gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob75ede27bdf6aa554a48b377ef5ef168f470ed114
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
46 static int edac_report = EDAC_REPORTING_ENABLED;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner;
58 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
60 return container_of(e, struct mem_ctl_info, error_desc);
63 int edac_get_report_status(void)
65 return edac_report;
67 EXPORT_SYMBOL_GPL(edac_get_report_status);
69 void edac_set_report_status(int new)
71 if (new == EDAC_REPORTING_ENABLED ||
72 new == EDAC_REPORTING_DISABLED ||
73 new == EDAC_REPORTING_FORCE)
74 edac_report = new;
76 EXPORT_SYMBOL_GPL(edac_set_report_status);
78 static int edac_report_set(const char *str, const struct kernel_param *kp)
80 if (!str)
81 return -EINVAL;
83 if (!strncmp(str, "on", 2))
84 edac_report = EDAC_REPORTING_ENABLED;
85 else if (!strncmp(str, "off", 3))
86 edac_report = EDAC_REPORTING_DISABLED;
87 else if (!strncmp(str, "force", 5))
88 edac_report = EDAC_REPORTING_FORCE;
90 return 0;
93 static int edac_report_get(char *buffer, const struct kernel_param *kp)
95 int ret = 0;
97 switch (edac_report) {
98 case EDAC_REPORTING_ENABLED:
99 ret = sprintf(buffer, "on");
100 break;
101 case EDAC_REPORTING_DISABLED:
102 ret = sprintf(buffer, "off");
103 break;
104 case EDAC_REPORTING_FORCE:
105 ret = sprintf(buffer, "force");
106 break;
107 default:
108 ret = -EINVAL;
109 break;
112 return ret;
115 static const struct kernel_param_ops edac_report_ops = {
116 .set = edac_report_set,
117 .get = edac_report_get,
120 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
122 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
123 unsigned int len)
125 struct mem_ctl_info *mci = dimm->mci;
126 int i, n, count = 0;
127 char *p = buf;
129 for (i = 0; i < mci->n_layers; i++) {
130 n = snprintf(p, len, "%s %d ",
131 edac_layer_name[mci->layers[i].type],
132 dimm->location[i]);
133 p += n;
134 len -= n;
135 count += n;
136 if (!len)
137 break;
140 return count;
143 #ifdef CONFIG_EDAC_DEBUG
145 static void edac_mc_dump_channel(struct rank_info *chan)
147 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
148 edac_dbg(4, " channel = %p\n", chan);
149 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
150 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
153 static void edac_mc_dump_dimm(struct dimm_info *dimm)
155 char location[80];
157 if (!dimm->nr_pages)
158 return;
160 edac_dimm_info_location(dimm, location, sizeof(location));
162 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
163 dimm->mci->csbased ? "rank" : "dimm",
164 dimm->idx, location, dimm->csrow, dimm->cschannel);
165 edac_dbg(4, " dimm = %p\n", dimm);
166 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
167 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
168 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
169 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
172 static void edac_mc_dump_csrow(struct csrow_info *csrow)
174 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
175 edac_dbg(4, " csrow = %p\n", csrow);
176 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
177 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
178 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
179 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
180 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
181 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
184 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
186 edac_dbg(3, "\tmci = %p\n", mci);
187 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
188 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
189 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
190 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
191 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
192 mci->nr_csrows, mci->csrows);
193 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
194 mci->tot_dimms, mci->dimms);
