1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache
*bch_search_cache
;
28 static void bch_data_insert_start(struct closure
*cl
);
30 static unsigned int cache_mode(struct cached_dev
*dc
)
32 return BDEV_CACHE_MODE(&dc
->sb
);
35 static bool verify(struct cached_dev
*dc
)
40 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
43 struct bvec_iter iter
;
46 bio_for_each_segment(bv
, bio
, iter
) {
47 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
49 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
53 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure
*cl
)
60 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
61 atomic_t
*journal_ref
= NULL
;
62 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
66 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
67 op
->flush_journal
? cl
: NULL
);
69 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
70 journal_ref
, replace_key
);
72 op
->replace_collision
= true;
74 op
->status
= BLK_STS_RESOURCE
;
75 op
->insert_data_done
= true;
79 atomic_dec_bug(journal_ref
);
81 if (!op
->insert_data_done
) {
82 continue_at(cl
, bch_data_insert_start
, op
->wq
);
86 bch_keylist_free(&op
->insert_keys
);
90 static int bch_keylist_realloc(struct keylist
*l
, unsigned int u64s
,
93 size_t oldsize
= bch_keylist_nkeys(l
);
94 size_t newsize
= oldsize
+ u64s
;
97 * The journalling code doesn't handle the case where the keys to insert
98 * is bigger than an empty write: If we just return -ENOMEM here,
99 * bch_data_insert_keys() will insert the keys created so far
100 * and finish the rest when the keylist is empty.
102 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
105 return __bch_keylist_realloc(l
, u64s
);
108 static void bch_data_invalidate(struct closure
*cl
)
110 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
111 struct bio
*bio
= op
->bio
;
113 pr_debug("invalidating %i sectors from %llu",
114 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
116 while (bio_sectors(bio
)) {
117 unsigned int sectors
= min(bio_sectors(bio
),
118 1U << (KEY_SIZE_BITS
- 1));
120 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
123 bio
->bi_iter
.bi_sector
+= sectors
;
124 bio
->bi_iter
.bi_size
-= sectors
<< 9;
126 bch_keylist_add(&op
->insert_keys
,
128 bio
->bi_iter
.bi_sector
,
132 op
->insert_data_done
= true;
133 /* get in bch_data_insert() */
136 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
139 static void bch_data_insert_error(struct closure
*cl
)
141 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
144 * Our data write just errored, which means we've got a bunch of keys to
145 * insert that point to data that wasn't successfully written.
147 * We don't have to insert those keys but we still have to invalidate
148 * that region of the cache - so, if we just strip off all the pointers
149 * from the keys we'll accomplish just that.
152 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
154 while (src
!= op
->insert_keys
.top
) {
155 struct bkey
*n
= bkey_next(src
);
157 SET_KEY_PTRS(src
, 0);
158 memmove(dst
, src
, bkey_bytes(src
));
160 dst
= bkey_next(dst
);
164 op
->insert_keys
.top
= dst
;
166 bch_data_insert_keys(cl
);
169 static void bch_data_insert_endio(struct bio
*bio
)
171 struct closure
*cl
= bio
->bi_private
;
172 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
174 if (bio
->bi_status
) {
175 /* TODO: We could try to recover from this. */
177 op
->status
= bio
->bi_status
;
178 else if (!op
->replace
)
179 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
181 set_closure_fn(cl
, NULL
, NULL
);
184 bch_bbio_endio(op
->c
, bio
, bio
->bi_status
, "writing data to cache");
187 static void bch_data_insert_start(struct closure
*cl
)
189 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
190 struct bio
*bio
= op
->bio
, *n
;
193 return bch_data_invalidate(cl
);
195 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0)
199 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200 * flush, it'll wait on the journal write.
