gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / hwmon / fam15h_power.c
blob267eac00a3fb330e91ee741f05606a3bab195002
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fam15h_power.c - AMD Family 15h processor power monitoring
5 * Copyright (c) 2011-2016 Advanced Micro Devices, Inc.
6 * Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
7 */
9 #include <linux/err.h>
10 #include <linux/hwmon.h>
11 #include <linux/hwmon-sysfs.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/bitops.h>
16 #include <linux/cpu.h>
17 #include <linux/cpumask.h>
18 #include <linux/time.h>
19 #include <linux/sched.h>
20 #include <asm/processor.h>
21 #include <asm/msr.h>
23 MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor");
24 MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>");
25 MODULE_LICENSE("GPL");
27 /* D18F3 */
28 #define REG_NORTHBRIDGE_CAP 0xe8
30 /* D18F4 */
31 #define REG_PROCESSOR_TDP 0x1b8
33 /* D18F5 */
34 #define REG_TDP_RUNNING_AVERAGE 0xe0
35 #define REG_TDP_LIMIT3 0xe8
37 #define FAM15H_MIN_NUM_ATTRS 2
38 #define FAM15H_NUM_GROUPS 2
39 #define MAX_CUS 8
41 /* set maximum interval as 1 second */
42 #define MAX_INTERVAL 1000
44 #define MSR_F15H_CU_PWR_ACCUMULATOR 0xc001007a
45 #define MSR_F15H_CU_MAX_PWR_ACCUMULATOR 0xc001007b
46 #define MSR_F15H_PTSC 0xc0010280
48 #define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4
50 struct fam15h_power_data {
51 struct pci_dev *pdev;
52 unsigned int tdp_to_watts;
53 unsigned int base_tdp;
54 unsigned int processor_pwr_watts;
55 unsigned int cpu_pwr_sample_ratio;
56 const struct attribute_group *groups[FAM15H_NUM_GROUPS];
57 struct attribute_group group;
58 /* maximum accumulated power of a compute unit */
59 u64 max_cu_acc_power;
60 /* accumulated power of the compute units */
61 u64 cu_acc_power[MAX_CUS];
62 /* performance timestamp counter */
63 u64 cpu_sw_pwr_ptsc[MAX_CUS];
64 /* online/offline status of current compute unit */
65 int cu_on[MAX_CUS];
66 unsigned long power_period;
69 static bool is_carrizo_or_later(void)
71 return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60;
74 static ssize_t power1_input_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
77 u32 val, tdp_limit, running_avg_range;
78 s32 running_avg_capture;
79 u64 curr_pwr_watts;
80 struct fam15h_power_data *data = dev_get_drvdata(dev);
81 struct pci_dev *f4 = data->pdev;
83 pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
84 REG_TDP_RUNNING_AVERAGE, &val);
87 * On Carrizo and later platforms, TdpRunAvgAccCap bit field
88 * is extended to 4:31 from 4:25.
90 if (is_carrizo_or_later()) {
91 running_avg_capture = val >> 4;
92 running_avg_capture = sign_extend32(running_avg_capture, 27);
93 } else {
94 running_avg_capture = (val >> 4) & 0x3fffff;
95 running_avg_capture = sign_extend32(running_avg_capture, 21);
98 running_avg_range = (val & 0xf) + 1;
100 pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
101 REG_TDP_LIMIT3, &val);
104 * On Carrizo and later platforms, ApmTdpLimit bit field
105 * is extended to 16:31 from 16:28.
107 if (is_carrizo_or_later())
108 tdp_limit = val >> 16;
109 else
110 tdp_limit = (val >> 16) & 0x1fff;
112 curr_pwr_watts = ((u64)(tdp_limit +
113 data->base_tdp)) << running_avg_range;
114 curr_pwr_watts -= running_avg_capture;
115 curr_pwr_watts *= data->tdp_to_watts;
118 * Convert to microWatt
120 * power is in Watt provided as fixed point integer with
121 * scaling factor 1/(2^16). For conversion we use
122 * (10^6)/(2^16) = 15625/(2^10)
124 curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range);
125 return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts);
127 static DEVICE_ATTR_RO(power1_input);
129 static ssize_t power1_crit_show(struct device *dev,
130 struct device_attribute *attr, char *buf)
132 struct fam15h_power_data *data = dev_get_drvdata(dev);
134 return sprintf(buf, "%u\n", data->processor_pwr_watts);
136 static DEVICE_ATTR_RO(power1_crit);
138 static void do_read_registers_on_cu(void *_data)
140 struct fam15h_power_data *data = _data;
141 int cpu, cu;
143 cpu = smp_processor_id();
146 * With the new x86 topology modelling, cpu core id actually
147 * is compute unit id.
