gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / md / dm-crypt.c
blob3df90daba89eed000b563a84fd1aee09f69587ea
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
8 */
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 u64 cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
62 * per bio private data
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
71 struct convert_context ctx;
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 u64 iv_sector;
87 struct crypt_config;
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
101 struct iv_benbi_private {
102 int shift;
105 #define LMK_SEED_SIZE 64 /* hash + 0 */
106 struct iv_lmk_private {
107 struct crypto_shash *hash_tfm;
108 u8 *seed;
111 #define TCW_WHITENING_SIZE 16
112 struct iv_tcw_private {
113 struct crypto_shash *crc32_tfm;
114 u8 *iv_seed;
115 u8 *whitening;
118 #define ELEPHANT_MAX_KEY_SIZE 32
119 struct iv_elephant_private {
120 struct crypto_skcipher *tfm;
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
137 * The fields in here must be read only after initialization.
139 struct crypt_config {
140 struct dm_dev *dev;
141 sector_t start;
143 struct percpu_counter n_allocated_pages;
145 struct workqueue_struct *io_queue;
146 struct workqueue_struct *crypt_queue;
148 spinlock_t write_thread_lock;
149 struct task_struct *write_thread;
150 struct rb_root write_tree;
152 char *cipher_string;
153 char *cipher_auth;
154 char *key_string;
156 const struct crypt_iv_operations *iv_gen_ops;
157 union {
158 struct iv_benbi_private benbi;
159 struct iv_lmk_private lmk;
160 struct iv_tcw_private tcw;
161 struct iv_elephant_private elephant;
162 } iv_gen_private;
163 u64 iv_offset;
164 unsigned int iv_size;
165 unsigned short int sector_size;
166 unsigned char sector_shift;
168 union {
169 struct crypto_skcipher **tfms;
170 struct crypto_aead **tfms_aead;
171 } cipher_tfm;
172 unsigned tfms_count;
173 unsigned long cipher_flags;
176 * Layout of each crypto request:
178 * struct skcipher_request
179 * context
180 * padding
181 * struct dm_crypt_request
182 * padding
183 * IV
185 * The padding is added so that dm_crypt_request and the IV are
186 * correctly aligned.
188 unsigned int dmreq_start;
190 unsigned int per_bio_data_size;
192 unsigned long flags;
193 unsigned int key_size;
194 unsigned int key_parts; /* independent parts in key buffer */
195 unsigned int key_extra_size; /* additional keys length */
196 unsigned int key_mac_size; /* MAC key size for authenc(...) */
198 unsigned int integrity_tag_size;
199 unsigned int integrity_iv_size;
200 unsigned int on_disk_tag_size;
203 * pool for per bio private data, crypto requests,
204 * encryption requeusts/buffer pages and integrity tags
206 unsigned tag_pool_max_sectors;
207 mempool_t tag_pool;
208 mempool_t req_pool;
209 mempool_t page_pool;
211 struct bio_set bs;
212 struct mutex bio_alloc_lock;
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 u8 key[0];
218 #define MIN_IOS 64
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
222 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
223 static unsigned dm_crypt_clients_n = 0;
224 static volatile unsigned long dm_crypt_pages_per_client;
225 #define DM_CRYPT_MEMORY_PERCENT 2
226 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
228 static void clone_init(struct dm_crypt_io *, struct bio *);
229 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
230 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
231 struct scatterlist *sg);
233 static bool crypt_integrity_aead(struct crypt_config *cc);
236 * Use this to access cipher attributes that are independent of the key.
238 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
240 return cc->cipher_tfm.tfms[0];
243 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
245 return cc->cipher_tfm.tfms_aead[0];
249 * Different IV generation algorithms:
251 * plain: the initial vector is the 32-bit little-endian version of the sector
252 * number, padded with zeros if necessary.
254 * plain64: the initial vector is the 64-bit little-endian version of the sector
255 * number, padded with zeros if necessary.
257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
258 * number, padded with zeros if necessary.
260 * essiv: "encrypted sector|salt initial vector", the sector number is
261 * encrypted with the bulk cipher using a salt as key. The salt
262 * should be derived from the bulk cipher's key via hashing.
264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
265 * (needed for LRW-32-AES and possible other narrow block modes)
267 * null: the initial vector is always zero. Provides compatibility with
268 * obsolete loop_fish2 devices. Do not use for new devices.
270 * lmk: Compatible implementation of the block chaining mode used
271 * by the Loop-AES block device encryption system
272 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
273 * It operates on full 512 byte sectors and uses CBC
274 * with an IV derived from the sector number, the data and
275 * optionally extra IV seed.
276 * This means that after decryption the first block
277 * of sector must be tweaked according to decrypted data.
278 * Loop-AES can use three encryption schemes:
279 * version 1: is plain aes-cbc mode
280 * version 2: uses 64 multikey scheme with lmk IV generator
281 * version 3: the same as version 2 with additional IV seed
282 * (it uses 65 keys, last key is used as IV seed)
284 * tcw: Compatible implementation of the block chaining mode used
285 * by the TrueCrypt device encryption system (prior to version 4.1).
286 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from initial key and the sector number.
289 * In addition, whitening value is applied on every sector, whitening
290 * is calculated from initial key, sector number and mixed using CRC32.
291 * Note that this encryption scheme is vulnerable to watermarking attacks
292 * and should be used for old compatible containers access only.
294 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
295 * The IV is encrypted little-endian byte-offset (with the same key
296 * and cipher as the volume).
298 * elephant: The extended version of eboiv with additional Elephant diffuser
299 * used with Bitlocker CBC mode.
300 * This mode was used in older Windows systems
301 * http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
304 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
305 struct dm_crypt_request *dmreq)
307 memset(iv, 0, cc->iv_size);
308 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
310 return 0;
313 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
314 struct dm_crypt_request *dmreq)
316 memset(iv, 0, cc->iv_size);
317 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
319 return 0;
322 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
323 struct dm_crypt_request *dmreq)
325 memset(iv, 0, cc->iv_size);
326 /* iv_size is at least of size u64; usually it is 16 bytes */
327 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
329 return 0;
332 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
333 struct dm_crypt_request *dmreq)
336 * ESSIV encryption of the IV is now handled by the crypto API,
337 * so just pass the plain sector number here.
339 memset(iv, 0, cc->iv_size);
340 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
342 return 0;
345 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
346 const char *opts)
348 unsigned bs;
349 int log;
351 if (crypt_integrity_aead(cc))
352 bs = crypto_aead_blocksize(any_tfm_aead(cc));
353 else
354 bs = crypto_skcipher_blocksize(any_tfm(cc));
355 log = ilog2(bs);
357 /* we need to calculate how far we must shift the sector count
358 * to get the cipher block count, we use this shift in _gen */
360 if (1 << log != bs) {
361 ti->error = "cypher blocksize is not a power of 2";
362 return -EINVAL;
365 if (log > 9) {
366 ti->error = "cypher blocksize is > 512";
367 return -EINVAL;
370 cc->iv_gen_private.benbi.shift = 9 - log;
372 return 0;
375 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
379 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
380 struct dm_crypt_request *dmreq)
382 __be64 val;
384 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
386 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
387 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
389 return 0;
392 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
393 struct dm_crypt_request *dmreq)
395 memset(iv, 0, cc->iv_size);
397 return 0;
400 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
402 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
404 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
405 crypto_free_shash(lmk->hash_tfm);
406 lmk->hash_tfm = NULL;
408 kzfree(lmk->seed);
409 lmk->seed = NULL;
412 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
413 const char *opts)
415 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
417 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
418 ti->error = "Unsupported sector size for LMK";
419 return -EINVAL;
422 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
423 if (IS_ERR(lmk->hash_tfm)) {
424 ti->error = "Error initializing LMK hash";
425 return PTR_ERR(lmk->hash_tfm);
428 /* No seed in LMK version 2 */
429 if (cc->key_parts == cc->tfms_count) {
430 lmk->seed = NULL;
431 return 0;
434 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
435 if (!lmk->seed) {
436 crypt_iv_lmk_dtr(cc);
437 ti->error = "Error kmallocing seed storage in LMK";
438 return -ENOMEM;
441 return 0;
444 static int crypt_iv_lmk_init(struct crypt_config *cc)
446 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
447 int subkey_size = cc->key_size / cc->key_parts;
449 /* LMK seed is on the position of LMK_KEYS + 1 key */
450 if (lmk->seed)
451 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
452 crypto_shash_digestsize(lmk->hash_tfm));
454 return 0;
457 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
459 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 if (lmk->seed)
462 memset(lmk->seed, 0, LMK_SEED_SIZE);
464 return 0;
467 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
468 struct dm_crypt_request *dmreq,
469 u8 *data)
471 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
472 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
473 struct md5_state md5state;
474 __le32 buf[4];
475 int i, r;
477 desc->tfm = lmk->hash_tfm;
479 r = crypto_shash_init(desc);
480 if (r)
481 return r;
483 if (lmk->seed) {
484 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
485 if (r)
486 return r;
489 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
490 r = crypto_shash_update(desc, data + 16, 16 * 31);
491 if (r)
492 return r;
494 /* Sector is cropped to 56 bits here */
495 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
496 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
497 buf[2] = cpu_to_le32(4024);
498 buf[3] = 0;
499 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
500 if (r)
501 return r;
503 /* No MD5 padding here */
504 r = crypto_shash_export(desc, &md5state);
505 if (r)
506 return r;
508 for (i = 0; i < MD5_HASH_WORDS; i++)
509 __cpu_to_le32s(&md5state.hash[i]);
510 memcpy(iv, &md5state.hash, cc->iv_size);
512 return 0;
515 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
516 struct dm_crypt_request *dmreq)
518 struct scatterlist *sg;
519 u8 *src;
520 int r = 0;
522 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
523 sg = crypt_get_sg_data(cc, dmreq->sg_in);
524 src = kmap_atomic(sg_page(sg));
525 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
526 kunmap_atomic(src);
527 } else
528 memset(iv, 0, cc->iv_size);
530 return r;
533 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
534 struct dm_crypt_request *dmreq)
536 struct scatterlist *sg;
537 u8 *dst;
538 int r;
540 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
541 return 0;
543 sg = crypt_get_sg_data(cc, dmreq->sg_out);
544 dst = kmap_atomic(sg_page(sg));
545 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
547 /* Tweak the first block of plaintext sector */
548 if (!r)
