gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / md / dm-integrity.c
blob4094c47eca7f233db0b8670ecf5a7bcaef4a031b
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
7 */
9 #include "dm-bio-record.h"
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
26 #define DM_MSG_PREFIX "integrity"
28 #define DEFAULT_INTERLEAVE_SECTORS 32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31 #define DEFAULT_BUFFER_SECTORS 128
32 #define DEFAULT_JOURNAL_WATERMARK 50
33 #define DEFAULT_SYNC_MSEC 10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS 3
36 #define MAX_LOG2_INTERLEAVE_SECTORS 31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
38 #define RECALC_SECTORS 8192
39 #define RECALC_WRITE_SUPER 16
40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 #define DISCARD_FILLER 0xf6
45 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46 * so it should not be enabled in the official kernel
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
52 * On disk structures
55 #define SB_MAGIC "integrt"
56 #define SB_VERSION_1 1
57 #define SB_VERSION_2 2
58 #define SB_VERSION_3 3
59 #define SB_VERSION_4 4
60 #define SB_SECTORS 8
61 #define MAX_SECTORS_PER_BLOCK 8
63 struct superblock {
64 __u8 magic[8];
65 __u8 version;
66 __u8 log2_interleave_sectors;
67 __u16 integrity_tag_size;
68 __u32 journal_sections;
69 __u64 provided_data_sectors; /* userspace uses this value */
70 __u32 flags;
71 __u8 log2_sectors_per_block;
72 __u8 log2_blocks_per_bitmap_bit;
73 __u8 pad[2];
74 __u64 recalc_sector;
77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
78 #define SB_FLAG_RECALCULATING 0x2
79 #define SB_FLAG_DIRTY_BITMAP 0x4
80 #define SB_FLAG_FIXED_PADDING 0x8
82 #define JOURNAL_ENTRY_ROUNDUP 8
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR 8
87 struct journal_entry {
88 union {
89 struct {
90 __u32 sector_lo;
91 __u32 sector_hi;
92 } s;
93 __u64 sector;
94 } u;
95 commit_id_t last_bytes[0];
96 /* __u8 tag[0]; */
99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
112 #define JOURNAL_BLOCK_SECTORS 8
113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
116 struct journal_sector {
117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118 __u8 mac[JOURNAL_MAC_PER_SECTOR];
119 commit_id_t commit_id;
122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
124 #define METADATA_PADDING_SECTORS 8
126 #define N_COMMIT_IDS 4
128 static unsigned char prev_commit_seq(unsigned char seq)
130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
133 static unsigned char next_commit_seq(unsigned char seq)
135 return (seq + 1) % N_COMMIT_IDS;
139 * In-memory structures
142 struct journal_node {
143 struct rb_node node;
144 sector_t sector;
147 struct alg_spec {
148 char *alg_string;
149 char *key_string;
150 __u8 *key;
151 unsigned key_size;
154 struct dm_integrity_c {
155 struct dm_dev *dev;
156 struct dm_dev *meta_dev;
157 unsigned tag_size;
158 __s8 log2_tag_size;
159 sector_t start;
160 mempool_t journal_io_mempool;
161 struct dm_io_client *io;
162 struct dm_bufio_client *bufio;
163 struct workqueue_struct *metadata_wq;
164 struct superblock *sb;
165 unsigned journal_pages;
166 unsigned n_bitmap_blocks;
168 struct page_list *journal;
169 struct page_list *journal_io;
170 struct page_list *journal_xor;
171 struct page_list *recalc_bitmap;
172 struct page_list *may_write_bitmap;
173 struct bitmap_block_status *bbs;
174 unsigned bitmap_flush_interval;
175 int synchronous_mode;
176 struct bio_list synchronous_bios;
177 struct delayed_work bitmap_flush_work;
179 struct crypto_skcipher *journal_crypt;
180 struct scatterlist **journal_scatterlist;
181 struct scatterlist **journal_io_scatterlist;
182 struct skcipher_request **sk_requests;
184 struct crypto_shash *journal_mac;
186 struct journal_node *journal_tree;
187 struct rb_root journal_tree_root;
189 sector_t provided_data_sectors;
191 unsigned short journal_entry_size;
192 unsigned char journal_entries_per_sector;
193 unsigned char journal_section_entries;
194 unsigned short journal_section_sectors;
195 unsigned journal_sections;
196 unsigned journal_entries;
197 sector_t data_device_sectors;
198 sector_t meta_device_sectors;
199 unsigned initial_sectors;
200 unsigned metadata_run;
201 __s8 log2_metadata_run;
202 __u8 log2_buffer_sectors;
203 __u8 sectors_per_block;
204 __u8 log2_blocks_per_bitmap_bit;
206 unsigned char mode;
208 int failed;
210 struct crypto_shash *internal_hash;
212 struct dm_target *ti;
214 /* these variables are locked with endio_wait.lock */
215 struct rb_root in_progress;
216 struct list_head wait_list;
217 wait_queue_head_t endio_wait;
218 struct workqueue_struct *wait_wq;
219 struct workqueue_struct *offload_wq;
221 unsigned char commit_seq;
222 commit_id_t commit_ids[N_COMMIT_IDS];
224 unsigned committed_section;
225 unsigned n_committed_sections;
227 unsigned uncommitted_section;
228 unsigned n_uncommitted_sections;
230 unsigned free_section;
231 unsigned char free_section_entry;
232 unsigned free_sectors;
234 unsigned free_sectors_threshold;
236 struct workqueue_struct *commit_wq;
237 struct work_struct commit_work;
239 struct workqueue_struct *writer_wq;
240 struct work_struct writer_work;
242 struct workqueue_struct *recalc_wq;
243 struct work_struct recalc_work;
244 u8 *recalc_buffer;
245 u8 *recalc_tags;
247 struct bio_list flush_bio_list;
249 unsigned long autocommit_jiffies;
250 struct timer_list autocommit_timer;
251 unsigned autocommit_msec;
253 wait_queue_head_t copy_to_journal_wait;
255 struct completion crypto_backoff;
257 bool journal_uptodate;
258 bool just_formatted;
259 bool recalculate_flag;
260 bool fix_padding;
261 bool discard;
263 struct alg_spec internal_hash_alg;
264 struct alg_spec journal_crypt_alg;
265 struct alg_spec journal_mac_alg;
267 atomic64_t number_of_mismatches;
269 struct notifier_block reboot_notifier;
272 struct dm_integrity_range {
273 sector_t logical_sector;
274 sector_t n_sectors;
275 bool waiting;
276 union {
277 struct rb_node node;
278 struct {
279 struct task_struct *task;
280 struct list_head wait_entry;
285 struct dm_integrity_io {
286 struct work_struct work;
288 struct dm_integrity_c *ic;
289 enum req_opf op;
290 bool fua;
292 struct dm_integrity_range range;
294 sector_t metadata_block;
295 unsigned metadata_offset;
297 atomic_t in_flight;
298 blk_status_t bi_status;
300 struct completion *completion;
302 struct dm_bio_details bio_details;
305 struct journal_completion {
306 struct dm_integrity_c *ic;
307 atomic_t in_flight;
308 struct completion comp;
311 struct journal_io {
312 struct dm_integrity_range range;
313 struct journal_completion *comp;
316 struct bitmap_block_status {
317 struct work_struct work;
318 struct dm_integrity_c *ic;
319 unsigned idx;
320 unsigned long *bitmap;
321 struct bio_list bio_queue;
322 spinlock_t bio_queue_lock;