195 edac_dbg(3, "\tdev = %p\n", mci->pdev);
196 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
197 mci->mod_name, mci->ctl_name);
198 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
201 #endif /* CONFIG_EDAC_DEBUG */
203 const char * const edac_mem_types[] = {
204 [MEM_EMPTY] = "Empty",
205 [MEM_RESERVED] = "Reserved",
206 [MEM_UNKNOWN] = "Unknown",
207 [MEM_FPM] = "FPM",
208 [MEM_EDO] = "EDO",
209 [MEM_BEDO] = "BEDO",
210 [MEM_SDR] = "Unbuffered-SDR",
211 [MEM_RDR] = "Registered-SDR",
212 [MEM_DDR] = "Unbuffered-DDR",
213 [MEM_RDDR] = "Registered-DDR",
214 [MEM_RMBS] = "RMBS",
215 [MEM_DDR2] = "Unbuffered-DDR2",
216 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
217 [MEM_RDDR2] = "Registered-DDR2",
218 [MEM_XDR] = "XDR",
219 [MEM_DDR3] = "Unbuffered-DDR3",
220 [MEM_RDDR3] = "Registered-DDR3",
221 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
222 [MEM_DDR4] = "Unbuffered-DDR4",
223 [MEM_RDDR4] = "Registered-DDR4",
224 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
225 [MEM_NVDIMM] = "Non-volatile-RAM",
227 EXPORT_SYMBOL_GPL(edac_mem_types);
230 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
231 * @p: pointer to a pointer with the memory offset to be used. At
232 * return, this will be incremented to point to the next offset
233 * @size: Size of the data structure to be reserved
234 * @n_elems: Number of elements that should be reserved
236 * If 'size' is a constant, the compiler will optimize this whole function
237 * down to either a no-op or the addition of a constant to the value of '*p'.
239 * The 'p' pointer is absolutely needed to keep the proper advancing
240 * further in memory to the proper offsets when allocating the struct along
241 * with its embedded structs, as edac_device_alloc_ctl_info() does it
242 * above, for example.
244 * At return, the pointer 'p' will be incremented to be used on a next call
245 * to this function.
247 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
249 unsigned int align, r;
250 void *ptr = *p;
252 *p += size * n_elems;
255 * 'p' can possibly be an unaligned item X such that sizeof(X) is
256 * 'size'. Adjust 'p' so that its alignment is at least as
257 * stringent as what the compiler would provide for X and return
258 * the aligned result.
259 * Here we assume that the alignment of a "long long" is the most
260 * stringent alignment that the compiler will ever provide by default.
261 * As far as I know, this is a reasonable assumption.
263 if (size > sizeof(long))
264 align = sizeof(long long);
265 else if (size > sizeof(int))
266 align = sizeof(long);
267 else if (size > sizeof(short))
268 align = sizeof(int);
269 else if (size > sizeof(char))
270 align = sizeof(short);
271 else
272 return (char *)ptr;
274 r = (unsigned long)p % align;
276 if (r == 0)
277 return (char *)ptr;
279 *p += align - r;
281 return (void *)(((unsigned long)ptr) + align - r);
284 static void _edac_mc_free(struct mem_ctl_info *mci)
286 put_device(&mci->dev);
289 static void mci_release(struct device *dev)
291 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
292 struct csrow_info *csr;
293 int i, chn, row;
295 if (mci->dimms) {
296 for (i = 0; i < mci->tot_dimms; i++)
297 kfree(mci->dimms[i]);
298 kfree(mci->dimms);
301 if (mci->csrows) {
302 for (row = 0; row < mci->nr_csrows; row++) {
303 csr = mci->csrows[row];
304 if (!csr)
305 continue;
307 if (csr->channels) {
308 for (chn = 0; chn < mci->num_cschannel; chn++)
309 kfree(csr->channels[chn]);
310 kfree(csr->channels);
312 kfree(csr);
314 kfree(mci->csrows);
316 kfree(mci);
319 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
321 unsigned int tot_channels = mci->num_cschannel;
322 unsigned int tot_csrows = mci->nr_csrows;
323 unsigned int row, chn;
326 * Alocate and fill the csrow/channels structs
328 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
329 if (!mci->csrows)
330 return -ENOMEM;
332 for (row = 0; row < tot_csrows; row++) {
333 struct csrow_info *csr;