202 bio
->bi_opf
&= ~(REQ_PREFLUSH
|REQ_FUA
);
207 struct bio_set
*split
= &op
->c
->bio_split
;
209 /* 1 for the device pointer and 1 for the chksum */
210 if (bch_keylist_realloc(&op
->insert_keys
,
211 3 + (op
->csum
? 1 : 0),
213 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
217 k
= op
->insert_keys
.top
;
219 SET_KEY_INODE(k
, op
->inode
);
220 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
222 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
223 op
->write_point
, op
->write_prio
,
227 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
229 n
->bi_end_io
= bch_data_insert_endio
;
233 SET_KEY_DIRTY(k
, true);
235 for (i
= 0; i
< KEY_PTRS(k
); i
++)
236 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
240 SET_KEY_CSUM(k
, op
->csum
);
244 trace_bcache_cache_insert(k
);
245 bch_keylist_push(&op
->insert_keys
);
247 bio_set_op_attrs(n
, REQ_OP_WRITE
, 0);
248 bch_submit_bbio(n
, op
->c
, k
, 0);
251 op
->insert_data_done
= true;
252 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
255 /* bch_alloc_sectors() blocks if s->writeback = true */
256 BUG_ON(op
->writeback
);
259 * But if it's not a writeback write we'd rather just bail out if
260 * there aren't any buckets ready to write to - it might take awhile and
261 * we might be starving btree writes for gc or something.
266 * Writethrough write: We can't complete the write until we've
267 * updated the index. But we don't want to delay the write while
268 * we wait for buckets to be freed up, so just invalidate the
272 return bch_data_invalidate(cl
);
275 * From a cache miss, we can just insert the keys for the data
276 * we have written or bail out if we didn't do anything.
278 op
->insert_data_done
= true;
281 if (!bch_keylist_empty(&op
->insert_keys
))
282 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
289 * bch_data_insert - stick some data in the cache
290 * @cl: closure pointer.
292 * This is the starting point for any data to end up in a cache device; it could
293 * be from a normal write, or a writeback write, or a write to a flash only
294 * volume - it's also used by the moving garbage collector to compact data in
295 * mostly empty buckets.
297 * It first writes the data to the cache, creating a list of keys to be inserted
298 * (if the data had to be fragmented there will be multiple keys); after the
299 * data is written it calls bch_journal, and after the keys have been added to
300 * the next journal write they're inserted into the btree.
302 * It inserts the data in op->bio; bi_sector is used for the key offset,
303 * and op->inode is used for the key inode.
305 * If op->bypass is true, instead of inserting the data it invalidates the
306 * region of the cache represented by op->bio and op->inode.
308 void bch_data_insert(struct closure
*cl
)
310 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
312 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
313 op
->writeback
, op
->bypass
);
315 bch_keylist_init(&op
->insert_keys
);
317 bch_data_insert_start(cl
);
321 * Congested? Return 0 (not congested) or the limit (in sectors)
322 * beyond which we should bypass the cache due to congestion.
324 unsigned int bch_get_congested(const struct cache_set
*c
)
328 if (!c
->congested_read_threshold_us
&&
329 !c
->congested_write_threshold_us
)
332 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
336 i
+= atomic_read(&c
->congested
);
343 i
= fract_exp_two(i
, 6);
345 i
-= hweight32(get_random_u32());
347 return i
> 0 ? i
: 1;
350 static void add_sequential(struct task_struct
*t
)
352 ewma_add(t
->sequential_io_avg
,
353 t
->sequential_io
, 8, 0);
355 t
->sequential_io
= 0;
358 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
360 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
363 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
365 struct cache_set
*c
= dc
->disk
.c
;
366 unsigned int mode
= cache_mode(dc
);
367 unsigned int sectors
, congested
;
368 struct task_struct
*task
= current
;
371 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
372 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
373 (bio_op(bio
) == REQ_OP_DISCARD
))
376 if (mode
== CACHE_MODE_NONE
||
377 (mode
== CACHE_MODE_WRITEAROUND
&&
378 op_is_write(bio_op(bio
))))
382 * If the bio is for read-ahead or background IO, bypass it or
383 * not depends on the following situations,
384 * - If the IO is for meta data, always cache it and no bypass
385 * - If the IO is not meta data, check dc->cache_reada_policy,
386 * BCH_CACHE_READA_ALL: cache it and not bypass
387 * BCH_CACHE_READA_META_ONLY: not cache it and bypass
388 * That is, read-ahead request for metadata always get cached
389 * (eg, for gfs2 or xfs).