326 static struct kmem_cache *journal_io_cache;
328 #define JOURNAL_IO_MEMPOOL 32
330 #ifdef DEBUG_PRINT
331 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
334 va_list args;
335 va_start(args, msg);
336 vprintk(msg, args);
337 va_end(args);
338 if (len)
339 pr_cont(":");
340 while (len) {
341 pr_cont(" %02x", *bytes);
342 bytes++;
343 len--;
345 pr_cont("\n");
347 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
348 #else
349 #define DEBUG_print(x, ...) do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351 #endif
353 static void dm_integrity_prepare(struct request *rq)
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
366 .generate_fn = NULL,
367 .verify_fn = NULL,
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
378 if (err == -EILSEQ)
379 atomic64_inc(&ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
386 return READ_ONCE(ic->failed);
389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
390 unsigned j, unsigned char seq)
393 * Xor the number with section and sector, so that if a piece of
394 * journal is written at wrong place, it is detected.
396 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
400 sector_t *area, sector_t *offset)
402 if (!ic->meta_dev) {
403 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
404 *area = data_sector >> log2_interleave_sectors;
405 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
406 } else {
407 *area = 0;
408 *offset = data_sector;
412 #define sector_to_block(ic, n) \
413 do { \
414 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
415 (n) >>= (ic)->sb->log2_sectors_per_block; \
416 } while (0)
418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
419 sector_t offset, unsigned *metadata_offset)
421 __u64 ms;
422 unsigned mo;
424 ms = area << ic->sb->log2_interleave_sectors;
425 if (likely(ic->log2_metadata_run >= 0))
426 ms += area << ic->log2_metadata_run;
427 else
428 ms += area * ic->metadata_run;
429 ms >>= ic->log2_buffer_sectors;
431 sector_to_block(ic, offset);
433 if (likely(ic->log2_tag_size >= 0)) {
434 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
435 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
436 } else {
437 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
438 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
440 *metadata_offset = mo;
441 return ms;
444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
446 sector_t result;
448 if (ic->meta_dev)
449 return offset;
451 result = area << ic->sb->log2_interleave_sectors;
452 if (likely(ic->log2_metadata_run >= 0))
453 result += (area + 1) << ic->log2_metadata_run;
454 else
455 result += (area + 1) * ic->metadata_run;
457 result += (sector_t)ic->initial_sectors + offset;
458 result += ic->start;
460 return result;
463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
465 if (unlikely(*sec_ptr >= ic->journal_sections))
466 *sec_ptr -= ic->journal_sections;
469 static void sb_set_version(struct dm_integrity_c *ic)
471 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
472 ic->sb->version = SB_VERSION_4;
473 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
474 ic->sb->version = SB_VERSION_3;
475 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
476 ic->sb->version = SB_VERSION_2;
477 else
478 ic->sb->version = SB_VERSION_1;
481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
483 struct dm_io_request io_req;
484 struct dm_io_region io_loc;
486 io_req.bi_op = op;
487 io_req.bi_op_flags = op_flags;
488 io_req.mem.type = DM_IO_KMEM;
489 io_req.mem.ptr.addr = ic->sb;
490 io_req.notify.fn = NULL;
491 io_req.client = ic->io;
492 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
493 io_loc.sector = ic->start;
494 io_loc.count = SB_SECTORS;
496 if (op == REQ_OP_WRITE)
497 sb_set_version(ic);
499 return dm_io(&io_req, 1, &io_loc, NULL);
502 #define BITMAP_OP_TEST_ALL_SET 0
503 #define BITMAP_OP_TEST_ALL_CLEAR 1
504 #define BITMAP_OP_SET 2
505 #define BITMAP_OP_CLEAR 3
507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
508 sector_t sector, sector_t n_sectors, int mode)
510 unsigned long bit, end_bit, this_end_bit, page, end_page;
511 unsigned long *data;
513 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
514 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
515 sector,
516 n_sectors,
517 ic->sb->log2_sectors_per_block,
518 ic->log2_blocks_per_bitmap_bit,
519 mode);
520 BUG();
523 if (unlikely(!n_sectors))
524 return true;
526 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
527 end_bit = (sector + n_sectors - 1) >>
528 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
530 page = bit / (PAGE_SIZE * 8);
531 bit %= PAGE_SIZE * 8;
533 end_page = end_bit / (PAGE_SIZE * 8);
534 end_bit %= PAGE_SIZE * 8;
536 repeat:
537 if (page < end_page) {
538 this_end_bit = PAGE_SIZE * 8 - 1;
539 } else {
540 this_end_bit = end_bit;
543 data = lowmem_page_address(bitmap[page].page);
545 if (mode == BITMAP_OP_TEST_ALL_SET) {
546 while (bit <= this_end_bit) {
547 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
548 do {
549 if (data[bit / BITS_PER_LONG] != -1)
550 return false;
551 bit += BITS_PER_LONG;
552 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
553 continue;
555 if (!test_bit(bit, data))
556 return false;
557 bit++;
559 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
560 while (bit <= this_end_bit) {
561 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
562 do {
563 if (data[bit / BITS_PER_LONG] != 0)
564 return false;
565 bit += BITS_PER_LONG;
566 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
567 continue;
569 if (test_bit(bit, data))
570 return false;
571 bit++;
573 } else if (mode == BITMAP_OP_SET) {
574 while (bit <= this_end_bit) {
575 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
576 do {
577 data[bit / BITS_PER_LONG] = -1;
578 bit += BITS_PER_LONG;
579 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
580 continue;
582 __set_bit(bit, data);
583 bit++;
585 } else if (mode == BITMAP_OP_CLEAR) {
586 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
587 clear_page(data);
588 else while (bit <= this_end_bit) {
589 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
590 do {
591 data[bit / BITS_PER_LONG] = 0;
592 bit += BITS_PER_LONG;
593 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
594 continue;
596 __clear_bit(bit, data);
597 bit++;
599 } else {
600 BUG();
603 if (unlikely(page < end_page)) {
604 bit = 0;
605 page++;
606 goto repeat;
609 return true;
612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
614 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
615 unsigned i;
617 for (i = 0; i < n_bitmap_pages; i++) {
618 unsigned long *dst_data = lowmem_page_address(dst[i].page);
619 unsigned long *src_data = lowmem_page_address(src[i].page);
620 copy_page(dst_data, src_data);
624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