335 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
336 if (!csr)
337 return -ENOMEM;
339 mci->csrows[row] = csr;
340 csr->csrow_idx = row;
341 csr->mci = mci;
342 csr->nr_channels = tot_channels;
343 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
344 GFP_KERNEL);
345 if (!csr->channels)
346 return -ENOMEM;
348 for (chn = 0; chn < tot_channels; chn++) {
349 struct rank_info *chan;
351 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
352 if (!chan)
353 return -ENOMEM;
355 csr->channels[chn] = chan;
356 chan->chan_idx = chn;
357 chan->csrow = csr;
361 return 0;
364 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
366 unsigned int pos[EDAC_MAX_LAYERS];
367 unsigned int row, chn, idx;
368 int layer;
369 void *p;
372 * Allocate and fill the dimm structs
374 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
375 if (!mci->dimms)
376 return -ENOMEM;
378 memset(&pos, 0, sizeof(pos));
379 row = 0;
380 chn = 0;
381 for (idx = 0; idx < mci->tot_dimms; idx++) {
382 struct dimm_info *dimm;
383 struct rank_info *chan;
384 int n, len;
386 chan = mci->csrows[row]->channels[chn];
388 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
389 if (!dimm)
390 return -ENOMEM;
391 mci->dimms[idx] = dimm;
392 dimm->mci = mci;
393 dimm->idx = idx;
396 * Copy DIMM location and initialize it.
398 len = sizeof(dimm->label);
399 p = dimm->label;
400 n = snprintf(p, len, "mc#%u", mci->mc_idx);
401 p += n;
402 len -= n;
403 for (layer = 0; layer < mci->n_layers; layer++) {
404 n = snprintf(p, len, "%s#%u",
405 edac_layer_name[mci->layers[layer].type],
406 pos[layer]);
407 p += n;
408 len -= n;
409 dimm->location[layer] = pos[layer];
411 if (len <= 0)
412 break;
415 /* Link it to the csrows old API data */
416 chan->dimm = dimm;
417 dimm->csrow = row;
418 dimm->cschannel = chn;
420 /* Increment csrow location */
421 if (mci->layers[0].is_virt_csrow) {
422 chn++;
423 if (chn == mci->num_cschannel) {
424 chn = 0;
425 row++;
427 } else {
428 row++;
429 if (row == mci->nr_csrows) {
430 row = 0;
431 chn++;
435 /* Increment dimm location */
436 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
437 pos[layer]++;
438 if (pos[layer] < mci->layers[layer].size)
439 break;
440 pos[layer] = 0;
444 return 0;
447 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
448 unsigned int n_layers,
449 struct edac_mc_layer *layers,
450 unsigned int sz_pvt)
452 struct mem_ctl_info *mci;
453 struct edac_mc_layer *layer;
454 unsigned int idx, size, tot_dimms = 1;
455 unsigned int tot_csrows = 1, tot_channels = 1;
456 void *pvt, *ptr = NULL;
457 bool per_rank = false;
459 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
460 return NULL;
463 * Calculate the total amount of dimms and csrows/cschannels while
464 * in the old API emulation mode
466 for (idx = 0; idx < n_layers; idx++) {
467 tot_dimms *= layers[idx].size;
469 if (layers[idx].is_virt_csrow)
470 tot_csrows *= layers[idx].size;
471 else
472 tot_channels *= layers[idx].size;
474 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
475 per_rank = true;
478 /* Figure out the offsets of the various items from the start of an mc
479 * structure. We want the alignment of each item to be at least as
480 * stringent as what the compiler would provide if we could simply
481 * hardcode everything into a single struct.
483 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
484 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
485 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
486 size = ((unsigned long)pvt) + sz_pvt;
488 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
489 size,
490 tot_dimms,
491 per_rank ? "ranks" : "dimms",
492 tot_csrows * tot_channels);
494 mci = kzalloc(size, GFP_KERNEL);
495 if (mci == NULL)
496 return NULL;
498 mci->dev.release = mci_release;
499 device_initialize(&mci->dev);
501 /* Adjust pointers so they point within the memory we just allocated
502 * rather than an imaginary chunk of memory located at address 0.