549 crypto_xor(dst + sg->offset, iv, cc->iv_size);
551 kunmap_atomic(dst);
552 return r;
555 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
557 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
559 kzfree(tcw->iv_seed);
560 tcw->iv_seed = NULL;
561 kzfree(tcw->whitening);
562 tcw->whitening = NULL;
564 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
565 crypto_free_shash(tcw->crc32_tfm);
566 tcw->crc32_tfm = NULL;
569 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
570 const char *opts)
572 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
575 ti->error = "Unsupported sector size for TCW";
576 return -EINVAL;
579 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
580 ti->error = "Wrong key size for TCW";
581 return -EINVAL;
584 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
585 if (IS_ERR(tcw->crc32_tfm)) {
586 ti->error = "Error initializing CRC32 in TCW";
587 return PTR_ERR(tcw->crc32_tfm);
590 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
591 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
592 if (!tcw->iv_seed || !tcw->whitening) {
593 crypt_iv_tcw_dtr(cc);
594 ti->error = "Error allocating seed storage in TCW";
595 return -ENOMEM;
598 return 0;
601 static int crypt_iv_tcw_init(struct crypt_config *cc)
603 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
604 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
606 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
607 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
608 TCW_WHITENING_SIZE);
610 return 0;
613 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
615 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617 memset(tcw->iv_seed, 0, cc->iv_size);
618 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
620 return 0;
623 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
624 struct dm_crypt_request *dmreq,
625 u8 *data)
627 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
628 __le64 sector = cpu_to_le64(dmreq->iv_sector);
629 u8 buf[TCW_WHITENING_SIZE];
630 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
631 int i, r;
633 /* xor whitening with sector number */
634 crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
635 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
637 /* calculate crc32 for every 32bit part and xor it */
638 desc->tfm = tcw->crc32_tfm;
639 for (i = 0; i < 4; i++) {
640 r = crypto_shash_init(desc);
641 if (r)
642 goto out;
643 r = crypto_shash_update(desc, &buf[i * 4], 4);
644 if (r)
645 goto out;
646 r = crypto_shash_final(desc, &buf[i * 4]);
647 if (r)
648 goto out;
650 crypto_xor(&buf[0], &buf[12], 4);
651 crypto_xor(&buf[4], &buf[8], 4);
653 /* apply whitening (8 bytes) to whole sector */
654 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
655 crypto_xor(data + i * 8, buf, 8);
656 out:
657 memzero_explicit(buf, sizeof(buf));
658 return r;
661 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
662 struct dm_crypt_request *dmreq)
664 struct scatterlist *sg;
665 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
666 __le64 sector = cpu_to_le64(dmreq->iv_sector);
667 u8 *src;
668 int r = 0;
670 /* Remove whitening from ciphertext */
671 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
672 sg = crypt_get_sg_data(cc, dmreq->sg_in);
673 src = kmap_atomic(sg_page(sg));
674 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
675 kunmap_atomic(src);
678 /* Calculate IV */
679 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
680 if (cc->iv_size > 8)
681 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
682 cc->iv_size - 8);
684 return r;
687 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
688 struct dm_crypt_request *dmreq)
690 struct scatterlist *sg;
691 u8 *dst;
692 int r;
694 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
695 return 0;
697 /* Apply whitening on ciphertext */
698 sg = crypt_get_sg_data(cc, dmreq->sg_out);
699 dst = kmap_atomic(sg_page(sg));
700 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
701 kunmap_atomic(dst);
703 return r;
706 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
707 struct dm_crypt_request *dmreq)
709 /* Used only for writes, there must be an additional space to store IV */
710 get_random_bytes(iv, cc->iv_size);
711 return 0;
714 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
715 const char *opts)
717 if (crypt_integrity_aead(cc)) {
718 ti->error = "AEAD transforms not supported for EBOIV";
719 return -EINVAL;
722 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
723 ti->error = "Block size of EBOIV cipher does "
724 "not match IV size of block cipher";
725 return -EINVAL;
728 return 0;
731 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
732 struct dm_crypt_request *dmreq)
734 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
735 struct skcipher_request *req;
736 struct scatterlist src, dst;
737 struct crypto_wait wait;
738 int err;
740 req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
741 if (!req)
742 return -ENOMEM;
744 memset(buf, 0, cc->iv_size);
745 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
747 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
748 sg_init_one(&dst, iv, cc->iv_size);
749 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
750 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
751 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
752 skcipher_request_free(req);
754 return err;
757 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
759 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
761 crypto_free_skcipher(elephant->tfm);
762 elephant->tfm = NULL;
765 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
766 const char *opts)
768 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
769 int r;
771 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
772 if (IS_ERR(elephant->tfm)) {
773 r = PTR_ERR(elephant->tfm);
774 elephant->tfm = NULL;
775 return r;
778 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
779 if (r)
780 crypt_iv_elephant_dtr(cc);
781 return r;
784 static void diffuser_disk_to_cpu(u32 *d, size_t n)
786 #ifndef __LITTLE_ENDIAN
787 int i;
789 for (i = 0; i < n; i++)
790 d[i] = le32_to_cpu((__le32)d[i]);
791 #endif
794 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
796 #ifndef __LITTLE_ENDIAN
797 int i;
799 for (i = 0; i < n; i++)
800 d[i] = cpu_to_le32((u32)d[i]);
801 #endif
804 static void diffuser_a_decrypt(u32 *d, size_t n)
806 int i, i1, i2, i3;
808 for (i = 0; i < 5; i++) {
809 i1 = 0;
810 i2 = n - 2;
811 i3 = n - 5;
813 while (i1 < (n - 1)) {
814 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
815 i1++; i2++; i3++;
817 if (i3 >= n)
818 i3 -= n;
820 d[i1] += d[i2] ^ d[i3];
821 i1++; i2++; i3++;
823 if (i2 >= n)
824 i2 -= n;
826 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
827 i1++; i2++; i3++;
829 d[i1] += d[i2] ^ d[i3];
830 i1++; i2++; i3++;
835 static void diffuser_a_encrypt(u32 *d, size_t n)
837 int i, i1, i2, i3;
839 for (i = 0; i < 5; i++) {
840 i1 = n - 1;
841 i2 = n - 2 - 1;
842 i3 = n - 5 - 1;
844 while (i1 > 0) {
845 d[i1] -= d[i2] ^ d[i3];
846 i1--; i2--; i3--;
848 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
849 i1--; i2--; i3--;
851 if (i2 < 0)
852 i2 += n;
854 d[i1] -= d[i2] ^ d[i3];
855 i1--; i2--; i3--;
857 if (i3 < 0)
858 i3 += n;
860 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
861 i1--; i2--; i3--;
866 static void diffuser_b_decrypt(u32 *d, size_t n)
868 int i, i1, i2, i3;
870 for (i = 0; i < 3; i++) {
871 i1 = 0;
872 i2 = 2;
873 i3 = 5;
875 while (i1 < (n - 1)) {
876 d[i1] += d[i2] ^ d[i3];
877 i1++; i2++; i3++;
879 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
880 i1++; i2++; i3++;
882 if (i2 >= n)
883 i2 -= n;
885 d[i1] += d[i2] ^ d[i3];
886 i1++; i2++; i3++;
888 if (i3 >= n)
889 i3 -= n;
891 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
892 i1++; i2++; i3++;
897 static void diffuser_b_encrypt(u32 *d, size_t n)
899 int i, i1, i2, i3;
901 for (i = 0; i < 3; i++) {
902 i1 = n - 1;
903 i2 = 2 - 1;
904 i3 = 5 - 1;
906 while (i1 > 0) {
907 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
908 i1--; i2--; i3--;
910 if (i3 < 0)
911 i3 += n;
913 d[i1] -= d[i2] ^ d[i3];
914 i1--; i2--; i3--;
916 if (i2 < 0)
917 i2 += n;
919 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
920 i1--; i2--; i3--;
922 d[i1] -= d[i2] ^ d[i3];
923 i1--; i2--; i3--;
928 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
930 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
931 u8 *es, *ks, *data, *data2, *data_offset;
932 struct skcipher_request *req;
933 struct scatterlist *sg, *sg2, src, dst;
934 struct crypto_wait wait;
935 int i, r;
937 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
938 es = kzalloc(16, GFP_NOIO); /* Key for AES */
939 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
941 if (!req || !es || !ks) {
942 r = -ENOMEM;
943 goto out;
946 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
948 /* E(Ks, e(s)) */
949 sg_init_one(&src, es, 16);
950 sg_init_one(&dst, ks, 16);
951 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
952 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
953 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
954 if (r)
955 goto out;
957 /* E(Ks, e'(s)) */
958 es[15] = 0x80;
959 sg_init_one(&dst, &ks[16], 16);
960 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
961 if (r)
962 goto out;
964 sg = crypt_get_sg_data(cc, dmreq->sg_out);
965 data = kmap_atomic(sg_page(sg));
966 data_offset = data + sg->offset;
968 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
969 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
970 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
971 data2 = kmap_atomic(sg_page(sg2));
972 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
973 kunmap_atomic(data2);
976 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
977 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
978 diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
979 diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
980 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
983 for (i = 0; i < (cc->sector_size / 32); i++)
984 crypto_xor(data_offset + i * 32, ks, 32);
986 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
987 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
988 diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
989 diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
990 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
993 kunmap_atomic(data);
994 out:
995 kzfree(ks);
996 kzfree(es);
997 skcipher_request_free(req);
998 return r;
1001 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1002 struct dm_crypt_request *dmreq)
1004 int r;
1006 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1007 r = crypt_iv_elephant(cc, dmreq);
1008 if (r)
1009 return r;
1012 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1015 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1016 struct dm_crypt_request *dmreq)
1018 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1019 return crypt_iv_elephant(cc, dmreq);
1021 return 0;
1024 static int crypt_iv_elephant_init(struct crypt_config *cc)
1026 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1027 int key_offset = cc->key_size - cc->key_extra_size;
1029 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1032 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1034 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1035 u8 key[ELEPHANT_MAX_KEY_SIZE];
1037 memset(key, 0, cc->key_extra_size);
1038 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1041 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1042 .generator = crypt_iv_plain_gen
1045 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1046 .generator = crypt_iv_plain64_gen
1049 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1050 .generator = crypt_iv_plain64be_gen
1053 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1054 .generator = crypt_iv_essiv_gen
1057 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1058 .ctr = crypt_iv_benbi_ctr,