149 cu = cpu_data(cpu).cpu_core_id;
151 rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]);
152 rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]);
154 data->cu_on[cu] = 1;
158 * This function is only able to be called when CPUID
159 * Fn8000_0007:EDX[12] is set.
161 static int read_registers(struct fam15h_power_data *data)
163 int core, this_core;
164 cpumask_var_t mask;
165 int ret, cpu;
167 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
168 if (!ret)
169 return -ENOMEM;
171 memset(data->cu_on, 0, sizeof(int) * MAX_CUS);
173 get_online_cpus();
176 * Choose the first online core of each compute unit, and then
177 * read their MSR value of power and ptsc in a single IPI,
178 * because the MSR value of CPU core represent the compute
179 * unit's.
181 core = -1;
183 for_each_online_cpu(cpu) {
184 this_core = topology_core_id(cpu);
186 if (this_core == core)
187 continue;
189 core = this_core;
191 /* get any CPU on this compute unit */
192 cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask);
195 on_each_cpu_mask(mask, do_read_registers_on_cu, data, true);
197 put_online_cpus();
198 free_cpumask_var(mask);
200 return 0;
203 static ssize_t power1_average_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct fam15h_power_data *data = dev_get_drvdata(dev);
207 u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS],
208 jdelta[MAX_CUS];
209 u64 tdelta, avg_acc;
210 int cu, cu_num, ret;
211 signed long leftover;
214 * With the new x86 topology modelling, x86_max_cores is the
215 * compute unit number.
217 cu_num = boot_cpu_data.x86_max_cores;
219 ret = read_registers(data);
220 if (ret)
221 return 0;
223 for (cu = 0; cu < cu_num; cu++) {
224 prev_cu_acc_power[cu] = data->cu_acc_power[cu];
225 prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
228 leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
229 if (leftover)
230 return 0;
232 ret = read_registers(data);
233 if (ret)
234 return 0;
236 for (cu = 0, avg_acc = 0; cu < cu_num; cu++) {
237 /* check if current compute unit is online */
238 if (data->cu_on[cu] == 0)
239 continue;
241 if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) {
242 jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu];
243 jdelta[cu] -= prev_cu_acc_power[cu];
244 } else {
245 jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu];
247 tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu];
248 jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000;
249 do_div(jdelta[cu], tdelta);
251 /* the unit is microWatt */
252 avg_acc += jdelta[cu];
255 return sprintf(buf, "%llu\n", (unsigned long long)avg_acc);
257 static DEVICE_ATTR_RO(power1_average);
259 static ssize_t power1_average_interval_show(struct device *dev,
260 struct device_attribute *attr,
261 char *buf)
263 struct fam15h_power_data *data = dev_get_drvdata(dev);
265 return sprintf(buf, "%lu\n", data->power_period);
268 static ssize_t power1_average_interval_store(struct device *dev,
269 struct device_attribute *attr,
270 const char *buf, size_t count)
272 struct fam15h_power_data *data = dev_get_drvdata(dev);
273 unsigned long temp;
274 int ret;
276 ret = kstrtoul(buf, 10, &temp);
277 if (ret)
278 return ret;
280 if (temp > MAX_INTERVAL)
281 return -EINVAL;
283 /* the interval value should be greater than 0 */
284 if (temp <= 0)
285 return -EINVAL;
287 data->power_period = temp;
289 return count;
291 static DEVICE_ATTR_RW(power1_average_interval);
293 static int fam15h_power_init_attrs(struct pci_dev *pdev,
294 struct fam15h_power_data *data)
296 int n = FAM15H_MIN_NUM_ATTRS;
297 struct attribute **fam15h_power_attrs;
298 struct cpuinfo_x86 *c = &boot_cpu_data;
300 if (c->x86 == 0x15 &&
301 (c->x86_model <= 0xf ||
302 (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
303 n += 1;
305 /* check if processor supports accumulated power */
306 if (boot_cpu_has(X86_FEATURE_ACC_POWER))
307 n += 2;
309 fam15h_power_attrs = devm_kcalloc(&pdev->dev, n,
310 sizeof(*fam15h_power_attrs),
311 GFP_KERNEL);
313 if (!fam15h_power_attrs)
314 return -ENOMEM;
316 n = 0;
317 fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr;
318 if (c->x86 == 0x15 &&
319 (c->x86_model <= 0xf ||
320 (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
321 fam15h_power_attrs[n++] = &dev_attr_power1_input.attr;
323 if (boot_cpu_has(X86_FEATURE_ACC_POWER)) {
324 fam15h_power_attrs[n++] = &dev_attr_power1_average.attr;
325 fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr;
328 data->group.attrs = fam15h_power_attrs;
330 return 0;
333 static bool should_load_on_this_node(struct pci_dev *f4)
335 u32 val;
337 pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3),
338 REG_NORTHBRIDGE_CAP, &val);
339 if ((val & BIT(29)) && ((val >> 30) & 3))
340 return false;
342 return true;
346 * Newer BKDG versions have an updated recommendation on how to properly
347 * initialize the running average range (was: 0xE, now: 0x9). This avoids
348 * counter saturations resulting in bogus power readings.
