2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 static int edac_report
= EDAC_REPORTING_ENABLED
;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex
);
50 static LIST_HEAD(mc_devices
);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner
;
58 static struct mem_ctl_info
*error_desc_to_mci(struct edac_raw_error_desc
*e
)
60 return container_of(e
, struct mem_ctl_info
, error_desc
);
63 int edac_get_report_status(void)
67 EXPORT_SYMBOL_GPL(edac_get_report_status
);
69 void edac_set_report_status(int new)
71 if (new == EDAC_REPORTING_ENABLED
||
72 new == EDAC_REPORTING_DISABLED
||
73 new == EDAC_REPORTING_FORCE
)
76 EXPORT_SYMBOL_GPL(edac_set_report_status
);
78 static int edac_report_set(const char *str
, const struct kernel_param
*kp
)
83 if (!strncmp(str
, "on", 2))
84 edac_report
= EDAC_REPORTING_ENABLED
;
85 else if (!strncmp(str
, "off", 3))
86 edac_report
= EDAC_REPORTING_DISABLED
;
87 else if (!strncmp(str
, "force", 5))
88 edac_report
= EDAC_REPORTING_FORCE
;
93 static int edac_report_get(char *buffer
, const struct kernel_param
*kp
)
97 switch (edac_report
) {
98 case EDAC_REPORTING_ENABLED
:
99 ret
= sprintf(buffer
, "on");
101 case EDAC_REPORTING_DISABLED
:
102 ret
= sprintf(buffer
, "off");
104 case EDAC_REPORTING_FORCE
:
105 ret
= sprintf(buffer
, "force");
115 static const struct kernel_param_ops edac_report_ops
= {
116 .set
= edac_report_set
,
117 .get
= edac_report_get
,
120 module_param_cb(edac_report
, &edac_report_ops
, &edac_report
, 0644);
122 unsigned int edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
125 struct mem_ctl_info
*mci
= dimm
->mci
;
129 for (i
= 0; i
< mci
->n_layers
; i
++) {
130 n
= snprintf(p
, len
, "%s %d ",
131 edac_layer_name
[mci
->layers
[i
].type
],
143 #ifdef CONFIG_EDAC_DEBUG
145 static void edac_mc_dump_channel(struct rank_info
*chan
)
147 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
148 edac_dbg(4, " channel = %p\n", chan
);
149 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
150 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
153 static void edac_mc_dump_dimm(struct dimm_info
*dimm
)
160 edac_dimm_info_location(dimm
, location
, sizeof(location
));
162 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
163 dimm
->mci
->csbased
? "rank" : "dimm",
164 dimm
->idx
, location
, dimm
->csrow
, dimm
->cschannel
);
165 edac_dbg(4, " dimm = %p\n", dimm
);
166 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
167 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
168 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
169 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
172 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
174 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
175 edac_dbg(4, " csrow = %p\n", csrow
);
176 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
177 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
178 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
179 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
180 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
181 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
184 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
186 edac_dbg(3, "\tmci = %p\n", mci
);
187 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
188 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
189 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
190 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
191 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
192 mci
->nr_csrows
, mci
->csrows
);
193 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
194 mci
->tot_dimms
, mci
->dimms
);
195 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
196 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
197 mci
->mod_name
, mci
->ctl_name
);
198 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
201 #endif /* CONFIG_EDAC_DEBUG */
203 const char * const edac_mem_types
[] = {
204 [MEM_EMPTY
] = "Empty",
205 [MEM_RESERVED
] = "Reserved",
206 [MEM_UNKNOWN
] = "Unknown",
210 [MEM_SDR
] = "Unbuffered-SDR",
211 [MEM_RDR
] = "Registered-SDR",
212 [MEM_DDR
] = "Unbuffered-DDR",
213 [MEM_RDDR
] = "Registered-DDR",
215 [MEM_DDR2
] = "Unbuffered-DDR2",
216 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
217 [MEM_RDDR2
] = "Registered-DDR2",
219 [MEM_DDR3
] = "Unbuffered-DDR3",
220 [MEM_RDDR3
] = "Registered-DDR3",
221 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
222 [MEM_DDR4
] = "Unbuffered-DDR4",
223 [MEM_RDDR4
] = "Registered-DDR4",
224 [MEM_LRDDR4
] = "Load-Reduced-DDR4-RAM",
225 [MEM_NVDIMM
] = "Non-volatile-RAM",
227 EXPORT_SYMBOL_GPL(edac_mem_types
);
230 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
231 * @p: pointer to a pointer with the memory offset to be used. At
232 * return, this will be incremented to point to the next offset
233 * @size: Size of the data structure to be reserved
234 * @n_elems: Number of elements that should be reserved
236 * If 'size' is a constant, the compiler will optimize this whole function
237 * down to either a no-op or the addition of a constant to the value of '*p'.