1059 .dtr = crypt_iv_benbi_dtr,
1060 .generator = crypt_iv_benbi_gen
1063 static const struct crypt_iv_operations crypt_iv_null_ops = {
1064 .generator = crypt_iv_null_gen
1067 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1068 .ctr = crypt_iv_lmk_ctr,
1069 .dtr = crypt_iv_lmk_dtr,
1070 .init = crypt_iv_lmk_init,
1071 .wipe = crypt_iv_lmk_wipe,
1072 .generator = crypt_iv_lmk_gen,
1073 .post = crypt_iv_lmk_post
1076 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1077 .ctr = crypt_iv_tcw_ctr,
1078 .dtr = crypt_iv_tcw_dtr,
1079 .init = crypt_iv_tcw_init,
1080 .wipe = crypt_iv_tcw_wipe,
1081 .generator = crypt_iv_tcw_gen,
1082 .post = crypt_iv_tcw_post
1085 static struct crypt_iv_operations crypt_iv_random_ops = {
1086 .generator = crypt_iv_random_gen
1089 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
1090 .ctr = crypt_iv_eboiv_ctr,
1091 .generator = crypt_iv_eboiv_gen
1094 static struct crypt_iv_operations crypt_iv_elephant_ops = {
1095 .ctr = crypt_iv_elephant_ctr,
1096 .dtr = crypt_iv_elephant_dtr,
1097 .init = crypt_iv_elephant_init,
1098 .wipe = crypt_iv_elephant_wipe,
1099 .generator = crypt_iv_elephant_gen,
1100 .post = crypt_iv_elephant_post
1104 * Integrity extensions
1106 static bool crypt_integrity_aead(struct crypt_config *cc)
1108 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1111 static bool crypt_integrity_hmac(struct crypt_config *cc)
1113 return crypt_integrity_aead(cc) && cc->key_mac_size;
1116 /* Get sg containing data */
1117 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1118 struct scatterlist *sg)
1120 if (unlikely(crypt_integrity_aead(cc)))
1121 return &sg[2];
1123 return sg;
1126 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1128 struct bio_integrity_payload *bip;
1129 unsigned int tag_len;
1130 int ret;
1132 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1133 return 0;
1135 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1136 if (IS_ERR(bip))
1137 return PTR_ERR(bip);
1139 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1141 bip->bip_iter.bi_size = tag_len;
1142 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1144 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1145 tag_len, offset_in_page(io->integrity_metadata));
1146 if (unlikely(ret != tag_len))
1147 return -ENOMEM;
1149 return 0;
1152 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1154 #ifdef CONFIG_BLK_DEV_INTEGRITY
1155 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1156 struct mapped_device *md = dm_table_get_md(ti->table);
1158 /* From now we require underlying device with our integrity profile */
1159 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1160 ti->error = "Integrity profile not supported.";
1161 return -EINVAL;
1164 if (bi->tag_size != cc->on_disk_tag_size ||
1165 bi->tuple_size != cc->on_disk_tag_size) {
1166 ti->error = "Integrity profile tag size mismatch.";
1167 return -EINVAL;
1169 if (1 << bi->interval_exp != cc->sector_size) {
1170 ti->error = "Integrity profile sector size mismatch.";
1171 return -EINVAL;
1174 if (crypt_integrity_aead(cc)) {
1175 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1176 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1177 cc->integrity_tag_size, cc->integrity_iv_size);
1179 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1180 ti->error = "Integrity AEAD auth tag size is not supported.";
1181 return -EINVAL;
1183 } else if (cc->integrity_iv_size)
1184 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1185 cc->integrity_iv_size);
1187 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1188 ti->error = "Not enough space for integrity tag in the profile.";
1189 return -EINVAL;
1192 return 0;
1193 #else
1194 ti->error = "Integrity profile not supported.";
1195 return -EINVAL;
1196 #endif
1199 static void crypt_convert_init(struct crypt_config *cc,
1200 struct convert_context *ctx,
1201 struct bio *bio_out, struct bio *bio_in,
1202 sector_t sector)
1204 ctx->bio_in = bio_in;
1205 ctx->bio_out = bio_out;
1206 if (bio_in)
1207 ctx->iter_in = bio_in->bi_iter;
1208 if (bio_out)
1209 ctx->iter_out = bio_out->bi_iter;
1210 ctx->cc_sector = sector + cc->iv_offset;
1211 init_completion(&ctx->restart);
1214 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1215 void *req)
1217 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1220 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1222 return (void *)((char *)dmreq - cc->dmreq_start);
1225 static u8 *iv_of_dmreq(struct crypt_config *cc,
1226 struct dm_crypt_request *dmreq)
1228 if (crypt_integrity_aead(cc))
1229 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1230 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1231 else
1232 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1233 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1236 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1237 struct dm_crypt_request *dmreq)
1239 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1242 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1243 struct dm_crypt_request *dmreq)
1245 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1246 return (__le64 *) ptr;
1249 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1250 struct dm_crypt_request *dmreq)
1252 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1253 cc->iv_size + sizeof(uint64_t);
1254 return (unsigned int*)ptr;
1257 static void *tag_from_dmreq(struct crypt_config *cc,
1258 struct dm_crypt_request *dmreq)
1260 struct convert_context *ctx = dmreq->ctx;
1261 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1263 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1264 cc->on_disk_tag_size];
1267 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1268 struct dm_crypt_request *dmreq)
1270 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1273 static int crypt_convert_block_aead(struct crypt_config *cc,
1274 struct convert_context *ctx,
1275 struct aead_request *req,
1276 unsigned int tag_offset)
1278 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1279 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1280 struct dm_crypt_request *dmreq;
1281 u8 *iv, *org_iv, *tag_iv, *tag;
1282 __le64 *sector;
1283 int r = 0;
1285 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1287 /* Reject unexpected unaligned bio. */
1288 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1289 return -EIO;
1291 dmreq = dmreq_of_req(cc, req);
1292 dmreq->iv_sector = ctx->cc_sector;
1293 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1294 dmreq->iv_sector >>= cc->sector_shift;
1295 dmreq->ctx = ctx;
1297 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1299 sector = org_sector_of_dmreq(cc, dmreq);
1300 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1302 iv = iv_of_dmreq(cc, dmreq);
1303 org_iv = org_iv_of_dmreq(cc, dmreq);
1304 tag = tag_from_dmreq(cc, dmreq);
1305 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1307 /* AEAD request:
1308 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1309 * | (authenticated) | (auth+encryption) | |
1310 * | sector_LE | IV | sector in/out | tag in/out |
1312 sg_init_table(dmreq->sg_in, 4);
1313 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1314 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1315 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1316 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1318 sg_init_table(dmreq->sg_out, 4);
1319 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1320 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1321 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1322 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1324 if (cc->iv_gen_ops) {
1325 /* For READs use IV stored in integrity metadata */
1326 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1327 memcpy(org_iv, tag_iv, cc->iv_size);
1328 } else {
1329 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1330 if (r < 0)
1331 return r;
1332 /* Store generated IV in integrity metadata */
1333 if (cc->integrity_iv_size)
1334 memcpy(tag_iv, org_iv, cc->iv_size);
1336 /* Working copy of IV, to be modified in crypto API */
1337 memcpy(iv, org_iv, cc->iv_size);
1340 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1341 if (bio_data_dir(ctx->bio_in) == WRITE) {
1342 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1343 cc->sector_size, iv);
1344 r = crypto_aead_encrypt(req);
1345 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1346 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1347 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1348 } else {
1349 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1350 cc->sector_size + cc->integrity_tag_size, iv);
1351 r = crypto_aead_decrypt(req);
1354 if (r == -EBADMSG) {
1355 char b[BDEVNAME_SIZE];
1356 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1357 (unsigned long long)le64_to_cpu(*sector));
1360 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1361 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1363 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1364 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1366 return r;
1369 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1370 struct convert_context *ctx,
1371 struct skcipher_request *req,
1372 unsigned int tag_offset)
1374 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1375 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1376 struct scatterlist *sg_in, *sg_out;
1377 struct dm_crypt_request *dmreq;
1378 u8 *iv, *org_iv, *tag_iv;
1379 __le64 *sector;
1380 int r = 0;
1382 /* Reject unexpected unaligned bio. */
1383 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1384 return -EIO;
1386 dmreq = dmreq_of_req(cc, req);
1387 dmreq->iv_sector = ctx->cc_sector;
1388 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1389 dmreq->iv_sector >>= cc->sector_shift;
1390 dmreq->ctx = ctx;
1392 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1394 iv = iv_of_dmreq(cc, dmreq);
1395 org_iv = org_iv_of_dmreq(cc, dmreq);
1396 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1398 sector = org_sector_of_dmreq(cc, dmreq);
1399 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1401 /* For skcipher we use only the first sg item */
1402 sg_in = &dmreq->sg_in[0];
1403 sg_out = &dmreq->sg_out[0];
1405 sg_init_table(sg_in, 1);
1406 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1408 sg_init_table(sg_out, 1);
1409 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1411 if (cc->iv_gen_ops) {
1412 /* For READs use IV stored in integrity metadata */
1413 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1414 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1415 } else {
1416 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1417 if (r < 0)
1418 return r;
1419 /* Data can be already preprocessed in generator */
1420 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1421 sg_in = sg_out;
1422 /* Store generated IV in integrity metadata */
1423 if (cc->integrity_iv_size)
1424 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1426 /* Working copy of IV, to be modified in crypto API */
1427 memcpy(iv, org_iv, cc->iv_size);
1430 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1432 if (bio_data_dir(ctx->bio_in) == WRITE)
1433 r = crypto_skcipher_encrypt(req);
1434 else
1435 r = crypto_skcipher_decrypt(req);
1437 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1438 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1440 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1441 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1443 return r;
1446 static void kcryptd_async_done(struct crypto_async_request *async_req,
1447 int error);
1449 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1450 struct convert_context *ctx)
1452 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1454 if (!ctx->r.req)
1455 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1457 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1460 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1461 * requests if driver request queue is full.