626 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
627 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
629 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
630 return &ic->bbs[bitmap_block];
633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
634 bool e, const char *function)
636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
637 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
639 if (unlikely(section >= ic->journal_sections) ||
640 unlikely(offset >= limit)) {
641 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
642 function, section, offset, ic->journal_sections, limit);
643 BUG();
645 #endif
648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
649 unsigned *pl_index, unsigned *pl_offset)
651 unsigned sector;
653 access_journal_check(ic, section, offset, false, "page_list_location");
655 sector = section * ic->journal_section_sectors + offset;
657 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
658 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
662 unsigned section, unsigned offset, unsigned *n_sectors)
664 unsigned pl_index, pl_offset;
665 char *va;
667 page_list_location(ic, section, offset, &pl_index, &pl_offset);
669 if (n_sectors)
670 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
672 va = lowmem_page_address(pl[pl_index].page);
674 return (struct journal_sector *)(va + pl_offset);
677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
679 return access_page_list(ic, ic->journal, section, offset, NULL);
682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
684 unsigned rel_sector, offset;
685 struct journal_sector *js;
687 access_journal_check(ic, section, n, true, "access_journal_entry");
689 rel_sector = n % JOURNAL_BLOCK_SECTORS;
690 offset = n / JOURNAL_BLOCK_SECTORS;
692 js = access_journal(ic, section, rel_sector);
693 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
698 n <<= ic->sb->log2_sectors_per_block;
700 n += JOURNAL_BLOCK_SECTORS;
702 access_journal_check(ic, section, n, false, "access_journal_data");
704 return access_journal(ic, section, n);
707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
709 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
710 int r;
711 unsigned j, size;
713 desc->tfm = ic->journal_mac;
715 r = crypto_shash_init(desc);
716 if (unlikely(r)) {
717 dm_integrity_io_error(ic, "crypto_shash_init", r);
718 goto err;
721 for (j = 0; j < ic->journal_section_entries; j++) {
722 struct journal_entry *je = access_journal_entry(ic, section, j);
723 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
724 if (unlikely(r)) {
725 dm_integrity_io_error(ic, "crypto_shash_update", r);
726 goto err;
730 size = crypto_shash_digestsize(ic->journal_mac);
732 if (likely(size <= JOURNAL_MAC_SIZE)) {
733 r = crypto_shash_final(desc, result);
734 if (unlikely(r)) {
735 dm_integrity_io_error(ic, "crypto_shash_final", r);
736 goto err;
738 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
739 } else {
740 __u8 digest[HASH_MAX_DIGESTSIZE];
742 if (WARN_ON(size > sizeof(digest))) {
743 dm_integrity_io_error(ic, "digest_size", -EINVAL);
744 goto err;
746 r = crypto_shash_final(desc, digest);
747 if (unlikely(r)) {
748 dm_integrity_io_error(ic, "crypto_shash_final", r);
749 goto err;
751 memcpy(result, digest, JOURNAL_MAC_SIZE);
754 return;
755 err:
756 memset(result, 0, JOURNAL_MAC_SIZE);
759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
761 __u8 result[JOURNAL_MAC_SIZE];
762 unsigned j;
764 if (!ic->journal_mac)
765 return;
767 section_mac(ic, section, result);
769 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
770 struct journal_sector *js = access_journal(ic, section, j);
772 if (likely(wr))
773 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
774 else {
775 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
776 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
781 static void complete_journal_op(void *context)
783 struct journal_completion *comp = context;
784 BUG_ON(!atomic_read(&comp->in_flight));
785 if (likely(atomic_dec_and_test(&comp->in_flight)))
786 complete(&comp->comp);
789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
790 unsigned n_sections, struct journal_completion *comp)
792 struct async_submit_ctl submit;
793 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
794 unsigned pl_index, pl_offset, section_index;
795 struct page_list *source_pl, *target_pl;
797 if (likely(encrypt)) {
798 source_pl = ic->journal;
799 target_pl = ic->journal_io;
800 } else {
801 source_pl = ic->journal_io;
802 target_pl = ic->journal;
805 page_list_location(ic, section, 0, &pl_index, &pl_offset);
807 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
809 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
811 section_index = pl_index;
813 do {
814 size_t this_step;
815 struct page *src_pages[2];
816 struct page *dst_page;
818 while (unlikely(pl_index == section_index)) {
819 unsigned dummy;
820 if (likely(encrypt))
821 rw_section_mac(ic, section, true);
822 section++;
823 n_sections--;
824 if (!n_sections)
825 break;
826 page_list_location(ic, section, 0, &section_index, &dummy);
829 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
830 dst_page = target_pl[pl_index].page;
831 src_pages[0] = source_pl[pl_index].page;
832 src_pages[1] = ic->journal_xor[pl_index].page;
834 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
836 pl_index++;
837 pl_offset = 0;
838 n_bytes -= this_step;
839 } while (n_bytes);
841 BUG_ON(n_sections);
843 async_tx_issue_pending_all();
846 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
848 struct journal_completion *comp = req->data;
849 if (unlikely(err)) {
850 if (likely(err == -EINPROGRESS)) {
851 complete(&comp->ic->crypto_backoff);
852 return;
854 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
856 complete_journal_op(comp);
859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
861 int r;
862 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
863 complete_journal_encrypt, comp);
864 if (likely(encrypt))
865 r = crypto_skcipher_encrypt(req);
866 else
867 r = crypto_skcipher_decrypt(req);
868 if (likely(!r))
869 return false;
870 if (likely(r == -EINPROGRESS))
871 return true;
872 if (likely(r == -EBUSY)) {
873 wait_for_completion(&comp->ic->crypto_backoff);
874 reinit_completion(&comp->ic->crypto_backoff);
875 return true;
877 dm_integrity_io_error(comp->ic, "encrypt", r);
878 return false;
881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
882 unsigned n_sections, struct journal_completion *comp)
884 struct scatterlist **source_sg;
885 struct scatterlist **target_sg;
887 atomic_add(2, &comp->in_flight);
889 if (likely(encrypt)) {
890 source_sg = ic->journal_scatterlist;
891 target_sg = ic->journal_io_scatterlist;
892 } else {
893 source_sg = ic->journal_io_scatterlist;
