2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
9 #include "dm-bio-record.h"
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
26 #define DM_MSG_PREFIX "integrity"
28 #define DEFAULT_INTERLEAVE_SECTORS 32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31 #define DEFAULT_BUFFER_SECTORS 128
32 #define DEFAULT_JOURNAL_WATERMARK 50
33 #define DEFAULT_SYNC_MSEC 10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS 3
36 #define MAX_LOG2_INTERLEAVE_SECTORS 31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
38 #define RECALC_SECTORS 8192
39 #define RECALC_WRITE_SUPER 16
40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 #define DISCARD_FILLER 0xf6
45 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46 * so it should not be enabled in the official kernel
49 //#define INTERNAL_VERIFY
55 #define SB_MAGIC "integrt"
56 #define SB_VERSION_1 1
57 #define SB_VERSION_2 2
58 #define SB_VERSION_3 3
59 #define SB_VERSION_4 4
61 #define MAX_SECTORS_PER_BLOCK 8
66 __u8 log2_interleave_sectors
;
67 __u16 integrity_tag_size
;
68 __u32 journal_sections
;
69 __u64 provided_data_sectors
; /* userspace uses this value */
71 __u8 log2_sectors_per_block
;
72 __u8 log2_blocks_per_bitmap_bit
;
77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
78 #define SB_FLAG_RECALCULATING 0x2
79 #define SB_FLAG_DIRTY_BITMAP 0x4
80 #define SB_FLAG_FIXED_PADDING 0x8
82 #define JOURNAL_ENTRY_ROUNDUP 8
84 typedef __u64 commit_id_t
;
85 #define JOURNAL_MAC_PER_SECTOR 8
87 struct journal_entry
{
95 commit_id_t last_bytes
[0];
99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
112 #define JOURNAL_BLOCK_SECTORS 8
113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
116 struct journal_sector
{
117 __u8 entries
[JOURNAL_SECTOR_DATA
- JOURNAL_MAC_PER_SECTOR
];
118 __u8 mac
[JOURNAL_MAC_PER_SECTOR
];
119 commit_id_t commit_id
;
122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
124 #define METADATA_PADDING_SECTORS 8
126 #define N_COMMIT_IDS 4
128 static unsigned char prev_commit_seq(unsigned char seq
)
130 return (seq
+ N_COMMIT_IDS
- 1) % N_COMMIT_IDS
;
133 static unsigned char next_commit_seq(unsigned char seq
)
135 return (seq
+ 1) % N_COMMIT_IDS
;
139 * In-memory structures
142 struct journal_node
{
154 struct dm_integrity_c
{
156 struct dm_dev
*meta_dev
;
160 mempool_t journal_io_mempool
;
161 struct dm_io_client
*io
;
162 struct dm_bufio_client
*bufio
;
163 struct workqueue_struct
*metadata_wq
;
164 struct superblock
*sb
;
165 unsigned journal_pages
;
166 unsigned n_bitmap_blocks
;
168 struct page_list
*journal
;
169 struct page_list
*journal_io
;
170 struct page_list
*journal_xor
;
171 struct page_list
*recalc_bitmap
;
172 struct page_list
*may_write_bitmap
;
173 struct bitmap_block_status
*bbs
;
174 unsigned bitmap_flush_interval
;
175 int synchronous_mode
;
176 struct bio_list synchronous_bios
;
177 struct delayed_work bitmap_flush_work
;
179 struct crypto_skcipher
*journal_crypt
;
180 struct scatterlist
**journal_scatterlist
;
181 struct scatterlist
**journal_io_scatterlist
;
182 struct skcipher_request
**sk_requests
;
184 struct crypto_shash
*journal_mac
;
186 struct journal_node
*journal_tree
;
187 struct rb_root journal_tree_root
;
189 sector_t provided_data_sectors
;
191 unsigned short journal_entry_size
;
192 unsigned char journal_entries_per_sector
;
193 unsigned char journal_section_entries
;
194 unsigned short journal_section_sectors
;
195 unsigned journal_sections
;
196 unsigned journal_entries
;
197 sector_t data_device_sectors
;
198 sector_t meta_device_sectors
;
199 unsigned initial_sectors
;
200 unsigned metadata_run
;
201 __s8 log2_metadata_run
;
202 __u8 log2_buffer_sectors
;
203 __u8 sectors_per_block
;
204 __u8 log2_blocks_per_bitmap_bit
;
210 struct crypto_shash
*internal_hash
;
212 struct dm_target
*ti
;
214 /* these variables are locked with endio_wait.lock */
215 struct rb_root in_progress
;
216 struct list_head wait_list
;
217 wait_queue_head_t endio_wait
;
218 struct workqueue_struct
*wait_wq
;
219 struct workqueue_struct
*offload_wq
;
221 unsigned char commit_seq
;
222 commit_id_t commit_ids
[N_COMMIT_IDS
];
224 unsigned committed_section
;
225 unsigned n_committed_sections
;
227 unsigned uncommitted_section
;
228 unsigned n_uncommitted_sections
;
230 unsigned free_section
;
231 unsigned char free_section_entry
;
232 unsigned free_sectors
;
234 unsigned free_sectors_threshold
;
236 struct workqueue_struct
*commit_wq
;
237 struct work_struct commit_work
;
239 struct workqueue_struct
*writer_wq
;
240 struct work_struct writer_work
;
242 struct workqueue_struct
*recalc_wq
;
243 struct work_struct recalc_work
;
247 struct bio_list flush_bio_list
;
249 unsigned long autocommit_jiffies
;
250 struct timer_list autocommit_timer
;
251 unsigned autocommit_msec
;
253 wait_queue_head_t copy_to_journal_wait
;
255 struct completion crypto_backoff
;
257 bool journal_uptodate
;
259 bool recalculate_flag
;
263 struct alg_spec internal_hash_alg
;
264 struct alg_spec journal_crypt_alg
;
265 struct alg_spec journal_mac_alg
;
267 atomic64_t number_of_mismatches
;
269 struct notifier_block reboot_notifier
;
272 struct dm_integrity_range
{
273 sector_t logical_sector
;
279 struct task_struct
*task
;
280 struct list_head wait_entry
;
285 struct dm_integrity_io
{
286 struct work_struct work
;
288 struct dm_integrity_c
*ic
;
292 struct dm_integrity_range range
;
294 sector_t metadata_block
;
295 unsigned metadata_offset
;
298 blk_status_t bi_status
;
300 struct completion
*completion
;
302 struct dm_bio_details bio_details
;
305 struct journal_completion
{
306 struct dm_integrity_c
*ic
;
308 struct completion comp
;
312 struct dm_integrity_range range
;
313 struct journal_completion
*comp
;
316 struct bitmap_block_status
{
317 struct work_struct work
;
318 struct dm_integrity_c
*ic
;
320 unsigned long *bitmap
;
321 struct bio_list bio_queue
;
322 spinlock_t bio_queue_lock
;
326 static struct kmem_cache
*journal_io_cache
;
328 #define JOURNAL_IO_MEMPOOL 32
331 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
332 static void __DEBUG_bytes(__u8
*bytes
, size_t len
, const char *msg
, ...)
341 pr_cont(" %02x", *bytes
);
347 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
349 #define DEBUG_print(x, ...) do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
353 static void dm_integrity_prepare(struct request
*rq
)
357 static void dm_integrity_complete(struct request
*rq
, unsigned int nr_bytes
)
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
364 static const struct blk_integrity_profile dm_integrity_profile
= {
365 .name
= "DM-DIF-EXT-TAG",
368 .prepare_fn
= dm_integrity_prepare
,
369 .complete_fn
= dm_integrity_complete
,
372 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
);
373 static void integrity_bio_wait(struct work_struct
*w
);
374 static void dm_integrity_dtr(struct dm_target
*ti
);
376 static void dm_integrity_io_error(struct dm_integrity_c
*ic
, const char *msg
, int err
)
379 atomic64_inc(&ic
->number_of_mismatches
);
380 if (!cmpxchg(&ic
->failed
, 0, err
))
381 DMERR("Error on %s: %d", msg
, err
);
384 static int dm_integrity_failed(struct dm_integrity_c
*ic
)
386 return READ_ONCE(ic
->failed
);
389 static commit_id_t
dm_integrity_commit_id(struct dm_integrity_c
*ic
, unsigned i
,
390 unsigned j
, unsigned char seq
)
393 * Xor the number with section and sector, so that if a piece of
394 * journal is written at wrong place, it is detected.
396 return ic
->commit_ids
[seq
] ^ cpu_to_le64(((__u64
)i
<< 32) ^ j
);
399 static void get_area_and_offset(struct dm_integrity_c
*ic
, sector_t data_sector
,
400 sector_t
*area
, sector_t
*offset
)
403 __u8 log2_interleave_sectors
= ic
->sb
->log2_interleave_sectors
;
404 *area
= data_sector
>> log2_interleave_sectors
;
405 *offset
= (unsigned)data_sector
& ((1U << log2_interleave_sectors
) - 1);
408 *offset
= data_sector
;
412 #define sector_to_block(ic, n) \
414 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
415 (n) >>= (ic)->sb->log2_sectors_per_block; \
418 static __u64
get_metadata_sector_and_offset(struct dm_integrity_c
*ic
, sector_t area
,
419 sector_t offset
, unsigned *metadata_offset
)
424 ms
= area
<< ic
->sb
->log2_interleave_sectors
;
425 if (likely(ic
->log2_metadata_run
>= 0))
426 ms
+= area
<< ic
->log2_metadata_run
;
428 ms
+= area
* ic
->metadata_run
;
429 ms
>>= ic
->log2_buffer_sectors
;
431 sector_to_block(ic
, offset
);
433 if (likely(ic
->log2_tag_size
>= 0)) {
434 ms
+= offset
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
- ic
->log2_tag_size
);
435 mo
= (offset
<< ic
->log2_tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
437 ms
+= (__u64
)offset
* ic
->tag_size
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
);
438 mo
= (offset
* ic
->tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
440 *metadata_offset
= mo
;
444 static sector_t
get_data_sector(struct dm_integrity_c
*ic
, sector_t area
, sector_t offset
)
451 result
= area
<< ic
->sb
->log2_interleave_sectors
;
452 if (likely(ic
->log2_metadata_run
>= 0))
453 result
+= (area
+ 1) << ic
->log2_metadata_run
;
455 result
+= (area
+ 1) * ic
->metadata_run
;
457 result
+= (sector_t
)ic
->initial_sectors
+ offset
;
463 static void wraparound_section(struct dm_integrity_c
*ic
, unsigned *sec_ptr
)
465 if (unlikely(*sec_ptr
>= ic
->journal_sections
))
466 *sec_ptr
-= ic
->journal_sections
;
469 static void sb_set_version(struct dm_integrity_c
*ic
)
471 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
))
472 ic
->sb
->version
= SB_VERSION_4
;
473 else if (ic
->mode
== 'B' || ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
))
474 ic
->sb
->version
= SB_VERSION_3
;
475 else if (ic
->meta_dev
|| ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
476 ic
->sb
->version
= SB_VERSION_2
;
478 ic
->sb
->version
= SB_VERSION_1
;
481 static int sync_rw_sb(struct dm_integrity_c
*ic
, int op
, int op_flags
)
483 struct dm_io_request io_req
;
484 struct dm_io_region io_loc
;
487 io_req
.bi_op_flags
= op_flags
;
488 io_req
.mem
.type
= DM_IO_KMEM
;
489 io_req
.mem
.ptr
.addr
= ic
->sb
;
490 io_req
.notify
.fn
= NULL
;
491 io_req
.client
= ic
->io
;
492 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
493 io_loc
.sector
= ic
->start
;
494 io_loc
.count
= SB_SECTORS
;
496 if (op
== REQ_OP_WRITE
)
499 return dm_io(&io_req
, 1, &io_loc
, NULL
);
502 #define BITMAP_OP_TEST_ALL_SET 0
503 #define BITMAP_OP_TEST_ALL_CLEAR 1
504 #define BITMAP_OP_SET 2
505 #define BITMAP_OP_CLEAR 3
507 static bool block_bitmap_op(struct dm_integrity_c
*ic
, struct page_list
*bitmap
,
508 sector_t sector
, sector_t n_sectors
, int mode
)
510 unsigned long bit
, end_bit
, this_end_bit
, page
, end_page
;
513 if (unlikely(((sector
| n_sectors
) & ((1 << ic
->sb
->log2_sectors_per_block
) - 1)) != 0)) {
514 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
517 ic
->sb
->log2_sectors_per_block
,
518 ic
->log2_blocks_per_bitmap_bit
,
523 if (unlikely(!n_sectors
))
526 bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
527 end_bit
= (sector
+ n_sectors
- 1) >>
528 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
530 page
= bit
/ (PAGE_SIZE
* 8);
531 bit
%= PAGE_SIZE
* 8;
533 end_page
= end_bit
/ (PAGE_SIZE
* 8);
534 end_bit
%= PAGE_SIZE
* 8;
537 if (page
< end_page
) {
538 this_end_bit
= PAGE_SIZE
* 8 - 1;
540 this_end_bit
= end_bit
;
543 data
= lowmem_page_address(bitmap
[page
].page
);
545 if (mode
== BITMAP_OP_TEST_ALL_SET
) {
546 while (bit
<= this_end_bit
) {
547 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
549 if (data
[bit
/ BITS_PER_LONG
] != -1)
551 bit
+= BITS_PER_LONG
;
552 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
555 if (!test_bit(bit
, data
))
559 } else if (mode
== BITMAP_OP_TEST_ALL_CLEAR
) {
560 while (bit
<= this_end_bit
) {
561 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
563 if (data
[bit
/ BITS_PER_LONG
] != 0)
565 bit
+= BITS_PER_LONG
;
566 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
569 if (test_bit(bit
, data
))
573 } else if (mode
== BITMAP_OP_SET
) {
574 while (bit
<= this_end_bit
) {
575 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
577 data
[bit
/ BITS_PER_LONG
] = -1;
578 bit
+= BITS_PER_LONG
;
579 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
582 __set_bit(bit
, data
);
585 } else if (mode
== BITMAP_OP_CLEAR
) {
586 if (!bit
&& this_end_bit
== PAGE_SIZE
* 8 - 1)
588 else while (bit
<= this_end_bit
) {
589 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
591 data
[bit
/ BITS_PER_LONG
] = 0;
592 bit
+= BITS_PER_LONG
;
593 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
596 __clear_bit(bit
, data
);
603 if (unlikely(page
< end_page
)) {
612 static void block_bitmap_copy(struct dm_integrity_c
*ic
, struct page_list
*dst
, struct page_list
*src
)
614 unsigned n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
617 for (i
= 0; i
< n_bitmap_pages
; i
++) {
618 unsigned long *dst_data
= lowmem_page_address(dst
[i
].page
);
619 unsigned long *src_data
= lowmem_page_address(src
[i
].page
);
620 copy_page(dst_data
, src_data
);
624 static struct bitmap_block_status
*sector_to_bitmap_block(struct dm_integrity_c
*ic
, sector_t sector
)
626 unsigned bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
627 unsigned bitmap_block
= bit
/ (BITMAP_BLOCK_SIZE
* 8);
629 BUG_ON(bitmap_block
>= ic
->n_bitmap_blocks
);
630 return &ic
->bbs
[bitmap_block
];
633 static void access_journal_check(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
634 bool e
, const char *function
)
636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
637 unsigned limit
= e
? ic
->journal_section_entries
: ic
->journal_section_sectors
;
639 if (unlikely(section
>= ic
->journal_sections
) ||
640 unlikely(offset
>= limit
)) {
641 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
642 function
, section
, offset
, ic
->journal_sections
, limit
);
648 static void page_list_location(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
649 unsigned *pl_index
, unsigned *pl_offset
)
653 access_journal_check(ic
, section
, offset
, false, "page_list_location");
655 sector
= section
* ic
->journal_section_sectors
+ offset
;
657 *pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
658 *pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
661 static struct journal_sector
*access_page_list(struct dm_integrity_c
*ic
, struct page_list
*pl
,
662 unsigned section
, unsigned offset
, unsigned *n_sectors
)
664 unsigned pl_index
, pl_offset
;
667 page_list_location(ic
, section
, offset
, &pl_index
, &pl_offset
);