1463 skcipher_request_set_callback(ctx->r.req,
1464 CRYPTO_TFM_REQ_MAY_BACKLOG,
1465 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1468 static void crypt_alloc_req_aead(struct crypt_config *cc,
1469 struct convert_context *ctx)
1471 if (!ctx->r.req_aead)
1472 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1474 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1477 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1478 * requests if driver request queue is full.
1480 aead_request_set_callback(ctx->r.req_aead,
1481 CRYPTO_TFM_REQ_MAY_BACKLOG,
1482 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1485 static void crypt_alloc_req(struct crypt_config *cc,
1486 struct convert_context *ctx)
1488 if (crypt_integrity_aead(cc))
1489 crypt_alloc_req_aead(cc, ctx);
1490 else
1491 crypt_alloc_req_skcipher(cc, ctx);
1494 static void crypt_free_req_skcipher(struct crypt_config *cc,
1495 struct skcipher_request *req, struct bio *base_bio)
1497 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1499 if ((struct skcipher_request *)(io + 1) != req)
1500 mempool_free(req, &cc->req_pool);
1503 static void crypt_free_req_aead(struct crypt_config *cc,
1504 struct aead_request *req, struct bio *base_bio)
1506 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1508 if ((struct aead_request *)(io + 1) != req)
1509 mempool_free(req, &cc->req_pool);
1512 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1514 if (crypt_integrity_aead(cc))
1515 crypt_free_req_aead(cc, req, base_bio);
1516 else
1517 crypt_free_req_skcipher(cc, req, base_bio);
1521 * Encrypt / decrypt data from one bio to another one (can be the same one)
1523 static blk_status_t crypt_convert(struct crypt_config *cc,
1524 struct convert_context *ctx)
1526 unsigned int tag_offset = 0;
1527 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1528 int r;
1530 atomic_set(&ctx->cc_pending, 1);
1532 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1534 crypt_alloc_req(cc, ctx);
1535 atomic_inc(&ctx->cc_pending);
1537 if (crypt_integrity_aead(cc))
1538 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1539 else
1540 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1542 switch (r) {
1544 * The request was queued by a crypto driver
1545 * but the driver request queue is full, let's wait.
1547 case -EBUSY:
1548 wait_for_completion(&ctx->restart);
1549 reinit_completion(&ctx->restart);
1550 /* fall through */
1552 * The request is queued and processed asynchronously,
1553 * completion function kcryptd_async_done() will be called.
1555 case -EINPROGRESS:
1556 ctx->r.req = NULL;
1557 ctx->cc_sector += sector_step;
1558 tag_offset++;
1559 continue;
1561 * The request was already processed (synchronously).
1563 case 0:
1564 atomic_dec(&ctx->cc_pending);
1565 ctx->cc_sector += sector_step;
1566 tag_offset++;
1567 cond_resched();
1568 continue;
1570 * There was a data integrity error.
1572 case -EBADMSG:
1573 atomic_dec(&ctx->cc_pending);
1574 return BLK_STS_PROTECTION;
1576 * There was an error while processing the request.
1578 default:
1579 atomic_dec(&ctx->cc_pending);
1580 return BLK_STS_IOERR;
1584 return 0;
1587 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1590 * Generate a new unfragmented bio with the given size
1591 * This should never violate the device limitations (but only because
1592 * max_segment_size is being constrained to PAGE_SIZE).
1594 * This function may be called concurrently. If we allocate from the mempool
1595 * concurrently, there is a possibility of deadlock. For example, if we have
1596 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1597 * the mempool concurrently, it may deadlock in a situation where both processes
1598 * have allocated 128 pages and the mempool is exhausted.
1600 * In order to avoid this scenario we allocate the pages under a mutex.
1602 * In order to not degrade performance with excessive locking, we try
1603 * non-blocking allocations without a mutex first but on failure we fallback
1604 * to blocking allocations with a mutex.
1606 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1608 struct crypt_config *cc = io->cc;
1609 struct bio *clone;
1610 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1611 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1612 unsigned i, len, remaining_size;
1613 struct page *page;
1615 retry:
1616 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1617 mutex_lock(&cc->bio_alloc_lock);
1619 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1620 if (!clone)
1621 goto out;
1623 clone_init(io, clone);
1625 remaining_size = size;
1627 for (i = 0; i < nr_iovecs; i++) {
1628 page = mempool_alloc(&cc->page_pool, gfp_mask);
1629 if (!page) {
1630 crypt_free_buffer_pages(cc, clone);
1631 bio_put(clone);
1632 gfp_mask |= __GFP_DIRECT_RECLAIM;
1633 goto retry;
1636 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1638 bio_add_page(clone, page, len, 0);
1640 remaining_size -= len;
1643 /* Allocate space for integrity tags */
1644 if (dm_crypt_integrity_io_alloc(io, clone)) {
1645 crypt_free_buffer_pages(cc, clone);
1646 bio_put(clone);
1647 clone = NULL;
1649 out:
1650 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1651 mutex_unlock(&cc->bio_alloc_lock);
1653 return clone;
1656 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1658 struct bio_vec *bv;
1659 struct bvec_iter_all iter_all;
1661 bio_for_each_segment_all(bv, clone, iter_all) {
1662 BUG_ON(!bv->bv_page);
1663 mempool_free(bv->bv_page, &cc->page_pool);
1667 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1668 struct bio *bio, sector_t sector)
1670 io->cc = cc;
1671 io->base_bio = bio;
1672 io->sector = sector;
1673 io->error = 0;
1674 io->ctx.r.req = NULL;
1675 io->integrity_metadata = NULL;
1676 io->integrity_metadata_from_pool = false;
1677 atomic_set(&io->io_pending, 0);
1680 static void crypt_inc_pending(struct dm_crypt_io *io)
1682 atomic_inc(&io->io_pending);
1686 * One of the bios was finished. Check for completion of
1687 * the whole request and correctly clean up the buffer.
1689 static void crypt_dec_pending(struct dm_crypt_io *io)
1691 struct crypt_config *cc = io->cc;
1692 struct bio *base_bio = io->base_bio;
1693 blk_status_t error = io->error;
1695 if (!atomic_dec_and_test(&io->io_pending))
1696 return;
1698 if (io->ctx.r.req)
1699 crypt_free_req(cc, io->ctx.r.req, base_bio);
1701 if (unlikely(io->integrity_metadata_from_pool))
1702 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1703 else
1704 kfree(io->integrity_metadata);
1706 base_bio->bi_status = error;
1707 bio_endio(base_bio);
1711 * kcryptd/kcryptd_io:
1713 * Needed because it would be very unwise to do decryption in an
1714 * interrupt context.
1716 * kcryptd performs the actual encryption or decryption.
1718 * kcryptd_io performs the IO submission.
1720 * They must be separated as otherwise the final stages could be
1721 * starved by new requests which can block in the first stages due
1722 * to memory allocation.
1724 * The work is done per CPU global for all dm-crypt instances.
1725 * They should not depend on each other and do not block.
1727 static void crypt_endio(struct bio *clone)
1729 struct dm_crypt_io *io = clone->bi_private;
1730 struct crypt_config *cc = io->cc;
1731 unsigned rw = bio_data_dir(clone);
1732 blk_status_t error;
1735 * free the processed pages
1737 if (rw == WRITE)
1738 crypt_free_buffer_pages(cc, clone);
1740 error = clone->bi_status;
1741 bio_put(clone);
1743 if (rw == READ && !error) {
1744 kcryptd_queue_crypt(io);
1745 return;
1748 if (unlikely(error))
1749 io->error = error;
1751 crypt_dec_pending(io);
1754 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1756 struct crypt_config *cc = io->cc;
1758 clone->bi_private = io;
1759 clone->bi_end_io = crypt_endio;
1760 bio_set_dev(clone, cc->dev->bdev);
1761 clone->bi_opf = io->base_bio->bi_opf;
1764 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1766 struct crypt_config *cc = io->cc;
1767 struct bio *clone;
1770 * We need the original biovec array in order to decrypt
1771 * the whole bio data *afterwards* -- thanks to immutable
1772 * biovecs we don't need to worry about the block layer
1773 * modifying the biovec array; so leverage bio_clone_fast().
