gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / md / bcache / util.h
blobc029f744319080570704de408d0cbcfff2c788e5
1 /* SPDX-License-Identifier: GPL-2.0 */
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
6 #include <linux/blkdev.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14 #include <linux/crc64.h>
16 #include "closure.h"
18 #define PAGE_SECTORS (PAGE_SIZE / 512)
20 struct closure;
22 #ifdef CONFIG_BCACHE_DEBUG
24 #define EBUG_ON(cond) BUG_ON(cond)
25 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
26 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
28 #else /* DEBUG */
30 #define EBUG_ON(cond) do { if (cond); } while (0)
31 #define atomic_dec_bug(v) atomic_dec(v)
32 #define atomic_inc_bug(v, i) atomic_inc(v)
34 #endif
36 #define DECLARE_HEAP(type, name) \
37 struct { \
38 size_t size, used; \
39 type *data; \
40 } name
42 #define init_heap(heap, _size, gfp) \
43 ({ \
44 size_t _bytes; \
45 (heap)->used = 0; \
46 (heap)->size = (_size); \
47 _bytes = (heap)->size * sizeof(*(heap)->data); \
48 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
49 (heap)->data; \
52 #define free_heap(heap) \
53 do { \
54 kvfree((heap)->data); \
55 (heap)->data = NULL; \
56 } while (0)
58 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
60 #define heap_sift(h, i, cmp) \
61 do { \
62 size_t _r, _j = i; \
64 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
65 _r = _j * 2 + 1; \
66 if (_r + 1 < (h)->used && \
67 cmp((h)->data[_r], (h)->data[_r + 1])) \
68 _r++; \
70 if (cmp((h)->data[_r], (h)->data[_j])) \
71 break; \
72 heap_swap(h, _r, _j); \
73 } \
74 } while (0)
76 #define heap_sift_down(h, i, cmp) \
77 do { \
78 while (i) { \
79 size_t p = (i - 1) / 2; \
80 if (cmp((h)->data[i], (h)->data[p])) \
81 break; \
82 heap_swap(h, i, p); \
83 i = p; \
84 } \
85 } while (0)
87 #define heap_add(h, d, cmp) \
88 ({ \
89 bool _r = !heap_full(h); \
90 if (_r) { \
91 size_t _i = (h)->used++; \
92 (h)->data[_i] = d; \
94 heap_sift_down(h, _i, cmp); \
95 heap_sift(h, _i, cmp); \
96 } \
97 _r; \
100 #define heap_pop(h, d, cmp) \
101 ({ \
102 bool _r = (h)->used; \
103 if (_r) { \
104 (d) = (h)->data[0]; \
105 (h)->used--; \
106 heap_swap(h, 0, (h)->used); \
107 heap_sift(h, 0, cmp); \
109 _r; \
112 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
114 #define heap_full(h) ((h)->used == (h)->size)
116 #define DECLARE_FIFO(type, name) \
117 struct { \
118 size_t front, back, size, mask; \
119 type *data; \
120 } name
122 #define fifo_for_each(c, fifo, iter) \
123 for (iter = (fifo)->front; \
124 c = (fifo)->data[iter], iter != (fifo)->back; \
125 iter = (iter + 1) & (fifo)->mask)
127 #define __init_fifo(fifo, gfp) \
128 ({ \
129 size_t _allocated_size, _bytes; \
130 BUG_ON(!(fifo)->size); \
132 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
133 _bytes = _allocated_size * sizeof(*(fifo)->data); \
135 (fifo)->mask = _allocated_size - 1; \
136 (fifo)->front = (fifo)->back = 0; \
138 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
139 (fifo)->data; \
142 #define init_fifo_exact(fifo, _size, gfp) \
143 ({ \
144 (fifo)->size = (_size); \
145 __init_fifo(fifo, gfp); \
148 #define init_fifo(fifo, _size, gfp) \
149 ({ \
150 (fifo)->size = (_size); \
151 if ((fifo)->size > 4) \
152 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
153 __init_fifo(fifo, gfp); \
156 #define free_fifo(fifo) \
157 do { \
158 kvfree((fifo)->data); \
159 (fifo)->data = NULL; \
160 } while (0)
162 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
163 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
165 #define fifo_empty(fifo) (!fifo_used(fifo))
166 #define fifo_full(fifo) (!fifo_free(fifo))
168 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
169 #define fifo_back(fifo) \