670 *n_sectors
= (PAGE_SIZE
- pl_offset
) >> SECTOR_SHIFT
;
672 va
= lowmem_page_address(pl
[pl_index
].page
);
674 return (struct journal_sector
*)(va
+ pl_offset
);
677 static struct journal_sector
*access_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
)
679 return access_page_list(ic
, ic
->journal
, section
, offset
, NULL
);
682 static struct journal_entry
*access_journal_entry(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
684 unsigned rel_sector
, offset
;
685 struct journal_sector
*js
;
687 access_journal_check(ic
, section
, n
, true, "access_journal_entry");
689 rel_sector
= n
% JOURNAL_BLOCK_SECTORS
;
690 offset
= n
/ JOURNAL_BLOCK_SECTORS
;
692 js
= access_journal(ic
, section
, rel_sector
);
693 return (struct journal_entry
*)((char *)js
+ offset
* ic
->journal_entry_size
);
696 static struct journal_sector
*access_journal_data(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
698 n
<<= ic
->sb
->log2_sectors_per_block
;
700 n
+= JOURNAL_BLOCK_SECTORS
;
702 access_journal_check(ic
, section
, n
, false, "access_journal_data");
704 return access_journal(ic
, section
, n
);
707 static void section_mac(struct dm_integrity_c
*ic
, unsigned section
, __u8 result
[JOURNAL_MAC_SIZE
])
709 SHASH_DESC_ON_STACK(desc
, ic
->journal_mac
);
713 desc
->tfm
= ic
->journal_mac
;
715 r
= crypto_shash_init(desc
);
717 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
721 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
722 struct journal_entry
*je
= access_journal_entry(ic
, section
, j
);
723 r
= crypto_shash_update(desc
, (__u8
*)&je
->u
.sector
, sizeof je
->u
.sector
);
725 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
730 size
= crypto_shash_digestsize(ic
->journal_mac
);
732 if (likely(size
<= JOURNAL_MAC_SIZE
)) {
733 r
= crypto_shash_final(desc
, result
);
735 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
738 memset(result
+ size
, 0, JOURNAL_MAC_SIZE
- size
);
740 __u8 digest
[HASH_MAX_DIGESTSIZE
];
742 if (WARN_ON(size
> sizeof(digest
))) {
743 dm_integrity_io_error(ic
, "digest_size", -EINVAL
);
746 r
= crypto_shash_final(desc
, digest
);
748 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
751 memcpy(result
, digest
, JOURNAL_MAC_SIZE
);
756 memset(result
, 0, JOURNAL_MAC_SIZE
);
759 static void rw_section_mac(struct dm_integrity_c
*ic
, unsigned section
, bool wr
)
761 __u8 result
[JOURNAL_MAC_SIZE
];
764 if (!ic
->journal_mac
)
767 section_mac(ic
, section
, result
);
769 for (j
= 0; j
< JOURNAL_BLOCK_SECTORS
; j
++) {
770 struct journal_sector
*js
= access_journal(ic
, section
, j
);
773 memcpy(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
);
775 if (memcmp(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
))
776 dm_integrity_io_error(ic
, "journal mac", -EILSEQ
);
781 static void complete_journal_op(void *context
)
783 struct journal_completion
*comp
= context
;
784 BUG_ON(!atomic_read(&comp
->in_flight
));
785 if (likely(atomic_dec_and_test(&comp
->in_flight
)))
786 complete(&comp
->comp
);
789 static void xor_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
790 unsigned n_sections
, struct journal_completion
*comp
)
792 struct async_submit_ctl submit
;
793 size_t n_bytes
= (size_t)(n_sections
* ic
->journal_section_sectors
) << SECTOR_SHIFT
;
794 unsigned pl_index
, pl_offset
, section_index
;
795 struct page_list
*source_pl
, *target_pl
;
797 if (likely(encrypt
)) {
798 source_pl
= ic
->journal
;
799 target_pl
= ic
->journal_io
;
801 source_pl
= ic
->journal_io
;
802 target_pl
= ic
->journal
;
805 page_list_location(ic
, section
, 0, &pl_index
, &pl_offset
);
807 atomic_add(roundup(pl_offset
+ n_bytes
, PAGE_SIZE
) >> PAGE_SHIFT
, &comp
->in_flight
);
809 init_async_submit(&submit
, ASYNC_TX_XOR_ZERO_DST
, NULL
, complete_journal_op
, comp
, NULL
);
811 section_index
= pl_index
;
815 struct page
*src_pages
[2];
816 struct page
*dst_page
;
818 while (unlikely(pl_index
== section_index
)) {
821 rw_section_mac(ic
, section
, true);
826 page_list_location(ic
, section
, 0, §ion_index
, &dummy
);
829 this_step
= min(n_bytes
, (size_t)PAGE_SIZE
- pl_offset
);
830 dst_page
= target_pl
[pl_index
].page
;
831 src_pages
[0] = source_pl
[pl_index
].page
;
832 src_pages
[1] = ic
->journal_xor
[pl_index
].page
;
834 async_xor(dst_page
, src_pages
, pl_offset
, 2, this_step
, &submit
);
838 n_bytes
-= this_step
;
843 async_tx_issue_pending_all();
846 static void complete_journal_encrypt(struct crypto_async_request
*req
, int err
)
848 struct journal_completion
*comp
= req
->data
;
850 if (likely(err
== -EINPROGRESS
)) {
851 complete(&comp
->ic
->crypto_backoff
);
854 dm_integrity_io_error(comp
->ic
, "asynchronous encrypt", err
);
856 complete_journal_op(comp
);
859 static bool do_crypt(bool encrypt
, struct skcipher_request
*req
, struct journal_completion
*comp
)
862 skcipher_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
863 complete_journal_encrypt
, comp
);
865 r
= crypto_skcipher_encrypt(req
);
867 r
= crypto_skcipher_decrypt(req
);
870 if (likely(r
== -EINPROGRESS
))
872 if (likely(r
== -EBUSY
)) {
873 wait_for_completion(&comp
->ic
->crypto_backoff
);
874 reinit_completion(&comp
->ic
->crypto_backoff
);
877 dm_integrity_io_error(comp
->ic
, "encrypt", r
);
881 static void crypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
882 unsigned n_sections
, struct journal_completion
*comp
)
884 struct scatterlist
**source_sg
;
885 struct scatterlist
**target_sg
;
887 atomic_add(2, &comp
->in_flight
);
889 if (likely(encrypt
)) {
890 source_sg
= ic
->journal_scatterlist
;
891 target_sg
= ic
->journal_io_scatterlist
;
893 source_sg
= ic
->journal_io_scatterlist
;
894 target_sg
= ic
->journal_scatterlist
;
898 struct skcipher_request
*req
;
903 rw_section_mac(ic
, section
, true);
905 req
= ic
->sk_requests
[section
];
906 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
909 memcpy(iv
, iv
+ ivsize
, ivsize
);
911 req
->src
= source_sg
[section
];
912 req
->dst
= target_sg
[section
];
914 if (unlikely(do_crypt(encrypt
, req
, comp
)))
915 atomic_inc(&comp
->in_flight
);
919 } while (n_sections
);
921 atomic_dec(&comp
->in_flight
);
922 complete_journal_op(comp
);
925 static void encrypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
926 unsigned n_sections
, struct journal_completion
*comp
)
929 return xor_journal(ic
, encrypt
, section
, n_sections
, comp
);
931 return crypt_journal(ic
, encrypt
, section
, n_sections
, comp
);
934 static void complete_journal_io(unsigned long error
, void *context
)
936 struct journal_completion
*comp
= context
;
937 if (unlikely(error
!= 0))
938 dm_integrity_io_error(comp
->ic
, "writing journal", -EIO
);
939 complete_journal_op(comp
);
942 static void rw_journal_sectors(struct dm_integrity_c
*ic
, int op
, int op_flags
,
943 unsigned sector
, unsigned n_sectors
, struct journal_completion
*comp
)
945 struct dm_io_request io_req
;
946 struct dm_io_region io_loc
;
947 unsigned pl_index
, pl_offset
;
950 if (unlikely(dm_integrity_failed(ic
))) {
952 complete_journal_io(-1UL, comp
);
956 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
957 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
960 io_req
.bi_op_flags
= op_flags
;
961 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
963 io_req
.mem
.ptr
.pl
= &ic
->journal_io
[pl_index
];
965 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
966 io_req
.mem
.offset
= pl_offset
;
967 if (likely(comp
!= NULL
)) {
968 io_req
.notify
.fn
= complete_journal_io
;
969 io_req
.notify
.context
= comp
;
971 io_req
.notify
.fn
= NULL
;
973 io_req
.client
= ic
->io
;
974 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
975 io_loc
.sector
= ic
->start
+ SB_SECTORS
+ sector
;
976 io_loc
.count
= n_sectors
;
978 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
980 dm_integrity_io_error(ic
, op
== REQ_OP_READ
? "reading journal" : "writing journal", r
);
982 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
983 complete_journal_io(-1UL, comp
);
988 static void rw_journal(struct dm_integrity_c
*ic
, int op
, int op_flags
, unsigned section
,
989 unsigned n_sections
, struct journal_completion
*comp
)
991 unsigned sector
, n_sectors
;
993 sector
= section
* ic
->journal_section_sectors
;
994 n_sectors
= n_sections
* ic
->journal_section_sectors
;
996 rw_journal_sectors(ic
, op
, op_flags
, sector
, n_sectors
, comp
);
999 static void write_journal(struct dm_integrity_c
*ic
, unsigned commit_start
, unsigned commit_sections
)
1001 struct journal_completion io_comp
;
1002 struct journal_completion crypt_comp_1
;
1003 struct journal_completion crypt_comp_2
;
1007 init_completion(&io_comp
.comp
);
1009 if (commit_start
+ commit_sections
<= ic
->journal_sections
) {
1010 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
1011 if (ic
->journal_io
) {
1012 crypt_comp_1
.ic
= ic
;
1013 init_completion(&crypt_comp_1
.comp
);
1014 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1015 encrypt_journal(ic
, true, commit_start
, commit_sections
, &crypt_comp_1
);
1016 wait_for_completion_io(&crypt_comp_1
.comp
);
1018 for (i
= 0; i
< commit_sections
; i
++)
1019 rw_section_mac(ic
, commit_start
+ i
, true);
1021 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, commit_start
,
1022 commit_sections
, &io_comp
);
1025 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(2);
1026 to_end
= ic
->journal_sections
- commit_start
;
1027 if (ic
->journal_io
) {
1028 crypt_comp_1
.ic
= ic
;
1029 init_completion(&crypt_comp_1
.comp
);
1030 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1031 encrypt_journal(ic
, true, commit_start
, to_end
, &crypt_comp_1
);
1032 if (try_wait_for_completion(&crypt_comp_1
.comp
)) {
1033 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1034 reinit_completion(&crypt_comp_1
.comp
);
1035 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1036 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_1
);
1037 wait_for_completion_io(&crypt_comp_1
.comp
);
1039 crypt_comp_2
.ic
= ic
;
1040 init_completion(&crypt_comp_2
.comp
);
1041 crypt_comp_2
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1042 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_2
);
1043 wait_for_completion_io(&crypt_comp_1
.comp
);
1044 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1045 wait_for_completion_io(&crypt_comp_2
.comp
);
1048 for (i
= 0; i
< to_end
; i
++)
1049 rw_section_mac(ic
, commit_start
+ i
, true);
1050 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1051 for (i
= 0; i
< commit_sections
- to_end
; i
++)
1052 rw_section_mac(ic
, i
, true);
1054 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, 0, commit_sections
- to_end
, &io_comp
);
1057 wait_for_completion_io(&io_comp
.comp
);
1060 static void copy_from_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
1061 unsigned n_sectors
, sector_t target
, io_notify_fn fn
, void *data
)
1063 struct dm_io_request io_req
;
1064 struct dm_io_region io_loc
;
1066 unsigned sector
, pl_index
, pl_offset
;
1068 BUG_ON((target
| n_sectors
| offset
) & (unsigned)(ic
->sectors_per_block
- 1));
1070 if (unlikely(dm_integrity_failed(ic
))) {
1075 sector
= section
* ic
->journal_section_sectors
+ JOURNAL_BLOCK_SECTORS
+ offset
;
1077 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
1078 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
1080 io_req
.bi_op
= REQ_OP_WRITE
;
1081 io_req
.bi_op_flags
= 0;
1082 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
1083 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
1084 io_req
.mem
.offset
= pl_offset
;
1085 io_req
.notify
.fn
= fn
;
1086 io_req
.notify
.context
= data
;
1087 io_req
.client
= ic
->io
;
1088 io_loc
.bdev
= ic
->dev
->bdev
;
1089 io_loc
.sector
= target
;
1090 io_loc
.count
= n_sectors
;
1092 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
1099 static bool ranges_overlap(struct dm_integrity_range
*range1
, struct dm_integrity_range
*range2
)
1101 return range1
->logical_sector
< range2
->logical_sector
+ range2
->n_sectors
&&
1102 range1
->logical_sector
+ range1
->n_sectors
> range2
->logical_sector
;
1105 static bool add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
, bool check_waiting
)
1107 struct rb_node
**n
= &ic
->in_progress
.rb_node
;
1108 struct rb_node
*parent
;
1110 BUG_ON((new_range
->logical_sector
| new_range
->n_sectors
) & (unsigned)(ic
->sectors_per_block
- 1));
1112 if (likely(check_waiting
)) {
1113 struct dm_integrity_range
*range
;
1114 list_for_each_entry(range
, &ic
->wait_list
, wait_entry
) {
1115 if (unlikely(ranges_overlap(range
, new_range
)))
1123 struct dm_integrity_range
*range
= container_of(*n
, struct dm_integrity_range
, node
);
1126 if (new_range
->logical_sector
+ new_range
->n_sectors
<= range
->logical_sector
) {
1127 n
= &range
->node
.rb_left
;
1128 } else if (new_range
->logical_sector
>= range
->logical_sector
+ range
->n_sectors
) {
1129 n
= &range
->node
.rb_right
;
1135 rb_link_node(&new_range
->node
, parent
, n
);
1136 rb_insert_color(&new_range
->node
, &ic
->in_progress
);
1141 static void remove_range_unlocked(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1143 rb_erase(&range
->node
, &ic
->in_progress
);
1144 while (unlikely(!list_empty(&ic
->wait_list
))) {
1145 struct dm_integrity_range
*last_range
=
1146 list_first_entry(&ic
->wait_list
, struct dm_integrity_range
, wait_entry
);
1147 struct task_struct
*last_range_task
;
1148 last_range_task
= last_range
->task
;
1149 list_del(&last_range
->wait_entry
);
1150 if (!add_new_range(ic
, last_range
, false)) {
1151 last_range
->task
= last_range_task
;
1152 list_add(&last_range
->wait_entry
, &ic
->wait_list
);
1155 last_range
->waiting
= false;
1156 wake_up_process(last_range_task
);
1160 static void remove_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1162 unsigned long flags
;
1164 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1165 remove_range_unlocked(ic
, range
);
1166 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1169 static void wait_and_add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1171 new_range
->waiting
= true;
1172 list_add_tail(&new_range
->wait_entry
, &ic
->wait_list
);
1173 new_range
->task
= current
;
1175 __set_current_state(TASK_UNINTERRUPTIBLE
);
1176 spin_unlock_irq(&ic
->endio_wait
.lock
);
1178 spin_lock_irq(&ic
->endio_wait
.lock
);
1179 } while (unlikely(new_range
->waiting
));
1182 static void add_new_range_and_wait(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1184 if (unlikely(!add_new_range(ic
, new_range
, true)))
1185 wait_and_add_new_range(ic