391 if ((bio
->bi_opf
& (REQ_RAHEAD
|REQ_BACKGROUND
))) {
392 if (!(bio
->bi_opf
& (REQ_META
|REQ_PRIO
)) &&
393 (dc
->cache_readahead_policy
!= BCH_CACHE_READA_ALL
))
397 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
398 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
399 pr_debug("skipping unaligned io");
403 if (bypass_torture_test(dc
)) {
404 if ((get_random_int() & 3) == 3)
410 congested
= bch_get_congested(c
);
411 if (!congested
&& !dc
->sequential_cutoff
)
414 spin_lock(&dc
->io_lock
);
416 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
417 if (i
->last
== bio
->bi_iter
.bi_sector
&&
418 time_before(jiffies
, i
->jiffies
))
421 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
423 add_sequential(task
);
426 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
427 i
->sequential
+= bio
->bi_iter
.bi_size
;
429 i
->last
= bio_end_sector(bio
);
430 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
431 task
->sequential_io
= i
->sequential
;
434 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
435 list_move_tail(&i
->lru
, &dc
->io_lru
);
437 spin_unlock(&dc
->io_lock
);
439 sectors
= max(task
->sequential_io
,
440 task
->sequential_io_avg
) >> 9;
442 if (dc
->sequential_cutoff
&&
443 sectors
>= dc
->sequential_cutoff
>> 9) {
444 trace_bcache_bypass_sequential(bio
);
448 if (congested
&& sectors
>= congested
) {
449 trace_bcache_bypass_congested(bio
);
454 bch_rescale_priorities(c
, bio_sectors(bio
));
457 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
464 /* Stack frame for bio_complete */
468 struct bio
*orig_bio
;
469 struct bio
*cache_miss
;
470 struct bcache_device
*d
;
472 unsigned int insert_bio_sectors
;
473 unsigned int recoverable
:1;
474 unsigned int write
:1;
475 unsigned int read_dirty_data
:1;
476 unsigned int cache_missed
:1;
478 unsigned long start_time
;
481 struct data_insert_op iop
;
484 static void bch_cache_read_endio(struct bio
*bio
)
486 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
487 struct closure
*cl
= bio
->bi_private
;
488 struct search
*s
= container_of(cl
, struct search
, cl
);
491 * If the bucket was reused while our bio was in flight, we might have
492 * read the wrong data. Set s->error but not error so it doesn't get
493 * counted against the cache device, but we'll still reread the data
494 * from the backing device.
498 s
->iop
.status
= bio
->bi_status
;
499 else if (!KEY_DIRTY(&b
->key
) &&
500 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
501 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
502 s
->iop
.status
= BLK_STS_IOERR
;
505 bch_bbio_endio(s
->iop
.c
, bio
, bio
->bi_status
, "reading from cache");
509 * Read from a single key, handling the initial cache miss if the key starts in
510 * the middle of the bio
512 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
514 struct search
*s
= container_of(op
, struct search
, op
);
515 struct bio
*n
, *bio
= &s
->bio
.bio
;
516 struct bkey
*bio_key
;
519 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
522 if (KEY_INODE(k
) != s
->iop
.inode
||
523 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
524 unsigned int bio_sectors
= bio_sectors(bio
);
525 unsigned int sectors
= KEY_INODE(k
) == s
->iop
.inode
526 ? min_t(uint64_t, INT_MAX
,
527 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
529 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
531 if (ret
!= MAP_CONTINUE
)
534 /* if this was a complete miss we shouldn't get here */
535 BUG_ON(bio_sectors
<= sectors
);
541 /* XXX: figure out best pointer - for multiple cache devices */
544 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
547 s
->read_dirty_data
= true;
549 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
550 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
551 GFP_NOIO
, &s
->d
->bio_split
);
553 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
554 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
556 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
557 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
559 n
->bi_end_io
= bch_cache_read_endio
;
560 n
->bi_private
= &s
->cl
;
563 * The bucket we're reading from might be reused while our bio
564 * is in flight, and we could then end up reading the wrong
567 * We guard against this by checking (in cache_read_endio()) if
568 * the pointer is stale again; if so, we treat it as an error
569 * and reread from the backing device (but we don't pass that
570 * error up anywhere).