239 * The 'p' pointer is absolutely needed to keep the proper advancing
240 * further in memory to the proper offsets when allocating the struct along
241 * with its embedded structs, as edac_device_alloc_ctl_info() does it
242 * above, for example.
244 * At return, the pointer 'p' will be incremented to be used on a next call
247 void *edac_align_ptr(void **p
, unsigned int size
, int n_elems
)
249 unsigned int align
, r
;
252 *p
+= size
* n_elems
;
255 * 'p' can possibly be an unaligned item X such that sizeof(X) is
256 * 'size'. Adjust 'p' so that its alignment is at least as
257 * stringent as what the compiler would provide for X and return
258 * the aligned result.
259 * Here we assume that the alignment of a "long long" is the most
260 * stringent alignment that the compiler will ever provide by default.
261 * As far as I know, this is a reasonable assumption.
263 if (size
> sizeof(long))
264 align
= sizeof(long long);
265 else if (size
> sizeof(int))
266 align
= sizeof(long);
267 else if (size
> sizeof(short))
269 else if (size
> sizeof(char))
270 align
= sizeof(short);
274 r
= (unsigned long)p
% align
;
281 return (void *)(((unsigned long)ptr
) + align
- r
);
284 static void _edac_mc_free(struct mem_ctl_info
*mci
)
286 put_device(&mci
->dev
);
289 static void mci_release(struct device
*dev
)
291 struct mem_ctl_info
*mci
= container_of(dev
, struct mem_ctl_info
, dev
);
292 struct csrow_info
*csr
;
296 for (i
= 0; i
< mci
->tot_dimms
; i
++)
297 kfree(mci
->dimms
[i
]);
302 for (row
= 0; row
< mci
->nr_csrows
; row
++) {
303 csr
= mci
->csrows
[row
];
308 for (chn
= 0; chn
< mci
->num_cschannel
; chn
++)
309 kfree(csr
->channels
[chn
]);
310 kfree(csr
->channels
);
319 static int edac_mc_alloc_csrows(struct mem_ctl_info
*mci
)
321 unsigned int tot_channels
= mci
->num_cschannel
;
322 unsigned int tot_csrows
= mci
->nr_csrows
;
323 unsigned int row
, chn
;
326 * Alocate and fill the csrow/channels structs
328 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
332 for (row
= 0; row
< tot_csrows
; row
++) {
333 struct csrow_info
*csr
;
335 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
339 mci
->csrows
[row
] = csr
;
340 csr
->csrow_idx
= row
;
342 csr
->nr_channels
= tot_channels
;
343 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
348 for (chn
= 0; chn
< tot_channels
; chn
++) {
349 struct rank_info
*chan
;
351 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
355 csr
->channels
[chn
] = chan
;
356 chan
->chan_idx
= chn
;
364 static int edac_mc_alloc_dimms(struct mem_ctl_info
*mci
)
366 unsigned int pos
[EDAC_MAX_LAYERS
];
367 unsigned int row
, chn
, idx
;
372 * Allocate and fill the dimm structs
374 mci
->dimms
= kcalloc(mci
->tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
378 memset(&pos
, 0, sizeof(pos
));
381 for (idx
= 0; idx
< mci
->tot_dimms
; idx
++) {
382 struct dimm_info
*dimm
;
383 struct rank_info
*chan
;
386 chan
= mci
->csrows
[row
]->channels
[chn
];
388 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
391 mci
->dimms
[idx
] = dimm
;
396 * Copy DIMM location and initialize it.
