_wcount_reg = true,
1406 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1408 int err;
1410 err = reset_control_assert(tdma->rst);
1411 if (err) {
1412 dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1413 return err;
1416 err = clk_enable(tdma->dma_clk);
1417 if (err) {
1418 dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1419 return err;
1422 /* reset DMA controller */
1423 udelay(2);
1424 reset_control_deassert(tdma->rst);
1426 /* enable global DMA registers */
1427 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1428 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1429 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1431 clk_disable(tdma->dma_clk);
1433 return 0;
1436 static int tegra_dma_probe(struct platform_device *pdev)
1438 const struct tegra_dma_chip_data *cdata;
1439 struct tegra_dma *tdma;
1440 unsigned int i;
1441 size_t size;
1442 int ret;
1444 cdata = of_device_get_match_data(&pdev->dev);
1445 size = struct_size(tdma, channels, cdata->nr_channels);
1447 tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1448 if (!tdma)
1449 return -ENOMEM;
1451 tdma->dev = &pdev->dev;
1452 tdma->chip_data = cdata;
1453 platform_set_drvdata(pdev, tdma);
1455 tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1456 if (IS_ERR(tdma->base_addr))
1457 return PTR_ERR(tdma->base_addr);
1459 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1460 if (IS_ERR(tdma->dma_clk)) {
1461 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1462 return PTR_ERR(tdma->dma_clk);
1465 tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1466 if (IS_ERR(tdma->rst)) {
1467 dev_err(&pdev->dev, "Error: Missing reset\n");
1468 return PTR_ERR(tdma->rst);
1471 spin_lock_init(&tdma->global_lock);
1473 ret = clk_prepare(tdma->dma_clk);
1474 if (ret)
1475 return ret;
1477 ret = tegra_dma_init_hw(tdma);
1478 if (ret)
1479 goto err_clk_unprepare;
1481 pm_runtime_irq_safe(&pdev->dev);
1482 pm_runtime_enable(&pdev->dev);
1484 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1485 for (i = 0; i < cdata->nr_channels; i++) {
1486 struct tegra_dma_channel *tdc = &tdma->channels[i];
1487 int irq;
1489 tdc->chan_addr = tdma->base_addr +
1490 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1491 (i * cdata->channel_reg_size);
1493 irq = platform_get_irq(pdev, i);
1494 if (irq < 0) {
1495 ret = irq;
1496 goto err_pm_disable;
1499 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1500 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1501 tdc->name, tdc);
1502 if (ret) {
1503 dev_err(&pdev->dev,
1504 "request_irq failed with err %d channel %d\n",
1505 ret, i);
1506 goto err_pm_disable;
1509 tdc->dma_chan.device = &tdma->dma_dev;
1510 dma_cookie_init(&tdc->dma_chan);
1511 list_add_tail(&tdc->dma_chan.device_node,
1512 &tdma->dma_dev.channels);
1513 tdc->tdma = tdma;
1514 tdc->id = i;
1515 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1517 tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1518 (unsigned long)tdc);
1519 spin_lock_init(&tdc->lock);
1520 init_waitqueue_head(&tdc->wq);
1522 INIT_LIST_HEAD(&tdc->pending_sg_req);
1523 INIT_LIST_HEAD(&tdc->free_sg_req);
1524 INIT_LIST_HEAD(&tdc->free_dma_desc);
1525 INIT_LIST_HEAD(&tdc->cb_desc);
1528 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1529 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1530 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1532 tdma->global_pause_count = 0;
1533 tdma->dma_dev.dev = &pdev->dev;
1534 tdma->dma_dev.device_alloc_chan_resources =
1535 tegra_dma_alloc_chan_resources;
1536 tdma->dma_dev.device_free_chan_resources =
1537 tegra_dma_free_chan_resources;
1538 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1539 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1540 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1541 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1542 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1543 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1544 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1545 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1546 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1547 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1548 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1549 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1550 tdma->dma_dev.device_config = tegra_dma_slave_config;
1551 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1552 tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1553 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1554 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1556 ret = dma_async_device_register(&tdma->dma_dev);
1557 if (ret < 0) {
1558 dev_err(&pdev->dev,
1559 "Tegra20 APB DMA driver registration failed %d\n", ret);
1560 goto err_pm_disable;
1563 ret = of_dma_controller_register(pdev->dev.of_node,
1564 tegra_dma_of_xlate, tdma);
1565 if (ret < 0) {
1566 dev_err(&pdev->dev,
1567 "Tegra20 APB DMA OF registration failed %d\n", ret);
1568 goto err_unregister_dma_dev;
1571 dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1572 cdata->nr_channels);
1574 return 0;
1576 err_unregister_dma_dev:
1577 dma_async_device_unregister(&tdma->dma_dev);
1579 err_pm_disable:
1580 pm_runtime_disable(&pdev->dev);
1582 err_clk_unprepare:
1583 clk_unprepare(tdma->dma_clk);
1585 return ret;
1588 static int tegra_dma_remove(struct platform_device *pdev)
1590 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1592 of_dma_controller_free(pdev->dev.of_node);
1593 dma_async_device_unregister(&tdma->dma_dev);
1594 pm_runtime_disable(&pdev->dev);
1595 clk_unprepare(tdma->dma_clk);
1597 return 0;
1600 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1602 struct tegra_dma *tdma = dev_get_drvdata(dev);
1604 clk_disable(tdma->dma_clk);
1606 return 0;
1609 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1611 struct tegra_dma *tdma = dev_get_drvdata(dev);
1613 return clk_enable(tdma->dma_clk);
1616 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1618 struct tegra_dma *tdma = dev_get_drvdata(dev);
1619 unsigned long flags;
1620 unsigned int i;
1621 bool busy;
1623 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1624 struct tegra_dma_channel *tdc = &tdma->channels[i];
1626 tasklet_kill(&tdc->tasklet);
1628 spin_lock_irqsave(&tdc->lock, flags);
1629 busy = tdc->busy;
1630 spin_unlock_irqrestore(&tdc->lock, flags);
1632 if (busy) {
1633 dev_err(tdma->dev, "channel %u busy\n", i);
1634 return -EBUSY;
1638 return pm_runtime_force_suspend(dev);
1641 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1643 struct tegra_dma *tdma = dev_get_drvdata(dev);
1644 int err;
1646 err = tegra_dma_init_hw(tdma);
1647 if (err)
1648 return err;
1650 return pm_runtime_force_resume(dev);
1653 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1654 SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1655 NULL)
1656 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1659 static const struct of_device_id tegra_dma_of_match[] = {
1661 .compatible = "nvidia,tegra148-apbdma",
1662 .data = &tegra148_dma_chip_data,
1663 }, {
1664 .compatible = "nvidia,tegra114-apbdma",
1665 .data = &tegra114_dma_chip_data,
1666 }, {
1667 .compatible = "nvidia,tegra30-apbdma",
1668 .data = &tegra30_dma_chip_data,
1669 }, {
1670 .compatible = "nvidia,tegra20-apbdma",
1671 .data = &tegra20_dma_chip_data,
1672 }, {
1675 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1677 static struct platform_driver tegra_dmac_driver = {
1678 .driver = {
1679 .name = "tegra-apbdma",
1680 .pm = &tegra_dma_dev_pm_ops,
1681 .of_match_table = tegra_dma_of_match,
1683 .probe = tegra_dma_probe,
1684 .remove = tegra_dma_remove,
1687 module_platform_driver(tegra_dmac_driver);
1689 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1690 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1691 MODULE_LICENSE("GPL v2");