504 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
505 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
507 /* setup index and various internal pointers */
508 mci->mc_idx = mc_num;
509 mci->tot_dimms = tot_dimms;
510 mci->pvt_info = pvt;
511 mci->n_layers = n_layers;
512 mci->layers = layer;
513 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
514 mci->nr_csrows = tot_csrows;
515 mci->num_cschannel = tot_channels;
516 mci->csbased = per_rank;
518 if (edac_mc_alloc_csrows(mci))
519 goto error;
521 if (edac_mc_alloc_dimms(mci))
522 goto error;
524 mci->op_state = OP_ALLOC;
526 return mci;
528 error:
529 _edac_mc_free(mci);
531 return NULL;
533 EXPORT_SYMBOL_GPL(edac_mc_alloc);
535 void edac_mc_free(struct mem_ctl_info *mci)
537 edac_dbg(1, "\n");
539 _edac_mc_free(mci);
541 EXPORT_SYMBOL_GPL(edac_mc_free);
543 bool edac_has_mcs(void)
545 bool ret;
547 mutex_lock(&mem_ctls_mutex);
549 ret = list_empty(&mc_devices);
551 mutex_unlock(&mem_ctls_mutex);
553 return !ret;
555 EXPORT_SYMBOL_GPL(edac_has_mcs);
557 /* Caller must hold mem_ctls_mutex */
558 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
560 struct mem_ctl_info *mci;
561 struct list_head *item;
563 edac_dbg(3, "\n");
565 list_for_each(item, &mc_devices) {
566 mci = list_entry(item, struct mem_ctl_info, link);
568 if (mci->pdev == dev)
569 return mci;
572 return NULL;
576 * find_mci_by_dev
578 * scan list of controllers looking for the one that manages
579 * the 'dev' device
580 * @dev: pointer to a struct device related with the MCI
582 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
584 struct mem_ctl_info *ret;
586 mutex_lock(&mem_ctls_mutex);
587 ret = __find_mci_by_dev(dev);
588 mutex_unlock(&mem_ctls_mutex);
590 return ret;
592 EXPORT_SYMBOL_GPL(find_mci_by_dev);
595 * edac_mc_workq_function
596 * performs the operation scheduled by a workq request
598 static void edac_mc_workq_function(struct work_struct *work_req)
600 struct delayed_work *d_work = to_delayed_work(work_req);
601 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
603 mutex_lock(&mem_ctls_mutex);
605 if (mci->op_state != OP_RUNNING_POLL) {
606 mutex_unlock(&mem_ctls_mutex);
607 return;
610 if (edac_op_state == EDAC_OPSTATE_POLL)
611 mci->edac_check(mci);
613 mutex_unlock(&mem_ctls_mutex);
615 /* Queue ourselves again. */
616 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
620 * edac_mc_reset_delay_period(unsigned long value)
622 * user space has updated our poll period value, need to
623 * reset our workq delays
625 void edac_mc_reset_delay_period(unsigned long value)
627 struct mem_ctl_info *mci;
628 struct list_head *item;
630 mutex_lock(&mem_ctls_mutex);
632 list_for_each(item, &mc_devices) {
633 mci = list_entry(item, struct mem_ctl_info, link);
635 if (mci->op_state == OP_RUNNING_POLL)
636 edac_mod_work(&mci->work, value);
638 mutex_unlock(&mem_ctls_mutex);
643 /* Return 0 on success, 1 on failure.
644 * Before calling this function, caller must
645 * assign a unique value to mci->mc_idx.
