gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / hwmon / via686a.c
bloba2eddd2c2538ac3ac01af79c4cb041dbf6280310
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * via686a.c - Part of lm_sensors, Linux kernel modules
4 * for hardware monitoring
6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
7 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
8 * Mark Studebaker <mdsxyz123@yahoo.com>,
9 * and Bob Dougherty <bobd@stanford.edu>
11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
16 * Supports the Via VT82C686A, VT82C686B south bridges.
17 * Reports all as a 686A.
18 * Warning - only supports a single device.
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/jiffies.h>
27 #include <linux/platform_device.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/err.h>
31 #include <linux/init.h>
32 #include <linux/mutex.h>
33 #include <linux/sysfs.h>
34 #include <linux/acpi.h>
35 #include <linux/io.h>
38 * If force_addr is set to anything different from 0, we forcibly enable
39 * the device at the given address.
41 static unsigned short force_addr;
42 module_param(force_addr, ushort, 0);
43 MODULE_PARM_DESC(force_addr,
44 "Initialize the base address of the sensors");
46 static struct platform_device *pdev;
49 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
50 * This driver is a customized copy of lm78.c
53 /* Many VIA686A constants specified below */
55 /* Length of ISA address segment */
56 #define VIA686A_EXTENT 0x80
57 #define VIA686A_BASE_REG 0x70
58 #define VIA686A_ENABLE_REG 0x74
60 /* The VIA686A registers */
61 /* ins numbered 0-4 */
62 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
63 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
64 #define VIA686A_REG_IN(nr) (0x22 + (nr))
66 /* fans numbered 1-2 */
67 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
68 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
70 /* temps numbered 1-3 */
71 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
72 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
73 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
74 /* bits 7-6 */
75 #define VIA686A_REG_TEMP_LOW1 0x4b
76 /* 2 = bits 5-4, 3 = bits 7-6 */
77 #define VIA686A_REG_TEMP_LOW23 0x49
79 #define VIA686A_REG_ALARM1 0x41
80 #define VIA686A_REG_ALARM2 0x42
81 #define VIA686A_REG_FANDIV 0x47
82 #define VIA686A_REG_CONFIG 0x40
84 * The following register sets temp interrupt mode (bits 1-0 for temp1,
85 * 3-2 for temp2, 5-4 for temp3). Modes are:
86 * 00 interrupt stays as long as value is out-of-range
87 * 01 interrupt is cleared once register is read (default)
88 * 10 comparator mode- like 00, but ignores hysteresis
89 * 11 same as 00
91 #define VIA686A_REG_TEMP_MODE 0x4b
92 /* We'll just assume that you want to set all 3 simultaneously: */
93 #define VIA686A_TEMP_MODE_MASK 0x3F
94 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
97 * Conversions. Limit checking is only done on the TO_REG
98 * variants.
100 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
101 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
102 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
103 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
104 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
105 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
106 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
107 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
108 * That is:
109 * volts = (25*regVal+133)*factor
110 * regVal = (volts/factor-133)/25
111 * (These conversions were contributed by Jonathan Teh Soon Yew
112 * <j.teh@iname.com>)
114 static inline u8 IN_TO_REG(long val, int in_num)
117 * To avoid floating point, we multiply constants by 10 (100 for +12V).
118 * Rounding is done (120500 is actually 133000 - 12500).
119 * Remember that val is expressed in 0.001V/bit, which is why we divide
120 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
121 * for the constants.
123 if (in_num <= 1)
124 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
125 else if (in_num == 2)
126 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
127 else if (in_num == 3)
128 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
129 else
130 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
131 255);
134 static inline long IN_FROM_REG(u8 val, int in_num)
137 * To avoid floating point, we multiply constants by 10 (100 for +12V).
138 * We also multiply them by 1000 because we want 0.001V/bit for the
139 * output value. Rounding is done.
141 if (in_num <= 1)
142 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
143 else if (in_num == 2)
144 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
145 else if (in_num == 3)
146 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
147 else
148 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
151 /********* FAN RPM CONVERSIONS ********/
153 * Higher register values = slower fans (the fan's strobe gates a counter).
154 * But this chip saturates back at 0, not at 255 like all the other chips.