398 len
= sizeof(dimm
->label
);
400 n
= snprintf(p
, len
, "mc#%u", mci
->mc_idx
);
403 for (layer
= 0; layer
< mci
->n_layers
; layer
++) {
404 n
= snprintf(p
, len
, "%s#%u",
405 edac_layer_name
[mci
->layers
[layer
].type
],
409 dimm
->location
[layer
] = pos
[layer
];
415 /* Link it to the csrows old API data */
418 dimm
->cschannel
= chn
;
420 /* Increment csrow location */
421 if (mci
->layers
[0].is_virt_csrow
) {
423 if (chn
== mci
->num_cschannel
) {
429 if (row
== mci
->nr_csrows
) {
435 /* Increment dimm location */
436 for (layer
= mci
->n_layers
- 1; layer
>= 0; layer
--) {
438 if (pos
[layer
] < mci
->layers
[layer
].size
)
447 struct mem_ctl_info
*edac_mc_alloc(unsigned int mc_num
,
448 unsigned int n_layers
,
449 struct edac_mc_layer
*layers
,
452 struct mem_ctl_info
*mci
;
453 struct edac_mc_layer
*layer
;
454 unsigned int idx
, size
, tot_dimms
= 1;
455 unsigned int tot_csrows
= 1, tot_channels
= 1;
456 void *pvt
, *ptr
= NULL
;
457 bool per_rank
= false;
459 if (WARN_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0))
463 * Calculate the total amount of dimms and csrows/cschannels while
464 * in the old API emulation mode
466 for (idx
= 0; idx
< n_layers
; idx
++) {
467 tot_dimms
*= layers
[idx
].size
;
469 if (layers
[idx
].is_virt_csrow
)
470 tot_csrows
*= layers
[idx
].size
;
472 tot_channels
*= layers
[idx
].size
;
474 if (layers
[idx
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
478 /* Figure out the offsets of the various items from the start of an mc
479 * structure. We want the alignment of each item to be at least as
480 * stringent as what the compiler would provide if we could simply
481 * hardcode everything into a single struct.
483 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
484 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
485 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
486 size
= ((unsigned long)pvt
) + sz_pvt
;
488 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
491 per_rank
? "ranks" : "dimms",
492 tot_csrows
* tot_channels
);
494 mci
= kzalloc(size
, GFP_KERNEL
);
498 mci
->dev
.release
= mci_release
;
499 device_initialize(&mci
->dev
);
501 /* Adjust pointers so they point within the memory we just allocated
502 * rather than an imaginary chunk of memory located at address 0.