647 * locking model:
649 * called with the mem_ctls_mutex lock held
651 static int add_mc_to_global_list(struct mem_ctl_info *mci)
653 struct list_head *item, *insert_before;
654 struct mem_ctl_info *p;
656 insert_before = &mc_devices;
658 p = __find_mci_by_dev(mci->pdev);
659 if (unlikely(p != NULL))
660 goto fail0;
662 list_for_each(item, &mc_devices) {
663 p = list_entry(item, struct mem_ctl_info, link);
665 if (p->mc_idx >= mci->mc_idx) {
666 if (unlikely(p->mc_idx == mci->mc_idx))
667 goto fail1;
669 insert_before = item;
670 break;
674 list_add_tail_rcu(&mci->link, insert_before);
675 return 0;
677 fail0:
678 edac_printk(KERN_WARNING, EDAC_MC,
679 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
680 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
681 return 1;
683 fail1:
684 edac_printk(KERN_WARNING, EDAC_MC,
685 "bug in low-level driver: attempt to assign\n"
686 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
687 return 1;
690 static int del_mc_from_global_list(struct mem_ctl_info *mci)
692 list_del_rcu(&mci->link);
694 /* these are for safe removal of devices from global list while
695 * NMI handlers may be traversing list
697 synchronize_rcu();
698 INIT_LIST_HEAD(&mci->link);
700 return list_empty(&mc_devices);
703 struct mem_ctl_info *edac_mc_find(int idx)
705 struct mem_ctl_info *mci;
706 struct list_head *item;
708 mutex_lock(&mem_ctls_mutex);
710 list_for_each(item, &mc_devices) {
711 mci = list_entry(item, struct mem_ctl_info, link);
712 if (mci->mc_idx == idx)
713 goto unlock;
716 mci = NULL;
717 unlock:
718 mutex_unlock(&mem_ctls_mutex);
719 return mci;
721 EXPORT_SYMBOL(edac_mc_find);
723 const char *edac_get_owner(void)
725 return edac_mc_owner;
727 EXPORT_SYMBOL_GPL(edac_get_owner);
729 /* FIXME - should a warning be printed if no error detection? correction? */
730 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
731 const struct attribute_group **groups)
733 int ret = -EINVAL;
734 edac_dbg(0, "\n");
736 #ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level >= 3)
738 edac_mc_dump_mci(mci);
740 if (edac_debug_level >= 4) {
741 struct dimm_info *dimm;
742 int i;
744 for (i = 0; i < mci->nr_csrows; i++) {
745 struct csrow_info *csrow = mci->csrows[i];
746 u32 nr_pages = 0;
747 int j;
749 for (j = 0; j < csrow->nr_channels; j++)
750 nr_pages += csrow->channels[j]->dimm->nr_pages;
751 if (!nr_pages)
752 continue;
753 edac_mc_dump_csrow(csrow);
754 for (j = 0; j < csrow->nr_channels; j++)
755 if (csrow->channels[j]->dimm->nr_pages)
756 edac_mc_dump_channel(csrow->channels[j]);
759 mci_for_each_dimm(mci, dimm)
760 edac_mc_dump_dimm(dimm);
762 #endif
763 mutex_lock(&mem_ctls_mutex);
765 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
766 ret = -EPERM;
767 goto fail0;
770 if (add_mc_to_global_list(mci))
771 goto fail0;
773 /* set load time so that error rate can be tracked */
774 mci->start_time = jiffies;
776 mci->bus = edac_get_sysfs_subsys();
778 if (edac_create_sysfs_mci_device(mci, groups)) {
779 edac_mc_printk(mci, KERN_WARNING,
780 "failed to create sysfs device\n");
781 goto fail1;
784 if (mci->edac_check) {
785 mci->op_state = OP_RUNNING_POLL;
787 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
788 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
790 } else {
791 mci->op_state = OP_RUNNING_INTERRUPT;
794 /* Report action taken */
795 edac_mc_printk(mci, KERN_INFO,
796 "Giving out device to module %s controller %s: DEV %s (%s)\n",
797 mci->mod_name, mci->ctl_name, mci->dev_name,
798 edac_op_state_to_string(mci->op_state));
800 edac_mc_owner = mci->mod_name;
802 mutex_unlock(&mem_ctls_mutex);
803 return 0;
805 fail1:
806 del_mc_from_global_list(mci);
808 fail0:
809 mutex_unlock(&mem_ctls_mutex);
810 return ret;
812 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
814 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
816 struct mem_ctl_info *mci;
818 edac_dbg(0, "\n");
820 mutex_lock(&mem_ctls_mutex);
822 /* find the requested mci struct in the global list */