170 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
172 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
174 #define fifo_push_back(fifo, i) \
175 ({ \
176 bool _r = !fifo_full((fifo)); \
177 if (_r) { \
178 (fifo)->data[(fifo)->back++] = (i); \
179 (fifo)->back &= (fifo)->mask; \
181 _r; \
184 #define fifo_pop_front(fifo, i) \
185 ({ \
186 bool _r = !fifo_empty((fifo)); \
187 if (_r) { \
188 (i) = (fifo)->data[(fifo)->front++]; \
189 (fifo)->front &= (fifo)->mask; \
191 _r; \
194 #define fifo_push_front(fifo, i) \
195 ({ \
196 bool _r = !fifo_full((fifo)); \
197 if (_r) { \
198 --(fifo)->front; \
199 (fifo)->front &= (fifo)->mask; \
200 (fifo)->data[(fifo)->front] = (i); \
202 _r; \
205 #define fifo_pop_back(fifo, i) \
206 ({ \
207 bool _r = !fifo_empty((fifo)); \
208 if (_r) { \
209 --(fifo)->back; \
210 (fifo)->back &= (fifo)->mask; \
211 (i) = (fifo)->data[(fifo)->back] \
213 _r; \
216 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
217 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
219 #define fifo_swap(l, r) \
220 do { \
221 swap((l)->front, (r)->front); \
222 swap((l)->back, (r)->back); \
223 swap((l)->size, (r)->size); \
224 swap((l)->mask, (r)->mask); \
225 swap((l)->data, (r)->data); \
226 } while (0)
228 #define fifo_move(dest, src) \
229 do { \
230 typeof(*((dest)->data)) _t; \
231 while (!fifo_full(dest) && \
232 fifo_pop(src, _t)) \
233 fifo_push(dest, _t); \
234 } while (0)
237 * Simple array based allocator - preallocates a number of elements and you can
238 * never allocate more than that, also has no locking.
240 * Handy because if you know you only need a fixed number of elements you don't
241 * have to worry about memory allocation failure, and sometimes a mempool isn't
242 * what you want.
244 * We treat the free elements as entries in a singly linked list, and the
245 * freelist as a stack - allocating and freeing push and pop off the freelist.
248 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
249 struct { \
250 type *freelist; \
251 type data[size]; \
252 } name
254 #define array_alloc(array) \
255 ({ \
256 typeof((array)->freelist) _ret = (array)->freelist; \
258 if (_ret) \
259 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
261 _ret; \
264 #define array_free(array, ptr) \
265 do { \
266 typeof((array)->freelist) _ptr = ptr; \
268 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
269 (array)->freelist = _ptr; \
270 } while (0)
272 #define array_allocator_init(array) \
273 do { \
274 typeof((array)->freelist) _i; \
276 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
277 (array)->freelist = NULL; \
279 for (_i = (array)->data; \
280 _i < (array)->data + ARRAY_SIZE((array)->data); \
281 _i++) \
282 array_free(array, _i); \
283 } while (0)
285 #define array_freelist_empty(array) ((array)->freelist == NULL)
287 #define ANYSINT_MAX(t) \
288 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
290 int bch_strtoint_h(const char *cp, int *res);
291 int bch_strtouint_h(const char *cp, unsigned int *res);
292 int bch_strtoll_h(const char *cp, long long *res);
293 int bch_strtoull_h(const char *cp, unsigned long long *res);
295 static inline int bch_strtol_h(const char *cp, long *res)
297 #if BITS_PER_LONG == 32
298 return bch_strtoint_h(cp, (int *) res);
299 #else
300 return bch_strtoll_h(cp, (long long *) res);
301 #endif
304 static inline int bch_strtoul_h(const char *cp, long *res)
306 #if BITS_PER_LONG == 32
307 return bch_strtouint_h(cp, (unsigned int *) res);
308 #else
309 return bch_strtoull_h(cp, (unsigned long long *) res);
310 #endif
313 #define strtoi_h(cp, res) \
314 (__builtin_types_compatible_p(typeof(*res), int) \
315 ? bch_strtoint_h(cp, (void *) res) \
316 : __builtin_types_compatible_p(typeof(*res), long) \
