1 // SPDX-License-Identifier: GPL-2.0
3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
4 * Copyright (c) 2016, Intel Corporation.
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
13 #include "edac_module.h"
14 #include "skx_common.h"
16 #define EDAC_MOD_STR "skx_edac"
21 #define skx_printk(level, fmt, arg...) \
22 edac_printk(level, "skx", fmt, ##arg)
24 #define skx_mc_printk(mci, level, fmt, arg...) \
25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
27 static struct list_head
*skx_edac_list
;
29 static u64 skx_tolm
, skx_tohm
;
30 static int skx_num_sockets
;
31 static unsigned int nvdimm_count
;
33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
36 static struct skx_dev
*get_skx_dev(struct pci_bus
*bus
, u8 idx
)
40 list_for_each_entry(d
, skx_edac_list
, list
) {
41 if (d
->seg
== pci_domain_nr(bus
) && d
->bus
[idx
] == bus
->number
)
49 CHAN0
, CHAN1
, CHAN2
, SAD_ALL
, UTIL_ALL
, SAD
,
50 ERRCHAN0
, ERRCHAN1
, ERRCHAN2
,
55 u16 devfn
[SKX_NUM_IMC
];
62 * List of PCI device ids that we need together with some device
63 * number and function numbers to tell which memory controller the
66 static const struct munit skx_all_munits
[] = {
67 { 0x2054, { }, 1, 1, SAD_ALL
},
68 { 0x2055, { }, 1, 1, UTIL_ALL
},
69 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0
},
70 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1
},
71 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2
},
72 { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0
},
73 { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1
},
74 { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2
},
75 { 0x208e, { }, 1, 0, SAD
},
79 static int get_all_munits(const struct munit
*m
)
81 struct pci_dev
*pdev
, *prev
;
88 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, m
->did
, prev
);
92 if (m
->per_socket
== SKX_NUM_IMC
) {
93 for (i
= 0; i
< SKX_NUM_IMC
; i
++)
94 if (m
->devfn
[i
] == pdev
->devfn
)
99 d
= get_skx_dev(pdev
->bus
, m
->busidx
);
103 /* Be sure that the device is enabled */
104 if (unlikely(pci_enable_device(pdev
) < 0)) {
105 skx_printk(KERN_ERR
, "Couldn't enable device %04x:%04x\n",
106 PCI_VENDOR_ID_INTEL
, m
->did
);
115 d
->imc
[i
].chan
[m
->mtype
].cdev
= pdev
;
121 d
->imc
[i
].chan
[m
->mtype
- ERRCHAN0
].edev
= pdev
;
133 * one of these devices per core, including cores
134 * that don't exist on this SKU. Ignore any that
135 * read a route table of zero, make sure all the
136 * non-zero values match.
138 pci_read_config_dword(pdev
, 0xB4, ®
);
140 if (d
->mcroute
== 0) {
142 } else if (d
->mcroute
!= reg
) {
143 skx_printk(KERN_ERR
, "mcroute mismatch\n");
160 static const struct x86_cpu_id skx_cpuids
[] = {
161 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X
, NULL
),
164 MODULE_DEVICE_TABLE(x86cpu
, skx_cpuids
);
166 #define SKX_GET_MTMTR(dev, reg) \
167 pci_read_config_dword((dev), 0x87c, &(reg))
169 static bool skx_check_ecc(struct pci_dev
*pdev
)
173 SKX_GET_MTMTR(pdev
, mtmtr
);
175 return !!GET_BITFIELD(mtmtr
, 2, 2);
178 static int skx_get_dimm_config(struct mem_ctl_info
*mci
)
180 struct skx_pvt
*pvt
= mci
->pvt_info
;
181 struct skx_imc
*imc
= pvt
->imc
;
182 u32 mtr
, amap
, mcddrtcfg
;
183 struct dimm_info
*dimm
;
187 for (i
= 0; i
< SKX_NUM_CHANNELS
; i
++) {
189 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x8C, &amap
);
190 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x400, &mcddrtcfg
);
191 for (j
= 0; j
< SKX_NUM_DIMMS
; j
++) {
192 dimm
= edac_get_dimm(mci
, i
, j
, 0);
193 pci_read_config_dword(imc
->chan
[i
].cdev
,
195 if (IS_DIMM_PRESENT(mtr
)) {
196 ndimms
+= skx_get_dimm_info(mtr
, amap
, dimm
, imc
, i
, j