155 * So, 0 means 0 RPM
157 static inline u8 FAN_TO_REG(long rpm, int div)
159 if (rpm == 0)
160 return 0;
161 rpm = clamp_val(rpm, 1, 1000000);
162 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
165 #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
166 ((val) * (div)))
168 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
170 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
171 * if(temp<169)
172 * return double(temp)*0.427-32.08;
173 * else if(temp>=169 && temp<=202)
174 * return double(temp)*0.582-58.16;
175 * else
176 * return double(temp)*0.924-127.33;
178 * A fifth-order polynomial fits the unofficial data (provided by Alex van
179 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
180 * numbers on my machine (ie. they agree with what my BIOS tells me).
181 * Here's the fifth-order fit to the 8-bit data:
182 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
183 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
185 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
186 * finding my typos in this formula!)
188 * Alas, none of the elegant function-fit solutions will work because we
189 * aren't allowed to use floating point in the kernel and doing it with
190 * integers doesn't provide enough precision. So we'll do boring old
191 * look-up table stuff. The unofficial data (see below) have effectively
192 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
193 * that the transfer function of the device is monotonic and smooth, so a
194 * smooth function fit to the data will allow us to get better precision.
195 * I used the 5th-order poly fit described above and solved for
196 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
197 * precision. (I could have done all 1024 values for our 10-bit readings,
198 * but the function is very linear in the useful range (0-80 deg C), so
199 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
200 * is the temp at via register values 0-255:
202 static const s16 temp_lut[] = {
203 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
204 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
205 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
206 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
207 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
208 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
209 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
210 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
211 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
212 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
213 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
214 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
215 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
216 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
217 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
218 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
219 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
220 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
221 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
222 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
223 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
224 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
228 * the original LUT values from Alex van Kaam <darkside@chello.nl>
229 * (for via register values 12-240):
230 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
231 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
232 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
233 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
234 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
235 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
236 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
237 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
238 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
239 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
242 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
243 * an extra term for a good fit to these inverse data!) and then
244 * solving for each temp value from -50 to 110 (the useable range for
245 * this chip). Here's the fit:
246 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
247 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
248 * Note that n=161:
250 static const u8 via_lut[] = {
251 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
252 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
253 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
254 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
255 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
256 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
257 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
258 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
259 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
260 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
261 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
262 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
263 239, 240
267 * Converting temps to (8-bit) hyst and over registers
268 * No interpolation here.
269 * The +50 is because the temps start at -50
271 static inline u8 TEMP_TO_REG(long val)
273 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
274 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
277 /* for 8-bit temperature hyst and over registers */
278 #define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
280 /* for 10-bit temperature readings */
281 static inline long TEMP_FROM_REG10(u16 val)
283 u16 eight_bits = val >> 2;
284 u16 two_bits = val & 3;
286 /* no interpolation for these */
287 if (two_bits == 0 || eight_bits == 255)
288 return TEMP_FROM_REG(eight_bits);
290 /* do some linear interpolation */
291 return (temp_lut[eight_bits] * (4 - two_bits) +
292 temp_lut[eight_bits + 1] * two_bits) * 25;
295 #define DIV_FROM_REG(val) (1 << (val))
296 #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
299 * For each registered chip, we need to keep some data in memory.
300 * The structure is dynamically allocated.