, new_range
);
1188 static void init_journal_node(struct journal_node
*node
)
1190 RB_CLEAR_NODE(&node
->node
);
1191 node
->sector
= (sector_t
)-1;
1194 static void add_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
, sector_t sector
)
1196 struct rb_node
**link
;
1197 struct rb_node
*parent
;
1199 node
->sector
= sector
;
1200 BUG_ON(!RB_EMPTY_NODE(&node
->node
));
1202 link
= &ic
->journal_tree_root
.rb_node
;
1206 struct journal_node
*j
;
1208 j
= container_of(parent
, struct journal_node
, node
);
1209 if (sector
< j
->sector
)
1210 link
= &j
->node
.rb_left
;
1212 link
= &j
->node
.rb_right
;
1215 rb_link_node(&node
->node
, parent
, link
);
1216 rb_insert_color(&node
->node
, &ic
->journal_tree_root
);
1219 static void remove_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1221 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1222 rb_erase(&node
->node
, &ic
->journal_tree_root
);
1223 init_journal_node(node
);
1226 #define NOT_FOUND (-1U)
1228 static unsigned find_journal_node(struct dm_integrity_c
*ic
, sector_t sector
, sector_t
*next_sector
)
1230 struct rb_node
*n
= ic
->journal_tree_root
.rb_node
;
1231 unsigned found
= NOT_FOUND
;
1232 *next_sector
= (sector_t
)-1;
1234 struct journal_node
*j
= container_of(n
, struct journal_node
, node
);
1235 if (sector
== j
->sector
) {
1236 found
= j
- ic
->journal_tree
;
1238 if (sector
< j
->sector
) {
1239 *next_sector
= j
->sector
;
1240 n
= j
->node
.rb_left
;
1242 n
= j
->node
.rb_right
;
1249 static bool test_journal_node(struct dm_integrity_c
*ic
, unsigned pos
, sector_t sector
)
1251 struct journal_node
*node
, *next_node
;
1252 struct rb_node
*next
;
1254 if (unlikely(pos
>= ic
->journal_entries
))
1256 node
= &ic
->journal_tree
[pos
];
1257 if (unlikely(RB_EMPTY_NODE(&node
->node
)))
1259 if (unlikely(node
->sector
!= sector
))
1262 next
= rb_next(&node
->node
);
1263 if (unlikely(!next
))
1266 next_node
= container_of(next
, struct journal_node
, node
);
1267 return next_node
->sector
!= sector
;
1270 static bool find_newer_committed_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1272 struct rb_node
*next
;
1273 struct journal_node
*next_node
;
1274 unsigned next_section
;
1276 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1278 next
= rb_next(&node
->node
);
1279 if (unlikely(!next
))
1282 next_node
= container_of(next
, struct journal_node
, node
);
1284 if (next_node
->sector
!= node
->sector
)
1287 next_section
= (unsigned)(next_node
- ic
->journal_tree
) / ic
->journal_section_entries
;
1288 if (next_section
>= ic
->committed_section
&&
1289 next_section
< ic
->committed_section
+ ic
->n_committed_sections
)
1291 if (next_section
+ ic
->journal_sections
< ic
->committed_section
+ ic
->n_committed_sections
)
1301 static int dm_integrity_rw_tag(struct dm_integrity_c
*ic
, unsigned char *tag
, sector_t
*metadata_block
,
1302 unsigned *metadata_offset
, unsigned total_size
, int op
)
1304 #define MAY_BE_FILLER 1
1305 #define MAY_BE_HASH 2
1306 unsigned hash_offset
= 0;
1307 unsigned may_be
= MAY_BE_HASH
| (ic
->discard
? MAY_BE_FILLER
: 0);
1310 unsigned char *data
, *dp
;
1311 struct dm_buffer
*b
;
1315 r
= dm_integrity_failed(ic
);
1319 data
= dm_bufio_read(ic
->bufio
, *metadata_block
, &b
);
1321 return PTR_ERR(data
);
1323 to_copy
= min((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - *metadata_offset
, total_size
);
1324 dp
= data
+ *metadata_offset
;
1325 if (op
== TAG_READ
) {
1326 memcpy(tag
, dp
, to_copy
);
1327 } else if (op
== TAG_WRITE
) {
1328 memcpy(dp
, tag
, to_copy
);
1329 dm_bufio_mark_partial_buffer_dirty(b
, *metadata_offset
, *metadata_offset
+ to_copy
);
1331 /* e.g.: op == TAG_CMP */
1333 if (likely(is_power_of_2(ic
->tag_size
))) {
1334 if (unlikely(memcmp(dp
, tag
, to_copy
)))
1335 if (unlikely(!ic
->discard
) ||
1336 unlikely(memchr_inv(dp
, DISCARD_FILLER
, to_copy
) != NULL
)) {
1344 for (i
= 0; i
< to_copy
; i
++, ts
--) {
1345 if (unlikely(dp
[i
] != tag
[i
]))
1346 may_be
&= ~MAY_BE_HASH
;
1347 if (likely(dp
[i
] != DISCARD_FILLER
))
1348 may_be
&= ~MAY_BE_FILLER
;
1350 if (unlikely(hash_offset
== ic
->tag_size
)) {
1351 if (unlikely(!may_be
)) {
1352 dm_bufio_release(b
);
1356 may_be
= MAY_BE_HASH
| (ic
->discard
? MAY_BE_FILLER
: 0);
1361 dm_bufio_release(b
);
1364 *metadata_offset
+= to_copy
;
1365 if (unlikely(*metadata_offset
== 1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
)) {
1366 (*metadata_block
)++;
1367 *metadata_offset
= 0;
1370 if (unlikely(!is_power_of_2(ic
->tag_size
))) {
1371 hash_offset
= (hash_offset
+ to_copy
) % ic
->tag_size
;
1374 total_size
-= to_copy
;
1375 } while (unlikely(total_size
));
1378 #undef MAY_BE_FILLER
1382 static void dm_integrity_flush_buffers(struct dm_integrity_c
*ic
)
1385 r
= dm_bufio_write_dirty_buffers(ic
->bufio
);
1387 dm_integrity_io_error(ic
, "writing tags", r
);
1390 static void sleep_on_endio_wait(struct dm_integrity_c
*ic
)
1392 DECLARE_WAITQUEUE(wait
, current
);
1393 __add_wait_queue(&ic
->endio_wait
, &wait
);
1394 __set_current_state(TASK_UNINTERRUPTIBLE
);
1395 spin_unlock_irq(&ic
->endio_wait
.lock
);
1397 spin_lock_irq(&ic
->endio_wait
.lock
);
1398 __remove_wait_queue(&ic
->endio_wait
, &wait
);
1401 static void autocommit_fn(struct timer_list
*t
)
1403 struct dm_integrity_c
*ic
= from_timer(ic
, t
, autocommit_timer
);
1405 if (likely(!dm_integrity_failed(ic
)))
1406 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1409 static void schedule_autocommit(struct dm_integrity_c
*ic
)
1411 if (!timer_pending(&ic
->autocommit_timer
))
1412 mod_timer(&ic
->autocommit_timer
, jiffies
+ ic
->autocommit_jiffies
);
1415 static void submit_flush_bio(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1418 unsigned long flags
;
1420 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1421 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1422 bio_list_add(&ic
->flush_bio_list
, bio
);
1423 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1425 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1428 static void do_endio(struct dm_integrity_c
*ic
, struct bio
*bio
)
1430 int r
= dm_integrity_failed(ic
);
1431 if (unlikely(r
) && !bio
->bi_status
)
1432 bio
->bi_status
= errno_to_blk_status(r
);
1433 if (unlikely(ic
->synchronous_mode
) && bio_op(bio
) == REQ_OP_WRITE
) {
1434 unsigned long flags
;
1435 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1436 bio_list_add(&ic
->synchronous_bios
, bio
);
1437 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
1438 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1444 static void do_endio_flush(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1446 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1448 if (unlikely(dio
->fua
) && likely(!bio
->bi_status
) && likely(!dm_integrity_failed(ic
)))
1449 submit_flush_bio(ic
, dio
);
1454 static void dec_in_flight(struct dm_integrity_io
*dio
)
1456 if (atomic_dec_and_test(&dio
->in_flight
)) {
1457 struct dm_integrity_c
*ic
= dio
->ic
;
1460 remove_range(ic
, &dio
->range
);
1462 if (dio
->op
== REQ_OP_WRITE
|| unlikely(dio
->op
== REQ_OP_DISCARD
))
1463 schedule_autocommit(ic
);
1465 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1467 if (unlikely(dio
->bi_status
) && !bio
->bi_status
)
1468 bio
->bi_status
= dio
->bi_status
;
1469 if (likely(!bio
->bi_status
) && unlikely(bio_sectors(bio
) != dio
->range
.n_sectors
)) {
1470 dio
->range
.logical_sector
+= dio
->range
.n_sectors
;
1471 bio_advance(bio
, dio
->range
.n_sectors
<< SECTOR_SHIFT
);
1472 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1473 queue_work(ic
->offload_wq
, &dio
->work
);
1476 do_endio_flush(ic
, dio
);
1480 static void integrity_end_io(struct bio
*bio
)
1482 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1484 dm_bio_restore(&dio
->bio_details
, bio
);
1485 if (bio
->bi_integrity
)
1486 bio
->bi_opf
|= REQ_INTEGRITY
;
1488 if (dio
->completion
)
1489 complete(dio
->completion
);
1494 static void integrity_sector_checksum(struct dm_integrity_c
*ic
, sector_t sector
,
1495 const char *data
, char *result
)
1497 __u64 sector_le
= cpu_to_le64(sector
);
1498 SHASH_DESC_ON_STACK(req
, ic
->internal_hash
);
1500 unsigned digest_size
;
1502 req
->tfm
= ic
->internal_hash
;
1504 r
= crypto_shash_init(req
);
1505 if (unlikely(r
< 0)) {
1506 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
1510 r
= crypto_shash_update(req
, (const __u8
*)§or_le
, sizeof sector_le
);
1511 if (unlikely(r
< 0)) {
1512 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1516 r
= crypto_shash_update(req
, data
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1517 if (unlikely(r
< 0)) {
1518 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1522 r
= crypto_shash_final(req
, result
);
1523 if (unlikely(r
< 0)) {
1524 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
1528 digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1529 if (unlikely(digest_size
< ic
->tag_size
))
1530 memset(result
+ digest_size
, 0, ic
->tag_size
- digest_size
);
1535 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1536 get_random_bytes(result
, ic
->tag_size
);
1539 static void integrity_metadata(struct work_struct
*w
)
1541 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
1542 struct dm_integrity_c
*ic
= dio
->ic
;
1546 if (ic
->internal_hash
) {
1547 struct bvec_iter iter
;
1549 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1550 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1552 unsigned extra_space
= unlikely(digest_size
> ic
->tag_size
) ? digest_size
- ic
->tag_size
: 0;
1553 char checksums_onstack
[max((size_t)HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
1555 unsigned sectors_to_process
;
1556 sector_t save_metadata_block
;
1557 unsigned save_metadata_offset
;
1559 if (unlikely(ic
->mode
== 'R'))
1562 if (likely(dio
->op
!= REQ_OP_DISCARD
))
1563 checksums
= kmalloc((PAGE_SIZE
>> SECTOR_SHIFT
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
+ extra_space
,
1564 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1566 checksums
= kmalloc(PAGE_SIZE
, GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1568 checksums
= checksums_onstack
;
1569 if (WARN_ON(extra_space
&&
1570 digest_size
> sizeof(checksums_onstack
))) {
1576 if (unlikely(dio
->op
== REQ_OP_DISCARD
)) {
1577 sector_t bi_sector
= dio
->bio_details
.bi_iter
.bi_sector
;
1578 unsigned bi_size
= dio
->bio_details
.bi_iter
.bi_size
;
1579 unsigned max_size
= likely(checksums
!= checksums_onstack
) ? PAGE_SIZE
: HASH_MAX_DIGESTSIZE
;
1580 unsigned max_blocks
= max_size
/ ic
->tag_size
;
1581 memset(checksums
, DISCARD_FILLER
, max_size
);
1584 unsigned this_step_blocks
= bi_size
>> (SECTOR_SHIFT
+ ic
->sb
->log2_sectors_per_block
);
1585 this_step_blocks
= min(this_step_blocks
, max_blocks
);
1586 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1587 this_step_blocks
* ic
->tag_size
, TAG_WRITE
);
1589 if (likely(checksums
!= checksums_onstack
))
1594 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1595 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1596 printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1599 bi_size
-= this_step_blocks
<< (SECTOR_SHIFT
+ ic
->sb
->log2_sectors_per_block
);
1600 bi_sector
+= this_step_blocks
<< ic
->sb
->log2_sectors_per_block
;
1603 if (likely(checksums
!= checksums_onstack
))
1608 save_metadata_block
= dio
->metadata_block
;
1609 save_metadata_offset
= dio
->metadata_offset
;
1610 sector
= dio
->range
.logical_sector
;
1611 sectors_to_process
= dio
->range
.n_sectors
;
1613 __bio_for_each_segment(bv
, bio
, iter
, dio
->bio_details
.bi_iter
) {
1615 char *mem
, *checksums_ptr
;
1618 mem
= (char *)kmap_atomic(bv
.bv_page
) + bv
.bv_offset
;
1620 checksums_ptr
= checksums
;
1622 integrity_sector_checksum(ic
, sector
, mem
+ pos
, checksums_ptr
);
1623 checksums_ptr
+= ic
->tag_size
;
1624 sectors_to_process
-= ic
->sectors_per_block
;
1625 pos
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1626 sector
+= ic
->sectors_per_block
;
1627 } while (pos
< bv
.bv_len
&& sectors_to_process
&& checksums
!= checksums_onstack
);
1630 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1631 checksums_ptr
- checksums
, dio
->op
== REQ_OP_READ
? TAG_CMP
: TAG_WRITE
);
1634 char b
[BDEVNAME_SIZE
];
1635 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio
, b
),
1636 (sector
- ((r
+ ic
->tag_size
- 1) / ic
->tag_size
)));
1638 atomic64_inc(&ic
->number_of_mismatches
);
1640 if (likely(checksums
!= checksums_onstack
))
1645 if (!sectors_to_process
)
1648 if (unlikely(pos
< bv
.bv_len
)) {
1649 bv
.bv_offset
+= pos
;
1655 if (likely(checksums
!= checksums_onstack
))
1658 struct bio_integrity_payload
*bip
= dio
->bio_details
.bi_integrity
;
1662 struct bvec_iter iter
;
1663 unsigned data_to_process
= dio
->range
.n_sectors
;
1664 sector_to_block(ic
, data_to_process
);
1665 data_to_process
*= ic
->tag_size
;
1667 bip_for_each_vec(biv
, bip
, iter
) {
1671 BUG_ON(PageHighMem(biv
.bv_page
));
1672 tag
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1673 this_len
= min(biv
.bv_len
, data_to_process
);
1674 r
= dm_integrity_rw_tag(ic
, tag
, &dio
->metadata_block
, &dio
->metadata_offset
,
1675 this_len
, dio
->op
== REQ_OP_READ
? TAG_READ
: TAG_WRITE
);
1678 data_to_process
-= this_len
;
1679 if (!data_to_process
)
1688 dio
->bi_status
= errno_to_blk_status(r
);
1692 static int dm_integrity_map(struct dm_target
*ti
, struct bio
*bio
)
1694 struct dm_integrity_c
*ic
= ti
->private;
1695 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1696 struct bio_integrity_payload
*bip
;
1698 sector_t area
, offset
;
1702 dio
->op
= bio_op(bio
);
1704 if (unlikely(dio
->op
== REQ_OP_DISCARD
)) {
1705 if (ti
->max_io_len
) {
1706 sector_t sec
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1707 unsigned log2_max_io_len
= __fls(ti
->max_io_len
);
1708 sector_t start_boundary
= sec
>> log2_max_io_len
;
1709 sector_t end_boundary
= (sec
+ bio_sectors(bio
) - 1) >> log2_max_io_len
;
1710 if (start_boundary
< end_boundary
) {
1711 sector_t len
= ti
->max_io_len
- (sec
& (ti
->max_io_len
- 1));
1712 dm_accept_partial_bio(bio
, len
);
1717 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1718 submit_flush_bio(ic
, dio
);
1719 return DM_MAPIO_SUBMITTED
;
1722 dio
->range
.logical_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1723 dio
->fua
= dio
->op
== REQ_OP_WRITE
&& bio
->bi_opf
& REQ_FUA
;
1724 if (unlikely(dio
->fua
)) {
1726 * Don't pass down the FUA flag because we have to flush
1727 * disk cache anyway.