);
197 } else if (IS_NVDIMM_PRESENT(mcddrtcfg
, j
)) {
198 ndimms
+= skx_get_nvdimm_info(dimm
, imc
, i
, j
,
203 if (ndimms
&& !skx_check_ecc(imc
->chan
[0].cdev
)) {
204 skx_printk(KERN_ERR
, "ECC is disabled on imc %d\n", imc
->mc
);
212 #define SKX_MAX_SAD 24
214 #define SKX_GET_SAD(d, i, reg) \
215 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
216 #define SKX_GET_ILV(d, i, reg) \
217 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
219 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
220 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
221 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
222 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
223 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
224 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
225 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
227 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
228 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
230 static void skx_show_retry_rd_err_log(struct decoded_addr
*res
,
233 u32 log0
, log1
, log2
, log3
, log4
;
234 u32 corr0
, corr1
, corr2
, corr3
;
235 struct pci_dev
*edev
;
238 edev
= res
->dev
->imc
[res
->imc
].chan
[res
->channel
].edev
;
240 pci_read_config_dword(edev
, 0x154, &log0
);
241 pci_read_config_dword(edev
, 0x148, &log1
);
242 pci_read_config_dword(edev
, 0x150, &log2
);
243 pci_read_config_dword(edev
, 0x15c, &log3
);
244 pci_read_config_dword(edev
, 0x114, &log4
);
246 n
= snprintf(msg
, len
, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
247 log0
, log1
, log2
, log3
, log4
);
249 pci_read_config_dword(edev
, 0x104, &corr0
);
250 pci_read_config_dword(edev
, 0x108, &corr1
);
251 pci_read_config_dword(edev
, 0x10c, &corr2
);
252 pci_read_config_dword(edev
, 0x110, &corr3
);
255 snprintf(msg
+ n
, len
- n
,
256 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
257 corr0
& 0xffff, corr0
>> 16,
258 corr1
& 0xffff, corr1
>> 16,
259 corr2
& 0xffff, corr2
>> 16,
260 corr3
& 0xffff, corr3
>> 16);
263 static bool skx_sad_decode(struct decoded_addr
*res
)
265 struct skx_dev
*d
= list_first_entry(skx_edac_list
, typeof(*d
), list
);
266 u64 addr
= res
->addr
;
267 int i
, idx
, tgt
, lchan
, shift
;
269 u64 limit
, prev_limit
;
272 /* Simple sanity check for I/O space or out of range */
273 if (addr
>= skx_tohm
|| (addr
>= skx_tolm
&& addr
< BIT_ULL(32))) {
274 edac_dbg(0, "Address 0x%llx out of range\n", addr
);
280 for (i
= 0; i
< SKX_MAX_SAD
; i
++) {
281 SKX_GET_SAD(d
, i
, sad
);
282 limit
= SKX_SAD_LIMIT(sad
);
283 if (SKX_SAD_ENABLE(sad
)) {
284 if (addr
>= prev_limit
&& addr
<= limit
)
287 prev_limit
= limit
+ 1;
289 edac_dbg(0, "No SAD entry for 0x%llx\n", addr
);
293 SKX_GET_ILV(d
, i
, ilv
);
295 switch (SKX_SAD_INTERLEAVE(sad
)) {
297 idx
= GET_BITFIELD(addr
, 6, 8);
300 idx
= GET_BITFIELD(addr
, 8, 10);
303 idx
= GET_BITFIELD(addr
, 12, 14);
306 idx
= GET_BITFIELD(addr
, 30, 32);
310 tgt
= GET_BITFIELD(ilv
, 4 * idx
, 4 * idx
+ 3);
312 /* If point to another node, find it and start over */
313 if (SKX_ILV_REMOTE(tgt
)) {
315 edac_dbg(0, "Double remote!\n");
319 list_for_each_entry(d
, skx_edac_list
, list
) {
320 if (d
->imc
[0].src_id
== SKX_ILV_TARGET(tgt
))
323 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt
));
327 if (SKX_SAD_MOD3(sad
) == 0) {
328 lchan
= SKX_ILV_TARGET(tgt
);
330 switch (SKX_SAD_MOD3MODE(sad
)) {
341 edac_dbg(0, "illegal mod3mode\n");
344 switch (SKX_SAD_MOD3ASMOD2(sad
)) {
346 lchan
= (addr
>> shift
) % 3;
349 lchan
= (addr
>> shift
) % 2;
352 lchan
= (addr
>> shift
) % 2;
353 lchan
= (lchan
<< 1) | !lchan
;
356 lchan
= ((addr
>> shift
) % 2) << 1;
359 lchan