894 target_sg = ic->journal_scatterlist;
897 do {
898 struct skcipher_request *req;
899 unsigned ivsize;
900 char *iv;
902 if (likely(encrypt))
903 rw_section_mac(ic, section, true);
905 req = ic->sk_requests[section];
906 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
907 iv = req->iv;
909 memcpy(iv, iv + ivsize, ivsize);
911 req->src = source_sg[section];
912 req->dst = target_sg[section];
914 if (unlikely(do_crypt(encrypt, req, comp)))
915 atomic_inc(&comp->in_flight);
917 section++;
918 n_sections--;
919 } while (n_sections);
921 atomic_dec(&comp->in_flight);
922 complete_journal_op(comp);
925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
926 unsigned n_sections, struct journal_completion *comp)
928 if (ic->journal_xor)
929 return xor_journal(ic, encrypt, section, n_sections, comp);
930 else
931 return crypt_journal(ic, encrypt, section, n_sections, comp);
934 static void complete_journal_io(unsigned long error, void *context)
936 struct journal_completion *comp = context;
937 if (unlikely(error != 0))
938 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
939 complete_journal_op(comp);
942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
943 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
945 struct dm_io_request io_req;
946 struct dm_io_region io_loc;
947 unsigned pl_index, pl_offset;
948 int r;
950 if (unlikely(dm_integrity_failed(ic))) {
951 if (comp)
952 complete_journal_io(-1UL, comp);
953 return;
956 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
957 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
959 io_req.bi_op = op;
960 io_req.bi_op_flags = op_flags;
961 io_req.mem.type = DM_IO_PAGE_LIST;
962 if (ic->journal_io)
963 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
964 else
965 io_req.mem.ptr.pl = &ic->journal[pl_index];
966 io_req.mem.offset = pl_offset;
967 if (likely(comp != NULL)) {
968 io_req.notify.fn = complete_journal_io;
969 io_req.notify.context = comp;
970 } else {
971 io_req.notify.fn = NULL;
973 io_req.client = ic->io;
974 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
975 io_loc.sector = ic->start + SB_SECTORS + sector;
976 io_loc.count = n_sectors;
978 r = dm_io(&io_req, 1, &io_loc, NULL);
979 if (unlikely(r)) {
980 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
981 if (comp) {
982 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
983 complete_journal_io(-1UL, comp);
988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
989 unsigned n_sections, struct journal_completion *comp)
991 unsigned sector, n_sectors;
993 sector = section * ic->journal_section_sectors;
994 n_sectors = n_sections * ic->journal_section_sectors;
996 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1001 struct journal_completion io_comp;
1002 struct journal_completion crypt_comp_1;
1003 struct journal_completion crypt_comp_2;
1004 unsigned i;
1006 io_comp.ic = ic;
1007 init_completion(&io_comp.comp);
1009 if (commit_start + commit_sections <= ic->journal_sections) {
1010 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1011 if (ic->journal_io) {
1012 crypt_comp_1.ic = ic;
1013 init_completion(&crypt_comp_1.comp);
1014 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1015 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1016 wait_for_completion_io(&crypt_comp_1.comp);
1017 } else {
1018 for (i = 0; i < commit_sections; i++)
1019 rw_section_mac(ic, commit_start + i, true);
1021 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1022 commit_sections, &io_comp);
1023 } else {
1024 unsigned to_end;
1025 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1026 to_end = ic->journal_sections - commit_start;
1027 if (ic->journal_io) {
1028 crypt_comp_1.ic = ic;
1029 init_completion(&crypt_comp_1.comp);
1030 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1031 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1032 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1033 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1034 reinit_completion(&crypt_comp_1.comp);
1035 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1036 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1037 wait_for_completion_io(&crypt_comp_1.comp);
1038 } else {
1039 crypt_comp_2.ic = ic;
1040 init_completion(&crypt_comp_2.comp);
1041 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1042 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1043 wait_for_completion_io(&crypt_comp_1.comp);
1044 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1045 wait_for_completion_io(&crypt_comp_2.comp);
1047 } else {
1048 for (i = 0; i < to_end; i++)
1049 rw_section_mac(ic, commit_start + i, true);
1050 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1051 for (i = 0; i < commit_sections - to_end; i++)
1052 rw_section_mac(ic, i, true);
1054 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1057 wait_for_completion_io(&io_comp.comp);
1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1061 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1063 struct dm_io_request io_req;
1064 struct dm_io_region io_loc;
1065 int r;
1066 unsigned sector, pl_index, pl_offset;
1068 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1070 if (unlikely(dm_integrity_failed(ic))) {
1071 fn(-1UL, data);
1072 return;
1075 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1077 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1078 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1080 io_req.bi_op = REQ_OP_WRITE;
1081 io_req.bi_op_flags = 0;
1082 io_req.mem.type = DM_IO_PAGE_LIST;
1083 io_req.mem.ptr.pl = &ic->journal[pl_index];
1084 io_req.mem.offset = pl_offset;
1085 io_req.notify.fn = fn;
1086 io_req.notify.context = data;
1087 io_req.client = ic->io;
1088 io_loc.bdev = ic->dev->bdev;
1089 io_loc.sector = target;
1090 io_loc.count = n_sectors;
1092 r = dm_io(&io_req, 1, &io_loc, NULL);
1093 if (unlikely(r)) {
1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1095 fn(-1UL, data);
1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1101 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1102 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1107 struct rb_node **n = &ic->in_progress.rb_node;
1108 struct rb_node *parent;
1110 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1112 if (likely(check_waiting)) {
1113 struct dm_integrity_range *range;
1114 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1115 if (unlikely(ranges_overlap(range, new_range)))
1116 return false;
1120 parent = NULL;
1122 while (*n) {
1123 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1125 parent = *n;
1126 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1127 n = &range->node.rb_left;
1128 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1129 n = &range->node.rb_right;
1130 } else {
1131 return false;
1135 rb_link_node(&new_range->node, parent, n);