1729 bio
->bi_opf
&= ~REQ_FUA
;
1731 if (unlikely(dio
->range
.logical_sector
+ bio_sectors(bio
) > ic
->provided_data_sectors
)) {
1732 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1733 dio
->range
.logical_sector
, bio_sectors(bio
),
1734 ic
->provided_data_sectors
);
1735 return DM_MAPIO_KILL
;
1737 if (unlikely((dio
->range
.logical_sector
| bio_sectors(bio
)) & (unsigned)(ic
->sectors_per_block
- 1))) {
1738 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1739 ic
->sectors_per_block
,
1740 dio
->range
.logical_sector
, bio_sectors(bio
));
1741 return DM_MAPIO_KILL
;
1744 if (ic
->sectors_per_block
> 1 && likely(dio
->op
!= REQ_OP_DISCARD
)) {
1745 struct bvec_iter iter
;
1747 bio_for_each_segment(bv
, bio
, iter
) {
1748 if (unlikely(bv
.bv_len
& ((ic
->sectors_per_block
<< SECTOR_SHIFT
) - 1))) {
1749 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1750 bv
.bv_offset
, bv
.bv_len
, ic
->sectors_per_block
);
1751 return DM_MAPIO_KILL
;
1756 bip
= bio_integrity(bio
);
1757 if (!ic
->internal_hash
) {
1759 unsigned wanted_tag_size
= bio_sectors(bio
) >> ic
->sb
->log2_sectors_per_block
;
1760 if (ic
->log2_tag_size
>= 0)
1761 wanted_tag_size
<<= ic
->log2_tag_size
;
1763 wanted_tag_size
*= ic
->tag_size
;
1764 if (unlikely(wanted_tag_size
!= bip
->bip_iter
.bi_size
)) {
1765 DMERR("Invalid integrity data size %u, expected %u",
1766 bip
->bip_iter
.bi_size
, wanted_tag_size
);
1767 return DM_MAPIO_KILL
;
1771 if (unlikely(bip
!= NULL
)) {
1772 DMERR("Unexpected integrity data when using internal hash");
1773 return DM_MAPIO_KILL
;
1777 if (unlikely(ic
->mode
== 'R') && unlikely(dio
->op
!= REQ_OP_READ
))
1778 return DM_MAPIO_KILL
;
1780 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1781 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1782 bio
->bi_iter
.bi_sector
= get_data_sector(ic
, area
, offset
);
1784 dm_integrity_map_continue(dio
, true);
1785 return DM_MAPIO_SUBMITTED
;
1788 static bool __journal_read_write(struct dm_integrity_io
*dio
, struct bio
*bio
,
1789 unsigned journal_section
, unsigned journal_entry
)
1791 struct dm_integrity_c
*ic
= dio
->ic
;
1792 sector_t logical_sector
;
1795 logical_sector
= dio
->range
.logical_sector
;
1796 n_sectors
= dio
->range
.n_sectors
;
1798 struct bio_vec bv
= bio_iovec(bio
);
1801 if (unlikely(bv
.bv_len
>> SECTOR_SHIFT
> n_sectors
))
1802 bv
.bv_len
= n_sectors
<< SECTOR_SHIFT
;
1803 n_sectors
-= bv
.bv_len
>> SECTOR_SHIFT
;
1804 bio_advance_iter(bio
, &bio
->bi_iter
, bv
.bv_len
);
1806 mem
= kmap_atomic(bv
.bv_page
);
1807 if (likely(dio
->op
== REQ_OP_WRITE
))
1808 flush_dcache_page(bv
.bv_page
);
1811 struct journal_entry
*je
= access_journal_entry(ic
, journal_section
, journal_entry
);
1813 if (unlikely(dio
->op
== REQ_OP_READ
)) {
1814 struct journal_sector
*js
;
1818 if (unlikely(journal_entry_is_inprogress(je
))) {
1819 flush_dcache_page(bv
.bv_page
);
1822 __io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
1826 BUG_ON(journal_entry_get_sector(je
) != logical_sector
);
1827 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1828 mem_ptr
= mem
+ bv
.bv_offset
;
1831 memcpy(mem_ptr
, js
, JOURNAL_SECTOR_DATA
);
1832 *(commit_id_t
*)(mem_ptr
+ JOURNAL_SECTOR_DATA
) = je
->last_bytes
[s
];
1834 mem_ptr
+= 1 << SECTOR_SHIFT
;
1835 } while (++s
< ic
->sectors_per_block
);
1836 #ifdef INTERNAL_VERIFY
1837 if (ic
->internal_hash
) {
1838 char checksums_onstack
[max((size_t)HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
1840 integrity_sector_checksum(ic
, logical_sector
, mem
+ bv
.bv_offset
, checksums_onstack
);
1841 if (unlikely(memcmp(checksums_onstack
, journal_entry_tag(ic
, je
), ic
->tag_size
))) {
1842 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1849 if (!ic
->internal_hash
) {
1850 struct bio_integrity_payload
*bip
= bio_integrity(bio
);
1851 unsigned tag_todo
= ic
->tag_size
;
1852 char *tag_ptr
= journal_entry_tag(ic
, je
);
1855 struct bio_vec biv
= bvec_iter_bvec(bip
->bip_vec
, bip
->bip_iter
);
1856 unsigned tag_now
= min(biv
.bv_len
, tag_todo
);
1858 BUG_ON(PageHighMem(biv
.bv_page
));
1859 tag_addr
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1860 if (likely(dio
->op
== REQ_OP_WRITE
))
1861 memcpy(tag_ptr
, tag_addr
, tag_now
);
1863 memcpy(tag_addr
, tag_ptr
, tag_now
);
1864 bvec_iter_advance(bip
->bip_vec
, &bip
->bip_iter
, tag_now
);
1866 tag_todo
-= tag_now
;
1867 } while (unlikely(tag_todo
)); else {
1868 if (likely(dio
->op
== REQ_OP_WRITE
))
1869 memset(tag_ptr
, 0, tag_todo
);
1873 if (likely(dio
->op
== REQ_OP_WRITE
)) {
1874 struct journal_sector
*js
;
1877 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1878 memcpy(js
, mem
+ bv
.bv_offset
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1882 je
->last_bytes
[s
] = js
[s
].commit_id
;
1883 } while (++s
< ic
->sectors_per_block
);
1885 if (ic
->internal_hash
) {
1886 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1887 if (unlikely(digest_size
> ic
->tag_size
)) {
1888 char checksums_onstack
[HASH_MAX_DIGESTSIZE
];
1889 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, checksums_onstack
);
1890 memcpy(journal_entry_tag(ic
, je
), checksums_onstack
, ic
->tag_size
);
1892 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, journal_entry_tag(ic
, je
));
1895 journal_entry_set_sector(je
, logical_sector
);
1897 logical_sector
+= ic
->sectors_per_block
;
1900 if (unlikely(journal_entry
== ic
->journal_section_entries
)) {
1903 wraparound_section(ic
, &journal_section
);
1906 bv
.bv_offset
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1907 } while (bv
.bv_len
-= ic
->sectors_per_block
<< SECTOR_SHIFT
);
1909 if (unlikely(dio
->op
== REQ_OP_READ
))
1910 flush_dcache_page(bv
.bv_page
);
1912 } while (n_sectors
);
1914 if (likely(dio
->op
== REQ_OP_WRITE
)) {
1916 if (unlikely(waitqueue_active(&ic
->copy_to_journal_wait
)))
1917 wake_up(&ic
->copy_to_journal_wait
);
1918 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
) {
1919 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1921 schedule_autocommit(ic
);
1924 remove_range(ic
, &dio
->range
);
1927 if (unlikely(bio
->bi_iter
.bi_size
)) {
1928 sector_t area
, offset
;
1930 dio
->range
.logical_sector
= logical_sector
;
1931 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1932 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1939 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
)
1941 struct dm_integrity_c
*ic
= dio
->ic
;
1942 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1943 unsigned journal_section
, journal_entry
;
1944 unsigned journal_read_pos
;
1945 struct completion read_comp
;
1946 bool discard_retried
= false;
1947 bool need_sync_io
= ic
->internal_hash
&& dio
->op
== REQ_OP_READ
;
1948 if (unlikely(dio
->op
== REQ_OP_DISCARD
) && ic
->mode
!= 'D')
1949 need_sync_io
= true;
1951 if (need_sync_io
&& from_map
) {
1952 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1953 queue_work(ic
->offload_wq
, &dio
->work
);
1958 spin_lock_irq(&ic
->endio_wait
.lock
);
1960 if (unlikely(dm_integrity_failed(ic
))) {
1961 spin_unlock_irq(&ic
->endio_wait
.lock
);
1965 dio
->range
.n_sectors
= bio_sectors(bio
);
1966 journal_read_pos
= NOT_FOUND
;
1967 if (ic
->mode
== 'J' && likely(dio
->op
!= REQ_OP_DISCARD
)) {
1968 if (dio
->op
== REQ_OP_WRITE
) {
1969 unsigned next_entry
, i
, pos
;
1970 unsigned ws
, we
, range_sectors
;
1972 dio
->range
.n_sectors
= min(dio
->range
.n_sectors
,
1973 (sector_t
)ic
->free_sectors
<< ic
->sb
->log2_sectors_per_block
);
1974 if (unlikely(!dio
->range
.n_sectors
)) {
1976 goto offload_to_thread
;
1977 sleep_on_endio_wait(ic
);
1980 range_sectors
= dio
->range
.n_sectors
>> ic
->sb
->log2_sectors_per_block
;
1981 ic
->free_sectors
-= range_sectors
;
1982 journal_section
= ic
->free_section
;
1983 journal_entry
= ic
->free_section_entry
;
1985 next_entry
= ic
->free_section_entry
+ range_sectors
;
1986 ic
->free_section_entry
= next_entry
% ic
->journal_section_entries
;
1987 ic
->free_section
+= next_entry
/ ic
->journal_section_entries
;
1988 ic
->n_uncommitted_sections
+= next_entry
/ ic
->journal_section_entries
;
1989 wraparound_section(ic
, &ic
->free_section
);
1991 pos
= journal_section
* ic
->journal_section_entries
+ journal_entry
;
1992 ws
= journal_section
;
1996 struct journal_entry
*je
;
1998 add_journal_node(ic
, &ic
->journal_tree
[pos
], dio
->range
.logical_sector
+ i
);
2000 if (unlikely(pos
>= ic
->journal_entries
))
2003 je
= access_journal_entry(ic
, ws
, we
);
2004 BUG_ON(!journal_entry_is_unused(je
));
2005 journal_entry_set_inprogress(je
);
2007 if (unlikely(we
== ic
->journal_section_entries
)) {
2010 wraparound_section(ic
, &ws
);
2012 } while ((i
+= ic
->sectors_per_block
) < dio
->range
.n_sectors
);
2014 spin_unlock_irq(&ic
->endio_wait
.lock
);
2015 goto journal_read_write
;
2017 sector_t next_sector
;
2018 journal_read_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2019 if (likely(journal_read_pos
== NOT_FOUND
)) {
2020 if (unlikely(dio
->range
.n_sectors
> next_sector
- dio
->range
.logical_sector
))
2021 dio
->range
.n_sectors
= next_sector
- dio
->range
.logical_sector
;
2024 unsigned jp
= journal_read_pos
+ 1;
2025 for (i
= ic
->sectors_per_block
; i
< dio
->range
.n_sectors
; i
+= ic
->sectors_per_block
, jp
++) {
2026 if (!test_journal_node(ic
, jp
, dio
->range
.logical_sector
+ i
))
2029 dio
->range
.n_sectors
= i
;
2033 if (unlikely(!add_new_range(ic
, &dio
->range
, true))) {
2035 * We must not sleep in the request routine because it could
2036 * stall bios on current->bio_list.
2037 * So, we offload the bio to a workqueue if we have to sleep.
2041 spin_unlock_irq(&ic
->endio_wait
.lock
);
2042 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2043 queue_work(ic
->wait_wq
, &dio
->work
);
2046 if (journal_read_pos
!= NOT_FOUND
)
2047 dio
->range
.n_sectors
= ic
->sectors_per_block
;
2048 wait_and_add_new_range(ic
, &dio
->range
);
2050 * wait_and_add_new_range drops the spinlock, so the journal
2051 * may have been changed arbitrarily. We need to recheck.
2052 * To simplify the code, we restrict I/O size to just one block.
2054 if (journal_read_pos
!= NOT_FOUND
) {
2055 sector_t next_sector
;
2056 unsigned new_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2057 if (unlikely(new_pos
!= journal_read_pos
)) {
2058 remove_range_unlocked(ic
, &dio
->range
);
2063 if (ic
->mode
== 'J' && likely(dio
->op
== REQ_OP_DISCARD
) && !discard_retried
) {
2064 sector_t next_sector
;
2065 unsigned new_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2066 if (unlikely(new_pos
!= NOT_FOUND
) ||
2067 unlikely(next_sector
< dio
->range
.logical_sector
- dio
->range
.n_sectors
)) {
2068 remove_range_unlocked(ic
, &dio
->range
);
2069 spin_unlock_irq(&ic
->endio_wait
.lock
);
2070 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2071 flush_workqueue(ic
->commit_wq
);
2072 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2073 flush_workqueue(ic
->writer_wq
);
2074 discard_retried
= true;
2078 spin_unlock_irq(&ic
->endio_wait
.lock
);
2080 if (unlikely(journal_read_pos
!= NOT_FOUND
)) {
2081 journal_section
= journal_read_pos
/ ic
->journal_section_entries
;
2082 journal_entry
= journal_read_pos
% ic
->journal_section_entries
;
2083 goto journal_read_write
;
2086 if (ic
->mode
== 'B' && (dio
->op
== REQ_OP_WRITE
|| unlikely(dio
->op
== REQ_OP_DISCARD
))) {
2087 if (!block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2088 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
2089 struct bitmap_block_status
*bbs
;
2091 bbs
= sector_to_bitmap_block(ic
, dio
->range
.logical_sector
);
2092 spin_lock(&bbs
->bio_queue_lock
);
2093 bio_list_add(&bbs
->bio_queue
, bio
);
2094 spin_unlock(&bbs
->bio_queue_lock
);
2095 queue_work(ic
->writer_wq
, &bbs
->work
);
2100 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(2);
2103 init_completion(&read_comp
);
2104 dio
->completion
= &read_comp
;
2106 dio
->completion
= NULL
;
2108 dm_bio_record(&dio
->bio_details
, bio
);
2109 bio_set_dev(bio
, ic
->dev
->bdev
);
2110 bio
->bi_integrity
= NULL
;
2111 bio
->bi_opf
&= ~REQ_INTEGRITY
;
2112 bio
->bi_end_io
= integrity_end_io
;
2113 bio
->bi_iter
.bi_size
= dio
->range
.n_sectors
<< SECTOR_SHIFT
;
2115 if (unlikely(dio
->op
== REQ_OP_DISCARD
) && likely(ic
->mode
!= 'D')) {
2116 integrity_metadata(&dio
->work
);
2117 dm_integrity_flush_buffers(ic
);
2119 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(1);
2120 dio
->completion
= NULL
;
2122 generic_make_request(bio
);
2127 generic_make_request(bio
);
2130 wait_for_completion_io(&read_comp
);
2131 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
2132 dio
->range
.logical_sector
+ dio
->range
.n_sectors
> le64_to_cpu(ic
->sb
->recalc_sector
))
2134 if (ic
->mode
== 'B') {
2135 if (!block_bitmap_op(ic
, ic
->recalc_bitmap
, dio
->range
.logical_sector
,
2136 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))
2140 if (likely(!bio
->bi_status
))
2141 integrity_metadata(&dio
->work
);
2147 INIT_WORK(&dio
->work
, integrity_metadata
);
2148 queue_work(ic
->metadata_wq
, &dio
->work
);
2154 if (unlikely(__journal_read_write(dio
, bio
, journal_section
, journal_entry
)))
2157 do_endio_flush(ic
, dio
);
2161 static void integrity_bio_wait(struct work_struct
*w
)
2163 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
2165 dm_integrity_map_continue(dio
, false);
2168 static void pad_uncommitted(struct dm_integrity_c
*ic
)
2170 if (ic
->free_section_entry
) {
2171 ic
->free_sectors
-= ic
->journal_section_entries
- ic
->free_section_entry
;
2172 ic
->free_section_entry
= 0;
2174 wraparound_section(ic
, &ic
->free_section
);
2175 ic
->n_uncommitted_sections
++;
2177 if (WARN_ON(ic
->journal_sections
* ic
->journal_section_entries
!=
2178 (ic
->n_uncommitted_sections
+ ic
->n_committed_sections
) *
2179 ic
->journal_section_entries
+ ic
->free_sectors
)) {
2180 DMCRIT("journal_sections %u, journal_section_entries %u, "
2181 "n_uncommitted_sections %u, n_committed_sections %u, "
2182 "journal_section_entries %u, free_sectors %u",
2183 ic
->journal_sections
, ic
->journal_section_entries
,
2184 ic
->n_uncommitted_sections
, ic
->n_committed_sections
,
2185 ic
->journal_section_entries
, ic
->free_sectors
);
2189 static void integrity_commit(struct work_struct
*w
)
2191 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, commit_work
);
2192 unsigned commit_start
, commit_sections
;
2194 struct bio
*flushes
;
2196 del_timer(&ic
->autocommit_timer
);
2198 spin_lock_irq(&ic
->endio_wait
.lock
);
2199 flushes
= bio_list_get(&ic
->flush_bio_list
);
2200 if (unlikely(ic
->mode
!= 'J')) {
2201 spin_unlock_irq(&ic
->endio_wait
.lock
);
2202 dm_integrity_flush_buffers(ic
);
2203 goto release_flush_bios
;
2206 pad_uncommitted(ic
);
2207 commit_start
= ic
->uncommitted_section
;
2208 commit_sections
= ic
->n_uncommitted_sections
;
2209 spin_unlock_irq(&ic
->endio_wait
.lock
);
2211 if (!commit_sections
)
2212 goto release_flush_bios
;
2215 for (n
= 0; n
< commit_sections
; n
++) {
2216 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2217 struct journal_entry
*je
;
2218 je
= access_journal_entry(ic
, i
, j
);
2219 io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
2221 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2222 struct journal_sector
*js
;
2223 js
= access_journal(ic
, i
, j
);
2224 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, ic
->commit_seq
);
2227 if (unlikely(i
>= ic
->journal_sections
))
2228 ic
->commit_seq
= next_commit_seq(ic
->commit_seq
);
2229 wraparound_section(ic
, &i
);
2233 write_journal(ic
, commit_start
, commit_sections
);
2235 spin_lock_irq(&ic
->endio_wait
.lock
);
2236 ic
->uncommitted_section
+= commit_sections
;
2237 wraparound_section(ic
, &ic
->uncommitted_section
);
2238 ic
->n_uncommitted_sections
-= commit_sections
;
2239 ic
->n_committed_sections
+= commit_sections
;
2240 spin_unlock_irq(&ic
->endio_wait
.lock
);
2242 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
)
2243 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2247 struct bio
*next
= flushes
->bi_next
;
2248 flushes
->bi_next
= NULL
;
2249 do_endio(ic
, flushes
);
2254 static void complete_copy_from_journal(unsigned long error
, void *context
)
2256 struct journal_io
*io
= context
;
2257 struct journal_completion
*comp
= io
->comp
;
2258 struct dm_integrity_c
*ic
= comp
->ic
;
2259 remove_range(ic
, &io
->range
);
2260 mempool_free(io
, &ic
->journal_io_mempool
);
2261 if (unlikely(error
!= 0))
2262 dm_integrity_io_error(ic
, "copying from journal", -EIO
);
2263 complete_journal_op(comp
);
2266 static void restore_last_bytes(struct dm_integrity_c