= (lchan
<< 1) | (SKX_ILV_TARGET(tgt
) & 1);
363 res
->socket
= d
->imc
[0].src_id
;
364 res
->imc
= GET_BITFIELD(d
->mcroute
, lchan
* 3, lchan
* 3 + 2);
365 res
->channel
= GET_BITFIELD(d
->mcroute
, lchan
* 2 + 18, lchan
* 2 + 19);
367 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
368 res
->addr
, res
->socket
, res
->imc
, res
->channel
);
372 #define SKX_MAX_TAD 8
374 #define SKX_GET_TADBASE(d, mc, i, reg) \
375 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
376 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
377 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
378 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
379 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
381 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
382 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
383 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
384 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
385 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
386 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
387 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
389 /* which bit used for both socket and channel interleave */
390 static int skx_granularity
[] = { 6, 8, 12, 30 };
392 static u64
skx_do_interleave(u64 addr
, int shift
, int ways
, u64 lowbits
)
398 return addr
| (lowbits
& ((1ull << shift
) - 1));
401 static bool skx_tad_decode(struct decoded_addr
*res
)
404 u32 base
, wayness
, chnilvoffset
;
405 int skt_interleave_bit
, chn_interleave_bit
;
408 for (i
= 0; i
< SKX_MAX_TAD
; i
++) {
409 SKX_GET_TADBASE(res
->dev
, res
->imc
, i
, base
);
410 SKX_GET_TADWAYNESS(res
->dev
, res
->imc
, i
, wayness
);
411 if (SKX_TAD_BASE(base
) <= res
->addr
&& res
->addr
<= SKX_TAD_LIMIT(wayness
))
414 edac_dbg(0, "No TAD entry for 0x%llx\n", res
->addr
);
418 res
->sktways
= SKX_TAD_SKTWAYS(wayness
);
419 res
->chanways
= SKX_TAD_CHNWAYS(wayness
);
420 skt_interleave_bit
= skx_granularity
[SKX_TAD_SKT_GRAN(base
)];
421 chn_interleave_bit
= skx_granularity
[SKX_TAD_CHN_GRAN(base
)];
423 SKX_GET_TADCHNILVOFFSET(res
->dev
, res
->imc
, res
->channel
, i
, chnilvoffset
);
424 channel_addr
= res
->addr
- SKX_TAD_OFFSET(chnilvoffset
);
426 if (res
->chanways
== 3 && skt_interleave_bit
> chn_interleave_bit
) {
427 /* Must handle channel first, then socket */
428 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
429 res
->chanways
, channel_addr
);
430 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
431 res
->sktways
, channel_addr
);
433 /* Handle socket then channel. Preserve low bits from original address */
434 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
435 res
->sktways
, res
->addr
);
436 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
437 res
->chanways
, res
->addr
);
440 res
->chan_addr
= channel_addr
;
442 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
443 res
->addr
, res
->chan_addr
, res
->sktways
, res
->chanways
);
447 #define SKX_MAX_RIR 4
449 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
450 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
451 0x108 + 4 * (i), &(reg))
452 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
453 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
454 0x120 + 16 * (idx) + 4 * (i), &(reg))
456 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
457 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
458 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
459 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
460 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
462 static bool skx_rir_decode(struct decoded_addr
*res
)
464 int i
, idx