504 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
505 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
507 /* setup index and various internal pointers */
508 mci
->mc_idx
= mc_num
;
509 mci
->tot_dimms
= tot_dimms
;
511 mci
->n_layers
= n_layers
;
513 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
514 mci
->nr_csrows
= tot_csrows
;
515 mci
->num_cschannel
= tot_channels
;
516 mci
->csbased
= per_rank
;
518 if (edac_mc_alloc_csrows(mci
))
521 if (edac_mc_alloc_dimms(mci
))
524 mci
->op_state
= OP_ALLOC
;
533 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
535 void edac_mc_free(struct mem_ctl_info
*mci
)
541 EXPORT_SYMBOL_GPL(edac_mc_free
);
543 bool edac_has_mcs(void)
547 mutex_lock(&mem_ctls_mutex
);
549 ret
= list_empty(&mc_devices
);
551 mutex_unlock(&mem_ctls_mutex
);
555 EXPORT_SYMBOL_GPL(edac_has_mcs
);
557 /* Caller must hold mem_ctls_mutex */
558 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
560 struct mem_ctl_info
*mci
;
561 struct list_head
*item
;
565 list_for_each(item
, &mc_devices
) {
566 mci
= list_entry(item
, struct mem_ctl_info
, link
);
568 if (mci
->pdev
== dev
)
578 * scan list of controllers looking for the one that manages
580 * @dev: pointer to a struct device related with the MCI
582 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
584 struct mem_ctl_info
*ret
;
586 mutex_lock(&mem_ctls_mutex
);
587 ret
= __find_mci_by_dev(dev
);
588 mutex_unlock(&mem_ctls_mutex
);
592 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
595 * edac_mc_workq_function
596 * performs the operation scheduled by a workq request
598 static void edac_mc_workq_function(struct work_struct
*work_req
)
600 struct delayed_work
*d_work
= to_delayed_work(work_req
);
601 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
603 mutex_lock(&mem_ctls_mutex
);
605 if (mci
->op_state
!= OP_RUNNING_POLL
) {
606 mutex_unlock(&mem_ctls_mutex
);
610 if (edac_op_state
== EDAC_OPSTATE_POLL
)
611 mci
->edac_check(mci
);
613 mutex_unlock(&mem_ctls_mutex
);
615 /* Queue ourselves again. */
616 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
620 * edac_mc_reset_delay_period(unsigned long value)
622 * user space has updated our poll period value, need to
623 * reset our workq delays
625 void edac_mc_reset_delay_period(unsigned long value
)
627 struct mem_ctl_info
*mci
;
628 struct list_head
*item
;
630 mutex_lock(&mem_ctls_mutex
);
632 list_for_each(item
, &mc_devices
) {
633 mci
= list_entry(item
, struct mem_ctl_info
, link
);
635 if (mci
->op_state
== OP_RUNNING_POLL
)
636 edac_mod_work(&mci
->work
, value
);
638 mutex_unlock(&mem_ctls_mutex
);
643 /* Return 0 on success, 1 on failure.
644 * Before calling this function, caller must
645 * assign a unique value to mci->mc_idx.
649 * called with the mem_ctls_mutex lock held
651 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
653 struct list_head
*item
, *insert_before
;
654 struct mem_ctl_info
*p
;
656 insert_before
= &mc_devices
;
658 p
= __find_mci_by_dev(mci
->pdev
);
659 if (unlikely(p
!= NULL
))
662 list_for_each(item
, &mc_devices
) {
663 p
= list_entry(item
, struct mem_ctl_info
, link
);
665 if (p
->mc_idx
>= mci
->mc_idx
) {
666 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
669 insert_before
= item
;
674 list_add_tail_rcu(&mci
->link
, insert_before
);
678 edac_printk(KERN_WARNING
, EDAC_MC
,
679 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
680 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
684 edac_printk(KERN_WARNING
, EDAC_MC
,
685 "bug in low-level driver: attempt to assign\n"
686 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
690 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
692 list_del_rcu(&mci
->link
);
694 /* these are for safe removal of devices from global list while
695 * NMI handlers may be traversing list
698 INIT_LIST_HEAD(&mci
->link
);
700 return list_empty(&mc_devices
);
703 struct mem_ctl_info
*edac_mc_find(int idx
)
705 struct mem_ctl_info
*mci
;
706 struct list_head
*item
;
708 mutex_lock(&mem_ctls_mutex
);