*ic
, struct journal_sector
*js
,
2267 struct journal_entry
*je
)
2271 js
->commit_id
= je
->last_bytes
[s
];
2273 } while (++s
< ic
->sectors_per_block
);
2276 static void do_journal_write(struct dm_integrity_c
*ic
, unsigned write_start
,
2277 unsigned write_sections
, bool from_replay
)
2280 struct journal_completion comp
;
2281 struct blk_plug plug
;
2283 blk_start_plug(&plug
);
2286 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
2287 init_completion(&comp
.comp
);
2290 for (n
= 0; n
< write_sections
; n
++, i
++, wraparound_section(ic
, &i
)) {
2291 #ifndef INTERNAL_VERIFY
2292 if (unlikely(from_replay
))
2294 rw_section_mac(ic
, i
, false);
2295 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2296 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2297 sector_t sec
, area
, offset
;
2298 unsigned k
, l
, next_loop
;
2299 sector_t metadata_block
;
2300 unsigned metadata_offset
;
2301 struct journal_io
*io
;
2303 if (journal_entry_is_unused(je
))
2305 BUG_ON(unlikely(journal_entry_is_inprogress(je
)) && !from_replay
);
2306 sec
= journal_entry_get_sector(je
);
2307 if (unlikely(from_replay
)) {
2308 if (unlikely(sec
& (unsigned)(ic
->sectors_per_block
- 1))) {
2309 dm_integrity_io_error(ic
, "invalid sector in journal", -EIO
);
2310 sec
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
2313 if (unlikely(sec
>= ic
->provided_data_sectors
))
2315 get_area_and_offset(ic
, sec
, &area
, &offset
);
2316 restore_last_bytes(ic
, access_journal_data(ic
, i
, j
), je
);
2317 for (k
= j
+ 1; k
< ic
->journal_section_entries
; k
++) {
2318 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
);
2319 sector_t sec2
, area2
, offset2
;
2320 if (journal_entry_is_unused(je2
))
2322 BUG_ON(unlikely(journal_entry_is_inprogress(je2
)) && !from_replay
);
2323 sec2
= journal_entry_get_sector(je2
);
2324 if (unlikely(sec2
>= ic
->provided_data_sectors
))
2326 get_area_and_offset(ic
, sec2
, &area2
, &offset2
);
2327 if (area2
!= area
|| offset2
!= offset
+ ((k
- j
) << ic
->sb
->log2_sectors_per_block
))
2329 restore_last_bytes(ic
, access_journal_data(ic
, i
, k
), je2
);
2333 io
= mempool_alloc(&ic
->journal_io_mempool
, GFP_NOIO
);
2335 io
->range
.logical_sector
= sec
;
2336 io
->range
.n_sectors
= (k
- j
) << ic
->sb
->log2_sectors_per_block
;
2338 spin_lock_irq(&ic
->endio_wait
.lock
);
2339 add_new_range_and_wait(ic
, &io
->range
);
2341 if (likely(!from_replay
)) {
2342 struct journal_node
*section_node
= &ic
->journal_tree
[i
* ic
->journal_section_entries
];
2344 /* don't write if there is newer committed sector */
2345 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[j
])) {
2346 struct journal_entry
*je2
= access_journal_entry(ic
, i
, j
);
2348 journal_entry_set_unused(je2
);
2349 remove_journal_node(ic
, §ion_node
[j
]);
2351 sec
+= ic
->sectors_per_block
;
2352 offset
+= ic
->sectors_per_block
;
2354 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[k
- 1])) {
2355 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
- 1);
2357 journal_entry_set_unused(je2
);
2358 remove_journal_node(ic
, §ion_node
[k
- 1]);
2362 remove_range_unlocked(ic
, &io
->range
);
2363 spin_unlock_irq(&ic
->endio_wait
.lock
);
2364 mempool_free(io
, &ic
->journal_io_mempool
);
2367 for (l
= j
; l
< k
; l
++) {
2368 remove_journal_node(ic
, §ion_node
[l
]);
2371 spin_unlock_irq(&ic
->endio_wait
.lock
);
2373 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
2374 for (l
= j
; l
< k
; l
++) {
2376 struct journal_entry
*je2
= access_journal_entry(ic
, i
, l
);
2379 #ifndef INTERNAL_VERIFY
2380 unlikely(from_replay
) &&
2382 ic
->internal_hash
) {
2383 char test_tag
[max_t(size_t, HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
2385 integrity_sector_checksum(ic
, sec
+ ((l
- j
) << ic
->sb
->log2_sectors_per_block
),
2386 (char *)access_journal_data(ic
, i
, l
), test_tag
);
2387 if (unlikely(memcmp(test_tag
, journal_entry_tag(ic
, je2
), ic
->tag_size
)))
2388 dm_integrity_io_error(ic
, "tag mismatch when replaying journal", -EILSEQ
);
2391 journal_entry_set_unused(je2
);
2392 r
= dm_integrity_rw_tag(ic
, journal_entry_tag(ic
, je2
), &metadata_block
, &metadata_offset
,
2393 ic
->tag_size
, TAG_WRITE
);
2395 dm_integrity_io_error(ic
, "reading tags", r
);
2399 atomic_inc(&comp
.in_flight
);
2400 copy_from_journal(ic
, i
, j
<< ic
->sb
->log2_sectors_per_block
,
2401 (k
- j
) << ic
->sb
->log2_sectors_per_block
,
2402 get_data_sector(ic
, area
, offset
),
2403 complete_copy_from_journal
, io
);
2409 dm_bufio_write_dirty_buffers_async(ic
->bufio
);
2411 blk_finish_plug(&plug
);
2413 complete_journal_op(&comp
);
2414 wait_for_completion_io(&comp
.comp
);
2416 dm_integrity_flush_buffers(ic
);
2419 static void integrity_writer(struct work_struct
*w
)
2421 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, writer_work
);
2422 unsigned write_start
, write_sections
;
2424 unsigned prev_free_sectors
;
2426 /* the following test is not needed, but it tests the replay code */
2427 if (unlikely(dm_suspended(ic
->ti
)) && !ic
->meta_dev
)
2430 spin_lock_irq(&ic
->endio_wait
.lock
);
2431 write_start
= ic
->committed_section
;
2432 write_sections
= ic
->n_committed_sections
;
2433 spin_unlock_irq(&ic
->endio_wait
.lock
);
2435 if (!write_sections
)
2438 do_journal_write(ic
, write_start
, write_sections
, false);
2440 spin_lock_irq(&ic
->endio_wait
.lock
);
2442 ic
->committed_section
+= write_sections
;
2443 wraparound_section(ic
, &ic
->committed_section
);
2444 ic
->n_committed_sections
-= write_sections
;
2446 prev_free_sectors
= ic
->free_sectors
;
2447 ic
->free_sectors
+= write_sections
* ic
->journal_section_entries
;
2448 if (unlikely(!prev_free_sectors
))
2449 wake_up_locked(&ic
->endio_wait
);
2451 spin_unlock_irq(&ic
->endio_wait
.lock
);
2454 static void recalc_write_super(struct dm_integrity_c
*ic
)
2458 dm_integrity_flush_buffers(ic
);
2459 if (dm_integrity_failed(ic
))
2462 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, 0);
2464 dm_integrity_io_error(ic
, "writing superblock", r
);
2467 static void integrity_recalc(struct work_struct
*w
)
2469 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, recalc_work
);
2470 struct dm_integrity_range range
;
2471 struct dm_io_request io_req
;
2472 struct dm_io_region io_loc
;
2473 sector_t area
, offset
;
2474 sector_t metadata_block
;
2475 unsigned metadata_offset
;
2476 sector_t logical_sector
, n_sectors
;
2480 unsigned super_counter
= 0;
2482 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic
->sb
->recalc_sector
));
2484 spin_lock_irq(&ic
->endio_wait
.lock
);
2488 if (unlikely(dm_suspended(ic
->ti
)))
2491 range
.logical_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
2492 if (unlikely(range
.logical_sector
>= ic
->provided_data_sectors
)) {
2493 if (ic
->mode
== 'B') {
2494 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2495 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
2500 get_area_and_offset(ic
, range
.logical_sector
, &area
, &offset
);
2501 range
.n_sectors
= min((sector_t
)RECALC_SECTORS
, ic
->provided_data_sectors
- range
.logical_sector
);
2503 range
.n_sectors
= min(range
.n_sectors
, ((sector_t
)1U << ic
->sb
->log2_interleave_sectors
) - (unsigned)offset
);
2505 add_new_range_and_wait(ic
, &range
);
2506 spin_unlock_irq(&ic
->endio_wait
.lock
);
2507 logical_sector
= range
.logical_sector
;
2508 n_sectors
= range
.n_sectors
;
2510 if (ic
->mode
== 'B') {
2511 if (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
, n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2512 goto advance_and_next
;
2514 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
,
2515 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2516 logical_sector
+= ic
->sectors_per_block
;
2517 n_sectors
-= ic
->sectors_per_block
;
2520 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
+ n_sectors
- ic
->sectors_per_block
,
2521 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2522 n_sectors
-= ic
->sectors_per_block
;
2525 get_area_and_offset(ic
, logical_sector
, &area
, &offset
);
2528 DEBUG_print("recalculating: %llx, %llx\n", logical_sector
, n_sectors
);
2530 if (unlikely(++super_counter
== RECALC_WRITE_SUPER
)) {
2531 recalc_write_super(ic
);
2532 if (ic
->mode
== 'B') {
2533 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
2538 if (unlikely(dm_integrity_failed(ic
)))
2541 io_req
.bi_op
= REQ_OP_READ
;
2542 io_req
.bi_op_flags
= 0;
2543 io_req
.mem
.type
= DM_IO_VMA
;
2544 io_req
.mem
.ptr
.addr
= ic
->recalc_buffer
;
2545 io_req
.notify
.fn
= NULL
;
2546 io_req
.client
= ic
->io
;
2547 io_loc
.bdev
= ic
->dev
->bdev
;
2548 io_loc
.sector
= get_data_sector(ic
, area
, offset
);
2549 io_loc
.count
= n_sectors
;
2551 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
2553 dm_integrity_io_error(ic
, "reading data", r
);
2557 t
= ic
->recalc_tags
;
2558 for (i
= 0; i
< n_sectors
; i
+= ic
->sectors_per_block
) {
2559 integrity_sector_checksum(ic
, logical_sector
+ i
, ic
->recalc_buffer
+ (i
<< SECTOR_SHIFT
), t
);
2563 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
2565 r
= dm_integrity_rw_tag(ic
, ic
->recalc_tags
, &metadata_block
, &metadata_offset
, t
- ic
->recalc_tags
, TAG_WRITE
);
2567 dm_integrity_io_error(ic
, "writing tags", r
);
2574 spin_lock_irq(&ic
->endio_wait
.lock
);
2575 remove_range_unlocked(ic
, &range
);
2576 ic
->sb
->recalc_sector
= cpu_to_le64(range
.logical_sector
+ range
.n_sectors
);
2580 remove_range(ic
, &range
);
2584 spin_unlock_irq(&ic
->endio_wait
.lock
);
2586 recalc_write_super(ic
);
2589 static void bitmap_block_work(struct work_struct
*w
)
2591 struct bitmap_block_status
*bbs
= container_of(w
, struct bitmap_block_status
, work
);
2592 struct dm_integrity_c
*ic
= bbs
->ic
;
2594 struct bio_list bio_queue
;
2595 struct bio_list waiting
;
2597 bio_list_init(&waiting
);
2599 spin_lock(&bbs
->bio_queue_lock
);
2600 bio_queue
= bbs
->bio_queue
;
2601 bio_list_init(&bbs
->bio_queue
);
2602 spin_unlock(&bbs
->bio_queue_lock
);
2604 while ((bio
= bio_list_pop(&bio_queue
))) {
2605 struct dm_integrity_io
*dio
;
2607 dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
2609 if (block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2610 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
2611 remove_range(ic
, &dio
->range
);
2612 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2613 queue_work(ic
->offload_wq
, &dio
->work
);
2615 block_bitmap_op(ic
, ic
->journal
, dio
->range
.logical_sector
,
2616 dio
->range
.n_sectors
, BITMAP_OP_SET
);
2617 bio_list_add(&waiting
, bio
);
2621 if (bio_list_empty(&waiting
))
2624 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
,
2625 bbs
->idx
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
),
2626 BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
, NULL
);
2628 while ((bio
= bio_list_pop(&waiting
))) {
2629 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
2631 block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2632 dio
->range
.n_sectors
, BITMAP_OP_SET
);
2634 remove_range(ic
, &dio
->range
);
2635 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2636 queue_work(ic
->offload_wq
, &dio
->work
);
2639 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
2642 static void bitmap_flush_work(struct work_struct
*work
)
2644 struct dm_integrity_c
*ic
= container_of(work
, struct dm_integrity_c
, bitmap_flush_work
.work
);
2645 struct dm_integrity_range range
;
2646 unsigned long limit
;
2649 dm_integrity_flush_buffers(ic
);
2651 range
.logical_sector
= 0;
2652 range
.n_sectors
= ic
->provided_data_sectors
;
2654 spin_lock_irq(&ic
->endio_wait
.lock
);
2655 add_new_range_and_wait(ic
, &range
);
2656 spin_unlock_irq(&ic
->endio_wait
.lock
);
2658 dm_integrity_flush_buffers(ic
);
2660 blkdev_issue_flush(ic
->dev
->bdev
, GFP_NOIO
, NULL
);
2662 limit
= ic
->provided_data_sectors
;
2663 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
2664 limit
= le64_to_cpu(ic
->sb
->recalc_sector
)
2665 >> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
)
2666 << (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
2668 /*DEBUG_print("zeroing journal\n");*/
2669 block_bitmap_op(ic
, ic
->journal
, 0, limit
, BITMAP_OP_CLEAR
);
2670 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, limit
, BITMAP_OP_CLEAR
);
2672 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2673 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2675 spin_lock_irq(&ic
->endio_wait
.lock
);
2676 remove_range_unlocked(ic
, &range
);
2677 while (unlikely((bio
= bio_list_pop(&ic
->synchronous_bios
)) != NULL
)) {
2679 spin_unlock_irq(&ic
->endio_wait
.lock
);
2680 spin_lock_irq(&ic
->endio_wait
.lock
);
2682 spin_unlock_irq(&ic
->endio_wait
.lock
);
2686 static void init_journal(struct dm_integrity_c
*ic
, unsigned start_section
,
2687 unsigned n_sections
, unsigned char commit_seq
)
2694 for (n
= 0; n
< n_sections
; n
++) {
2695 i
= start_section
+ n
;
2696 wraparound_section(ic
, &i
);
2697 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2698 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2699 memset(&js
->entries
, 0, JOURNAL_SECTOR_DATA
);
2700 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, commit_seq
);
2702 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2703 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2704 journal_entry_set_unused(je
);
2708 write_journal(ic
, start_section
, n_sections
);
2711 static int find_commit_seq(struct dm_integrity_c
*ic
, unsigned i
, unsigned j
, commit_id_t id
)
2714 for (k
= 0; k
< N_COMMIT_IDS
; k
++) {
2715 if (dm_integrity_commit_id(ic
, i
, j
, k
) == id
)
2718 dm_integrity_io_error(ic
, "journal commit id", -EIO
);
2722 static void replay_journal(struct dm_integrity_c
*ic
)
2725 bool used_commit_ids
[N_COMMIT_IDS
];
2726 unsigned max_commit_id_sections
[N_COMMIT_IDS
];
2727 unsigned write_start
, write_sections
;
2728 unsigned continue_section
;
2730 unsigned char unused
, last_used
, want_commit_seq
;
2732 if (ic
->mode
== 'R')
2735 if (ic
->journal_uptodate
)
2741 if (!ic
->just_formatted
) {
2742 DEBUG_print("reading journal\n");
2743 rw_journal(ic
, REQ_OP_READ
, 0, 0, ic
->journal_sections
, NULL
);
2745 DEBUG_bytes(lowmem_page_address(ic
->journal_io
[0].page
), 64, "read journal");
2746 if (ic
->journal_io
) {
2747 struct journal_completion crypt_comp
;
2749 init_completion(&crypt_comp
.comp
);
2750 crypt_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
2751 encrypt_journal(ic
, false, 0, ic
->journal_sections
, &crypt_comp
);
2752 wait_for_completion(&crypt_comp
.comp
);
2754 DEBUG_bytes(lowmem_page_address(ic
->journal
[0].page
), 64, "decrypted journal");
2757 if (dm_integrity_failed(ic
))
2760 journal_empty
= true;
2761 memset(used_commit_ids
, 0, sizeof used_commit_ids
);
2762 memset(max_commit_id_sections
, 0, sizeof max_commit_id_sections
);
2763 for (i
= 0; i
< ic
->journal_sections
; i
++) {
2764 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2766 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2767 k
= find_commit_seq(ic
, i
, j
, js
->commit_id
);
2770 used_commit_ids
[k
] = true;
2771 max_commit_id_sections
[k
] = i
;
2773 if (journal_empty
) {
2774 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2775 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2776 if (!journal_entry_is_unused(je
)) {
2777 journal_empty
= false;
2784 if (!used_commit_ids
[N_COMMIT_IDS
- 1]) {
2785 unused
= N_COMMIT_IDS
- 1;
2786 while (unused
&& !used_commit_ids
[unused
- 1])
2789 for (unused
= 0; unused
< N_COMMIT_IDS
; unused
++)
2790 if (!used_commit_ids
[unused
])
2792 if (unused
== N_COMMIT_IDS
) {
2793 dm_integrity_io_error(ic
, "journal commit ids", -EIO
);
2797 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2798 unused
, used_commit_ids
[0], used_commit_ids
[1],
2799 used_commit_ids
[2], used_commit_ids
[3]);
2801 last_used
= prev_commit_seq(unused
);
2802 want_commit_seq
= prev_commit_seq(last_used
);
2804 if (!used_commit_ids
[want_commit_seq
] && used_commit_ids
[prev_commit_seq(want_commit_seq
)])
2805 journal_empty
= true;
2807 write_start
= max_commit_id_sections
[last_used
] + 1;
2808 if (unlikely(write_start
>= ic
->journal_sections
))
2809 want_commit_seq
= next_commit_seq(want_commit_seq
);
2810 wraparound_section(ic
, &write_start
);
2813 for (write_sections
= 0; write_sections
< ic
->journal_sections
; write_sections
++) {
2814 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2815 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2817 if (js
->commit_id
!= dm_integrity_commit_id(ic
, i
, j
, want_commit_seq
)) {
2819 * This could be caused by crash during writing.