573 __bch_submit_bbio(n
, b
->c
);
574 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
577 static void cache_lookup(struct closure
*cl
)
579 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
580 struct bio
*bio
= &s
->bio
.bio
;
581 struct cached_dev
*dc
;
584 bch_btree_op_init(&s
->op
, -1);
586 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
587 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
588 cache_lookup_fn
, MAP_END_KEY
);
589 if (ret
== -EAGAIN
) {
590 continue_at(cl
, cache_lookup
, bcache_wq
);
595 * We might meet err when searching the btree, If that happens, we will
596 * get negative ret, in this scenario we should not recover data from
597 * backing device (when cache device is dirty) because we don't know
598 * whether bkeys the read request covered are all clean.
600 * And after that happened, s->iop.status is still its initial value
601 * before we submit s->bio.bio
604 BUG_ON(ret
== -EINTR
);
605 if (s
->d
&& s
->d
->c
&&
606 !UUID_FLASH_ONLY(&s
->d
->c
->uuids
[s
->d
->id
])) {
607 dc
= container_of(s
->d
, struct cached_dev
, disk
);
608 if (dc
&& atomic_read(&dc
->has_dirty
))
609 s
->recoverable
= false;
612 s
->iop
.status
= BLK_STS_IOERR
;
618 /* Common code for the make_request functions */
620 static void request_endio(struct bio
*bio
)
622 struct closure
*cl
= bio
->bi_private
;
624 if (bio
->bi_status
) {
625 struct search
*s
= container_of(cl
, struct search
, cl
);
627 s
->iop
.status
= bio
->bi_status
;
628 /* Only cache read errors are recoverable */
629 s
->recoverable
= false;
636 static void backing_request_endio(struct bio
*bio
)
638 struct closure
*cl
= bio
->bi_private
;
640 if (bio
->bi_status
) {
641 struct search
*s
= container_of(cl
, struct search
, cl
);
642 struct cached_dev
*dc
= container_of(s
->d
,
643 struct cached_dev
, disk
);
645 * If a bio has REQ_PREFLUSH for writeback mode, it is
646 * speically assembled in cached_dev_write() for a non-zero
647 * write request which has REQ_PREFLUSH. we don't set
648 * s->iop.status by this failure, the status will be decided
649 * by result of bch_data_insert() operation.
651 if (unlikely(s
->iop
.writeback
&&
652 bio
->bi_opf
& REQ_PREFLUSH
)) {
653 pr_err("Can't flush %s: returned bi_status %i",
654 dc
->backing_dev_name
, bio
->bi_status
);
656 /* set to orig_bio->bi_status in bio_complete() */
657 s
->iop
.status
= bio
->bi_status
;
659 s
->recoverable
= false;
660 /* should count I/O error for backing device here */
661 bch_count_backing_io_errors(dc
, bio
);
668 static void bio_complete(struct search
*s
)
671 generic_end_io_acct(s
->d
->disk
->queue
, bio_op(s
->orig_bio
),
672 &s
->d
->disk
->part0
, s
->start_time
);
674 trace_bcache_request_end(s
->d
, s
->orig_bio
);
675 s
->orig_bio
->bi_status
= s
->iop
.status
;
676 bio_endio(s
->orig_bio
);
681 static void do_bio_hook(struct search
*s
,
682 struct bio
*orig_bio
,
683 bio_end_io_t
*end_io_fn
)
685 struct bio
*bio
= &s
->bio
.bio
;
687 bio_init(bio
, NULL
, 0);
688 __bio_clone_fast(bio
, orig_bio
);
690 * bi_end_io can be set separately somewhere else, e.g. the
692 * - cache_bio->bi_end_io from cached_dev_cache_miss()
693 * - n->bi_end_io from cache_lookup_fn()
695 bio
->bi_end_io
= end_io_fn
;
696 bio
->bi_private
= &s
->cl
;
701 static void search_free(struct closure
*cl
)
703 struct search
*s
= container_of(cl
, struct search
, cl
);
705 atomic_dec(&s
->iop
.c
->search_inflight
);
711 closure_debug_destroy(cl
);
712 mempool_free(s
, &s
->iop
.c
->search
);
715 static inline struct search
*search_alloc(struct bio
*bio
,
716 struct bcache_device
*d
)
720 s
= mempool_alloc(&d
->c
->search
, GFP_NOIO
);
722 closure_init(&s
->cl
, NULL
);
723 do_bio_hook(s
, bio
, request_endio
);
724 atomic_inc(&d
->c
->search_inflight
);
727 s
->cache_miss
= NULL
;
731 s
->write
= op_is_write(bio_op(bio
));
732 s
->read_dirty_data
= 0;
733 s
->start_time
= jiffies
;
737 s
->iop
.inode
= d
->id
;
738 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
739 s
->iop
.write_prio
= 0;
742 s
->iop
.flush_journal
= op_is_flush(bio