1775 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1776 if (!clone)
1777 return 1;
1779 crypt_inc_pending(io);
1781 clone_init(io, clone);
1782 clone->bi_iter.bi_sector = cc->start + io->sector;
1784 if (dm_crypt_integrity_io_alloc(io, clone)) {
1785 crypt_dec_pending(io);
1786 bio_put(clone);
1787 return 1;
1790 generic_make_request(clone);
1791 return 0;
1794 static void kcryptd_io_read_work(struct work_struct *work)
1796 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1798 crypt_inc_pending(io);
1799 if (kcryptd_io_read(io, GFP_NOIO))
1800 io->error = BLK_STS_RESOURCE;
1801 crypt_dec_pending(io);
1804 static void kcryptd_queue_read(struct dm_crypt_io *io)
1806 struct crypt_config *cc = io->cc;
1808 INIT_WORK(&io->work, kcryptd_io_read_work);
1809 queue_work(cc->io_queue, &io->work);
1812 static void kcryptd_io_write(struct dm_crypt_io *io)
1814 struct bio *clone = io->ctx.bio_out;
1816 generic_make_request(clone);
1819 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1821 static int dmcrypt_write(void *data)
1823 struct crypt_config *cc = data;
1824 struct dm_crypt_io *io;
1826 while (1) {
1827 struct rb_root write_tree;
1828 struct blk_plug plug;
1830 spin_lock_irq(&cc->write_thread_lock);
1831 continue_locked:
1833 if (!RB_EMPTY_ROOT(&cc->write_tree))
1834 goto pop_from_list;
1836 set_current_state(TASK_INTERRUPTIBLE);
1838 spin_unlock_irq(&cc->write_thread_lock);
1840 if (unlikely(kthread_should_stop())) {
1841 set_current_state(TASK_RUNNING);
1842 break;
1845 schedule();
1847 set_current_state(TASK_RUNNING);
1848 spin_lock_irq(&cc->write_thread_lock);
1849 goto continue_locked;
1851 pop_from_list:
1852 write_tree = cc->write_tree;
1853 cc->write_tree = RB_ROOT;
1854 spin_unlock_irq(&cc->write_thread_lock);
1856 BUG_ON(rb_parent(write_tree.rb_node));
1859 * Note: we cannot walk the tree here with rb_next because
1860 * the structures may be freed when kcryptd_io_write is called.
1862 blk_start_plug(&plug);
1863 do {
1864 io = crypt_io_from_node(rb_first(&write_tree));
1865 rb_erase(&io->rb_node, &write_tree);
1866 kcryptd_io_write(io);
1867 } while (!RB_EMPTY_ROOT(&write_tree));
1868 blk_finish_plug(&plug);
1870 return 0;
1873 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1875 struct bio *clone = io->ctx.bio_out;
1876 struct crypt_config *cc = io->cc;
1877 unsigned long flags;
1878 sector_t sector;
1879 struct rb_node **rbp, *parent;
1881 if (unlikely(io->error)) {
1882 crypt_free_buffer_pages(cc, clone);
1883 bio_put(clone);
1884 crypt_dec_pending(io);
1885 return;
1888 /* crypt_convert should have filled the clone bio */
1889 BUG_ON(io->ctx.iter_out.bi_size);
1891 clone->bi_iter.bi_sector = cc->start + io->sector;
1893 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1894 generic_make_request(clone);
1895 return;
1898 spin_lock_irqsave(&cc->write_thread_lock, flags);
1899 if (RB_EMPTY_ROOT(&cc->write_tree))
1900 wake_up_process(cc->write_thread);
1901 rbp = &cc->write_tree.rb_node;
1902 parent = NULL;
1903 sector = io->sector;
1904 while (*rbp) {
1905 parent = *rbp;
1906 if (sector < crypt_io_from_node(parent)->sector)
1907 rbp = &(*rbp)->rb_left;
1908 else
1909 rbp = &(*rbp)->rb_right;
1911 rb_link_node(&io->rb_node, parent, rbp);
1912 rb_insert_color(&io->rb_node, &cc->write_tree);
1913 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1916 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1918 struct crypt_config *cc = io->cc;
1919 struct bio *clone;
1920 int crypt_finished;
1921 sector_t sector = io->sector;
1922 blk_status_t r;
1925 * Prevent io from disappearing until this function completes.
1927 crypt_inc_pending(io);
1928 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1930 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1931 if (unlikely(!clone)) {
1932 io->error = BLK_STS_IOERR;
1933 goto dec;
1936 io->ctx.bio_out = clone;
1937 io->ctx.iter_out = clone->bi_iter;
1939 sector += bio_sectors(clone);
1941 crypt_inc_pending(io);
1942 r = crypt_convert(cc, &io->ctx);
1943 if (r)
1944 io->error = r;
1945 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1947 /* Encryption was already finished, submit io now */
1948 if (crypt_finished) {
1949 kcryptd_crypt_write_io_submit(io, 0);
1950 io->sector = sector;
1953 dec:
1954 crypt_dec_pending(io);
1957 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1959 crypt_dec_pending(io);
1962 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1964 struct crypt_config *cc = io->cc;
1965 blk_status_t r;
1967 crypt_inc_pending(io);
1969 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1970 io->sector);
1972 r = crypt_convert(cc, &io->ctx);
1973 if (r)
1974 io->error = r;
1976 if (atomic_dec_and_test(&io->ctx.cc_pending))
1977 kcryptd_crypt_read_done(io);
1979 crypt_dec_pending(io);
1982 static void kcryptd_async_done(struct crypto_async_request *async_req,
1983 int error)
1985 struct dm_crypt_request *dmreq = async_req->data;
1986 struct convert_context *ctx = dmreq->ctx;
1987 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1988 struct crypt_config *cc = io->cc;
1991 * A request from crypto driver backlog is going to be processed now,
1992 * finish the completion and continue in crypt_convert().
1993 * (Callback will be called for the second time for this request.)
1995 if (error == -EINPROGRESS) {
1996 complete(&ctx->restart);
1997 return;
2000 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2001 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2003 if (error == -EBADMSG) {
2004 char b[BDEVNAME_SIZE];
2005 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2006 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2007 io->error = BLK_STS_PROTECTION;
2008 } else if (error < 0)
2009 io->error = BLK_STS_IOERR;
2011 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2013 if (!atomic_dec_and_test(&ctx->cc_pending))
2014 return;
2016 if (bio_data_dir(io->base_bio) == READ)
2017 kcryptd_crypt_read_done(io);
2018 else
2019 kcryptd_crypt_write_io_submit(io, 1);
2022 static void kcryptd_crypt(struct work_struct *work)
2024 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2026 if (bio_data_dir(io->base_bio) == READ)
2027 kcryptd_crypt_read_convert(io);
2028 else
2029 kcryptd_crypt_write_convert(io);
2032 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2034 struct crypt_config *cc = io->cc;
2036 INIT_WORK(&io->work, kcryptd_crypt);
2037 queue_work(cc->crypt_queue, &io->work);
2040 static void crypt_free_tfms_aead(struct crypt_config *cc)
2042 if (!cc->cipher_tfm.tfms_aead)
2043 return;
2045 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2046 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2047 cc->cipher_tfm.tfms_aead[0] = NULL;
2050 kfree(cc->cipher_tfm.tfms_aead);
2051 cc->cipher_tfm.tfms_aead = NULL;
2054 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2056 unsigned i;
2058 if (!cc->cipher_tfm.tfms)
2059 return;
2061 for (i = 0; i < cc->tfms_count; i++)
2062 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2063 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2064 cc->cipher_tfm.tfms[i] = NULL;
2067 kfree(cc->cipher_tfm.tfms);
2068 cc->cipher_tfm.tfms = NULL;
2071 static void crypt_free_tfms(struct crypt_config *cc)
2073 if (crypt_integrity_aead(cc))
2074 crypt_free_tfms_aead(cc);
2075 else
2076 crypt_free_tfms_skcipher(cc);
2079 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2081 unsigned i;
2082 int err;
2084 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2085 sizeof(struct crypto_skcipher *),
2086 GFP_KERNEL);
2087 if (!cc->cipher_tfm.tfms)
2088 return -ENOMEM;
2090 for (i = 0; i < cc->tfms_count; i++) {
2091 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
2092 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2093 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2094 crypt_free_tfms(cc);
2095 return err;
2100 * dm-crypt performance can vary greatly depending on which crypto
2101 * algorithm implementation is used. Help people debug performance
2102 * problems by logging the ->cra_driver_name.
2104 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2105 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2106 return 0;
2109 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2111 int err;
2113 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2114 if (!cc->cipher_tfm.tfms)
2115 return -ENOMEM;
2117 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
2118 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2119 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2120 crypt_free_tfms(cc);
2121 return err;
2124 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2125 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2126 return 0;
2129 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2131 if (crypt_integrity_aead(cc))
2132 return crypt_alloc_tfms_aead(cc, ciphermode);
2133 else
2134 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2137 static unsigned crypt_subkey_size(struct crypt_config *cc)
2139 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2142 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2144 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2148 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2149 * the key must be for some reason in special format.
2150 * This funcion converts cc->key to this special format.