823 mci = __find_mci_by_dev(dev);
824 if (mci == NULL) {
825 mutex_unlock(&mem_ctls_mutex);
826 return NULL;
829 /* mark MCI offline: */
830 mci->op_state = OP_OFFLINE;
832 if (del_mc_from_global_list(mci))
833 edac_mc_owner = NULL;
835 mutex_unlock(&mem_ctls_mutex);
837 if (mci->edac_check)
838 edac_stop_work(&mci->work);
840 /* remove from sysfs */
841 edac_remove_sysfs_mci_device(mci);
843 edac_printk(KERN_INFO, EDAC_MC,
844 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
845 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
847 return mci;
849 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
851 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
852 u32 size)
854 struct page *pg;
855 void *virt_addr;
856 unsigned long flags = 0;
858 edac_dbg(3, "\n");
860 /* ECC error page was not in our memory. Ignore it. */
861 if (!pfn_valid(page))
862 return;
864 /* Find the actual page structure then map it and fix */
865 pg = pfn_to_page(page);
867 if (PageHighMem(pg))
868 local_irq_save(flags);
870 virt_addr = kmap_atomic(pg);
872 /* Perform architecture specific atomic scrub operation */
873 edac_atomic_scrub(virt_addr + offset, size);
875 /* Unmap and complete */
876 kunmap_atomic(virt_addr);
878 if (PageHighMem(pg))
879 local_irq_restore(flags);
882 /* FIXME - should return -1 */
883 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
885 struct csrow_info **csrows = mci->csrows;
886 int row, i, j, n;
888 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
889 row = -1;
891 for (i = 0; i < mci->nr_csrows; i++) {
892 struct csrow_info *csrow = csrows[i];
893 n = 0;
894 for (j = 0; j < csrow->nr_channels; j++) {
895 struct dimm_info *dimm = csrow->channels[j]->dimm;
896 n += dimm->nr_pages;
898 if (n == 0)
899 continue;
901 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
902 mci->mc_idx,
903 csrow->first_page, page, csrow->last_page,
904 csrow->page_mask);
906 if ((page >= csrow->first_page) &&
907 (page <= csrow->last_page) &&
908 ((page & csrow->page_mask) ==
909 (csrow->first_page & csrow->page_mask))) {
910 row = i;
911 break;
915 if (row == -1)
916 edac_mc_printk(mci, KERN_ERR,
917 "could not look up page error address %lx\n",
918 (unsigned long)page);
920 return row;
922 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
924 const char *edac_layer_name[] = {
925 [EDAC_MC_LAYER_BRANCH] = "branch",
926 [EDAC_MC_LAYER_CHANNEL] = "channel",
927 [EDAC_MC_LAYER_SLOT] = "slot",
928 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
929 [EDAC_MC_LAYER_ALL_MEM] = "memory",
931 EXPORT_SYMBOL_GPL(edac_layer_name);
933 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
935 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
936 struct mem_ctl_info *mci = error_desc_to_mci(e);
937 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
939 mci->ce_mc += e->error_count;
941 if (dimm)
942 dimm->ce_count += e->error_count;
943 else
944 mci->ce_noinfo_count += e->error_count;
947 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
949 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
950 struct mem_ctl_info *mci = error_desc_to_mci(e);
951 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
953 mci->ue_mc += e->error_count;
955 if (dimm)
956 dimm->ue_count += e->error_count;
957 else
958 mci->ue_noinfo_count += e->error_count;
961 static void edac_ce_error(struct edac_raw_error_desc *e)
963 struct mem_ctl_info *mci = error_desc_to_mci(e);
964 unsigned long remapped_page;
966 if (edac_mc_get_log_ce()) {
967 edac_mc_printk(mci, KERN_WARNING,
968 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
969 e->error_count, e->msg,
970 *e->msg ? " " : "",
971 e->label, e->location, e->page_frame_number, e->offset_in_page,
972 e->grain, e->syndrome,
973 *e->other_detail ? " - " : "",
974 e->other_detail);
977 edac_inc_ce_error(e);
979 if (mci->scrub_mode == SCRUB_SW_SRC) {
981 * Some memory controllers (called MCs below) can remap
982 * memory so that it is still available at a different
983 * address when PCI devices map into memory.