349 * We correct this value ourselves to cope with older BIOSes.
351 static const struct pci_device_id affected_device[] = {
352 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
353 { 0 }
356 static void tweak_runavg_range(struct pci_dev *pdev)
358 u32 val;
361 * let this quirk apply only to the current version of the
362 * northbridge, since future versions may change the behavior
364 if (!pci_match_id(affected_device, pdev))
365 return;
367 pci_bus_read_config_dword(pdev->bus,
368 PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
369 REG_TDP_RUNNING_AVERAGE, &val);
370 if ((val & 0xf) != 0xe)
371 return;
373 val &= ~0xf;
374 val |= 0x9;
375 pci_bus_write_config_dword(pdev->bus,
376 PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
377 REG_TDP_RUNNING_AVERAGE, val);
380 #ifdef CONFIG_PM
381 static int fam15h_power_resume(struct pci_dev *pdev)
383 tweak_runavg_range(pdev);
384 return 0;
386 #else
387 #define fam15h_power_resume NULL
388 #endif
390 static int fam15h_power_init_data(struct pci_dev *f4,
391 struct fam15h_power_data *data)
393 u32 val;
394 u64 tmp;
395 int ret;
397 pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val);
398 data->base_tdp = val >> 16;
399 tmp = val & 0xffff;
401 pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
402 REG_TDP_LIMIT3, &val);
404 data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f);
405 tmp *= data->tdp_to_watts;
407 /* result not allowed to be >= 256W */
408 if ((tmp >> 16) >= 256)
409 dev_warn(&f4->dev,
410 "Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n",
411 (unsigned int) (tmp >> 16));
413 /* convert to microWatt */
414 data->processor_pwr_watts = (tmp * 15625) >> 10;
416 ret = fam15h_power_init_attrs(f4, data);
417 if (ret)
418 return ret;
421 /* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */
422 if (!boot_cpu_has(X86_FEATURE_ACC_POWER))
423 return 0;
426 * determine the ratio of the compute unit power accumulator
427 * sample period to the PTSC counter period by executing CPUID
428 * Fn8000_0007:ECX
430 data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007);
432 if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) {
433 pr_err("Failed to read max compute unit power accumulator MSR\n");
434 return -ENODEV;
437 data->max_cu_acc_power = tmp;
440 * Milliseconds are a reasonable interval for the measurement.
441 * But it shouldn't set too long here, because several seconds
442 * would cause the read function to hang. So set default
443 * interval as 10 ms.
445 data->power_period = 10;
447 return read_registers(data);
450 static int fam15h_power_probe(struct pci_dev *pdev,
451 const struct pci_device_id *id)
453 struct fam15h_power_data *data;
454 struct device *dev = &pdev->dev;
455 struct device *hwmon_dev;
456 int ret;
459 * though we ignore every other northbridge, we still have to
460 * do the tweaking on _each_ node in MCM processors as the counters
461 * are working hand-in-hand
463 tweak_runavg_range(pdev);
465 if (!should_load_on_this_node(pdev))
466 return -ENODEV;
468 data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL);
469 if (!data)
470 return -ENOMEM;
472 ret = fam15h_power_init_data(pdev, data);
473 if (ret)
474 return ret;
476 data->pdev = pdev;
478 data->groups[0] = &data->group;
480 hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power",
481 data,
482 &data->groups[0]);
483 return PTR_ERR_OR_ZERO(hwmon_dev);
486 static const struct pci_device_id fam15h_power_id_table[] = {
487 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
488 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
489 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) },
490 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) },
491 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
492 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
495 MODULE_DEVICE_TABLE(pci, fam15h_power_id_table);
497 static struct pci_driver fam15h_power_driver = {
498 .name = "fam15h_power",
499 .id_table = fam15h_power_id_table,
500 .probe = fam15h_power_probe,
501 .resume = fam15h_power_resume,
504 module_pci_driver(fam15h_power_driver);