2152 static void crypt_copy_authenckey(char *p, const void *key,
2153 unsigned enckeylen, unsigned authkeylen)
2155 struct crypto_authenc_key_param *param;
2156 struct rtattr *rta;
2158 rta = (struct rtattr *)p;
2159 param = RTA_DATA(rta);
2160 param->enckeylen = cpu_to_be32(enckeylen);
2161 rta->rta_len = RTA_LENGTH(sizeof(*param));
2162 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2163 p += RTA_SPACE(sizeof(*param));
2164 memcpy(p, key + enckeylen, authkeylen);
2165 p += authkeylen;
2166 memcpy(p, key, enckeylen);
2169 static int crypt_setkey(struct crypt_config *cc)
2171 unsigned subkey_size;
2172 int err = 0, i, r;
2174 /* Ignore extra keys (which are used for IV etc) */
2175 subkey_size = crypt_subkey_size(cc);
2177 if (crypt_integrity_hmac(cc)) {
2178 if (subkey_size < cc->key_mac_size)
2179 return -EINVAL;
2181 crypt_copy_authenckey(cc->authenc_key, cc->key,
2182 subkey_size - cc->key_mac_size,
2183 cc->key_mac_size);
2186 for (i = 0; i < cc->tfms_count; i++) {
2187 if (crypt_integrity_hmac(cc))
2188 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2189 cc->authenc_key, crypt_authenckey_size(cc));
2190 else if (crypt_integrity_aead(cc))
2191 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2192 cc->key + (i * subkey_size),
2193 subkey_size);
2194 else
2195 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2196 cc->key + (i * subkey_size),
2197 subkey_size);
2198 if (r)
2199 err = r;
2202 if (crypt_integrity_hmac(cc))
2203 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2205 return err;
2208 #ifdef CONFIG_KEYS
2210 static bool contains_whitespace(const char *str)
2212 while (*str)
2213 if (isspace(*str++))
2214 return true;
2215 return false;
2218 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2220 char *new_key_string, *key_desc;
2221 int ret;
2222 struct key *key;
2223 const struct user_key_payload *ukp;
2226 * Reject key_string with whitespace. dm core currently lacks code for
2227 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2229 if (contains_whitespace(key_string)) {
2230 DMERR("whitespace chars not allowed in key string");
2231 return -EINVAL;
2234 /* look for next ':' separating key_type from key_description */
2235 key_desc = strpbrk(key_string, ":");
2236 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2237 return -EINVAL;
2239 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2240 strncmp(key_string, "user:", key_desc - key_string + 1))
2241 return -EINVAL;
2243 new_key_string = kstrdup(key_string, GFP_KERNEL);
2244 if (!new_key_string)
2245 return -ENOMEM;
2247 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2248 key_desc + 1, NULL);
2249 if (IS_ERR(key)) {
2250 kzfree(new_key_string);
2251 return PTR_ERR(key);
2254 down_read(&key->sem);
2256 ukp = user_key_payload_locked(key);
2257 if (!ukp) {
2258 up_read(&key->sem);
2259 key_put(key);
2260 kzfree(new_key_string);
2261 return -EKEYREVOKED;
2264 if (cc->key_size != ukp->datalen) {
2265 up_read(&key->sem);
2266 key_put(key);
2267 kzfree(new_key_string);
2268 return -EINVAL;
2271 memcpy(cc->key, ukp->data, cc->key_size);
2273 up_read(&key->sem);
2274 key_put(key);
2276 /* clear the flag since following operations may invalidate previously valid key */
2277 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2279 ret = crypt_setkey(cc);
2281 if (!ret) {
2282 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2283 kzfree(cc->key_string);
2284 cc->key_string = new_key_string;
2285 } else
2286 kzfree(new_key_string);
2288 return ret;
2291 static int get_key_size(char **key_string)
2293 char *colon, dummy;
2294 int ret;
2296 if (*key_string[0] != ':')
2297 return strlen(*key_string) >> 1;
2299 /* look for next ':' in key string */
2300 colon = strpbrk(*key_string + 1, ":");
2301 if (!colon)
2302 return -EINVAL;
2304 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2305 return -EINVAL;
2307 *key_string = colon;
2309 /* remaining key string should be :<logon|user>:<key_desc> */
2311 return ret;
2314 #else
2316 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2318 return -EINVAL;
2321 static int get_key_size(char **key_string)
2323 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2326 #endif
2328 static int crypt_set_key(struct crypt_config *cc, char *key)
2330 int r = -EINVAL;
2331 int key_string_len = strlen(key);
2333 /* Hyphen (which gives a key_size of zero) means there is no key. */
2334 if (!cc->key_size && strcmp(key, "-"))
2335 goto out;
2337 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2338 if (key[0] == ':') {
2339 r = crypt_set_keyring_key(cc, key + 1);
2340 goto out;
2343 /* clear the flag since following operations may invalidate previously valid key */
2344 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2346 /* wipe references to any kernel keyring key */
2347 kzfree(cc->key_string);
2348 cc->key_string = NULL;
2350 /* Decode key from its hex representation. */
2351 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2352 goto out;
2354 r = crypt_setkey(cc);
2355 if (!r)
2356 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2358 out:
2359 /* Hex key string not needed after here, so wipe it. */
2360 memset(key, '0', key_string_len);
2362 return r;
2365 static int crypt_wipe_key(struct crypt_config *cc)
2367 int r;
2369 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2370 get_random_bytes(&cc->key, cc->key_size);
2372 /* Wipe IV private keys */
2373 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2374 r = cc->iv_gen_ops->wipe(cc);
2375 if (r)
2376 return r;
2379 kzfree(cc->key_string);
2380 cc->key_string = NULL;
2381 r = crypt_setkey(cc);
2382 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2384 return r;
2387 static void crypt_calculate_pages_per_client(void)
2389 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2391 if (!dm_crypt_clients_n)
2392 return;
2394 pages /= dm_crypt_clients_n;
2395 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2396 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2397 dm_crypt_pages_per_client = pages;
2400 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2402 struct crypt_config *cc = pool_data;
2403 struct page *page;
2405 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2406 likely(gfp_mask & __GFP_NORETRY))
2407 return NULL;
2409 page = alloc_page(gfp_mask);
2410 if (likely(page != NULL))
2411 percpu_counter_add(&cc->n_allocated_pages, 1);
2413 return page;
2416 static void crypt_page_free(void *page, void *pool_data)
2418 struct crypt_config *cc = pool_data;
2420 __free_page(page);
2421 percpu_counter_sub(&cc->n_allocated_pages, 1);
2424 static void crypt_dtr(struct dm_target *ti)
2426 struct crypt_config *cc = ti->private;
2428 ti->private = NULL;
2430 if (!cc)
2431 return;
2433 if (cc->write_thread)
2434 kthread_stop(cc->write_thread);
2436 if (cc->io_queue)
2437 destroy_workqueue(cc->io_queue);
2438 if (cc->crypt_queue)
2439 destroy_workqueue(cc->crypt_queue);
2441 crypt_free_tfms(cc);
2443 bioset_exit(&cc->bs);
2445 mempool_exit(&cc->page_pool);
2446 mempool_exit(&cc->req_pool);
2447 mempool_exit(&cc->tag_pool);
2449 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2450 percpu_counter_destroy(&cc->n_allocated_pages);
2452 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2453 cc->iv_gen_ops->dtr(cc);
2455 if (cc->dev)
2456 dm_put_device(ti, cc->dev);
2458 kzfree(cc->cipher_string);
2459 kzfree(cc->key_string);
2460 kzfree(cc->cipher_auth);
2461 kzfree(cc->authenc_key);
2463 mutex_destroy(&cc->bio_alloc_lock);
2465 /* Must zero key material before freeing */
2466 kzfree(cc);
2468 spin_lock(&dm_crypt_clients_lock);
2469 WARN_ON(!dm_crypt_clients_n);
2470 dm_crypt_clients_n--;
2471 crypt_calculate_pages_per_client();
2472 spin_unlock(&dm_crypt_clients_lock);
2475 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2477 struct crypt_config *cc = ti->private;
2479 if (crypt_integrity_aead(cc))
2480 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2481 else
2482 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2484 if (cc->iv_size)
2485 /* at least a 64 bit sector number should fit in our buffer */
2486 cc->iv_size = max(cc->iv_size,
2487 (unsigned int)(sizeof(u64) / sizeof(u8)));
2488 else if (ivmode) {
2489 DMWARN("Selected cipher does not support IVs");
2490 ivmode = NULL;
2493 /* Choose ivmode, see comments at iv code. */
2494 if (ivmode == NULL)
2495 cc->iv_gen_ops = NULL;
2496 else if (strcmp(ivmode, "plain") == 0)
2497 cc->iv_gen_ops = &crypt_iv_plain_ops;
2498 else if (strcmp(ivmode, "plain64") == 0)
2499 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2500 else if (strcmp(ivmode, "plain64be") == 0)
2501 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2502 else if (strcmp(ivmode, "essiv") == 0)
2503 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2504 else if (strcmp(ivmode, "benbi") == 0)
2505 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2506 else if (strcmp(ivmode, "null") == 0)
2507 cc->iv_gen_ops = &crypt_iv_null_ops;
2508 else if (strcmp(ivmode, "eboiv") == 0)
2509 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2510 else if (strcmp(ivmode, "elephant") == 0) {
2511 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2512 cc->key_parts = 2;
2513 cc->key_extra_size = cc->key_size / 2;
2514 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2515 return -EINVAL;
2516 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2517 } else if (strcmp(ivmode, "lmk") == 0) {
2518 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2520 * Version 2 and 3 is recognised according
2521 * to length of provided multi-key string.
2522 * If present (version 3), last key is used as IV seed.
2523 * All keys (including IV seed) are always the same size.