, chan_rank
;
467 u64 rank_addr
, prev_limit
= 0, limit
;
469 if (res
->dev
->imc
[res
->imc
].chan
[res
->channel
].dimms
[0].close_pg
)
474 for (i
= 0; i
< SKX_MAX_RIR
; i
++) {
475 SKX_GET_RIRWAYNESS(res
->dev
, res
->imc
, res
->channel
, i
, rirway
);
476 limit
= SKX_RIR_LIMIT(rirway
);
477 if (SKX_RIR_VALID(rirway
)) {
478 if (prev_limit
<= res
->chan_addr
&&
479 res
->chan_addr
<= limit
)
484 edac_dbg(0, "No RIR entry for 0x%llx\n", res
->addr
);
488 rank_addr
= res
->chan_addr
>> shift
;
489 rank_addr
/= SKX_RIR_WAYS(rirway
);
491 rank_addr
|= res
->chan_addr
& GENMASK_ULL(shift
- 1, 0);
493 res
->rank_address
= rank_addr
;
494 idx
= (res
->chan_addr
>> shift
) % SKX_RIR_WAYS(rirway
);
496 SKX_GET_RIRILV(res
->dev
, res
->imc
, res
->channel
, idx
, i
, rirlv
);
497 res
->rank_address
= rank_addr
- SKX_RIR_OFFSET(rirlv
);
498 chan_rank
= SKX_RIR_CHAN_RANK(rirlv
);
499 res
->channel_rank
= chan_rank
;
500 res
->dimm
= chan_rank
/ 4;
501 res
->rank
= chan_rank
% 4;
503 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
504 res
->addr
, res
->dimm
, res
->rank
,
505 res
->channel_rank
, res
->rank_address
);
509 static u8 skx_close_row
[] = {
510 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
513 static u8 skx_close_column
[] = {
514 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
517 static u8 skx_open_row
[] = {
518 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
521 static u8 skx_open_column
[] = {
522 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
525 static u8 skx_open_fine_column
[] = {
526 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
529 static int skx_bits(u64 addr
, int nbits
, u8
*bits
)
533 for (i
= 0; i
< nbits
; i
++)
534 res
|= ((addr
>> bits
[i
]) & 1) << i
;
538 static int skx_bank_bits(u64 addr
, int b0
, int b1
, int do_xor
, int x0
, int x1
)
540 int ret
= GET_BITFIELD(addr
, b0
, b0
) | (GET_BITFIELD(addr
, b1
, b1
) << 1);
543 ret
^= GET_BITFIELD(addr
, x0
, x0
) | (GET_BITFIELD(addr
, x1
, x1
) << 1);
548 static bool skx_mad_decode(struct decoded_addr
*r
)
550 struct skx_dimm
*dimm
= &r
->dev
->imc
[r
->imc
].chan
[r
->channel
].dimms
[r
->dimm
];
551 int bg0
= dimm
->fine_grain_bank
? 6 : 13;
553 if (dimm
->close_pg
) {
554 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_close_row
);
555 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_close_column
);
556 r
->column
|= 0x400; /* C10 is autoprecharge, always set */
557 r
->bank_address
= skx_bank_bits(r
->rank_address
, 8, 9, dimm
->bank_xor_enable
, 22, 28);
558 r
->bank_group
= skx_bank_bits(r
->rank_address
, 6, 7, dimm
->bank_xor_enable
, 20, 21);
560 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_open_row
);
561 if (dimm
->fine_grain_bank
)
562 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_fine_column
);
564 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_column
);
565 r
->bank_address
= skx_bank_bits(r
->rank_address
, 18, 19, dimm
->bank_xor_enable
, 22, 23);
566 r
->bank_group
= skx_bank_bits(r
->rank_address
, bg0
, 17, dimm
->bank_xor_enable
, 20, 21);
568 r
->row
&= (1u << dimm
->rowbits
) - 1;
570 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
571 r
->addr
, r
->row
, r
->column
, r
->bank_address
,
576 static bool skx_decode(struct decoded_addr
*res
)
578 return skx_sad_decode(res
) && skx_tad_decode(res
) &&
579 skx_rir_decode(res
) && skx_mad_decode(res
);
582 static struct notifier_block skx_mce_dec
= {
583 .notifier_call
= skx_mce_check_error
,
584 .priority
= MCE_PRIO_EDAC
,
587 #ifdef CONFIG_EDAC_DEBUG
590 * Exercise the address decode logic by writing an address to
591 * /sys/kernel/debug/edac/skx_test/addr.