2820 * We won't replay the inconsistent part of the
2823 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2824 i
, j
, find_commit_seq(ic
, i
, j
, js
->commit_id
), want_commit_seq
);
2829 if (unlikely(i
>= ic
->journal_sections
))
2830 want_commit_seq
= next_commit_seq(want_commit_seq
);
2831 wraparound_section(ic
, &i
);
2835 if (!journal_empty
) {
2836 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2837 write_sections
, write_start
, want_commit_seq
);
2838 do_journal_write(ic
, write_start
, write_sections
, true);
2841 if (write_sections
== ic
->journal_sections
&& (ic
->mode
== 'J' || journal_empty
)) {
2842 continue_section
= write_start
;
2843 ic
->commit_seq
= want_commit_seq
;
2844 DEBUG_print("continuing from section %u, commit seq %d\n", write_start
, ic
->commit_seq
);
2847 unsigned char erase_seq
;
2849 DEBUG_print("clearing journal\n");
2851 erase_seq
= prev_commit_seq(prev_commit_seq(last_used
));
2853 init_journal(ic
, s
, 1, erase_seq
);
2855 wraparound_section(ic
, &s
);
2856 if (ic
->journal_sections
>= 2) {
2857 init_journal(ic
, s
, ic
->journal_sections
- 2, erase_seq
);
2858 s
+= ic
->journal_sections
- 2;
2859 wraparound_section(ic
, &s
);
2860 init_journal(ic
, s
, 1, erase_seq
);
2863 continue_section
= 0;
2864 ic
->commit_seq
= next_commit_seq(erase_seq
);
2867 ic
->committed_section
= continue_section
;
2868 ic
->n_committed_sections
= 0;
2870 ic
->uncommitted_section
= continue_section
;
2871 ic
->n_uncommitted_sections
= 0;
2873 ic
->free_section
= continue_section
;
2874 ic
->free_section_entry
= 0;
2875 ic
->free_sectors
= ic
->journal_entries
;
2877 ic
->journal_tree_root
= RB_ROOT
;
2878 for (i
= 0; i
< ic
->journal_entries
; i
++)
2879 init_journal_node(&ic
->journal_tree
[i
]);
2882 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c
*ic
)
2884 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2886 if (ic
->mode
== 'B') {
2887 ic
->bitmap_flush_interval
= msecs_to_jiffies(10) + 1;
2888 ic
->synchronous_mode
= 1;
2890 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
2891 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
2892 flush_workqueue(ic
->commit_wq
);
2896 static int dm_integrity_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
2898 struct dm_integrity_c
*ic
= container_of(n
, struct dm_integrity_c
, reboot_notifier
);
2900 DEBUG_print("dm_integrity_reboot\n");
2902 dm_integrity_enter_synchronous_mode(ic
);
2907 static void dm_integrity_postsuspend(struct dm_target
*ti
)
2909 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2912 WARN_ON(unregister_reboot_notifier(&ic
->reboot_notifier
));
2914 del_timer_sync(&ic
->autocommit_timer
);
2917 drain_workqueue(ic
->recalc_wq
);
2919 if (ic
->mode
== 'B')
2920 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
2922 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2923 drain_workqueue(ic
->commit_wq
);
2925 if (ic
->mode
== 'J') {
2927 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2928 drain_workqueue(ic
->writer_wq
);
2929 dm_integrity_flush_buffers(ic
);
2932 if (ic
->mode
== 'B') {
2933 dm_integrity_flush_buffers(ic
);
2935 /* set to 0 to test bitmap replay code */
2936 init_journal(ic
, 0, ic
->journal_sections
, 0);
2937 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
2938 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
2940 dm_integrity_io_error(ic
, "writing superblock", r
);
2944 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
2946 ic
->journal_uptodate
= true;
2949 static void dm_integrity_resume(struct dm_target
*ti
)
2951 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2952 __u64 old_provided_data_sectors
= le64_to_cpu(ic
->sb
->provided_data_sectors
);
2955 DEBUG_print("resume\n");
2957 if (ic
->provided_data_sectors
!= old_provided_data_sectors
) {
2958 if (ic
->provided_data_sectors
> old_provided_data_sectors
&&
2960 ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
) {
2961 rw_journal_sectors(ic
, REQ_OP_READ
, 0, 0,
2962 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2963 block_bitmap_op(ic
, ic
->journal
, old_provided_data_sectors
,
2964 ic
->provided_data_sectors
- old_provided_data_sectors
, BITMAP_OP_SET
);
2965 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2966 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2969 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
2970 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
2972 dm_integrity_io_error(ic
, "writing superblock", r
);
2975 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
)) {
2976 DEBUG_print("resume dirty_bitmap\n");
2977 rw_journal_sectors(ic
, REQ_OP_READ
, 0, 0,
2978 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2979 if (ic
->mode
== 'B') {
2980 if (ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
) {
2981 block_bitmap_copy(ic
, ic
->recalc_bitmap
, ic
->journal
);
2982 block_bitmap_copy(ic
, ic
->may_write_bitmap
, ic
->journal
);
2983 if (!block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
,
2984 BITMAP_OP_TEST_ALL_CLEAR
)) {
2985 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
2986 ic
->sb
->recalc_sector
= cpu_to_le64(0);
2989 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2990 ic
->sb
->log2_blocks_per_bitmap_bit
, ic
->log2_blocks_per_bitmap_bit
);
2991 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
2992 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2993 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2994 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2995 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2996 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2997 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
2998 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3001 if (!(ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
&&
3002 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))) {
3003 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
3004 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3006 init_journal(ic
, 0, ic
->journal_sections
, 0);
3008 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
3010 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
3012 dm_integrity_io_error(ic
, "writing superblock", r
);
3015 if (ic
->mode
== 'B') {
3016 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
3017 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
3018 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
3020 dm_integrity_io_error(ic
, "writing superblock", r
);
3022 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3023 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3024 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3025 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
3026 le64_to_cpu(ic
->sb
->recalc_sector
) < ic
->provided_data_sectors
) {
3027 block_bitmap_op(ic
, ic
->journal
, le64_to_cpu(ic
->sb
->recalc_sector
),
3028 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3029 block_bitmap_op(ic
, ic
->recalc_bitmap
, le64_to_cpu(ic
->sb
->recalc_sector
),
3030 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3031 block_bitmap_op(ic
, ic
->may_write_bitmap
, le64_to_cpu(ic
->sb
->recalc_sector
),
3032 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3034 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
3035 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3039 DEBUG_print("testing recalc: %x\n", ic
->sb
->flags
);
3040 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
3041 __u64 recalc_pos
= le64_to_cpu(ic
->sb
->recalc_sector
);
3042 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos
, ic
->provided_data_sectors
);
3043 if (recalc_pos
< ic
->provided_data_sectors
) {
3044 queue_work(ic
->recalc_wq
, &ic
->recalc_work
);
3045 } else if (recalc_pos
> ic
->provided_data_sectors
) {
3046 ic
->sb
->recalc_sector
= cpu_to_le64(ic
->provided_data_sectors
);
3047 recalc_write_super(ic
);
3051 ic
->reboot_notifier
.notifier_call
= dm_integrity_reboot
;
3052 ic
->reboot_notifier
.next
= NULL
;
3053 ic
->reboot_notifier
.priority
= INT_MAX
- 1; /* be notified after md and before hardware drivers */
3054 WARN_ON(register_reboot_notifier(&ic
->reboot_notifier
));
3057 /* set to 1 to stress test synchronous mode */
3058 dm_integrity_enter_synchronous_mode(ic
);
3062 static void dm_integrity_status(struct dm_target
*ti
, status_type_t type
,
3063 unsigned status_flags
, char *result
, unsigned maxlen
)
3065 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
3070 case STATUSTYPE_INFO
:
3072 (unsigned long long)atomic64_read(&ic
->number_of_mismatches
),
3073 ic
->provided_data_sectors
);
3074 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
3075 DMEMIT(" %llu", le64_to_cpu(ic
->sb
->recalc_sector
));
3080 case STATUSTYPE_TABLE
: {
3081 __u64 watermark_percentage
= (__u64
)(ic
->journal_entries
- ic
->free_sectors_threshold
) * 100;
3082 watermark_percentage
+= ic
->journal_entries
/ 2;
3083 do_div(watermark_percentage
, ic
->journal_entries
);
3085 arg_count
+= !!ic
->meta_dev
;
3086 arg_count
+= ic
->sectors_per_block
!= 1;
3087 arg_count
+= !!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
));
3088 arg_count
+= ic
->discard
;
3089 arg_count
+= ic
->mode
== 'J';
3090 arg_count
+= ic
->mode
== 'J';
3091 arg_count
+= ic
->mode
== 'B';
3092 arg_count
+= ic
->mode
== 'B';
3093 arg_count
+= !!ic
->internal_hash_alg
.alg_string
;
3094 arg_count
+= !!ic
->journal_crypt_alg
.alg_string
;
3095 arg_count
+= !!ic
->journal_mac_alg
.alg_string
;
3096 arg_count
+= (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0;
3097 DMEMIT("%s %llu %u %c %u", ic
->dev
->name
, ic
->start
,
3098 ic
->tag_size
, ic
->mode
, arg_count
);
3100 DMEMIT(" meta_device:%s", ic
->meta_dev
->name
);
3101 if (ic
->sectors_per_block
!= 1)
3102 DMEMIT(" block_size:%u", ic
->sectors_per_block
<< SECTOR_SHIFT
);
3103 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
3104 DMEMIT(" recalculate");
3106 DMEMIT(" allow_discards");
3107 DMEMIT(" journal_sectors:%u", ic
->initial_sectors
- SB_SECTORS
);
3108 DMEMIT(" interleave_sectors:%u", 1U << ic
->sb
->log2_interleave_sectors
);
3109 DMEMIT(" buffer_sectors:%u", 1U << ic
->log2_buffer_sectors
);
3110 if (ic
->mode
== 'J') {
3111 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage
);
3112 DMEMIT(" commit_time:%u", ic
->autocommit_msec
);
3114 if (ic
->mode
== 'B') {
3115 DMEMIT(" sectors_per_bit:%llu", (sector_t
)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
);
3116 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic
->bitmap_flush_interval
));
3118 if ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0)
3119 DMEMIT(" fix_padding");
3121 #define EMIT_ALG(a, n) \
3123 if (ic->a.alg_string) { \
3124 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3125 if (ic->a.key_string) \
3126 DMEMIT(":%s", ic->a.key_string);\
3129 EMIT_ALG(internal_hash_alg
, "internal_hash");
3130 EMIT_ALG(journal_crypt_alg
, "journal_crypt");
3131 EMIT_ALG(journal_mac_alg
, "journal_mac");
3137 static int dm_integrity_iterate_devices(struct dm_target
*ti
,
3138 iterate_devices_callout_fn fn
, void *data
)
3140 struct dm_integrity_c
*ic
= ti
->private;
3143 return fn(ti
, ic
->dev
, ic
->start
+ ic
->initial_sectors
+ ic
->metadata_run
, ti
->len
, data
);
3145 return fn(ti
, ic
->dev
, 0, ti
->len
, data
);
3148 static void dm_integrity_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3150 struct dm_integrity_c
*ic
= ti
->private;
3152 if (ic
->sectors_per_block
> 1) {
3153 limits
->logical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3154 limits
->physical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3155 blk_limits_io_min(limits
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
3159 static void calculate_journal_section_size(struct dm_integrity_c
*ic
)
3161 unsigned sector_space
= JOURNAL_SECTOR_DATA
;
3163 ic
->journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
3164 ic
->journal_entry_size
= roundup(offsetof(struct journal_entry
, last_bytes
[ic
->sectors_per_block
]) + ic
->tag_size
,
3165 JOURNAL_ENTRY_ROUNDUP
);
3167 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
))
3168 sector_space
-= JOURNAL_MAC_PER_SECTOR
;
3169 ic
->journal_entries_per_sector
= sector_space
/ ic
->journal_entry_size
;
3170 ic
->journal_section_entries
= ic
->journal_entries_per_sector
* JOURNAL_BLOCK_SECTORS
;
3171 ic
->journal_section_sectors
= (ic
->journal_section_entries
<< ic
->sb
->log2_sectors_per_block
) + JOURNAL_BLOCK_SECTORS
;
3172 ic
->journal_entries
= ic
->journal_section_entries
* ic
->journal_sections
;
3175 static int calculate_device_limits(struct dm_integrity_c
*ic
)
3177 __u64 initial_sectors
;
3179 calculate_journal_section_size(ic
);
3180 initial_sectors
= SB_SECTORS
+ (__u64
)ic
->journal_section_sectors
* ic
->journal_sections
;
3181 if (initial_sectors
+ METADATA_PADDING_SECTORS
>= ic
->meta_device_sectors
|| initial_sectors
> UINT_MAX
)
3183 ic
->initial_sectors
= initial_sectors
;
3185 if (!ic
->meta_dev
) {
3186 sector_t last_sector
, last_area
, last_offset
;
3188 /* we have to maintain excessive padding for compatibility with existing volumes */
3189 __u64 metadata_run_padding
=
3190 ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
) ?
3191 (__u64
)(METADATA_PADDING_SECTORS
<< SECTOR_SHIFT
) :
3192 (__u64
)(1 << SECTOR_SHIFT
<< METADATA_PADDING_SECTORS
);
3194 ic
->metadata_run
= round_up((__u64
)ic
->tag_size
<< (ic
->sb
->log2_interleave_sectors
- ic
->sb
->log2_sectors_per_block
),
3195 metadata_run_padding
) >> SECTOR_SHIFT
;
3196 if (!(ic
->metadata_run
& (ic
->metadata_run
- 1)))
3197 ic
->log2_metadata_run
= __ffs(ic
->metadata_run
);
3199 ic
->log2_metadata_run
= -1;
3201 get_area_and_offset(ic
, ic
->provided_data_sectors
- 1, &last_area
, &last_offset
);
3202 last_sector
= get_data_sector(ic
, last_area
, last_offset
);
3203 if (last_sector
< ic
->start
|| last_sector
>= ic
->meta_device_sectors
)
3206 __u64 meta_size
= (ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
;
3207 meta_size
= (meta_size
+ ((1U << (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
)) - 1))
3208 >> (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
);
3209 meta_size
<<= ic
->log2_buffer_sectors
;
3210 if (ic
->initial_sectors
+ meta_size
< ic
->initial_sectors
||
3211 ic
->initial_sectors
+ meta_size
> ic
->meta_device_sectors
)
3213 ic
->metadata_run
= 1;
3214 ic
->log2_metadata_run
= 0;
3220 static void get_provided_data_sectors(struct dm_integrity_c
*ic
)
3222 if (!ic
->meta_dev
) {
3224 ic
->provided_data_sectors
= 0;
3225 for (test_bit
= fls64(ic
->meta_device_sectors
) - 1; test_bit
>= 3; test_bit
--) {
3226 __u64 prev_data_sectors
= ic
->provided_data_sectors
;
3228 ic
->provided_data_sectors
|= (sector_t
)1 << test_bit
;
3229 if (calculate_device_limits(ic
))
3230 ic
->provided_data_sectors
= prev_data_sectors
;
3233 ic
->provided_data_sectors
= ic
->data_device_sectors
;
3234 ic
->provided_data_sectors
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
3238 static int initialize_superblock(struct dm_integrity_c
*ic
, unsigned journal_sectors
, unsigned interleave_sectors
)
3240 unsigned journal_sections
;
3243 memset(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
);
3244 memcpy(ic
->sb
->magic
, SB_MAGIC
, 8);
3245 ic
->sb
->integrity_tag_size
= cpu_to_le16(ic
->tag_size
);
3246 ic
->sb
->log2_sectors_per_block
= __ffs(ic
->sectors_per_block
);
3247 if (ic
->journal_mac_alg
.alg_string
)
3248 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
);
3250 calculate_journal_section_size(ic
);
3251 journal_sections
= journal_sectors
/ ic
->journal_section_sectors
;
3252 if (!journal_sections
)
3253 journal_sections
= 1;
3255 if (!ic
->meta_dev
) {
3256 if (ic
->fix_padding
)
3257 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_FIXED_PADDING
);
3258 ic
->sb
->journal_sections
= cpu_to_le32(journal_sections
);
3259 if (!interleave_sectors
)
3260 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
3261 ic
->sb
->log2_interleave_sectors
= __fls(interleave_sectors
);
3262 ic
->sb
->log2_interleave_sectors
= max((__u8
)MIN_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
3263 ic
->sb
->log2_interleave_sectors
= min((__u8
)MAX_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
3265 get_provided_data_sectors(ic
);
3266 if (!ic
->provided_data_sectors
)
3269 ic
->sb
->log2_interleave_sectors
= 0;
3271 get_provided_data_sectors(ic
);
3272 if (!ic
->provided_data_sectors
)
3276 ic
->sb
->journal_sections
= cpu_to_le32(0);
3277 for (test_bit
= fls(journal_sections
) - 1; test_bit
>= 0; test_bit
--) {
3278 __u32 prev_journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
3279 __u32 test_journal_sections
= prev_journal_sections
| (1U << test_bit
);
3280 if (test_journal_sections
> journal_sections
)
3282 ic
->sb
->journal_sections
= cpu_to_le32(test_journal_sections
);
3283 if (calculate_device_limits(ic
))
3284 ic
->sb
->journal_sections
= cpu_to_le32(prev_journal_sections
);
3287 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