2525 if (cc->key_size % cc->key_parts) {
2526 cc->key_parts++;
2527 cc->key_extra_size = cc->key_size / cc->key_parts;
2529 } else if (strcmp(ivmode, "tcw") == 0) {
2530 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2531 cc->key_parts += 2; /* IV + whitening */
2532 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2533 } else if (strcmp(ivmode, "random") == 0) {
2534 cc->iv_gen_ops = &crypt_iv_random_ops;
2535 /* Need storage space in integrity fields. */
2536 cc->integrity_iv_size = cc->iv_size;
2537 } else {
2538 ti->error = "Invalid IV mode";
2539 return -EINVAL;
2542 return 0;
2546 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2547 * The HMAC is needed to calculate tag size (HMAC digest size).
2548 * This should be probably done by crypto-api calls (once available...)
2550 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2552 char *start, *end, *mac_alg = NULL;
2553 struct crypto_ahash *mac;
2555 if (!strstarts(cipher_api, "authenc("))
2556 return 0;
2558 start = strchr(cipher_api, '(');
2559 end = strchr(cipher_api, ',');
2560 if (!start || !end || ++start > end)
2561 return -EINVAL;
2563 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2564 if (!mac_alg)
2565 return -ENOMEM;
2566 strncpy(mac_alg, start, end - start);
2568 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2569 kfree(mac_alg);
2571 if (IS_ERR(mac))
2572 return PTR_ERR(mac);
2574 cc->key_mac_size = crypto_ahash_digestsize(mac);
2575 crypto_free_ahash(mac);
2577 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2578 if (!cc->authenc_key)
2579 return -ENOMEM;
2581 return 0;
2584 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2585 char **ivmode, char **ivopts)
2587 struct crypt_config *cc = ti->private;
2588 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2589 int ret = -EINVAL;
2591 cc->tfms_count = 1;
2594 * New format (capi: prefix)
2595 * capi:cipher_api_spec-iv:ivopts
2597 tmp = &cipher_in[strlen("capi:")];
2599 /* Separate IV options if present, it can contain another '-' in hash name */
2600 *ivopts = strrchr(tmp, ':');
2601 if (*ivopts) {
2602 **ivopts = '\0';
2603 (*ivopts)++;
2605 /* Parse IV mode */
2606 *ivmode = strrchr(tmp, '-');
2607 if (*ivmode) {
2608 **ivmode = '\0';
2609 (*ivmode)++;
2611 /* The rest is crypto API spec */
2612 cipher_api = tmp;
2614 /* Alloc AEAD, can be used only in new format. */
2615 if (crypt_integrity_aead(cc)) {
2616 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2617 if (ret < 0) {
2618 ti->error = "Invalid AEAD cipher spec";
2619 return -ENOMEM;
2623 if (*ivmode && !strcmp(*ivmode, "lmk"))
2624 cc->tfms_count = 64;
2626 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2627 if (!*ivopts) {
2628 ti->error = "Digest algorithm missing for ESSIV mode";
2629 return -EINVAL;
2631 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2632 cipher_api, *ivopts);
2633 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2634 ti->error = "Cannot allocate cipher string";
2635 return -ENOMEM;
2637 cipher_api = buf;
2640 cc->key_parts = cc->tfms_count;
2642 /* Allocate cipher */
2643 ret = crypt_alloc_tfms(cc, cipher_api);
2644 if (ret < 0) {
2645 ti->error = "Error allocating crypto tfm";
2646 return ret;
2649 if (crypt_integrity_aead(cc))
2650 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2651 else
2652 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2654 return 0;
2657 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2658 char **ivmode, char **ivopts)
2660 struct crypt_config *cc = ti->private;
2661 char *tmp, *cipher, *chainmode, *keycount;
2662 char *cipher_api = NULL;
2663 int ret = -EINVAL;
2664 char dummy;
2666 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2667 ti->error = "Bad cipher specification";
2668 return -EINVAL;
2672 * Legacy dm-crypt cipher specification
2673 * cipher[:keycount]-mode-iv:ivopts
2675 tmp = cipher_in;
2676 keycount = strsep(&tmp, "-");
2677 cipher = strsep(&keycount, ":");
2679 if (!keycount)
2680 cc->tfms_count = 1;
2681 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2682 !is_power_of_2(cc->tfms_count)) {
2683 ti->error = "Bad cipher key count specification";
2684 return -EINVAL;
2686 cc->key_parts = cc->tfms_count;
2688 chainmode = strsep(&tmp, "-");
2689 *ivmode = strsep(&tmp, ":");
2690 *ivopts = tmp;
2693 * For compatibility with the original dm-crypt mapping format, if
2694 * only the cipher name is supplied, use cbc-plain.
2696 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2697 chainmode = "cbc";
2698 *ivmode = "plain";
2701 if (strcmp(chainmode, "ecb") && !*ivmode) {
2702 ti->error = "IV mechanism required";
2703 return -EINVAL;
2706 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2707 if (!cipher_api)
2708 goto bad_mem;
2710 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2711 if (!*ivopts) {
2712 ti->error = "Digest algorithm missing for ESSIV mode";
2713 kfree(cipher_api);
2714 return -EINVAL;
2716 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2717 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2718 } else {
2719 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2720 "%s(%s)", chainmode, cipher);
2722 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2723 kfree(cipher_api);
2724 goto bad_mem;
2727 /* Allocate cipher */
2728 ret = crypt_alloc_tfms(cc, cipher_api);
2729 if (ret < 0) {
2730 ti->error = "Error allocating crypto tfm";
2731 kfree(cipher_api);
2732 return ret;
2734 kfree(cipher_api);
2736 return 0;
2737 bad_mem:
2738 ti->error = "Cannot allocate cipher strings";
2739 return -ENOMEM;
2742 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2744 struct crypt_config *cc = ti->private;
2745 char *ivmode = NULL, *ivopts = NULL;
2746 int ret;
2748 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2749 if (!cc->cipher_string) {
2750 ti->error = "Cannot allocate cipher strings";
2751 return -ENOMEM;
2754 if (strstarts(cipher_in, "capi:"))
2755 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2756 else
2757 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2758 if (ret)
2759 return ret;
2761 /* Initialize IV */
2762 ret = crypt_ctr_ivmode(ti, ivmode);
2763 if (ret < 0)
2764 return ret;
2766 /* Initialize and set key */
2767 ret = crypt_set_key(cc, key);
2768 if (ret < 0) {
2769 ti->error = "Error decoding and setting key";
2770 return ret;
2773 /* Allocate IV */
2774 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2775 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2776 if (ret < 0) {
2777 ti->error = "Error creating IV";
2778 return ret;
2782 /* Initialize IV (set keys for ESSIV etc) */
2783 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2784 ret = cc->iv_gen_ops->init(cc);
2785 if (ret < 0) {
2786 ti->error = "Error initialising IV";
2787 return ret;
2791 /* wipe the kernel key payload copy */
2792 if (cc->key_string)
2793 memset(cc->key, 0, cc->key_size * sizeof(u8));
2795 return ret;
2798 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2800 struct crypt_config *cc = ti->private;
2801 struct dm_arg_set as;
2802 static const struct dm_arg _args[] = {
2803 {0, 6, "Invalid number of feature args"},
2805 unsigned int opt_params, val;
2806 const char *opt_string, *sval;
2807 char dummy;
2808 int ret;
2810 /* Optional parameters */
2811 as.argc = argc;
2812 as.argv = argv;
2814 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2815 if (ret)
2816 return ret;
2818 while (opt_params--) {
2819 opt_string = dm_shift_arg(&as);
2820 if (!opt_string) {
2821 ti->error = "Not enough feature arguments";
2822 return -EINVAL;
2825 if (!strcasecmp(opt_string, "allow_discards"))
2826 ti->num_discard_bios = 1;
2828 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2829 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2831 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2832 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2833 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2834 if (val == 0 || val > MAX_TAG_SIZE) {
2835 ti->error = "Invalid integrity arguments";
2836 return -EINVAL;
2838 cc->on_disk_tag_size = val;
2839 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2840 if (!strcasecmp(sval, "aead")) {
2841 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2842 } else if (strcasecmp(sval, "none")) {
2843 ti->error = "Unknown integrity profile";
2844 return -EINVAL;
2847 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2848 if (!cc->cipher_auth)
2849 return -ENOMEM;
2850 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2851 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2852 cc->sector_size > 4096 ||
2853 (cc->sector_size & (cc->sector_size - 1))) {
2854 ti->error = "Invalid feature value for sector_size";
2855 return -EINVAL;
2857 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2858 ti->error = "Device size is not multiple of sector_size feature";
2859 return -EINVAL;
2861 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2862 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2863 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2864 else {
2865 ti->error = "Invalid feature arguments";
2866 return -EINVAL;
2870 return 0;
2874 * Construct an encryption mapping:
2875 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2877 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2879 struct crypt_config *cc;
2880 const char *devname = dm_table_device_name(ti->table);
2881 int key_size;
2882 unsigned int align_mask;
2883 unsigned long long tmpll;
2884 int ret;
2885 size_t iv_size_padding, additional_req_size;
2886 char dummy;
2888 if (argc < 5) {
2889 ti->error = "Not enough arguments";
2890 return -EINVAL;
2893 key_size = get_key_size(&argv[1]);
2894 if (key_size < 0) {
2895 ti->error = "Cannot parse key size";
2896 return -EINVAL;
2899 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2900 if (!cc) {
2901 ti->error = "Cannot allocate encryption context";
2902 return -ENOMEM;
2904 cc->key_size = key_size;
2905 cc->sector_size = (1 << SECTOR_SHIFT);
2906 cc->sector_shift = 0;
2908 ti->private = cc;
2910 spin_lock(&dm_crypt_clients_lock);
2911 dm_crypt_clients_n++;
2912 crypt_calculate_pages_per_client();
2913 spin_unlock(&dm_crypt_clients_lock);
2915 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2916 if (ret < 0)
2917 goto bad;
2919 /* Optional parameters need to be read before cipher constructor */
2920 if (argc > 5) {
2921 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2922 if (ret)
2923 goto bad;
2926 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2927 if (ret < 0)
2928 goto bad;
2930 if (crypt_integrity_aead(cc)) {
2931 cc->dmreq_start = sizeof(struct aead_request);
2932 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2933 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2934 } else {
2935 cc->dmreq_start = sizeof(struct skcipher_request);
2936 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2937 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2939 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2941 if (align_mask < CRYPTO_MINALIGN) {
2942 /* Allocate the padding exactly */
2943 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2944 & align_mask;
2945 } else {
2947 * If the cipher requires greater alignment than kmalloc
2948 * alignment, we don't know the exact position of the
2949 * initialization vector. We must assume worst case.