984 * MC's that can't do this, lose the memory where PCI
985 * devices are mapped. This mapping is MC-dependent
986 * and so we call back into the MC driver for it to
987 * map the MC page to a physical (CPU) page which can
988 * then be mapped to a virtual page - which can then
989 * be scrubbed.
991 remapped_page = mci->ctl_page_to_phys ?
992 mci->ctl_page_to_phys(mci, e->page_frame_number) :
993 e->page_frame_number;
995 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
999 static void edac_ue_error(struct edac_raw_error_desc *e)
1001 struct mem_ctl_info *mci = error_desc_to_mci(e);
1003 if (edac_mc_get_log_ue()) {
1004 edac_mc_printk(mci, KERN_WARNING,
1005 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
1006 e->error_count, e->msg,
1007 *e->msg ? " " : "",
1008 e->label, e->location, e->page_frame_number, e->offset_in_page,
1009 e->grain,
1010 *e->other_detail ? " - " : "",
1011 e->other_detail);
1014 if (edac_mc_get_panic_on_ue()) {
1015 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
1016 e->msg,
1017 *e->msg ? " " : "",
1018 e->label, e->location, e->page_frame_number, e->offset_in_page,
1019 e->grain,
1020 *e->other_detail ? " - " : "",
1021 e->other_detail);
1024 edac_inc_ue_error(e);
1027 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
1029 struct mem_ctl_info *mci = error_desc_to_mci(e);
1030 enum hw_event_mc_err_type type = e->type;
1031 u16 count = e->error_count;
1033 if (row < 0)
1034 return;
1036 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1038 if (type == HW_EVENT_ERR_CORRECTED) {
1039 mci->csrows[row]->ce_count += count;
1040 if (chan >= 0)
1041 mci->csrows[row]->channels[chan]->ce_count += count;
1042 } else {
1043 mci->csrows[row]->ue_count += count;
1047 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
1049 struct mem_ctl_info *mci = error_desc_to_mci(e);
1050 u8 grain_bits;
1052 /* Sanity-check driver-supplied grain value. */
1053 if (WARN_ON_ONCE(!e->grain))
1054 e->grain = 1;
1056 grain_bits = fls_long(e->grain - 1);
1058 /* Report the error via the trace interface */
1059 if (IS_ENABLED(CONFIG_RAS))
1060 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1061 mci->mc_idx, e->top_layer, e->mid_layer,
1062 e->low_layer,
1063 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1064 grain_bits, e->syndrome, e->other_detail);
1066 if (e->type == HW_EVENT_ERR_CORRECTED)
1067 edac_ce_error(e);
1068 else
1069 edac_ue_error(e);
1071 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1073 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1074 struct mem_ctl_info *mci,
1075 const u16 error_count,
1076 const unsigned long page_frame_number,
1077 const unsigned long offset_in_page,
1078 const unsigned long syndrome,
1079 const int top_layer,
1080 const int mid_layer,
1081 const int low_layer,
1082 const char *msg,
1083 const char *other_detail)
1085 struct dimm_info *dimm;
1086 char *p;
1087 int row = -1, chan = -1;
1088 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1089 int i, n_labels = 0;
1090 struct edac_raw_error_desc *e = &mci->error_desc;
1091 bool any_memory = true;
1093 edac_dbg(3, "MC%d\n", mci->mc_idx);
1095 /* Fills the error report buffer */
1096 memset(e, 0, sizeof (*e));
1097 e->error_count = error_count;
1098 e->type = type;
1099 e->top_layer = top_layer;
1100 e->mid_layer = mid_layer;
1101 e->low_layer = low_layer;
1102 e->page_frame_number = page_frame_number;
1103 e->offset_in_page = offset_in_page;
1104 e->syndrome = syndrome;
1105 /* need valid strings here for both: */
1106 e->msg = msg ?: "";
1107 e->other_detail = other_detail ?: "";
1110 * Check if the event report is consistent and if the memory location is
1111 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1112 * error counters will be incremented.