->bi_opf
);
743 s
->iop
.wq
= bcache_wq
;
750 static void cached_dev_bio_complete(struct closure
*cl
)
752 struct search
*s
= container_of(cl
, struct search
, cl
);
753 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
761 static void cached_dev_read_error_done(struct closure
*cl
)
763 struct search
*s
= container_of(cl
, struct search
, cl
);
765 if (s
->iop
.replace_collision
)
766 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
769 bio_free_pages(s
->iop
.bio
);
771 cached_dev_bio_complete(cl
);
774 static void cached_dev_read_error(struct closure
*cl
)
776 struct search
*s
= container_of(cl
, struct search
, cl
);
777 struct bio
*bio
= &s
->bio
.bio
;
780 * If read request hit dirty data (s->read_dirty_data is true),
781 * then recovery a failed read request from cached device may
782 * get a stale data back. So read failure recovery is only
783 * permitted when read request hit clean data in cache device,
784 * or when cache read race happened.
786 if (s
->recoverable
&& !s
->read_dirty_data
) {
787 /* Retry from the backing device: */
788 trace_bcache_read_retry(s
->orig_bio
);
791 do_bio_hook(s
, s
->orig_bio
, backing_request_endio
);
793 /* XXX: invalidate cache */
795 /* I/O request sent to backing device */
796 closure_bio_submit(s
->iop
.c
, bio
, cl
);
799 continue_at(cl
, cached_dev_read_error_done
, NULL
);
802 static void cached_dev_cache_miss_done(struct closure
*cl
)
804 struct search
*s
= container_of(cl
, struct search
, cl
);
805 struct bcache_device
*d
= s
->d
;
807 if (s
->iop
.replace_collision
)
808 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
811 bio_free_pages(s
->iop
.bio
);
813 cached_dev_bio_complete(cl
);
817 static void cached_dev_read_done(struct closure
*cl
)
819 struct search
*s
= container_of(cl
, struct search
, cl
);
820 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
823 * We had a cache miss; cache_bio now contains data ready to be inserted
826 * First, we copy the data we just read from cache_bio's bounce buffers
827 * to the buffers the original bio pointed to:
831 bio_reset(s
->iop
.bio
);
832 s
->iop
.bio
->bi_iter
.bi_sector
=
833 s
->cache_miss
->bi_iter
.bi_sector
;
834 bio_copy_dev(s
->iop
.bio
, s
->cache_miss
);
835 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
836 bch_bio_map(s
->iop
.bio
, NULL
);
838 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
840 bio_put(s
->cache_miss
);
841 s
->cache_miss
= NULL
;
844 if (verify(dc
) && s
->recoverable
&& !s
->read_dirty_data
)
845 bch_data_verify(dc
, s
->orig_bio
);
847 closure_get(&dc
->disk
.cl
);
851 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
852 BUG_ON(!s
->iop
.replace
);
853 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
856 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
859 static void cached_dev_read_done_bh(struct closure
*cl
)
861 struct search
*s
= container_of(cl
, struct search
, cl
);
862 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
864 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
865 !s
->cache_missed
, s
->iop
.bypass
);
866 trace_bcache_read(s
->orig_bio
, !s
->cache_missed
, s
->iop
.bypass
);
869 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
870 else if (s
->iop
.bio
|| verify(dc
))
871 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
873 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
876 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
877 struct bio
*bio
, unsigned int sectors
)
879 int ret
= MAP_CONTINUE
;
880 unsigned int reada
= 0;
881 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
882 struct bio
*miss
, *cache_bio
;
886 if (s
->cache_miss
|| s
->iop
.bypass
) {
887 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
888 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
892 if (!(bio
->bi_opf
& REQ_RAHEAD
) &&
893 !(bio
->bi_opf
& (REQ_META
|REQ_PRIO
)) &&
894 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
895 reada
= min_t(sector_t
, dc
->readahead
>> 9,
896 get_capacity(bio
->bi_disk
) - bio_end_sector(bio
));