302 struct via686a_data {
303 unsigned short addr;
304 const char *name;
305 struct device *hwmon_dev;
306 struct mutex update_lock;
307 char valid; /* !=0 if following fields are valid */
308 unsigned long last_updated; /* In jiffies */
310 u8 in[5]; /* Register value */
311 u8 in_max[5]; /* Register value */
312 u8 in_min[5]; /* Register value */
313 u8 fan[2]; /* Register value */
314 u8 fan_min[2]; /* Register value */
315 u16 temp[3]; /* Register value 10 bit */
316 u8 temp_over[3]; /* Register value */
317 u8 temp_hyst[3]; /* Register value */
318 u8 fan_div[2]; /* Register encoding, shifted right */
319 u16 alarms; /* Register encoding, combined */
322 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
324 static int via686a_probe(struct platform_device *pdev);
325 static int via686a_remove(struct platform_device *pdev);
327 static inline int via686a_read_value(struct via686a_data *data, u8 reg)
329 return inb_p(data->addr + reg);
332 static inline void via686a_write_value(struct via686a_data *data, u8 reg,
333 u8 value)
335 outb_p(value, data->addr + reg);
338 static struct via686a_data *via686a_update_device(struct device *dev);
339 static void via686a_init_device(struct via686a_data *data);
341 /* following are the sysfs callback functions */
343 /* 7 voltage sensors */
344 static ssize_t in_show(struct device *dev, struct device_attribute *da,
345 char *buf) {
346 struct via686a_data *data = via686a_update_device(dev);
347 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348 int nr = attr->index;
349 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
352 static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
353 char *buf) {
354 struct via686a_data *data = via686a_update_device(dev);
355 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
356 int nr = attr->index;
357 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
360 static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
361 char *buf) {
362 struct via686a_data *data = via686a_update_device(dev);
363 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364 int nr = attr->index;
365 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
368 static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
369 const char *buf, size_t count) {
370 struct via686a_data *data = dev_get_drvdata(dev);
371 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
372 int nr = attr->index;
373 unsigned long val;
374 int err;
376 err = kstrtoul(buf, 10, &val);
377 if (err)
378 return err;
380 mutex_lock(&data->update_lock);
381 data->in_min[nr] = IN_TO_REG(val, nr);
382 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
383 data->in_min[nr]);
384 mutex_unlock(&data->update_lock);
385 return count;
387 static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
388 const char *buf, size_t count) {
389 struct via686a_data *data = dev_get_drvdata(dev);
390 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
391 int nr = attr->index;
392 unsigned long val;
393 int err;
395 err = kstrtoul(buf, 10, &val);
396 if (err)
397 return err;
399 mutex_lock(&data->update_lock);
400 data->in_max[nr] = IN_TO_REG(val, nr);
401 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
402 data->in_max[nr]);
403 mutex_unlock(&data->update_lock);
404 return count;
407 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
408 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
409 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
410 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
411 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
412 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
413 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
414 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
415 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
416 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
417 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
418 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
419 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
420 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
421 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
423 /* 3 temperatures */
424 static ssize_t temp_show(struct device *dev, struct device_attribute *da,
425 char *buf) {
426 struct via686a_data *data = via686a_update_device(dev);
427 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
428 int nr = attr->index;
429 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
431 static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
432 char *buf) {
433 struct via686a_data *data = via686a_update_device(dev);
434 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
435 int nr = attr->index;
436 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
438 static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
439 char *buf) {
440 struct via686a_data *data = via686a_update_device(dev);
441 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
442 int nr = attr->index;
443 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