3288 if (ic
->log2_buffer_sectors
> 3) {
3289 ic
->log2_buffer_sectors
--;
3290 goto try_smaller_buffer
;
3296 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
3303 static void dm_integrity_set(struct dm_target
*ti
, struct dm_integrity_c
*ic
)
3305 struct gendisk
*disk
= dm_disk(dm_table_get_md(ti
->table
));
3306 struct blk_integrity bi
;
3308 memset(&bi
, 0, sizeof(bi
));
3309 bi
.profile
= &dm_integrity_profile
;
3310 bi
.tuple_size
= ic
->tag_size
;
3311 bi
.tag_size
= bi
.tuple_size
;
3312 bi
.interval_exp
= ic
->sb
->log2_sectors_per_block
+ SECTOR_SHIFT
;
3314 blk_integrity_register(disk
, &bi
);
3315 blk_queue_max_integrity_segments(disk
->queue
, UINT_MAX
);
3318 static void dm_integrity_free_page_list(struct page_list
*pl
)
3324 for (i
= 0; pl
[i
].page
; i
++)
3325 __free_page(pl
[i
].page
);
3329 static struct page_list
*dm_integrity_alloc_page_list(unsigned n_pages
)
3331 struct page_list
*pl
;
3334 pl
= kvmalloc_array(n_pages
+ 1, sizeof(struct page_list
), GFP_KERNEL
| __GFP_ZERO
);
3338 for (i
= 0; i
< n_pages
; i
++) {
3339 pl
[i
].page
= alloc_page(GFP_KERNEL
);
3341 dm_integrity_free_page_list(pl
);
3345 pl
[i
- 1].next
= &pl
[i
];
3353 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c
*ic
, struct scatterlist
**sl
)
3356 for (i
= 0; i
< ic
->journal_sections
; i
++)
3361 static struct scatterlist
**dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c
*ic
,
3362 struct page_list
*pl
)
3364 struct scatterlist
**sl
;
3367 sl
= kvmalloc_array(ic
->journal_sections
,
3368 sizeof(struct scatterlist
*),
3369 GFP_KERNEL
| __GFP_ZERO
);
3373 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3374 struct scatterlist
*s
;
3375 unsigned start_index
, start_offset
;
3376 unsigned end_index
, end_offset
;
3380 page_list_location(ic
, i
, 0, &start_index
, &start_offset
);
3381 page_list_location(ic
, i
, ic
->journal_section_sectors
- 1,
3382 &end_index
, &end_offset
);
3384 n_pages
= (end_index
- start_index
+ 1);
3386 s
= kvmalloc_array(n_pages
, sizeof(struct scatterlist
),
3389 dm_integrity_free_journal_scatterlist(ic
, sl
);
3393 sg_init_table(s
, n_pages
);
3394 for (idx
= start_index
; idx
<= end_index
; idx
++) {
3395 char *va
= lowmem_page_address(pl
[idx
].page
);
3396 unsigned start
= 0, end
= PAGE_SIZE
;
3397 if (idx
== start_index
)
3398 start
= start_offset
;
3399 if (idx
== end_index
)
3400 end
= end_offset
+ (1 << SECTOR_SHIFT
);
3401 sg_set_buf(&s
[idx
- start_index
], va
+ start
, end
- start
);
3410 static void free_alg(struct alg_spec
*a
)
3412 kzfree(a
->alg_string
);
3414 memset(a
, 0, sizeof *a
);
3417 static int get_alg_and_key(const char *arg
, struct alg_spec
*a
, char **error
, char *error_inval
)
3423 a
->alg_string
= kstrdup(strchr(arg
, ':') + 1, GFP_KERNEL
);
3427 k
= strchr(a
->alg_string
, ':');
3430 a
->key_string
= k
+ 1;
3431 if (strlen(a
->key_string
) & 1)
3434 a
->key_size
= strlen(a
->key_string
) / 2;
3435 a
->key
= kmalloc(a
->key_size
, GFP_KERNEL
);
3438 if (hex2bin(a
->key
, a
->key_string
, a
->key_size
))
3444 *error
= error_inval
;
3447 *error
= "Out of memory for an argument";
3451 static int get_mac(struct crypto_shash
**hash
, struct alg_spec
*a
, char **error
,
3452 char *error_alg
, char *error_key
)
3456 if (a
->alg_string
) {
3457 *hash
= crypto_alloc_shash(a
->alg_string
, 0, 0);
3458 if (IS_ERR(*hash
)) {
3466 r
= crypto_shash_setkey(*hash
, a
->key
, a
->key_size
);
3471 } else if (crypto_shash_get_flags(*hash
) & CRYPTO_TFM_NEED_KEY
) {
3480 static int create_journal(struct dm_integrity_c
*ic
, char **error
)
3484 __u64 journal_pages
, journal_desc_size
, journal_tree_size
;
3485 unsigned char *crypt_data
= NULL
, *crypt_iv
= NULL
;
3486 struct skcipher_request
*req
= NULL
;
3488 ic
->commit_ids
[0] = cpu_to_le64(0x1111111111111111ULL
);
3489 ic
->commit_ids
[1] = cpu_to_le64(0x2222222222222222ULL
);
3490 ic
->commit_ids
[2] = cpu_to_le64(0x3333333333333333ULL
);
3491 ic
->commit_ids
[3] = cpu_to_le64(0x4444444444444444ULL
);
3493 journal_pages
= roundup((__u64
)ic
->journal_sections
* ic
->journal_section_sectors
,
3494 PAGE_SIZE
>> SECTOR_SHIFT
) >> (PAGE_SHIFT
- SECTOR_SHIFT
);
3495 journal_desc_size
= journal_pages
* sizeof(struct page_list
);
3496 if (journal_pages
>= totalram_pages() - totalhigh_pages() || journal_desc_size
> ULONG_MAX
) {
3497 *error
= "Journal doesn't fit into memory";
3501 ic
->journal_pages
= journal_pages
;
3503 ic
->journal
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3505 *error
= "Could not allocate memory for journal";
3509 if (ic
->journal_crypt_alg
.alg_string
) {
3510 unsigned ivsize
, blocksize
;
3511 struct journal_completion comp
;
3514 ic
->journal_crypt
= crypto_alloc_skcipher(ic
->journal_crypt_alg
.alg_string
, 0, 0);
3515 if (IS_ERR(ic
->journal_crypt
)) {
3516 *error
= "Invalid journal cipher";
3517 r
= PTR_ERR(ic
->journal_crypt
);
3518 ic
->journal_crypt
= NULL
;
3521 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
3522 blocksize
= crypto_skcipher_blocksize(ic
->journal_crypt
);
3524 if (ic
->journal_crypt_alg
.key
) {
3525 r
= crypto_skcipher_setkey(ic
->journal_crypt
, ic
->journal_crypt_alg
.key
,
3526 ic
->journal_crypt_alg
.key_size
);
3528 *error
= "Error setting encryption key";
3532 DEBUG_print("cipher %s, block size %u iv size %u\n",
3533 ic
->journal_crypt_alg
.alg_string
, blocksize
, ivsize
);
3535 ic
->journal_io
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3536 if (!ic
->journal_io
) {
3537 *error
= "Could not allocate memory for journal io";
3542 if (blocksize
== 1) {
3543 struct scatterlist
*sg
;
3545 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3547 *error
= "Could not allocate crypt request";
3552 crypt_iv
= kzalloc(ivsize
, GFP_KERNEL
);
3554 *error
= "Could not allocate iv";
3559 ic
->journal_xor
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3560 if (!ic
->journal_xor
) {
3561 *error
= "Could not allocate memory for journal xor";
3566 sg
= kvmalloc_array(ic
->journal_pages
+ 1,
3567 sizeof(struct scatterlist
),
3570 *error
= "Unable to allocate sg list";
3574 sg_init_table(sg
, ic
->journal_pages
+ 1);
3575 for (i
= 0; i
< ic
->journal_pages
; i
++) {
3576 char *va
= lowmem_page_address(ic
->journal_xor
[i
].page
);
3578 sg_set_buf(&sg
[i
], va
, PAGE_SIZE
);
3580 sg_set_buf(&sg
[i
], &ic
->commit_ids
, sizeof ic
->commit_ids
);
3582 skcipher_request_set_crypt(req
, sg
, sg
,
3583 PAGE_SIZE
* ic
->journal_pages
+ sizeof ic
->commit_ids
, crypt_iv
);
3584 init_completion(&comp
.comp
);
3585 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
3586 if (do_crypt(true, req
, &comp
))
3587 wait_for_completion(&comp
.comp
);
3589 r
= dm_integrity_failed(ic
);
3591 *error
= "Unable to encrypt journal";
3594 DEBUG_bytes(lowmem_page_address(ic
->journal_xor
[0].page
), 64, "xor data");
3596 crypto_free_skcipher(ic
->journal_crypt
);
3597 ic
->journal_crypt
= NULL
;
3599 unsigned crypt_len
= roundup(ivsize
, blocksize
);
3601 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3603 *error
= "Could not allocate crypt request";
3608 crypt_iv
= kmalloc(ivsize
, GFP_KERNEL
);
3610 *error
= "Could not allocate iv";
3615 crypt_data
= kmalloc(crypt_len
, GFP_KERNEL
);
3617 *error
= "Unable to allocate crypt data";
3622 ic
->journal_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal
);
3623 if (!ic
->journal_scatterlist
) {
3624 *error
= "Unable to allocate sg list";
3628 ic
->journal_io_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal_io
);
3629 if (!ic
->journal_io_scatterlist
) {
3630 *error
= "Unable to allocate sg list";
3634 ic
->sk_requests
= kvmalloc_array(ic
->journal_sections
,
3635 sizeof(struct skcipher_request
*),
3636 GFP_KERNEL
| __GFP_ZERO
);
3637 if (!ic
->sk_requests
) {
3638 *error
= "Unable to allocate sk requests";
3642 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3643 struct scatterlist sg
;
3644 struct skcipher_request
*section_req
;
3645 __u32 section_le
= cpu_to_le32(i
);
3647 memset(crypt_iv
, 0x00, ivsize
);
3648 memset(crypt_data
, 0x00, crypt_len
);
3649 memcpy(crypt_data
, §ion_le
, min((size_t)crypt_len
, sizeof(section_le
)));
3651 sg_init_one(&sg
, crypt_data
, crypt_len
);
3652 skcipher_request_set_crypt(req
, &sg
, &sg
, crypt_len
, crypt_iv
);
3653 init_completion(&comp
.comp
);
3654 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
3655 if (do_crypt(true, req
, &comp
))
3656 wait_for_completion(&comp
.comp
);
3658 r
= dm_integrity_failed(ic
);
3660 *error
= "Unable to generate iv";
3664 section_req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3666 *error
= "Unable to allocate crypt request";
3670 section_req
->iv
= kmalloc_array(ivsize
, 2,
3672 if (!section_req
->iv
) {
3673 skcipher_request_free(section_req
);
3674 *error
= "Unable to allocate iv";
3678 memcpy(section_req
->iv
+ ivsize
, crypt_data
, ivsize
);
3679 section_req
->cryptlen
= (size_t)ic
->journal_section_sectors
<< SECTOR_SHIFT
;
3680 ic
->sk_requests
[i
] = section_req
;
3681 DEBUG_bytes(crypt_data
, ivsize
, "iv(%u)", i
);
3686 for (i
= 0; i
< N_COMMIT_IDS
; i
++) {
3689 for (j
= 0; j
< i
; j
++) {
3690 if (ic
->commit_ids
[j
] == ic
->commit_ids
[i
]) {
3691 ic
->commit_ids
[i
] = cpu_to_le64(le64_to_cpu(ic
->commit_ids
[i
]) + 1);
3692 goto retest_commit_id
;
3695 DEBUG_print("commit id %u: %016llx\n", i
, ic
->commit_ids
[i
]);
3698 journal_tree_size
= (__u64
)ic
->journal_entries
* sizeof(struct journal_node
);
3699 if (journal_tree_size
> ULONG_MAX
) {
3700 *error
= "Journal doesn't fit into memory";
3704 ic
->journal_tree
= kvmalloc(journal_tree_size
, GFP_KERNEL
);
3705 if (!ic
->journal_tree
) {
3706 *error
= "Could not allocate memory for journal tree";
3712 skcipher_request_free(req
);
3718 * Construct a integrity mapping
3722 * offset from the start of the device
3724 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3725 * number of optional arguments
3726 * optional arguments:
3728 * interleave_sectors
3735 * bitmap_flush_interval
3741 static int dm_integrity_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3743 struct dm_integrity_c
*ic
;
3746 unsigned extra_args
;
3747 struct dm_arg_set as
;
3748 static const struct dm_arg _args
[] = {
3749 {0, 9, "Invalid number of feature args"},
3751 unsigned journal_sectors
, interleave_sectors
, buffer_sectors
, journal_watermark
, sync_msec
;
3752 bool should_write_sb
;
3754 unsigned long long start
;
3755 __s8 log2_sectors_per_bitmap_bit
= -1;
3756 __s8 log2_blocks_per_bitmap_bit
;
3757 __u64 bits_in_journal
;
3758 __u64 n_bitmap_bits
;
3760 #define DIRECT_ARGUMENTS 4
3762 if (argc
<= DIRECT_ARGUMENTS
) {
3763 ti
->error
= "Invalid argument count";
3767 ic
= kzalloc(sizeof(struct dm_integrity_c
), GFP_KERNEL
);
3769 ti
->error
= "Cannot allocate integrity context";
3773 ti
->per_io_data_size
= sizeof(struct dm_integrity_io
);
3776 ic
->in_progress
= RB_ROOT
;
3777 INIT_LIST_HEAD(&ic
->wait_list
);
3778 init_waitqueue_head(&ic
->endio_wait
);
3779 bio_list_init(&ic
->flush_bio_list
);
3780 init_waitqueue_head(&ic
->copy_to_journal_wait
);
3781 init_completion(&ic
->crypto_backoff
);
3782 atomic64_set(&ic
->number_of_mismatches
, 0);
3783 ic
->bitmap_flush_interval
= BITMAP_FLUSH_INTERVAL
;
3785 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &ic
->dev
);
3787 ti
->error
= "Device lookup failed";
3791 if (sscanf(argv
[1], "%llu%c", &start
, &dummy
) != 1 || start
!= (sector_t
)start
) {
3792 ti
->error
= "Invalid starting offset";
3798 if (strcmp(argv
[2], "-")) {
3799 if (sscanf(argv
[2], "%u%c", &ic
->tag_size
, &dummy
) != 1 || !ic
->tag_size
) {
3800 ti
->error
= "Invalid tag size";
3806 if (!strcmp(argv
[3], "J") || !strcmp(argv
[3], "B") ||
3807 !strcmp(argv
[3], "D") || !strcmp(argv
[3], "R")) {
3808 ic
->mode
= argv
[3][0];
3810 ti
->error
= "Invalid mode (expecting J, B, D, R)";
3815 journal_sectors
= 0;
3816 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
3817 buffer_sectors
= DEFAULT_BUFFER_SECTORS
;
3818 journal_watermark
= DEFAULT_JOURNAL_WATERMARK
;
3819 sync_msec
= DEFAULT_SYNC_MSEC
;
3820 ic
->sectors_per_block
= 1;
3822 as
.argc
= argc
- DIRECT_ARGUMENTS
;
3823 as
.argv
= argv
+ DIRECT_ARGUMENTS
;
3824 r
= dm_read_arg_group(_args
, &as
, &extra_args
, &ti
->error
);
3828 while (extra_args
--) {
3829 const char *opt_string
;
3831 unsigned long long llval
;
3832 opt_string
= dm_shift_arg(&as
);
3835 ti
->error
= "Not enough feature arguments";
3838 if (sscanf(opt_string
, "journal_sectors:%u%c", &val
, &dummy
) == 1)
3839 journal_sectors
= val
? val
: 1;
3840 else if (sscanf(opt_string
, "interleave_sectors:%u%c", &val
, &dummy
) == 1)
3841 interleave_sectors
= val
;
3842 else if (sscanf(opt_string
, "buffer_sectors:%u%c", &val
, &dummy
) == 1)
3843 buffer_sectors
= val
;
3844 else if (sscanf(opt_string
, "journal_watermark:%u%c", &val
, &dummy
) == 1 && val
<= 100)
3845 journal_watermark
= val
;
3846 else if (sscanf(opt_string
, "commit_time:%u%c", &val
, &dummy
) == 1)
3848 else if (!strncmp(opt_string
, "meta_device:", strlen("meta_device:"))) {
3850 dm_put_device(ti
, ic
->meta_dev
);
3851 ic
->meta_dev
= NULL
;
3853 r
= dm_get_device(ti
, strchr(opt_string
, ':') + 1,
3854 dm_table_get_mode(ti
->table
), &ic
->meta_dev
);
3856 ti
->error
= "Device lookup failed";
3859 } else if (sscanf(opt_string
, "block_size:%u%c", &val
, &dummy
) == 1) {
3860 if (val
< 1 << SECTOR_SHIFT
||
3861 val
> MAX_SECTORS_PER_BLOCK
<< SECTOR_SHIFT
||
3864 ti
->error
= "Invalid block_size argument";
3867 ic
->sectors_per_block
= val
>> SECTOR_SHIFT
;
3868 } else if (sscanf(opt_string
, "sectors_per_bit:%llu%c", &llval
, &dummy
) == 1) {
3869 log2_sectors_per_bitmap_bit
= !llval
? 0 : __ilog2_u64(llval
);
3870 } else if (sscanf(opt_string
, "bitmap_flush_interval:%u%c", &val
, &dummy
) == 1) {
3871 if (val
>= (uint64_t)UINT_MAX
* 1000 / HZ
) {
3873 ti
->error
= "Invalid bitmap_flush_interval argument";
3875 ic
->bitmap_flush_interval
= msecs_to_jiffies(val
);
3876 } else if (!strncmp(opt_string
, "internal_hash:", strlen("internal_hash:"))) {
3877 r
= get_alg_and_key(opt_string
, &ic
->internal_hash_alg
, &ti
->error
,
3878 "Invalid internal_hash argument");
3881 } else if (!strncmp(opt_string
, "journal_crypt:", strlen("journal_crypt:"))) {
3882 r
= get_alg_and_key(opt_string
, &ic
->journal_crypt_alg
, &ti
->error
,
3883 "Invalid journal_crypt argument");
3886 } else if (!strncmp(opt_string
, "journal_mac:", strlen("journal_mac:"))) {
3887 r
= get_alg_and_key(opt_string
, &ic
->journal_mac_alg
, &ti
->error
,
3888 "Invalid journal_mac argument");
3891 } else if (!strcmp(opt_string
, "recalculate")) {
3892 ic
->recalculate_flag
= true;
3893 } else if (!strcmp(opt_string
, "allow_discards")) {
3895 } else if (!strcmp(opt_string
, "fix_padding")) {
3896 ic
->fix_padding
= true;
3899 ti
->error
= "Invalid argument";
3904 ic
->data_device_sectors
= i_size_read(ic
->dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
3906 ic
->meta_device_sectors
= ic
->data_device_sectors
;
3908 ic
->meta_device_sectors
= i_size_read(ic
->meta_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
3910 if (!journal_sectors
) {
3911 journal_sectors
= min((sector_t
)DEFAULT_MAX_JOURNAL_SECTORS
,
3912 ic
->data_device_sectors
>> DEFAULT_JOURNAL_SIZE_FACTOR
);
3915 if (!buffer_sectors
)
3917 ic
->log2_buffer_sectors
= min((int)__fls(buffer_sectors
), 31 - SECTOR_SHIFT
);
3919 r
= get_mac(&ic
->internal_hash
, &ic
->internal_hash_alg
, &ti
->error
,
3920 "Invalid internal hash", "Error setting internal hash key");
3924 r
= get_mac(&ic
->journal_mac
, &ic
->journal_mac_alg
, &ti
->error
,
3925 "Invalid journal mac", "Error setting journal mac key");
3929 if (!ic
->tag_size
) {
3930 if (!ic
->internal_hash
) {
3931 ti
->error
= "Unknown tag size";
3935 ic
->tag_size
= crypto_shash_digestsize(ic
->internal_hash
);
3937 if (ic
->tag_size
> MAX_TAG_SIZE
) {
3938 ti
->error
= "Too big tag size";
3942 if (!(ic
->tag_size
& (ic
->tag_size
- 1)))
3943 ic
->log2_tag_size
= __ffs(ic
->tag_size
);
3945 ic
->log2_tag_size
= -1;
3947 if (ic
->mode
== 'B' && !ic
->internal_hash
) {
3949 ti
->error
= "Bitmap mode can be only used with internal hash";
3953 if (ic
->discard
&& !ic
->internal_hash
) {
3955 ti
->error
= "Discard can be only used with internal hash";
3959 ic
->autocommit_jiffies
= msecs_to_jiffies(sync_msec
);
3960 ic
->autocommit_msec
= sync_msec
;
3961 timer_setup(&ic
->autocommit_timer
, autocommit_fn
, 0);
3963 ic
->io
= dm_io_client_create();
3964 if (IS_ERR(ic
->io
)) {
3965 r
= PTR_ERR(ic
->io
);
3967 ti
->error
= "Cannot allocate dm io";
3971 r
= mempool_init_slab_pool(&ic
->journal_io_mempool
, JOURNAL_IO_MEMPOOL
, journal_io_cache
);
3973 ti
->error
= "Cannot allocate mempool";
3977 ic
->metadata_wq
= alloc_workqueue("dm-integrity-metadata",
3978 WQ_MEM_RECLAIM
, METADATA_WORKQUEUE_MAX_ACTIVE
);
3979 if (!ic
->metadata_wq
) {
3980 ti
->error
= "Cannot allocate workqueue";
3986 * If this workqueue were percpu, it would cause bio reordering
3987 * and reduced performance.