710 list_for_each(item
, &mc_devices
) {
711 mci
= list_entry(item
, struct mem_ctl_info
, link
);
712 if (mci
->mc_idx
== idx
)
718 mutex_unlock(&mem_ctls_mutex
);
721 EXPORT_SYMBOL(edac_mc_find
);
723 const char *edac_get_owner(void)
725 return edac_mc_owner
;
727 EXPORT_SYMBOL_GPL(edac_get_owner
);
729 /* FIXME - should a warning be printed if no error detection? correction? */
730 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
731 const struct attribute_group
**groups
)
736 #ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level
>= 3)
738 edac_mc_dump_mci(mci
);
740 if (edac_debug_level
>= 4) {
741 struct dimm_info
*dimm
;
744 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
745 struct csrow_info
*csrow
= mci
->csrows
[i
];
749 for (j
= 0; j
< csrow
->nr_channels
; j
++)
750 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
753 edac_mc_dump_csrow(csrow
);
754 for (j
= 0; j
< csrow
->nr_channels
; j
++)
755 if (csrow
->channels
[j
]->dimm
->nr_pages
)
756 edac_mc_dump_channel(csrow
->channels
[j
]);
759 mci_for_each_dimm(mci
, dimm
)
760 edac_mc_dump_dimm(dimm
);
763 mutex_lock(&mem_ctls_mutex
);
765 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
770 if (add_mc_to_global_list(mci
))
773 /* set load time so that error rate can be tracked */
774 mci
->start_time
= jiffies
;
776 mci
->bus
= edac_get_sysfs_subsys();
778 if (edac_create_sysfs_mci_device(mci
, groups
)) {
779 edac_mc_printk(mci
, KERN_WARNING
,
780 "failed to create sysfs device\n");
784 if (mci
->edac_check
) {
785 mci
->op_state
= OP_RUNNING_POLL
;
787 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
788 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
791 mci
->op_state
= OP_RUNNING_INTERRUPT
;
794 /* Report action taken */
795 edac_mc_printk(mci
, KERN_INFO
,
796 "Giving out device to module %s controller %s: DEV %s (%s)\n",
797 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
798 edac_op_state_to_string(mci
->op_state
));
800 edac_mc_owner
= mci
->mod_name
;
802 mutex_unlock(&mem_ctls_mutex
);
806 del_mc_from_global_list(mci
);
809 mutex_unlock(&mem_ctls_mutex
);
812 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
814 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
816 struct mem_ctl_info
*mci
;
820 mutex_lock(&mem_ctls_mutex
);
822 /* find the requested mci struct in the global list */
823 mci
= __find_mci_by_dev(dev
);
825 mutex_unlock(&mem_ctls_mutex
);
829 /* mark MCI offline: */
830 mci
->op_state
= OP_OFFLINE
;
832 if (del_mc_from_global_list(mci
))
833 edac_mc_owner
= NULL
;
835 mutex_unlock(&mem_ctls_mutex
);
838 edac_stop_work(&mci
->work
);
840 /* remove from sysfs */
841 edac_remove_sysfs_mci_device(mci
);
843 edac_printk(KERN_INFO
, EDAC_MC
,
844 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
845 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
849 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
851 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
856 unsigned long flags
= 0;
860 /* ECC error page was not in our memory. Ignore it. */
861 if (!pfn_valid(page
))
864 /* Find the actual page structure then map it and fix */
865 pg
= pfn_to_page(page
);
868 local_irq_save(flags
);
870 virt_addr
= kmap_atomic(pg
);
872 /* Perform architecture specific atomic scrub operation */
873 edac_atomic_scrub(virt_addr
+ offset
, size
);
875 /* Unmap and complete */
876 kunmap_atomic(virt_addr
);
879 local_irq_restore(flags
);
882 /* FIXME - should return -1 */
883 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
885 struct csrow_info
**csrows
= mci
->csrows
;
888 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
891 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
892 struct csrow_info
*csrow
= csrows
[i
];
894 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
895 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
901 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
903 csrow
->first_page
, page
, csrow
->last_page
,
906 if ((page
>= csrow
->first_page
) &&
907 (page
<= csrow
->last_page
) &&