445 static ssize_t temp_over_store(struct device *dev,
446 struct device_attribute *da, const char *buf,
447 size_t count) {
448 struct via686a_data *data = dev_get_drvdata(dev);
449 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
450 int nr = attr->index;
451 long val;
452 int err;
454 err = kstrtol(buf, 10, &val);
455 if (err)
456 return err;
458 mutex_lock(&data->update_lock);
459 data->temp_over[nr] = TEMP_TO_REG(val);
460 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
461 data->temp_over[nr]);
462 mutex_unlock(&data->update_lock);
463 return count;
465 static ssize_t temp_hyst_store(struct device *dev,
466 struct device_attribute *da, const char *buf,
467 size_t count) {
468 struct via686a_data *data = dev_get_drvdata(dev);
469 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
470 int nr = attr->index;
471 long val;
472 int err;
474 err = kstrtol(buf, 10, &val);
475 if (err)
476 return err;
478 mutex_lock(&data->update_lock);
479 data->temp_hyst[nr] = TEMP_TO_REG(val);
480 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
481 data->temp_hyst[nr]);
482 mutex_unlock(&data->update_lock);
483 return count;
486 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
487 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
488 static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
489 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
490 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
491 static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
492 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
493 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
494 static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
496 /* 2 Fans */
497 static ssize_t fan_show(struct device *dev, struct device_attribute *da,
498 char *buf) {
499 struct via686a_data *data = via686a_update_device(dev);
500 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
501 int nr = attr->index;
502 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
503 DIV_FROM_REG(data->fan_div[nr])));
505 static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
506 char *buf) {
507 struct via686a_data *data = via686a_update_device(dev);
508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
509 int nr = attr->index;
510 return sprintf(buf, "%d\n",
511 FAN_FROM_REG(data->fan_min[nr],
512 DIV_FROM_REG(data->fan_div[nr])));
514 static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
515 char *buf) {
516 struct via686a_data *data = via686a_update_device(dev);
517 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
518 int nr = attr->index;
519 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
521 static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
522 const char *buf, size_t count) {
523 struct via686a_data *data = dev_get_drvdata(dev);
524 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
525 int nr = attr->index;
526 unsigned long val;
527 int err;
529 err = kstrtoul(buf, 10, &val);
530 if (err)
531 return err;
533 mutex_lock(&data->update_lock);
534 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
535 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
536 mutex_unlock(&data->update_lock);
537 return count;
539 static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
540 const char *buf, size_t count) {
541 struct via686a_data *data = dev_get_drvdata(dev);
542 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
543 int nr = attr->index;
544 int old;
545 unsigned long val;
546 int err;
548 err = kstrtoul(buf, 10, &val);
549 if (err)
550 return err;
552 mutex_lock(&data->update_lock);
553 old = via686a_read_value(data, VIA686A_REG_FANDIV);
554 data->fan_div[nr] = DIV_TO_REG(val);
555 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
556 via686a_write_value(data, VIA686A_REG_FANDIV, old);
557 mutex_unlock(&data->update_lock);
558 return count;
561 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
562 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
563 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
564 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
565 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
566 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
568 /* Alarms */
569 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
570 char *buf)
572 struct via686a_data *data = via686a_update_device(dev);
573 return sprintf(buf, "%u\n", data->alarms);
576 static DEVICE_ATTR_RO(alarms);
578 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
579 char *buf)
581 int bitnr = to_sensor_dev_attr(attr)->index;
582 struct via686a_data *data = via686a_update_device(dev);
583 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
585 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
586 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
587 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
588 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
589 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
590 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