593 static struct dentry
*skx_test
;
595 static int debugfs_u64_set(void *data
, u64 val
)
599 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val
);
601 memset(&m
, 0, sizeof(m
));
602 /* ADDRV + MemRd + Unknown channel */
603 m
.status
= MCI_STATUS_ADDRV
+ 0x90;
604 /* One corrected error */
605 m
.status
|= BIT_ULL(MCI_STATUS_CEC_SHIFT
);
607 skx_mce_check_error(NULL
, 0, &m
);
611 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo
, NULL
, debugfs_u64_set
, "%llu\n");
613 static void setup_skx_debug(void)
615 skx_test
= edac_debugfs_create_dir("skx_test");
619 if (!edac_debugfs_create_file("addr", 0200, skx_test
,
620 NULL
, &fops_u64_wo
)) {
621 debugfs_remove(skx_test
);
626 static void teardown_skx_debug(void)
628 debugfs_remove_recursive(skx_test
);
631 static inline void setup_skx_debug(void) {}
632 static inline void teardown_skx_debug(void) {}
633 #endif /*CONFIG_EDAC_DEBUG*/
637 * make sure we are running on the correct cpu model
638 * search for all the devices we need
639 * check which DIMMs are present.
641 static int __init
skx_init(void)
643 const struct x86_cpu_id
*id
;
644 const struct munit
*m
;
646 int rc
= 0, i
, off
[3] = {0xd0, 0xd4, 0xd8};
647 u8 mc
= 0, src_id
, node_id
;
652 owner
= edac_get_owner();
653 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
656 id
= x86_match_cpu(skx_cpuids
);
660 rc
= skx_get_hi_lo(0x2034, off
, &skx_tolm
, &skx_tohm
);
664 rc
= skx_get_all_bus_mappings(0x2016, 0xcc, SKX
, &skx_edac_list
);
668 edac_dbg(2, "No memory controllers found\n");
671 skx_num_sockets
= rc
;
673 for (m
= skx_all_munits
; m
->did
; m
++) {
674 rc
= get_all_munits(m
);
677 if (rc
!= m
->per_socket
* skx_num_sockets
) {
678 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
679 m
->per_socket
* skx_num_sockets
, rc
, m
->did
);
685 list_for_each_entry(d
, skx_edac_list
, list
) {
686 rc
= skx_get_src_id(d
, 0xf0, &src_id
);
689 rc
= skx_get_node_id(d
, &node_id
);
692 edac_dbg(2, "src_id=%d node_id=%d\n", src_id
, node_id
);
693 for (i
= 0; i
< SKX_NUM_IMC
; i
++) {
696 d
->imc
[i
].src_id
= src_id
;
697 d
->imc
[i
].node_id
= node_id
;
698 rc
= skx_register_mci(&d
->imc
[i
], d
->imc
[i
].chan
[0].cdev
,
699 "Skylake Socket", EDAC_MOD_STR
,
700 skx_get_dimm_config
);
706 skx_set_decode(skx_decode
, skx_show_retry_rd_err_log
);
708 if (nvdimm_count
&& skx_adxl_get() == -ENODEV
)
709 skx_printk(KERN_NOTICE
, "Only decoding DDR4 address!\n");
711 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
716 mce_register_decode_chain(&skx_mce_dec
);
724 static void __exit
skx_exit(void)
727 mce_unregister_decode_chain(&skx_mce_dec
);
728 teardown_skx_debug();
734 module_init(skx_init
);
735 module_exit(skx_exit
);
737 module_param(edac_op_state
, int, 0444);
738 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
740 MODULE_LICENSE("GPL v2");
741 MODULE_AUTHOR("Tony Luck");
742 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");