317 ? bch_strtol_h(cp, (void *) res) \
318 : __builtin_types_compatible_p(typeof(*res), long long) \
319 ? bch_strtoll_h(cp, (void *) res) \
320 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
321 ? bch_strtouint_h(cp, (void *) res) \
322 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
323 ? bch_strtoul_h(cp, (void *) res) \
324 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
325 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
327 #define strtoul_safe(cp, var) \
328 ({ \
329 unsigned long _v; \
330 int _r = kstrtoul(cp, 10, &_v); \
331 if (!_r) \
332 var = _v; \
333 _r; \
336 #define strtoul_safe_clamp(cp, var, min, max) \
337 ({ \
338 unsigned long _v; \
339 int _r = kstrtoul(cp, 10, &_v); \
340 if (!_r) \
341 var = clamp_t(typeof(var), _v, min, max); \
342 _r; \
345 #define snprint(buf, size, var) \
346 snprintf(buf, size, \
347 __builtin_types_compatible_p(typeof(var), int) \
348 ? "%i\n" : \
349 __builtin_types_compatible_p(typeof(var), unsigned int) \
350 ? "%u\n" : \
351 __builtin_types_compatible_p(typeof(var), long) \
352 ? "%li\n" : \
353 __builtin_types_compatible_p(typeof(var), unsigned long)\
354 ? "%lu\n" : \
355 __builtin_types_compatible_p(typeof(var), int64_t) \
356 ? "%lli\n" : \
357 __builtin_types_compatible_p(typeof(var), uint64_t) \
358 ? "%llu\n" : \
359 __builtin_types_compatible_p(typeof(var), const char *) \
360 ? "%s\n" : "%i\n", var)
362 ssize_t bch_hprint(char *buf, int64_t v);
364 bool bch_is_zero(const char *p, size_t n);
365 int bch_parse_uuid(const char *s, char *uuid);
367 struct time_stats {
368 spinlock_t lock;
370 * all fields are in nanoseconds, averages are ewmas stored left shifted
371 * by 8
373 uint64_t max_duration;
374 uint64_t average_duration;
375 uint64_t average_frequency;
376 uint64_t last;
379 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
381 static inline unsigned int local_clock_us(void)
383 return local_clock() >> 10;
386 #define NSEC_PER_ns 1L
387 #define NSEC_PER_us NSEC_PER_USEC
388 #define NSEC_PER_ms NSEC_PER_MSEC
389 #define NSEC_PER_sec NSEC_PER_SEC
391 #define __print_time_stat(stats, name, stat, units) \
392 sysfs_print(name ## _ ## stat ## _ ## units, \
393 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
395 #define sysfs_print_time_stats(stats, name, \
396 frequency_units, \
397 duration_units) \
398 do { \
399 __print_time_stat(stats, name, \
400 average_frequency, frequency_units); \
401 __print_time_stat(stats, name, \
402 average_duration, duration_units); \
403 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
404 div_u64((stats)->max_duration, \
405 NSEC_PER_ ## duration_units)); \
407 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
408 ? div_s64(local_clock() - (stats)->last, \
409 NSEC_PER_ ## frequency_units) \
410 : -1LL); \
411 } while (0)
413 #define sysfs_time_stats_attribute(name, \
414 frequency_units, \
415 duration_units) \
416 read_attribute(name ## _average_frequency_ ## frequency_units); \
417 read_attribute(name ## _average_duration_ ## duration_units); \
418 read_attribute(name ## _max_duration_ ## duration_units); \
419 read_attribute(name ## _last_ ## frequency_units)
421 #define sysfs_time_stats_attribute_list(name, \
422 frequency_units, \
423 duration_units) \
424 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
425 &sysfs_ ## name ## _average_duration_ ## duration_units, \
426 &sysfs_ ## name ## _max_duration_ ## duration_units, \
427 &sysfs_ ## name ## _last_ ## frequency_units,
429 #define ewma_add(ewma, val, weight, factor) \
430 ({ \
431 (ewma) *= (weight) - 1; \
432 (ewma) += (val) << factor; \
433 (ewma) /= (weight); \
434 (ewma) >> factor; \
437 struct bch_ratelimit {
438 /* Next time we want to do some work, in nanoseconds */
439 uint64_t next;