1136 rb_insert_color(&new_range->node, &ic->in_progress);
1138 return true;
1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1143 rb_erase(&range->node, &ic->in_progress);
1144 while (unlikely(!list_empty(&ic->wait_list))) {
1145 struct dm_integrity_range *last_range =
1146 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1147 struct task_struct *last_range_task;
1148 last_range_task = last_range->task;
1149 list_del(&last_range->wait_entry);
1150 if (!add_new_range(ic, last_range, false)) {
1151 last_range->task = last_range_task;
1152 list_add(&last_range->wait_entry, &ic->wait_list);
1153 break;
1155 last_range->waiting = false;
1156 wake_up_process(last_range_task);
1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1162 unsigned long flags;
1164 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1165 remove_range_unlocked(ic, range);
1166 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1171 new_range->waiting = true;
1172 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1173 new_range->task = current;
1174 do {
1175 __set_current_state(TASK_UNINTERRUPTIBLE);
1176 spin_unlock_irq(&ic->endio_wait.lock);
1177 io_schedule();
1178 spin_lock_irq(&ic->endio_wait.lock);
1179 } while (unlikely(new_range->waiting));
1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1184 if (unlikely(!add_new_range(ic, new_range, true)))
1185 wait_and_add_new_range(ic, new_range);
1188 static void init_journal_node(struct journal_node *node)
1190 RB_CLEAR_NODE(&node->node);
1191 node->sector = (sector_t)-1;
1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1196 struct rb_node **link;
1197 struct rb_node *parent;
1199 node->sector = sector;
1200 BUG_ON(!RB_EMPTY_NODE(&node->node));
1202 link = &ic->journal_tree_root.rb_node;
1203 parent = NULL;
1205 while (*link) {
1206 struct journal_node *j;
1207 parent = *link;
1208 j = container_of(parent, struct journal_node, node);
1209 if (sector < j->sector)
1210 link = &j->node.rb_left;
1211 else
1212 link = &j->node.rb_right;
1215 rb_link_node(&node->node, parent, link);
1216 rb_insert_color(&node->node, &ic->journal_tree_root);
1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1221 BUG_ON(RB_EMPTY_NODE(&node->node));
1222 rb_erase(&node->node, &ic->journal_tree_root);
1223 init_journal_node(node);
1226 #define NOT_FOUND (-1U)
1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1230 struct rb_node *n = ic->journal_tree_root.rb_node;
1231 unsigned found = NOT_FOUND;
1232 *next_sector = (sector_t)-1;
1233 while (n) {
1234 struct journal_node *j = container_of(n, struct journal_node, node);
1235 if (sector == j->sector) {
1236 found = j - ic->journal_tree;
1238 if (sector < j->sector) {
1239 *next_sector = j->sector;
1240 n = j->node.rb_left;
1241 } else {
1242 n = j->node.rb_right;
1246 return found;
1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1251 struct journal_node *node, *next_node;
1252 struct rb_node *next;
1254 if (unlikely(pos >= ic->journal_entries))
1255 return false;
1256 node = &ic->journal_tree[pos];
1257 if (unlikely(RB_EMPTY_NODE(&node->node)))
1258 return false;
1259 if (unlikely(node->sector != sector))
1260 return false;
1262 next = rb_next(&node->node);
1263 if (unlikely(!next))
1264 return true;
1266 next_node = container_of(next, struct journal_node, node);
1267 return next_node->sector != sector;
1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1272 struct rb_node *next;
1273 struct journal_node *next_node;
1274 unsigned next_section;
1276 BUG_ON(RB_EMPTY_NODE(&node->node));
1278 next = rb_next(&node->node);
1279 if (unlikely(!next))
1280 return false;
1282 next_node = container_of(next, struct journal_node, node);
1284 if (next_node->sector != node->sector)
1285 return false;
1287 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1288 if (next_section >= ic->committed_section &&
1289 next_section < ic->committed_section + ic->n_committed_sections)
1290 return true;
1291 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1292 return true;
1294 return false;
1297 #define TAG_READ 0
1298 #define TAG_WRITE 1
1299 #define TAG_CMP 2
1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1302 unsigned *metadata_offset, unsigned total_size, int op)
1304 #define MAY_BE_FILLER 1
1305 #define MAY_BE_HASH 2
1306 unsigned hash_offset = 0;
1307 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1309 do {
1310 unsigned char *data, *dp;
1311 struct dm_buffer *b;
1312 unsigned to_copy;
1313 int r;
1315 r = dm_integrity_failed(ic);
1316 if (unlikely(r))
1317 return r;
1319 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1320 if (IS_ERR(data))
1321 return PTR_ERR(data);
1323 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1324 dp = data + *metadata_offset;
1325 if (op == TAG_READ) {
1326 memcpy(tag, dp, to_copy);
1327 } else if (op == TAG_WRITE) {
1328 memcpy(dp, tag, to_copy);
1329 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1330 } else {
1331 /* e.g.: op == TAG_CMP */
1333 if (likely(is_power_of_2(ic->tag_size))) {
1334 if (unlikely(memcmp(dp, tag, to_copy)))
1335 if (unlikely(!ic->discard) ||
1336 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1337 goto thorough_test;
1339 } else {
1340 unsigned i, ts;
1341 thorough_test:
1342 ts = total_size;
1344 for (i = 0; i < to_copy; i++, ts--) {
1345 if (unlikely(dp[i] != tag[i]))
1346 may_be &= ~MAY_BE_HASH;
1347 if (likely(dp[i] != DISCARD_FILLER))
1348 may_be &= ~MAY_BE_FILLER;
1349 hash_offset++;
1350 if (unlikely(hash_offset == ic->tag_size)) {
1351 if (unlikely(!may_be)) {
1352 dm_bufio_release(b);
1353 return ts;
1355 hash_offset = 0;
1356 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1361 dm_bufio_release(b);
1363 tag += to_copy;
1364 *metadata_offset += to_copy;
1365 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1366 (*metadata_block)++;
1367 *metadata_offset = 0;
1370 if (unlikely(!is_power_of_2(ic->tag_size))) {
1371 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1374 total_size -= to_copy;
1375 } while (unlikely(total_size));
1377 return 0;
1378 #undef MAY_BE_FILLER
1379 #undef MAY_BE_HASH
1382 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1384 int r;
1385 r = dm_bufio_write_dirty_buffers(ic->bufio);
1386 if (unlikely(r))
1387 dm_integrity_io_error(ic, "writing tags", r);
1390 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1392 DECLARE_WAITQUEUE(wait, current);
1393 __add_wait_queue(&ic->endio_wait, &wait);
1394 __set_current_state(TASK_UNINTERRUPTIBLE);
1395 spin_unlock_irq(&ic->endio_wait.lock);
1396 io_schedule();
1397 spin_lock_irq(&ic->endio_wait.lock);
1398 __remove_wait_queue(&ic->endio_wait, &wait);
1401 static void autocommit_fn(struct timer_list *t)
1403 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1405 if (likely(!dm_integrity_failed(ic)))
1406 queue_work(ic->commit_wq, &ic->commit_work);