908 ((page
& csrow
->page_mask
) ==
909 (csrow
->first_page
& csrow
->page_mask
))) {
916 edac_mc_printk(mci
, KERN_ERR
,
917 "could not look up page error address %lx\n",
918 (unsigned long)page
);
922 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
924 const char *edac_layer_name
[] = {
925 [EDAC_MC_LAYER_BRANCH
] = "branch",
926 [EDAC_MC_LAYER_CHANNEL
] = "channel",
927 [EDAC_MC_LAYER_SLOT
] = "slot",
928 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
929 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
931 EXPORT_SYMBOL_GPL(edac_layer_name
);
933 static void edac_inc_ce_error(struct edac_raw_error_desc
*e
)
935 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
936 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
937 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
939 mci
->ce_mc
+= e
->error_count
;
942 dimm
->ce_count
+= e
->error_count
;
944 mci
->ce_noinfo_count
+= e
->error_count
;
947 static void edac_inc_ue_error(struct edac_raw_error_desc
*e
)
949 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
950 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
951 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
953 mci
->ue_mc
+= e
->error_count
;
956 dimm
->ue_count
+= e
->error_count
;
958 mci
->ue_noinfo_count
+= e
->error_count
;
961 static void edac_ce_error(struct edac_raw_error_desc
*e
)
963 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
964 unsigned long remapped_page
;
966 if (edac_mc_get_log_ce()) {
967 edac_mc_printk(mci
, KERN_WARNING
,
968 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
969 e
->error_count
, e
->msg
,
971 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
972 e
->grain
, e
->syndrome
,
973 *e
->other_detail
? " - " : "",
977 edac_inc_ce_error(e
);
979 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
981 * Some memory controllers (called MCs below) can remap
982 * memory so that it is still available at a different
983 * address when PCI devices map into memory.
984 * MC's that can't do this, lose the memory where PCI
985 * devices are mapped. This mapping is MC-dependent
986 * and so we call back into the MC driver for it to
987 * map the MC page to a physical (CPU) page which can
988 * then be mapped to a virtual page - which can then
991 remapped_page
= mci
->ctl_page_to_phys
?
992 mci
->ctl_page_to_phys(mci
, e
->page_frame_number
) :
993 e
->page_frame_number
;
995 edac_mc_scrub_block(remapped_page
, e
->offset_in_page
, e
->grain
);
999 static void edac_ue_error(struct edac_raw_error_desc
*e
)
1001 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
1003 if (edac_mc_get_log_ue()) {
1004 edac_mc_printk(mci
, KERN_WARNING
,
1005 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
1006 e
->error_count
, e
->msg
,
1008 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
1010 *e
->other_detail
? " - " : "",
1014 if (edac_mc_get_panic_on_ue()) {
1015 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
1018 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
1020 *e
->other_detail
? " - " : "",
1024 edac_inc_ue_error(e
);
1027 static void edac_inc_csrow(struct edac_raw_error_desc
*e
, int row
, int chan
)
1029 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
1030 enum hw_event_mc_err_type type
= e
->type
;
1031 u16 count
= e
->error_count
;
1036 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1038 if (type
== HW_EVENT_ERR_CORRECTED
) {
1039 mci
->csrows
[row
]->ce_count
+= count
;
1041 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= count
;
1043 mci
->csrows
[row
]->ue_count
+= count
;
1047 void edac_raw_mc_handle_error(struct edac_raw_error_desc
*e
)
1049 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
1052 /* Sanity-check driver-supplied grain value. */
1053 if (WARN_ON_ONCE(!e
->grain
))
1056 grain_bits
= fls_long(e
->grain
- 1);
1058 /* Report the error via the trace interface */
1059 if (IS_ENABLED(CONFIG_RAS
))
1060 trace_mc_event(e
->type
, e
->msg
, e
->label
, e
->error_count
,