898 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
900 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
901 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
902 s
->insert_bio_sectors
);
904 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
908 s
->iop
.replace
= true;
910 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
912 /* btree_search_recurse()'s btree iterator is no good anymore */
913 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
915 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
916 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
917 &dc
->disk
.bio_split
);
921 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
922 bio_copy_dev(cache_bio
, miss
);
923 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
925 cache_bio
->bi_end_io
= backing_request_endio
;
926 cache_bio
->bi_private
= &s
->cl
;
928 bch_bio_map(cache_bio
, NULL
);
929 if (bch_bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
933 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
935 s
->cache_miss
= miss
;
936 s
->iop
.bio
= cache_bio
;
938 /* I/O request sent to backing device */
939 closure_bio_submit(s
->iop
.c
, cache_bio
, &s
->cl
);
945 miss
->bi_end_io
= backing_request_endio
;
946 miss
->bi_private
= &s
->cl
;
947 /* I/O request sent to backing device */
948 closure_bio_submit(s
->iop
.c
, miss
, &s
->cl
);
952 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
954 struct closure
*cl
= &s
->cl
;
956 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
957 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
962 static void cached_dev_write_complete(struct closure
*cl
)
964 struct search
*s
= container_of(cl
, struct search
, cl
);
965 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
967 up_read_non_owner(&dc
->writeback_lock
);
968 cached_dev_bio_complete(cl
);
971 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
973 struct closure
*cl
= &s
->cl
;
974 struct bio
*bio
= &s
->bio
.bio
;
975 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
976 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
978 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
980 down_read_non_owner(&dc
->writeback_lock
);
981 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
983 * We overlap with some dirty data undergoing background
984 * writeback, force this write to writeback
986 s
->iop
.bypass
= false;
987 s
->iop
.writeback
= true;
991 * Discards aren't _required_ to do anything, so skipping if
992 * check_overlapping returned true is ok
994 * But check_overlapping drops dirty keys for which io hasn't started,
995 * so we still want to call it.
997 if (bio_op(bio
) == REQ_OP_DISCARD
)
998 s
->iop
.bypass
= true;
1000 if (should_writeback(dc
, s
->orig_bio
,
1003 s
->iop
.bypass
= false;
1004 s
->iop
.writeback
= true;
1007 if (s
->iop
.bypass
) {
1008 s
->iop
.bio
= s
->orig_bio
;
1009 bio_get(s
->iop
.bio
);
1011 if (bio_op(bio
) == REQ_OP_DISCARD
&&
1012 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1015 /* I/O request sent to backing device */
1016 bio
->bi_end_io
= backing_request_endio
;
1017 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1019 } else if (s
->iop
.writeback
) {
1020 bch_writeback_add(dc
);
1023 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1025 * Also need to send a flush to the backing
1030 flush
= bio_alloc_bioset(GFP_NOIO
, 0,
1031 &dc
->disk
.bio_split
);
1033 s
->iop
.status
= BLK_STS_RESOURCE
;
1036 bio_copy_dev(flush
, bio
);
1037 flush
->bi_end_io
= backing_request_endio
;
1038 flush
->bi_private
= cl
;
1039 flush
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1040 /* I/O request sent to backing device */
1041 closure_bio_submit(s
->iop
.c
, flush
, cl
);
1044 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, &dc
->disk
.bio_split
);
1045 /* I/O request sent to backing device */
1046 bio
->bi_end_io
= backing_request_endio
;
1047 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1051 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1052 continue_at(cl
, cached_dev_write_complete