1409 static void schedule_autocommit(struct dm_integrity_c *ic)
1411 if (!timer_pending(&ic->autocommit_timer))
1412 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1415 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1417 struct bio *bio;
1418 unsigned long flags;
1420 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1421 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1422 bio_list_add(&ic->flush_bio_list, bio);
1423 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1425 queue_work(ic->commit_wq, &ic->commit_work);
1428 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1430 int r = dm_integrity_failed(ic);
1431 if (unlikely(r) && !bio->bi_status)
1432 bio->bi_status = errno_to_blk_status(r);
1433 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1434 unsigned long flags;
1435 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1436 bio_list_add(&ic->synchronous_bios, bio);
1437 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1438 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1439 return;
1441 bio_endio(bio);
1444 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1446 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1448 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1449 submit_flush_bio(ic, dio);
1450 else
1451 do_endio(ic, bio);
1454 static void dec_in_flight(struct dm_integrity_io *dio)
1456 if (atomic_dec_and_test(&dio->in_flight)) {
1457 struct dm_integrity_c *ic = dio->ic;
1458 struct bio *bio;
1460 remove_range(ic, &dio->range);
1462 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1463 schedule_autocommit(ic);
1465 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1467 if (unlikely(dio->bi_status) && !bio->bi_status)
1468 bio->bi_status = dio->bi_status;
1469 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1470 dio->range.logical_sector += dio->range.n_sectors;
1471 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1472 INIT_WORK(&dio->work, integrity_bio_wait);
1473 queue_work(ic->offload_wq, &dio->work);
1474 return;
1476 do_endio_flush(ic, dio);
1480 static void integrity_end_io(struct bio *bio)
1482 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1484 dm_bio_restore(&dio->bio_details, bio);
1485 if (bio->bi_integrity)
1486 bio->bi_opf |= REQ_INTEGRITY;
1488 if (dio->completion)
1489 complete(dio->completion);
1491 dec_in_flight(dio);
1494 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1495 const char *data, char *result)
1497 __u64 sector_le = cpu_to_le64(sector);
1498 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1499 int r;
1500 unsigned digest_size;
1502 req->tfm = ic->internal_hash;
1504 r = crypto_shash_init(req);
1505 if (unlikely(r < 0)) {
1506 dm_integrity_io_error(ic, "crypto_shash_init", r);
1507 goto failed;
1510 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1511 if (unlikely(r < 0)) {
1512 dm_integrity_io_error(ic, "crypto_shash_update", r);
1513 goto failed;
1516 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1517 if (unlikely(r < 0)) {
1518 dm_integrity_io_error(ic, "crypto_shash_update", r);
1519 goto failed;
1522 r = crypto_shash_final(req, result);
1523 if (unlikely(r < 0)) {
1524 dm_integrity_io_error(ic, "crypto_shash_final", r);
1525 goto failed;
1528 digest_size = crypto_shash_digestsize(ic->internal_hash);
1529 if (unlikely(digest_size < ic->tag_size))
1530 memset(result + digest_size, 0, ic->tag_size - digest_size);
1532 return;
1534 failed:
1535 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1536 get_random_bytes(result, ic->tag_size);
1539 static void integrity_metadata(struct work_struct *w)
1541 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1542 struct dm_integrity_c *ic = dio->ic;
1544 int r;
1546 if (ic->internal_hash) {
1547 struct bvec_iter iter;
1548 struct bio_vec bv;
1549 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1550 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1551 char *checksums;
1552 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1553 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1554 sector_t sector;
1555 unsigned sectors_to_process;
1556 sector_t save_metadata_block;
1557 unsigned save_metadata_offset;
1559 if (unlikely(ic->mode == 'R'))
1560 goto skip_io;
1562 if (likely(dio->op != REQ_OP_DISCARD))
1563 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1564 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1565 else
1566 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1567 if (!checksums) {
1568 checksums = checksums_onstack;
1569 if (WARN_ON(extra_space &&
1570 digest_size > sizeof(checksums_onstack))) {
1571 r = -EINVAL;
1572 goto error;
1576 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1577 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1578 unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1579 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1580 unsigned max_blocks = max_size / ic->tag_size;
1581 memset(checksums, DISCARD_FILLER, max_size);
1583 while (bi_size) {
1584 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1585 this_step_blocks = min(this_step_blocks, max_blocks);
1586 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1587 this_step_blocks * ic->tag_size, TAG_WRITE);
1588 if (unlikely(r)) {
1589 if (likely(checksums != checksums_onstack))
1590 kfree(checksums);
1591 goto error;
1594 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1595 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1596 printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1597 BUG();
1599 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1600 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1603 if (likely(checksums != checksums_onstack))
1604 kfree(checksums);
1605 goto skip_io;
1608 save_metadata_block = dio->metadata_block;
1609 save_metadata_offset = dio->metadata_offset;
1610 sector = dio->range.logical_sector;
1611 sectors_to_process = dio->range.n_sectors;
1613 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1614 unsigned pos;
1615 char *mem, *checksums_ptr;
1617 again:
1618 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1619 pos = 0;
1620 checksums_ptr = checksums;
1621 do {
1622 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1623 checksums_ptr += ic->tag_size;
1624 sectors_to_process -= ic->sectors_per_block;
1625 pos += ic->sectors_per_block << SECTOR_SHIFT;
1626 sector += ic->sectors_per_block;
1627 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1628 kunmap_atomic(mem);
1630 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1631 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1632 if (unlikely(r)) {
1633 if (r > 0) {
1634 char b[BDEVNAME_SIZE];
1635 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1636 (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1637 r = -EILSEQ;