1061 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1063 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1064 grain_bits
, e
->syndrome
, e
->other_detail
);
1066 if (e
->type
== HW_EVENT_ERR_CORRECTED
)
1071 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1073 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1074 struct mem_ctl_info
*mci
,
1075 const u16 error_count
,
1076 const unsigned long page_frame_number
,
1077 const unsigned long offset_in_page
,
1078 const unsigned long syndrome
,
1079 const int top_layer
,
1080 const int mid_layer
,
1081 const int low_layer
,
1083 const char *other_detail
)
1085 struct dimm_info
*dimm
;
1087 int row
= -1, chan
= -1;
1088 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1089 int i
, n_labels
= 0;
1090 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1091 bool any_memory
= true;
1093 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1095 /* Fills the error report buffer */
1096 memset(e
, 0, sizeof (*e
));
1097 e
->error_count
= error_count
;
1099 e
->top_layer
= top_layer
;
1100 e
->mid_layer
= mid_layer
;
1101 e
->low_layer
= low_layer
;
1102 e
->page_frame_number
= page_frame_number
;
1103 e
->offset_in_page
= offset_in_page
;
1104 e
->syndrome
= syndrome
;
1105 /* need valid strings here for both: */
1107 e
->other_detail
= other_detail
?: "";
1110 * Check if the event report is consistent and if the memory location is
1111 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1112 * error counters will be incremented.
1114 for (i
= 0; i
< mci
->n_layers
; i
++) {
1115 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1117 edac_mc_printk(mci
, KERN_ERR
,
1118 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1119 edac_layer_name
[mci
->layers
[i
].type
],
1120 pos
[i
], mci
->layers
[i
].size
);
1122 * Instead of just returning it, let's use what's
1123 * known about the error. The increment routines and
1124 * the DIMM filter logic will do the right thing by
1125 * pointing the likely damaged DIMMs.
1134 * Get the dimm label/grain that applies to the match criteria.
1135 * As the error algorithm may not be able to point to just one memory
1136 * stick, the logic here will get all possible labels that could
1137 * pottentially be affected by the error.
1138 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1139 * to have only the MC channel and the MC dimm (also called "branch")
1140 * but the channel is not known, as the memory is arranged in pairs,
1141 * where each memory belongs to a separate channel within the same
1147 mci_for_each_dimm(mci
, dimm
) {
1148 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1150 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1152 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1155 /* get the max grain, over the error match range */
1156 if (dimm
->grain
> e
->grain
)
1157 e
->grain
= dimm
->grain
;
1160 * If the error is memory-controller wide, there's no need to
1161 * seek for the affected DIMMs because the whole channel/memory
1162 * controller/... may be affected. Also, don't show errors for
1165 if (!dimm
->nr_pages
)
1169 if (n_labels
> EDAC_MAX_LABELS
) {
1173 if (p
!= e
->label
) {
1174 strcpy(p
, OTHER_LABEL
);
1175 p
+= strlen(OTHER_LABEL
);
1177 strcpy(p
, dimm
->label
);
1182 * get csrow/channel of the DIMM, in order to allow
1183 * incrementing the compat API counters
1185 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1186 mci
->csbased
? "rank" : "dimm",
1187 dimm
->csrow
, dimm
->cschannel
);
1190 else if (row
>= 0 && row
!= dimm
->csrow
)
1194 chan
= dimm
->cschannel
;
1195 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1200 strcpy(e
->label
, "any memory");
1201 else if (!*e
->label
)
1202 strcpy(e
->label
, "unknown memory");
1204 edac_inc_csrow(e
, row
, chan
);
1206 /* Fill the RAM location data */
1209 for (i
= 0; i
< mci
->n_layers
; i
++) {
1213 p
+= sprintf(p
, "%s:%d ",
1214 edac_layer_name
[mci
->layers
[i
].type
],
1217 if (p
> e
->location
)
1220 edac_raw_mc_handle_error(e
);
1222 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);