2951 iv_size_padding = align_mask;
2954 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2955 additional_req_size = sizeof(struct dm_crypt_request) +
2956 iv_size_padding + cc->iv_size +
2957 cc->iv_size +
2958 sizeof(uint64_t) +
2959 sizeof(unsigned int);
2961 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2962 if (ret) {
2963 ti->error = "Cannot allocate crypt request mempool";
2964 goto bad;
2967 cc->per_bio_data_size = ti->per_io_data_size =
2968 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2969 ARCH_KMALLOC_MINALIGN);
2971 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2972 if (ret) {
2973 ti->error = "Cannot allocate page mempool";
2974 goto bad;
2977 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2978 if (ret) {
2979 ti->error = "Cannot allocate crypt bioset";
2980 goto bad;
2983 mutex_init(&cc->bio_alloc_lock);
2985 ret = -EINVAL;
2986 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2987 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2988 ti->error = "Invalid iv_offset sector";
2989 goto bad;
2991 cc->iv_offset = tmpll;
2993 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2994 if (ret) {
2995 ti->error = "Device lookup failed";
2996 goto bad;
2999 ret = -EINVAL;
3000 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3001 ti->error = "Invalid device sector";
3002 goto bad;
3004 cc->start = tmpll;
3006 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3007 ret = crypt_integrity_ctr(cc, ti);
3008 if (ret)
3009 goto bad;
3011 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3012 if (!cc->tag_pool_max_sectors)
3013 cc->tag_pool_max_sectors = 1;
3015 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3016 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3017 if (ret) {
3018 ti->error = "Cannot allocate integrity tags mempool";
3019 goto bad;
3022 cc->tag_pool_max_sectors <<= cc->sector_shift;
3025 ret = -ENOMEM;
3026 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3027 if (!cc->io_queue) {
3028 ti->error = "Couldn't create kcryptd io queue";
3029 goto bad;
3032 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3033 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3034 1, devname);
3035 else
3036 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3037 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3038 num_online_cpus(), devname);
3039 if (!cc->crypt_queue) {
3040 ti->error = "Couldn't create kcryptd queue";
3041 goto bad;
3044 spin_lock_init(&cc->write_thread_lock);
3045 cc->write_tree = RB_ROOT;
3047 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3048 if (IS_ERR(cc->write_thread)) {
3049 ret = PTR_ERR(cc->write_thread);
3050 cc->write_thread = NULL;
3051 ti->error = "Couldn't spawn write thread";
3052 goto bad;
3054 wake_up_process(cc->write_thread);
3056 ti->num_flush_bios = 1;
3058 return 0;
3060 bad:
3061 crypt_dtr(ti);
3062 return ret;
3065 static int crypt_map(struct dm_target *ti, struct bio *bio)
3067 struct dm_crypt_io *io;
3068 struct crypt_config *cc = ti->private;
3071 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3072 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3073 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3075 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3076 bio_op(bio) == REQ_OP_DISCARD)) {
3077 bio_set_dev(bio, cc->dev->bdev);
3078 if (bio_sectors(bio))
3079 bio->bi_iter.bi_sector = cc->start +
3080 dm_target_offset(ti, bio->bi_iter.bi_sector);
3081 return DM_MAPIO_REMAPPED;
3085 * Check if bio is too large, split as needed.
3087 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
3088 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3089 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
3092 * Ensure that bio is a multiple of internal sector encryption size
3093 * and is aligned to this size as defined in IO hints.
3095 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3096 return DM_MAPIO_KILL;
3098 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3099 return DM_MAPIO_KILL;
3101 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3102 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3104 if (cc->on_disk_tag_size) {
3105 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3107 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3108 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3109 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3110 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3111 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3112 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3113 io->integrity_metadata_from_pool = true;
3117 if (crypt_integrity_aead(cc))
3118 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3119 else
3120 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3122 if (bio_data_dir(io->base_bio) == READ) {
3123 if (kcryptd_io_read(io, GFP_NOWAIT))
3124 kcryptd_queue_read(io);
3125 } else
3126 kcryptd_queue_crypt(io);
3128 return DM_MAPIO_SUBMITTED;
3131 static void crypt_status(struct dm_target *ti, status_type_t type,
3132 unsigned status_flags, char *result, unsigned maxlen)
3134 struct crypt_config *cc = ti->private;
3135 unsigned i, sz = 0;
3136 int num_feature_args = 0;
3138 switch (type) {
3139 case STATUSTYPE_INFO:
3140 result[0] = '\0';
3141 break;
3143 case STATUSTYPE_TABLE:
3144 DMEMIT("%s ", cc->cipher_string);
3146 if (cc->key_size > 0) {
3147 if (cc->key_string)
3148 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3149 else
3150 for (i = 0; i < cc->key_size; i++)
3151 DMEMIT("%02x", cc->key[i]);
3152 } else
3153 DMEMIT("-");
3155 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3156 cc->dev->name, (unsigned long long)cc->start);
3158 num_feature_args += !!ti->num_discard_bios;
3159 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3160 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3161 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3162 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3163 if (cc->on_disk_tag_size)
3164 num_feature_args++;
3165 if (num_feature_args) {
3166 DMEMIT(" %d", num_feature_args);
3167 if (ti->num_discard_bios)
3168 DMEMIT(" allow_discards");
3169 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3170 DMEMIT(" same_cpu_crypt");
3171 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3172 DMEMIT(" submit_from_crypt_cpus");
3173 if (cc->on_disk_tag_size)
3174 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3175 if (cc->sector_size != (1 << SECTOR_SHIFT))
3176 DMEMIT(" sector_size:%d", cc->sector_size);
3177 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3178 DMEMIT(" iv_large_sectors");
3181 break;
3185 static void crypt_postsuspend(struct dm_target *ti)
3187 struct crypt_config *cc = ti->private;
3189 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3192 static int crypt_preresume(struct dm_target *ti)
3194 struct crypt_config *cc = ti->private;
3196 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3197 DMERR("aborting resume - crypt key is not set.");
3198 return -EAGAIN;
3201 return 0;
3204 static void crypt_resume(struct dm_target *ti)
3206 struct crypt_config *cc = ti->private;
3208 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3211 /* Message interface
3212 * key set <key>
3213 * key wipe
3215 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3216 char *result, unsigned maxlen)
3218 struct crypt_config *cc = ti->private;
3219 int key_size, ret = -EINVAL;
3221 if (argc < 2)
3222 goto error;
3224 if (!strcasecmp(argv[0], "key")) {
3225 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3226 DMWARN("not suspended during key manipulation.");
3227 return -EINVAL;
3229 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3230 /* The key size may not be changed. */
3231 key_size = get_key_size(&argv[2]);
3232 if (key_size < 0 || cc->key_size != key_size) {
3233 memset(argv[2], '0', strlen(argv[2]));
3234 return -EINVAL;
3237 ret = crypt_set_key(cc, argv[2]);
3238 if (ret)
3239 return ret;
3240 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3241 ret = cc->iv_gen_ops->init(cc);
3242 /* wipe the kernel key payload copy */
3243 if (cc->key_string)
3244 memset(cc->key, 0, cc->key_size * sizeof(u8));
3245 return ret;
3247 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3248 return crypt_wipe_key(cc);
3251 error:
3252 DMWARN("unrecognised message received.");
3253 return -EINVAL;
3256 static int crypt_iterate_devices(struct dm_target *ti,
3257 iterate_devices_callout_fn fn, void *data)
3259 struct crypt_config *cc = ti->private;
3261 return fn(ti, cc->dev, cc->start, ti->len, data);
3264 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3266 struct crypt_config *cc = ti->private;
3269 * Unfortunate constraint that is required to avoid the potential
3270 * for exceeding underlying device's max_segments limits -- due to
3271 * crypt_alloc_buffer() possibly allocating pages for the encryption
3272 * bio that are not as physically contiguous as the original bio.
3274 limits->max_segment_size = PAGE_SIZE;
3276 limits->logical_block_size =
3277 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
3278 limits->physical_block_size =
3279 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3280 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3283 static struct target_type crypt_target = {
3284 .name = "crypt",
3285 .version = {1, 20, 0},
3286 .module = THIS_MODULE,
3287 .ctr = crypt_ctr,
3288 .dtr = crypt_dtr,
3289 .map = crypt_map,
3290 .status = crypt_status,
3291 .postsuspend = crypt_postsuspend,
3292 .preresume = crypt_preresume,
3293 .resume = crypt_resume,
3294 .message = crypt_message,
3295 .iterate_devices = crypt_iterate_devices,
3296 .io_hints = crypt_io_hints,
3299 static int __init dm_crypt_init(void)
3301 int r;
3303 r = dm_register_target(&crypt_target);
3304 if (r < 0)
3305 DMERR("register failed %d", r);
3307 return r;
3310 static void __exit dm_crypt_exit(void)
3312 dm_unregister_target(&crypt_target);
3315 module_init(dm_crypt_init);
3316 module_exit(dm_crypt_exit);
3318 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3319 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3320 MODULE_LICENSE("GPL");