591 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
592 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
593 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
594 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
596 static ssize_t name_show(struct device *dev, struct device_attribute
597 *devattr, char *buf)
599 struct via686a_data *data = dev_get_drvdata(dev);
600 return sprintf(buf, "%s\n", data->name);
602 static DEVICE_ATTR_RO(name);
604 static struct attribute *via686a_attributes[] = {
605 &sensor_dev_attr_in0_input.dev_attr.attr,
606 &sensor_dev_attr_in1_input.dev_attr.attr,
607 &sensor_dev_attr_in2_input.dev_attr.attr,
608 &sensor_dev_attr_in3_input.dev_attr.attr,
609 &sensor_dev_attr_in4_input.dev_attr.attr,
610 &sensor_dev_attr_in0_min.dev_attr.attr,
611 &sensor_dev_attr_in1_min.dev_attr.attr,
612 &sensor_dev_attr_in2_min.dev_attr.attr,
613 &sensor_dev_attr_in3_min.dev_attr.attr,
614 &sensor_dev_attr_in4_min.dev_attr.attr,
615 &sensor_dev_attr_in0_max.dev_attr.attr,
616 &sensor_dev_attr_in1_max.dev_attr.attr,
617 &sensor_dev_attr_in2_max.dev_attr.attr,
618 &sensor_dev_attr_in3_max.dev_attr.attr,
619 &sensor_dev_attr_in4_max.dev_attr.attr,
620 &sensor_dev_attr_in0_alarm.dev_attr.attr,
621 &sensor_dev_attr_in1_alarm.dev_attr.attr,
622 &sensor_dev_attr_in2_alarm.dev_attr.attr,
623 &sensor_dev_attr_in3_alarm.dev_attr.attr,
624 &sensor_dev_attr_in4_alarm.dev_attr.attr,
626 &sensor_dev_attr_temp1_input.dev_attr.attr,
627 &sensor_dev_attr_temp2_input.dev_attr.attr,
628 &sensor_dev_attr_temp3_input.dev_attr.attr,
629 &sensor_dev_attr_temp1_max.dev_attr.attr,
630 &sensor_dev_attr_temp2_max.dev_attr.attr,
631 &sensor_dev_attr_temp3_max.dev_attr.attr,
632 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
633 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
634 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
635 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
636 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
637 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
639 &sensor_dev_attr_fan1_input.dev_attr.attr,
640 &sensor_dev_attr_fan2_input.dev_attr.attr,
641 &sensor_dev_attr_fan1_min.dev_attr.attr,
642 &sensor_dev_attr_fan2_min.dev_attr.attr,
643 &sensor_dev_attr_fan1_div.dev_attr.attr,
644 &sensor_dev_attr_fan2_div.dev_attr.attr,
645 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
646 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
648 &dev_attr_alarms.attr,
649 &dev_attr_name.attr,
650 NULL
653 static const struct attribute_group via686a_group = {
654 .attrs = via686a_attributes,
657 static struct platform_driver via686a_driver = {
658 .driver = {
659 .name = "via686a",
661 .probe = via686a_probe,
662 .remove = via686a_remove,
665 /* This is called when the module is loaded */
666 static int via686a_probe(struct platform_device *pdev)
668 struct via686a_data *data;
669 struct resource *res;
670 int err;
672 /* Reserve the ISA region */
673 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
674 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
675 via686a_driver.driver.name)) {
676 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
677 (unsigned long)res->start, (unsigned long)res->end);
678 return -ENODEV;
681 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
682 GFP_KERNEL);
683 if (!data)
684 return -ENOMEM;
686 platform_set_drvdata(pdev, data);
687 data->addr = res->start;
688 data->name = "via686a";
689 mutex_init(&data->update_lock);
691 /* Initialize the VIA686A chip */
692 via686a_init_device(data);
694 /* Register sysfs hooks */
695 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
696 if (err)
697 return err;
699 data->hwmon_dev = hwmon_device_register(&pdev->dev);
700 if (IS_ERR(data->hwmon_dev)) {
701 err = PTR_ERR(data->hwmon_dev);
702 goto exit_remove_files;
705 return 0;
707 exit_remove_files:
708 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
709 return err;
712 static int via686a_remove(struct platform_device *pdev)
714 struct via686a_data *data = platform_get_drvdata(pdev);
716 hwmon_device_unregister(data->hwmon_dev);
717 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
719 return 0;
722 static void via686a_update_fan_div(struct via686a_data *data)
724 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
725 data->fan_div[0] = (reg >> 4) & 0x03;
726 data->fan_div[1] = reg >> 6;
729 static void via686a_init_device(struct via686a_data *data)
731 u8 reg;
733 /* Start monitoring */
734 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
735 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
737 /* Configure temp interrupt mode for continuous-interrupt operation */
738 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
739 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
740 (reg & ~VIA686A_TEMP_MODE_MASK)
741 | VIA686A_TEMP_MODE_CONTINUOUS);
743 /* Pre-read fan clock divisor values */
744 via686a_update_fan_div(data);
747 static struct via686a_data *via686a_update_device(struct device *dev)