, NULL
);
1055 static void cached_dev_nodata(struct closure
*cl
)
1057 struct search
*s
= container_of(cl
, struct search
, cl
);
1058 struct bio
*bio
= &s
->bio
.bio
;
1060 if (s
->iop
.flush_journal
)
1061 bch_journal_meta(s
->iop
.c
, cl
);
1063 /* If it's a flush, we send the flush to the backing device too */
1064 bio
->bi_end_io
= backing_request_endio
;
1065 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1067 continue_at(cl
, cached_dev_bio_complete
, NULL
);
1070 struct detached_dev_io_private
{
1071 struct bcache_device
*d
;
1072 unsigned long start_time
;
1073 bio_end_io_t
*bi_end_io
;
1077 static void detached_dev_end_io(struct bio
*bio
)
1079 struct detached_dev_io_private
*ddip
;
1081 ddip
= bio
->bi_private
;
1082 bio
->bi_end_io
= ddip
->bi_end_io
;
1083 bio
->bi_private
= ddip
->bi_private
;
1085 generic_end_io_acct(ddip
->d
->disk
->queue
, bio_op(bio
),
1086 &ddip
->d
->disk
->part0
, ddip
->start_time
);
1088 if (bio
->bi_status
) {
1089 struct cached_dev
*dc
= container_of(ddip
->d
,
1090 struct cached_dev
, disk
);
1091 /* should count I/O error for backing device here */
1092 bch_count_backing_io_errors(dc
, bio
);
1096 bio
->bi_end_io(bio
);
1099 static void detached_dev_do_request(struct bcache_device
*d
, struct bio
*bio
)
1101 struct detached_dev_io_private
*ddip
;
1102 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1105 * no need to call closure_get(&dc->disk.cl),
1106 * because upper layer had already opened bcache device,
1107 * which would call closure_get(&dc->disk.cl)
1109 ddip
= kzalloc(sizeof(struct detached_dev_io_private
), GFP_NOIO
);
1111 ddip
->start_time
= jiffies
;
1112 ddip
->bi_end_io
= bio
->bi_end_io
;
1113 ddip
->bi_private
= bio
->bi_private
;
1114 bio
->bi_end_io
= detached_dev_end_io
;
1115 bio
->bi_private
= ddip
;
1117 if ((bio_op(bio
) == REQ_OP_DISCARD
) &&
1118 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1119 bio
->bi_end_io(bio
);
1121 generic_make_request(bio
);
1124 static void quit_max_writeback_rate(struct cache_set
*c
,
1125 struct cached_dev
*this_dc
)
1128 struct bcache_device
*d
;
1129 struct cached_dev
*dc
;
1132 * mutex bch_register_lock may compete with other parallel requesters,
1133 * or attach/detach operations on other backing device. Waiting to
1134 * the mutex lock may increase I/O request latency for seconds or more.
1135 * To avoid such situation, if mutext_trylock() failed, only writeback
1136 * rate of current cached device is set to 1, and __update_write_back()
1137 * will decide writeback rate of other cached devices (remember now
1138 * c->idle_counter is 0 already).
1140 if (mutex_trylock(&bch_register_lock
)) {
1141 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1145 if (UUID_FLASH_ONLY(&c
->uuids
[i
]))
1149 dc
= container_of(d
, struct cached_dev
, disk
);
1151 * set writeback rate to default minimum value,
1152 * then let update_writeback_rate() to decide the
1155 atomic_long_set(&dc
->writeback_rate
.rate
, 1);
1157 mutex_unlock(&bch_register_lock
);
1159 atomic_long_set(&this_dc
->writeback_rate
.rate
, 1);
1162 /* Cached devices - read & write stuff */
1164 blk_qc_t
cached_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
1167 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1168 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1169 int rw
= bio_data_dir(bio
);
1171 if (unlikely((d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
)) ||
1173 bio
->bi_status
= BLK_STS_IOERR
;
1175 return BLK_QC_T_NONE
;
1179 if (atomic_read(&d
->c
->idle_counter
))
1180 atomic_set(&d
->c
->idle_counter
, 0);
1182 * If at_max_writeback_rate of cache set is true and new I/O
1183 * comes, quit max writeback rate of all cached devices
1184 * attached to this cache set, and set at_max_writeback_rate
1187 if (unlikely(atomic_read(&d
->c
->at_max_writeback_rate
) == 1)) {
1188 atomic_set(&d
->c
->at_max_writeback_rate
, 0);
1189 quit_max_writeback_rate(d
->c
, dc
);
1193 generic_start_io_acct(q
,
1198 bio_set_dev(bio
, dc
->bdev
);
1199 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