442 * Rate at which we want to do work, in units per second
443 * The units here correspond to the units passed to bch_next_delay()
445 atomic_long_t rate;
448 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
450 d->next = local_clock();
453 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
455 #define __DIV_SAFE(n, d, zero) \
456 ({ \
457 typeof(n) _n = (n); \
458 typeof(d) _d = (d); \
459 _d ? _n / _d : zero; \
462 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
464 #define container_of_or_null(ptr, type, member) \
465 ({ \
466 typeof(ptr) _ptr = ptr; \
467 _ptr ? container_of(_ptr, type, member) : NULL; \
470 #define RB_INSERT(root, new, member, cmp) \
471 ({ \
472 __label__ dup; \
473 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
474 typeof(new) this; \
475 int res, ret = -1; \
477 while (*n) { \
478 parent = *n; \
479 this = container_of(*n, typeof(*(new)), member); \
480 res = cmp(new, this); \
481 if (!res) \
482 goto dup; \
483 n = res < 0 \
484 ? &(*n)->rb_left \
485 : &(*n)->rb_right; \
488 rb_link_node(&(new)->member, parent, n); \
489 rb_insert_color(&(new)->member, root); \
490 ret = 0; \
491 dup: \
492 ret; \
495 #define RB_SEARCH(root, search, member, cmp) \
496 ({ \
497 struct rb_node *n = (root)->rb_node; \
498 typeof(&(search)) this, ret = NULL; \
499 int res; \
501 while (n) { \
502 this = container_of(n, typeof(search), member); \
503 res = cmp(&(search), this); \
504 if (!res) { \
505 ret = this; \
506 break; \
508 n = res < 0 \
509 ? n->rb_left \
510 : n->rb_right; \
512 ret; \
515 #define RB_GREATER(root, search, member, cmp) \
516 ({ \
517 struct rb_node *n = (root)->rb_node; \
518 typeof(&(search)) this, ret = NULL; \
519 int res; \
521 while (n) { \
522 this = container_of(n, typeof(search), member); \
523 res = cmp(&(search), this); \
524 if (res < 0) { \
525 ret = this; \
526 n = n->rb_left; \
527 } else \
528 n = n->rb_right; \
530 ret; \
533 #define RB_FIRST(root, type, member) \
534 container_of_or_null(rb_first(root), type, member)
536 #define RB_LAST(root, type, member) \
537 container_of_or_null(rb_last(root), type, member)
539 #define RB_NEXT(ptr, member) \
540 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
542 #define RB_PREV(ptr, member) \
543 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
545 static inline uint64_t bch_crc64(const void *p, size_t len)
547 uint64_t crc = 0xffffffffffffffffULL;
549 crc = crc64_be(crc, p, len);
550 return crc ^ 0xffffffffffffffffULL;
553 static inline uint64_t bch_crc64_update(uint64_t crc,
554 const void *p,
555 size_t len)
557 crc = crc64_be(crc, p, len);
558 return crc;
562 * A stepwise-linear pseudo-exponential. This returns 1 << (x >>
563 * frac_bits), with the less-significant bits filled in by linear
564 * interpolation.
566 * This can also be interpreted as a floating-point number format,
567 * where the low frac_bits are the mantissa (with implicit leading
568 * 1 bit), and the more significant bits are the exponent.
569 * The return value is 1.mantissa * 2^exponent.
571 * The way this is used, fract_bits is 6 and the largest possible
572 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
573 * so the maximum output is 0x1fc00.
575 static inline unsigned int fract_exp_two(unsigned int x,
576 unsigned int fract_bits)
578 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */
580 mantissa += x & (mantissa - 1);
581 x >>= fract_bits; /* The exponent */
582 /* Largest intermediate value 0x7f0000 */
583 return mantissa << x >> fract_bits;
586 void bch_bio_map(struct bio *bio, void *base);
587 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
589 static inline sector_t bdev_sectors(struct block_device *bdev)
591 return bdev->bd_inode->i_size >> 9;
593 #endif /* _BCACHE_UTIL_H */