749 struct via686a_data *data = dev_get_drvdata(dev);
750 int i;
752 mutex_lock(&data->update_lock);
754 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
755 || !data->valid) {
756 for (i = 0; i <= 4; i++) {
757 data->in[i] =
758 via686a_read_value(data, VIA686A_REG_IN(i));
759 data->in_min[i] = via686a_read_value(data,
760 VIA686A_REG_IN_MIN
761 (i));
762 data->in_max[i] =
763 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
765 for (i = 1; i <= 2; i++) {
766 data->fan[i - 1] =
767 via686a_read_value(data, VIA686A_REG_FAN(i));
768 data->fan_min[i - 1] = via686a_read_value(data,
769 VIA686A_REG_FAN_MIN(i));
771 for (i = 0; i <= 2; i++) {
772 data->temp[i] = via686a_read_value(data,
773 VIA686A_REG_TEMP[i]) << 2;
774 data->temp_over[i] =
775 via686a_read_value(data,
776 VIA686A_REG_TEMP_OVER[i]);
777 data->temp_hyst[i] =
778 via686a_read_value(data,
779 VIA686A_REG_TEMP_HYST[i]);
782 * add in lower 2 bits
783 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
784 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
785 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
787 data->temp[0] |= (via686a_read_value(data,
788 VIA686A_REG_TEMP_LOW1)
789 & 0xc0) >> 6;
790 data->temp[1] |=
791 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
792 0x30) >> 4;
793 data->temp[2] |=
794 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
795 0xc0) >> 6;
797 via686a_update_fan_div(data);
798 data->alarms =
799 via686a_read_value(data,
800 VIA686A_REG_ALARM1) |
801 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
802 data->last_updated = jiffies;
803 data->valid = 1;
806 mutex_unlock(&data->update_lock);
808 return data;
811 static const struct pci_device_id via686a_pci_ids[] = {
812 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
815 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
817 static int via686a_device_add(unsigned short address)
819 struct resource res = {
820 .start = address,
821 .end = address + VIA686A_EXTENT - 1,
822 .name = "via686a",
823 .flags = IORESOURCE_IO,
825 int err;
827 err = acpi_check_resource_conflict(&res);
828 if (err)
829 goto exit;
831 pdev = platform_device_alloc("via686a", address);
832 if (!pdev) {
833 err = -ENOMEM;
834 pr_err("Device allocation failed\n");
835 goto exit;
838 err = platform_device_add_resources(pdev, &res, 1);
839 if (err) {
840 pr_err("Device resource addition failed (%d)\n", err);
841 goto exit_device_put;
844 err = platform_device_add(pdev);
845 if (err) {
846 pr_err("Device addition failed (%d)\n", err);
847 goto exit_device_put;
850 return 0;
852 exit_device_put:
853 platform_device_put(pdev);
854 exit:
855 return err;
858 static int via686a_pci_probe(struct pci_dev *dev,
859 const struct pci_device_id *id)
861 u16 address, val;
863 if (force_addr) {
864 address = force_addr & ~(VIA686A_EXTENT - 1);
865 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
866 if (PCIBIOS_SUCCESSFUL !=
867 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
868 return -ENODEV;
870 if (PCIBIOS_SUCCESSFUL !=
871 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
872 return -ENODEV;
874 address = val & ~(VIA686A_EXTENT - 1);
875 if (address == 0) {
876 dev_err(&dev->dev,
877 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
878 return -ENODEV;
881 if (PCIBIOS_SUCCESSFUL !=
882 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
883 return -ENODEV;
884 if (!(val & 0x0001)) {
885 if (!force_addr) {
886 dev_warn(&dev->dev,
887 "Sensors disabled, enable with force_addr=0x%x\n",
888 address);
889 return -ENODEV;
892 dev_warn(&dev->dev, "Enabling sensors\n");
893 if (PCIBIOS_SUCCESSFUL !=
894 pci_write_config_word(dev, VIA686A_ENABLE_REG,
895 val | 0x0001))
896 return -ENODEV;
899 if (platform_driver_register(&via686a_driver))
900 goto exit;
902 /* Sets global pdev as a side effect */
903 if (via686a_device_add(address))
904 goto exit_unregister;
907 * Always return failure here. This is to allow other drivers to bind
908 * to this pci device. We don't really want to have control over the
909 * pci device, we only wanted to read as few register values from it.
911 s_bridge = pci_dev_get(dev);
912 return -ENODEV;
914 exit_unregister:
915 platform_driver_unregister(&via686a_driver);
916 exit:
917 return -ENODEV;
920 static struct pci_driver via686a_pci_driver = {
921 .name = "via686a",
922 .id_table = via686a_pci_ids,
923 .probe = via686a_pci_probe,
926 static int __init sm_via686a_init(void)
928 return pci_register_driver(&via686a_pci_driver);
931 static void __exit sm_via686a_exit(void)
933 pci_unregister_driver(&via686a_pci_driver);
934 if (s_bridge != NULL) {
935 platform_device_unregister(pdev);
936 platform_driver_unregister(&via686a_driver);
937 pci_dev_put(s_bridge);
938 s_bridge = NULL;
942 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
943 "Mark Studebaker <mdsxyz123@yahoo.com> "
944 "and Bob Dougherty <bobd@stanford.edu>");
945 MODULE_DESCRIPTION("VIA 686A Sensor device");
946 MODULE_LICENSE("GPL");
948 module_init(sm_via686a_init);
949 module_exit(sm_via686a_exit);