3989 ic
->wait_wq
= alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM
| WQ_UNBOUND
, 1);
3991 ti
->error
= "Cannot allocate workqueue";
3996 ic
->offload_wq
= alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM
,
3997 METADATA_WORKQUEUE_MAX_ACTIVE
);
3998 if (!ic
->offload_wq
) {
3999 ti
->error
= "Cannot allocate workqueue";
4004 ic
->commit_wq
= alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM
, 1);
4005 if (!ic
->commit_wq
) {
4006 ti
->error
= "Cannot allocate workqueue";
4010 INIT_WORK(&ic
->commit_work
, integrity_commit
);
4012 if (ic
->mode
== 'J' || ic
->mode
== 'B') {
4013 ic
->writer_wq
= alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM
, 1);
4014 if (!ic
->writer_wq
) {
4015 ti
->error
= "Cannot allocate workqueue";
4019 INIT_WORK(&ic
->writer_work
, integrity_writer
);
4022 ic
->sb
= alloc_pages_exact(SB_SECTORS
<< SECTOR_SHIFT
, GFP_KERNEL
);
4025 ti
->error
= "Cannot allocate superblock area";
4029 r
= sync_rw_sb(ic
, REQ_OP_READ
, 0);
4031 ti
->error
= "Error reading superblock";
4034 should_write_sb
= false;
4035 if (memcmp(ic
->sb
->magic
, SB_MAGIC
, 8)) {
4036 if (ic
->mode
!= 'R') {
4037 if (memchr_inv(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
)) {
4039 ti
->error
= "The device is not initialized";
4044 r
= initialize_superblock(ic
, journal_sectors
, interleave_sectors
);
4046 ti
->error
= "Could not initialize superblock";
4049 if (ic
->mode
!= 'R')
4050 should_write_sb
= true;
4053 if (!ic
->sb
->version
|| ic
->sb
->version
> SB_VERSION_4
) {
4055 ti
->error
= "Unknown version";
4058 if (le16_to_cpu(ic
->sb
->integrity_tag_size
) != ic
->tag_size
) {
4060 ti
->error
= "Tag size doesn't match the information in superblock";
4063 if (ic
->sb
->log2_sectors_per_block
!= __ffs(ic
->sectors_per_block
)) {
4065 ti
->error
= "Block size doesn't match the information in superblock";
4068 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
4070 ti
->error
= "Corrupted superblock, journal_sections is 0";
4073 /* make sure that ti->max_io_len doesn't overflow */
4074 if (!ic
->meta_dev
) {
4075 if (ic
->sb
->log2_interleave_sectors
< MIN_LOG2_INTERLEAVE_SECTORS
||
4076 ic
->sb
->log2_interleave_sectors
> MAX_LOG2_INTERLEAVE_SECTORS
) {
4078 ti
->error
= "Invalid interleave_sectors in the superblock";
4082 if (ic
->sb
->log2_interleave_sectors
) {
4084 ti
->error
= "Invalid interleave_sectors in the superblock";
4088 if (!!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
)) != !!ic
->journal_mac_alg
.alg_string
) {
4090 ti
->error
= "Journal mac mismatch";
4094 get_provided_data_sectors(ic
);
4095 if (!ic
->provided_data_sectors
) {
4097 ti
->error
= "The device is too small";
4102 r
= calculate_device_limits(ic
);
4105 if (ic
->log2_buffer_sectors
> 3) {
4106 ic
->log2_buffer_sectors
--;
4107 goto try_smaller_buffer
;
4110 ti
->error
= "The device is too small";
4114 if (log2_sectors_per_bitmap_bit
< 0)
4115 log2_sectors_per_bitmap_bit
= __fls(DEFAULT_SECTORS_PER_BITMAP_BIT
);
4116 if (log2_sectors_per_bitmap_bit
< ic
->sb
->log2_sectors_per_block
)
4117 log2_sectors_per_bitmap_bit
= ic
->sb
->log2_sectors_per_block
;
4119 bits_in_journal
= ((__u64
)ic
->journal_section_sectors
* ic
->journal_sections
) << (SECTOR_SHIFT
+ 3);
4120 if (bits_in_journal
> UINT_MAX
)
4121 bits_in_journal
= UINT_MAX
;
4122 while (bits_in_journal
< (ic
->provided_data_sectors
+ ((sector_t
)1 << log2_sectors_per_bitmap_bit
) - 1) >> log2_sectors_per_bitmap_bit
)
4123 log2_sectors_per_bitmap_bit
++;
4125 log2_blocks_per_bitmap_bit
= log2_sectors_per_bitmap_bit
- ic
->sb
->log2_sectors_per_block
;
4126 ic
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
4127 if (should_write_sb
) {
4128 ic
->sb
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
4130 n_bitmap_bits
= ((ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
)
4131 + (((sector_t
)1 << log2_blocks_per_bitmap_bit
) - 1)) >> log2_blocks_per_bitmap_bit
;
4132 ic
->n_bitmap_blocks
= DIV_ROUND_UP(n_bitmap_bits
, BITMAP_BLOCK_SIZE
* 8);
4135 ic
->log2_buffer_sectors
= min(ic
->log2_buffer_sectors
, (__u8
)__ffs(ic
->metadata_run
));
4137 if (ti
->len
> ic
->provided_data_sectors
) {
4139 ti
->error
= "Not enough provided sectors for requested mapping size";
4144 threshold
= (__u64
)ic
->journal_entries
* (100 - journal_watermark
);
4146 do_div(threshold
, 100);
4147 ic
->free_sectors_threshold
= threshold
;
4149 DEBUG_print("initialized:\n");
4150 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic
->sb
->integrity_tag_size
));
4151 DEBUG_print(" journal_entry_size %u\n", ic
->journal_entry_size
);
4152 DEBUG_print(" journal_entries_per_sector %u\n", ic
->journal_entries_per_sector
);
4153 DEBUG_print(" journal_section_entries %u\n", ic
->journal_section_entries
);
4154 DEBUG_print(" journal_section_sectors %u\n", ic
->journal_section_sectors
);
4155 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic
->sb
->journal_sections
));
4156 DEBUG_print(" journal_entries %u\n", ic
->journal_entries
);
4157 DEBUG_print(" log2_interleave_sectors %d\n", ic
->sb
->log2_interleave_sectors
);
4158 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic
->dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
);
4159 DEBUG_print(" initial_sectors 0x%x\n", ic
->initial_sectors
);
4160 DEBUG_print(" metadata_run 0x%x\n", ic
->metadata_run
);
4161 DEBUG_print(" log2_metadata_run %d\n", ic
->log2_metadata_run
);
4162 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic
->provided_data_sectors
, ic
->provided_data_sectors
);
4163 DEBUG_print(" log2_buffer_sectors %u\n", ic
->log2_buffer_sectors
);
4164 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal
);
4166 if (ic
->recalculate_flag
&& !(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))) {
4167 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
4168 ic
->sb
->recalc_sector
= cpu_to_le64(0);
4171 if (ic
->internal_hash
) {
4172 ic
->recalc_wq
= alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM
, 1);
4173 if (!ic
->recalc_wq
) {
4174 ti
->error
= "Cannot allocate workqueue";
4178 INIT_WORK(&ic
->recalc_work
, integrity_recalc
);
4179 ic
->recalc_buffer
= vmalloc(RECALC_SECTORS
<< SECTOR_SHIFT
);
4180 if (!ic
->recalc_buffer
) {
4181 ti
->error
= "Cannot allocate buffer for recalculating";
4185 ic
->recalc_tags
= kvmalloc_array(RECALC_SECTORS
>> ic
->sb
->log2_sectors_per_block
,
4186 ic
->tag_size
, GFP_KERNEL
);
4187 if (!ic
->recalc_tags
) {
4188 ti
->error
= "Cannot allocate tags for recalculating";
4194 ic
->bufio
= dm_bufio_client_create(ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
,
4195 1U << (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
), 1, 0, NULL
, NULL
);
4196 if (IS_ERR(ic
->bufio
)) {
4197 r
= PTR_ERR(ic
->bufio
);
4198 ti
->error
= "Cannot initialize dm-bufio";
4202 dm_bufio_set_sector_offset(ic
->bufio
, ic
->start
+ ic
->initial_sectors
);
4204 if (ic
->mode
!= 'R') {
4205 r
= create_journal(ic
, &ti
->error
);
4211 if (ic
->mode
== 'B') {
4213 unsigned n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
4215 ic
->recalc_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
4216 if (!ic
->recalc_bitmap
) {
4220 ic
->may_write_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
4221 if (!ic
->may_write_bitmap
) {
4225 ic
->bbs
= kvmalloc_array(ic
->n_bitmap_blocks
, sizeof(struct bitmap_block_status
), GFP_KERNEL
);
4230 INIT_DELAYED_WORK(&ic
->bitmap_flush_work
, bitmap_flush_work
);
4231 for (i
= 0; i
< ic
->n_bitmap_blocks
; i
++) {
4232 struct bitmap_block_status
*bbs
= &ic
->bbs
[i
];
4233 unsigned sector
, pl_index
, pl_offset
;
4235 INIT_WORK(&bbs
->work
, bitmap_block_work
);
4238 bio_list_init(&bbs
->bio_queue
);
4239 spin_lock_init(&bbs
->bio_queue_lock
);
4241 sector
= i
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
);
4242 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
4243 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
4245 bbs
->bitmap
= lowmem_page_address(ic
->journal
[pl_index
].page
) + pl_offset
;
4249 if (should_write_sb
) {
4252 init_journal(ic
, 0, ic
->journal_sections
, 0);
4253 r
= dm_integrity_failed(ic
);
4255 ti
->error
= "Error initializing journal";
4258 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
4260 ti
->error
= "Error initializing superblock";
4263 ic
->just_formatted
= true;
4266 if (!ic
->meta_dev
) {
4267 r
= dm_set_target_max_io_len(ti
, 1U << ic
->sb
->log2_interleave_sectors
);
4271 if (ic
->mode
== 'B') {
4272 unsigned max_io_len
= ((sector_t
)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
) * (BITMAP_BLOCK_SIZE
* 8);
4274 max_io_len
= 1U << 31;
4275 DEBUG_print("max_io_len: old %u, new %u\n", ti
->max_io_len
, max_io_len
);
4276 if (!ti
->max_io_len
|| ti
->max_io_len
> max_io_len
) {
4277 r
= dm_set_target_max_io_len(ti
, max_io_len
);
4283 if (!ic
->internal_hash
)
4284 dm_integrity_set(ti
, ic
);
4286 ti
->num_flush_bios
= 1;
4287 ti
->flush_supported
= true;
4289 ti
->num_discard_bios
= 1;
4294 dm_integrity_dtr(ti
);
4298 static void dm_integrity_dtr(struct dm_target
*ti
)
4300 struct dm_integrity_c
*ic
= ti
->private;
4302 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
4303 BUG_ON(!list_empty(&ic
->wait_list
));
4305 if (ic
->metadata_wq
)
4306 destroy_workqueue(ic
->metadata_wq
);
4308 destroy_workqueue(ic
->wait_wq
);
4310 destroy_workqueue(ic
->offload_wq
);
4312 destroy_workqueue(ic
->commit_wq
);
4314 destroy_workqueue(ic
->writer_wq
);
4316 destroy_workqueue(ic
->recalc_wq
);
4317 vfree(ic
->recalc_buffer
);
4318 kvfree(ic
->recalc_tags
);
4321 dm_bufio_client_destroy(ic
->bufio
);
4322 mempool_exit(&ic
->journal_io_mempool
);
4324 dm_io_client_destroy(ic
->io
);
4326 dm_put_device(ti
, ic
->dev
);
4328 dm_put_device(ti
, ic
->meta_dev
);
4329 dm_integrity_free_page_list(ic
->journal
);
4330 dm_integrity_free_page_list(ic
->journal_io
);
4331 dm_integrity_free_page_list(ic
->journal_xor
);
4332 dm_integrity_free_page_list(ic
->recalc_bitmap
);
4333 dm_integrity_free_page_list(ic
->may_write_bitmap
);
4334 if (ic
->journal_scatterlist
)
4335 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_scatterlist
);
4336 if (ic
->journal_io_scatterlist
)
4337 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_io_scatterlist
);
4338 if (ic
->sk_requests
) {
4341 for (i
= 0; i
< ic
->journal_sections
; i
++) {
4342 struct skcipher_request
*req
= ic
->sk_requests
[i
];
4345 skcipher_request_free(req
);
4348 kvfree(ic
->sk_requests
);
4350 kvfree(ic
->journal_tree
);
4352 free_pages_exact(ic
->sb
, SB_SECTORS
<< SECTOR_SHIFT
);
4354 if (ic
->internal_hash
)
4355 crypto_free_shash(ic
->internal_hash
);
4356 free_alg(&ic
->internal_hash_alg
);
4358 if (ic
->journal_crypt
)
4359 crypto_free_skcipher(ic
->journal_crypt
);
4360 free_alg(&ic
->journal_crypt_alg
);
4362 if (ic
->journal_mac
)
4363 crypto_free_shash(ic
->journal_mac
);
4364 free_alg(&ic
->journal_mac_alg
);
4369 static struct target_type integrity_target
= {
4370 .name
= "integrity",
4371 .version
= {1, 6, 0},
4372 .module
= THIS_MODULE
,
4373 .features
= DM_TARGET_SINGLETON
| DM_TARGET_INTEGRITY
,
4374 .ctr
= dm_integrity_ctr
,
4375 .dtr
= dm_integrity_dtr
,
4376 .map
= dm_integrity_map
,
4377 .postsuspend
= dm_integrity_postsuspend
,
4378 .resume
= dm_integrity_resume
,
4379 .status
= dm_integrity_status
,
4380 .iterate_devices
= dm_integrity_iterate_devices
,
4381 .io_hints
= dm_integrity_io_hints
,
4384 static int __init
dm_integrity_init(void)
4388 journal_io_cache
= kmem_cache_create("integrity_journal_io",
4389 sizeof(struct journal_io
), 0, 0, NULL
);
4390 if (!journal_io_cache
) {
4391 DMERR("can't allocate journal io cache");
4395 r
= dm_register_target(&integrity_target
);
4398 DMERR("register failed %d", r
);
4403 static void __exit
dm_integrity_exit(void)
4405 dm_unregister_target(&integrity_target
);
4406 kmem_cache_destroy(journal_io_cache
);
4409 module_init(dm_integrity_init
);
4410 module_exit(dm_integrity_exit
);
4412 MODULE_AUTHOR("Milan Broz");
4413 MODULE_AUTHOR("Mikulas Patocka");
4414 MODULE_DESCRIPTION(DM_NAME
" target for integrity tags extension");
4415 MODULE_LICENSE("GPL");