1114 for (i = 0; i < mci->n_layers; i++) {
1115 if (pos[i] >= (int)mci->layers[i].size) {
1117 edac_mc_printk(mci, KERN_ERR,
1118 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1119 edac_layer_name[mci->layers[i].type],
1120 pos[i], mci->layers[i].size);
1122 * Instead of just returning it, let's use what's
1123 * known about the error. The increment routines and
1124 * the DIMM filter logic will do the right thing by
1125 * pointing the likely damaged DIMMs.
1127 pos[i] = -1;
1129 if (pos[i] >= 0)
1130 any_memory = false;
1134 * Get the dimm label/grain that applies to the match criteria.
1135 * As the error algorithm may not be able to point to just one memory
1136 * stick, the logic here will get all possible labels that could
1137 * pottentially be affected by the error.
1138 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1139 * to have only the MC channel and the MC dimm (also called "branch")
1140 * but the channel is not known, as the memory is arranged in pairs,
1141 * where each memory belongs to a separate channel within the same
1142 * branch.
1144 p = e->label;
1145 *p = '\0';
1147 mci_for_each_dimm(mci, dimm) {
1148 if (top_layer >= 0 && top_layer != dimm->location[0])
1149 continue;
1150 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1151 continue;
1152 if (low_layer >= 0 && low_layer != dimm->location[2])
1153 continue;
1155 /* get the max grain, over the error match range */
1156 if (dimm->grain > e->grain)
1157 e->grain = dimm->grain;
1160 * If the error is memory-controller wide, there's no need to
1161 * seek for the affected DIMMs because the whole channel/memory
1162 * controller/... may be affected. Also, don't show errors for
1163 * empty DIMM slots.
1165 if (!dimm->nr_pages)
1166 continue;
1168 n_labels++;
1169 if (n_labels > EDAC_MAX_LABELS) {
1170 p = e->label;
1171 *p = '\0';
1172 } else {
1173 if (p != e->label) {
1174 strcpy(p, OTHER_LABEL);
1175 p += strlen(OTHER_LABEL);
1177 strcpy(p, dimm->label);
1178 p += strlen(p);
1182 * get csrow/channel of the DIMM, in order to allow
1183 * incrementing the compat API counters
1185 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1186 mci->csbased ? "rank" : "dimm",
1187 dimm->csrow, dimm->cschannel);
1188 if (row == -1)
1189 row = dimm->csrow;
1190 else if (row >= 0 && row != dimm->csrow)
1191 row = -2;
1193 if (chan == -1)
1194 chan = dimm->cschannel;
1195 else if (chan >= 0 && chan != dimm->cschannel)
1196 chan = -2;
1199 if (any_memory)
1200 strcpy(e->label, "any memory");
1201 else if (!*e->label)
1202 strcpy(e->label, "unknown memory");
1204 edac_inc_csrow(e, row, chan);
1206 /* Fill the RAM location data */
1207 p = e->location;
1209 for (i = 0; i < mci->n_layers; i++) {
1210 if (pos[i] < 0)
1211 continue;
1213 p += sprintf(p, "%s:%d ",
1214 edac_layer_name[mci->layers[i].type],
1215 pos[i]);
1217 if (p > e->location)
1218 *(p - 1) = '\0';
1220 edac_raw_mc_handle_error(e);
1222 EXPORT_SYMBOL_GPL(edac_mc_handle_error);