1638 atomic64_inc(&ic->number_of_mismatches);
1640 if (likely(checksums != checksums_onstack))
1641 kfree(checksums);
1642 goto error;
1645 if (!sectors_to_process)
1646 break;
1648 if (unlikely(pos < bv.bv_len)) {
1649 bv.bv_offset += pos;
1650 bv.bv_len -= pos;
1651 goto again;
1655 if (likely(checksums != checksums_onstack))
1656 kfree(checksums);
1657 } else {
1658 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1660 if (bip) {
1661 struct bio_vec biv;
1662 struct bvec_iter iter;
1663 unsigned data_to_process = dio->range.n_sectors;
1664 sector_to_block(ic, data_to_process);
1665 data_to_process *= ic->tag_size;
1667 bip_for_each_vec(biv, bip, iter) {
1668 unsigned char *tag;
1669 unsigned this_len;
1671 BUG_ON(PageHighMem(biv.bv_page));
1672 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1673 this_len = min(biv.bv_len, data_to_process);
1674 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1675 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1676 if (unlikely(r))
1677 goto error;
1678 data_to_process -= this_len;
1679 if (!data_to_process)
1680 break;
1684 skip_io:
1685 dec_in_flight(dio);
1686 return;
1687 error:
1688 dio->bi_status = errno_to_blk_status(r);
1689 dec_in_flight(dio);
1692 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1694 struct dm_integrity_c *ic = ti->private;
1695 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1696 struct bio_integrity_payload *bip;
1698 sector_t area, offset;
1700 dio->ic = ic;
1701 dio->bi_status = 0;
1702 dio->op = bio_op(bio);
1704 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1705 if (ti->max_io_len) {
1706 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1707 unsigned log2_max_io_len = __fls(ti->max_io_len);
1708 sector_t start_boundary = sec >> log2_max_io_len;
1709 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1710 if (start_boundary < end_boundary) {
1711 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1712 dm_accept_partial_bio(bio, len);
1717 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1718 submit_flush_bio(ic, dio);
1719 return DM_MAPIO_SUBMITTED;
1722 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1723 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1724 if (unlikely(dio->fua)) {
1726 * Don't pass down the FUA flag because we have to flush
1727 * disk cache anyway.
1729 bio->bi_opf &= ~REQ_FUA;
1731 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1732 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1733 dio->range.logical_sector, bio_sectors(bio),
1734 ic->provided_data_sectors);
1735 return DM_MAPIO_KILL;
1737 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1738 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1739 ic->sectors_per_block,
1740 dio->range.logical_sector, bio_sectors(bio));
1741 return DM_MAPIO_KILL;
1744 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1745 struct bvec_iter iter;
1746 struct bio_vec bv;
1747 bio_for_each_segment(bv, bio, iter) {
1748 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1749 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1750 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1751 return DM_MAPIO_KILL;
1756 bip = bio_integrity(bio);
1757 if (!ic->internal_hash) {
1758 if (bip) {
1759 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1760 if (ic->log2_tag_size >= 0)
1761 wanted_tag_size <<= ic->log2_tag_size;
1762 else
1763 wanted_tag_size *= ic->tag_size;
1764 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1765 DMERR("Invalid integrity data size %u, expected %u",
1766 bip->bip_iter.bi_size, wanted_tag_size);
1767 return DM_MAPIO_KILL;
1770 } else {
1771 if (unlikely(bip != NULL)) {
1772 DMERR("Unexpected integrity data when using internal hash");
1773 return DM_MAPIO_KILL;
1777 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1778 return DM_MAPIO_KILL;
1780 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1781 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1782 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1784 dm_integrity_map_continue(dio, true);
1785 return DM_MAPIO_SUBMITTED;
1788 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1789 unsigned journal_section, unsigned journal_entry)
1791 struct dm_integrity_c *ic = dio->ic;
1792 sector_t logical_sector;
1793 unsigned n_sectors;
1795 logical_sector = dio->range.logical_sector;
1796 n_sectors = dio->range.n_sectors;
1797 do {
1798 struct bio_vec bv = bio_iovec(bio);
1799 char *mem;
1801 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1802 bv.bv_len = n_sectors << SECTOR_SHIFT;
1803 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1804 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1805 retry_kmap:
1806 mem = kmap_atomic(bv.bv_page);
1807 if (likely(dio->op == REQ_OP_WRITE))
1808 flush_dcache_page(bv.bv_page);
1810 do {
1811 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1813 if (unlikely(dio->op == REQ_OP_READ)) {
1814 struct journal_sector *js;
1815 char *mem_ptr;
1816 unsigned s;
1818 if (unlikely(journal_entry_is_inprogress(je))) {
1819 flush_dcache_page(bv.bv_page);
1820 kunmap_atomic(mem);
1822 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1823 goto retry_kmap;
1825 smp_rmb();
1826 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1827 js = access_journal_data(ic, journal_section, journal_entry);
1828 mem_ptr = mem + bv.bv_offset;
1829 s = 0;
1830 do {
1831 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1832 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1833 js++;
1834 mem_ptr += 1 << SECTOR_SHIFT;
1835 } while (++s < ic->sectors_per_block);
1836 #ifdef INTERNAL_VERIFY
1837 if (ic->internal_hash) {
1838 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1840 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1841 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1842 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1843 logical_sector);
1846 #endif
1849 if (!ic->internal_hash) {
1850 struct bio_integrity_payload *bip = bio_integrity(bio);
1851 unsigned tag_todo = ic->tag_size;
1852 char *tag_ptr = journal_entry_tag(ic, je);
1854 if (bip) do {
1855 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1856 unsigned tag_now = min(biv.bv_len, tag_todo);
1857 char *tag_addr;
1858 BUG_ON(PageHighMem(biv.bv_page));
1859 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1860 if (likely(dio->op == REQ_OP_WRITE))
1861 memcpy(tag_ptr, tag_addr, tag_now);
1862 else
1863 memcpy(tag_addr, tag_ptr, tag_now);
1864 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1865 tag_ptr += tag_now;
1866 tag_todo -= tag_now;
1867 } while (unlikely(tag_todo)); else {
1868 if (likely(dio->op == REQ_OP_WRITE))
1869 memset(tag_ptr, 0, tag_todo);
1873 if (likely(dio->op == REQ_OP_WRITE)) {
1874 struct journal_sector *js;
1875 unsigned s;
1877 js = access_journal_data(ic, journal_section, journal_entry);