1201 if (cached_dev_get(dc
)) {
1202 s
= search_alloc(bio
, d
);
1203 trace_bcache_request_start(s
->d
, bio
);
1205 if (!bio
->bi_iter
.bi_size
) {
1207 * can't call bch_journal_meta from under
1208 * generic_make_request
1210 continue_at_nobarrier(&s
->cl
,
1214 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
1217 cached_dev_write(dc
, s
);
1219 cached_dev_read(dc
, s
);
1222 /* I/O request sent to backing device */
1223 detached_dev_do_request(d
, bio
);
1225 return BLK_QC_T_NONE
;
1228 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1229 unsigned int cmd
, unsigned long arg
)
1231 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1236 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1239 static int cached_dev_congested(void *data
, int bits
)
1241 struct bcache_device
*d
= data
;
1242 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1243 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1246 if (bdi_congested(q
->backing_dev_info
, bits
))
1249 if (cached_dev_get(dc
)) {
1253 for_each_cache(ca
, d
->c
, i
) {
1254 q
= bdev_get_queue(ca
->bdev
);
1255 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1264 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1266 struct gendisk
*g
= dc
->disk
.disk
;
1268 g
->queue
->backing_dev_info
->congested_fn
= cached_dev_congested
;
1269 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1270 dc
->disk
.ioctl
= cached_dev_ioctl
;
1273 /* Flash backed devices */
1275 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1276 struct bio
*bio
, unsigned int sectors
)
1278 unsigned int bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1280 swap(bio
->bi_iter
.bi_size
, bytes
);
1282 swap(bio
->bi_iter
.bi_size
, bytes
);
1284 bio_advance(bio
, bytes
);
1286 if (!bio
->bi_iter
.bi_size
)
1289 return MAP_CONTINUE
;
1292 static void flash_dev_nodata(struct closure
*cl
)
1294 struct search
*s
= container_of(cl
, struct search
, cl
);
1296 if (s
->iop
.flush_journal
)
1297 bch_journal_meta(s
->iop
.c
, cl
);
1299 continue_at(cl
, search_free
, NULL
);
1302 blk_qc_t
flash_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
1306 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1308 if (unlikely(d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
))) {
1309 bio
->bi_status
= BLK_STS_IOERR
;
1311 return BLK_QC_T_NONE
;
1314 generic_start_io_acct(q
, bio_op(bio
), bio_sectors(bio
), &d
->disk
->part0
);
1316 s
= search_alloc(bio
, d
);
1320 trace_bcache_request_start(s
->d
, bio
);
1322 if (!bio
->bi_iter
.bi_size
) {
1324 * can't call bch_journal_meta from under
1325 * generic_make_request
1327 continue_at_nobarrier(&s
->cl
,
1330 return BLK_QC_T_NONE
;
1331 } else if (bio_data_dir(bio
)) {
1332 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1333 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1334 &KEY(d
->id
, bio_end_sector(bio
), 0));
1336 s
->iop
.bypass
= (bio_op(bio
) == REQ_OP_DISCARD
) != 0;
1337 s
->iop
.writeback
= true;
1340 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1342 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1345 continue_at(cl
, search_free
, NULL
);
1346 return BLK_QC_T_NONE
;
1349 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1350 unsigned int cmd
, unsigned long arg
)
1355 static int flash_dev_congested(void *data
, int bits
)
1357 struct bcache_device
*d
= data
;
1358 struct request_queue
*q
;
1363 for_each_cache(ca
, d
->c
, i
) {
1364 q
= bdev_get_queue(ca
->bdev
);
1365 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1371 void bch_flash_dev_request_init(struct bcache_device
*d
)
1373 struct gendisk
*g
= d
->disk
;
1375 g
->queue
->make_request_fn
= flash_dev_make_request
;
1376 g
->queue
->backing_dev_info
->congested_fn
= flash_dev_congested
;
1377 d
->cache_miss
= flash_dev_cache_miss
;
1378 d
->ioctl
= flash_dev_ioctl
;
1381 void bch_request_exit(void)
1383 kmem_cache_destroy(bch_search_cache
);
1386 int __init
bch_request_init(void)
1388 bch_search_cache
= KMEM_CACHE(search
, 0);
1389 if (!bch_search_cache
)