1878 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1880 s = 0;
1881 do {
1882 je->last_bytes[s] = js[s].commit_id;
1883 } while (++s < ic->sectors_per_block);
1885 if (ic->internal_hash) {
1886 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1887 if (unlikely(digest_size > ic->tag_size)) {
1888 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1889 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1890 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1891 } else
1892 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1895 journal_entry_set_sector(je, logical_sector);
1897 logical_sector += ic->sectors_per_block;
1899 journal_entry++;
1900 if (unlikely(journal_entry == ic->journal_section_entries)) {
1901 journal_entry = 0;
1902 journal_section++;
1903 wraparound_section(ic, &journal_section);
1906 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1907 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1909 if (unlikely(dio->op == REQ_OP_READ))
1910 flush_dcache_page(bv.bv_page);
1911 kunmap_atomic(mem);
1912 } while (n_sectors);
1914 if (likely(dio->op == REQ_OP_WRITE)) {
1915 smp_mb();
1916 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1917 wake_up(&ic->copy_to_journal_wait);
1918 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1919 queue_work(ic->commit_wq, &ic->commit_work);
1920 } else {
1921 schedule_autocommit(ic);
1923 } else {
1924 remove_range(ic, &dio->range);
1927 if (unlikely(bio->bi_iter.bi_size)) {
1928 sector_t area, offset;
1930 dio->range.logical_sector = logical_sector;
1931 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1932 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1933 return true;
1936 return false;
1939 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1941 struct dm_integrity_c *ic = dio->ic;
1942 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1943 unsigned journal_section, journal_entry;
1944 unsigned journal_read_pos;
1945 struct completion read_comp;
1946 bool discard_retried = false;
1947 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1948 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1949 need_sync_io = true;
1951 if (need_sync_io && from_map) {
1952 INIT_WORK(&dio->work, integrity_bio_wait);
1953 queue_work(ic->offload_wq, &dio->work);
1954 return;
1957 lock_retry:
1958 spin_lock_irq(&ic->endio_wait.lock);
1959 retry:
1960 if (unlikely(dm_integrity_failed(ic))) {
1961 spin_unlock_irq(&ic->endio_wait.lock);
1962 do_endio(ic, bio);
1963 return;
1965 dio->range.n_sectors = bio_sectors(bio);
1966 journal_read_pos = NOT_FOUND;
1967 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
1968 if (dio->op == REQ_OP_WRITE) {
1969 unsigned next_entry, i, pos;
1970 unsigned ws, we, range_sectors;
1972 dio->range.n_sectors = min(dio->range.n_sectors,
1973 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1974 if (unlikely(!dio->range.n_sectors)) {
1975 if (from_map)
1976 goto offload_to_thread;
1977 sleep_on_endio_wait(ic);
1978 goto retry;
1980 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1981 ic->free_sectors -= range_sectors;
1982 journal_section = ic->free_section;
1983 journal_entry = ic->free_section_entry;
1985 next_entry = ic->free_section_entry + range_sectors;
1986 ic->free_section_entry = next_entry % ic->journal_section_entries;
1987 ic->free_section += next_entry / ic->journal_section_entries;
1988 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1989 wraparound_section(ic, &ic->free_section);
1991 pos = journal_section * ic->journal_section_entries + journal_entry;
1992 ws = journal_section;
1993 we = journal_entry;
1994 i = 0;
1995 do {
1996 struct journal_entry *je;
1998 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1999 pos++;
2000 if (unlikely(pos >= ic->journal_entries))
2001 pos = 0;
2003 je = access_journal_entry(ic, ws, we);
2004 BUG_ON(!journal_entry_is_unused(je));
2005 journal_entry_set_inprogress(je);
2006 we++;
2007 if (unlikely(we == ic->journal_section_entries)) {
2008 we = 0;
2009 ws++;
2010 wraparound_section(ic, &ws);
2012 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2014 spin_unlock_irq(&ic->endio_wait.lock);
2015 goto journal_read_write;
2016 } else {
2017 sector_t next_sector;
2018 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2019 if (likely(journal_read_pos == NOT_FOUND)) {
2020 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2021 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2022 } else {
2023 unsigned i;
2024 unsigned jp = journal_read_pos + 1;
2025 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2026 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2027 break;
2029 dio->range.n_sectors = i;
2033 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2035 * We must not sleep in the request routine because it could
2036 * stall bios on current->bio_list.
2037 * So, we offload the bio to a workqueue if we have to sleep.
2039 if (from_map) {
2040 offload_to_thread:
2041 spin_unlock_irq(&ic->endio_wait.lock);
2042 INIT_WORK(&dio->work, integrity_bio_wait);
2043 queue_work(ic->wait_wq, &dio->work);
2044 return;
2046 if (journal_read_pos != NOT_FOUND)
2047 dio->range.n_sectors = ic->sectors_per_block;
2048 wait_and_add_new_range(ic, &dio->range);
2050 * wait_and_add_new_range drops the spinlock, so the journal
2051 * may have been changed arbitrarily. We need to recheck.
2052 * To simplify the code, we restrict I/O size to just one block.
2054 if (journal_read_pos != NOT_FOUND) {
2055 sector_t next_sector;
2056 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2057 if (unlikely(new_pos != journal_read_pos)) {
2058 remove_range_unlocked(ic, &dio->range);
2059 goto retry;
2063 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2064 sector_t next_sector;
2065 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2066 if (unlikely(new_pos != NOT_FOUND) ||
2067 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2068 remove_range_unlocked(ic, &dio->range);
2069 spin_unlock_irq(&ic->endio_wait.lock);
2070 queue_work(ic->commit_wq, &ic->commit_work);
2071 flush_workqueue(ic->commit_wq);
2072 queue_work(ic->writer_wq, &ic->writer_work);
2073 flush_workqueue(ic->writer_wq);
2074 discard_retried = true;
2075 goto lock_retry;
2078 spin_unlock_irq(&ic->endio_wait.lock);
2080 if (unlikely(journal_read_pos != NOT_FOUND)) {
2081 journal_section = journal_read_pos / ic->journal_section_entries;
2082 journal_entry = journal_read_pos % ic->journal_section_entries;
2083 goto journal_read_write;
2086 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2087 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2088 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2089 struct bitmap_block_status *bbs;
2091 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2092 spin_lock(&bbs->bio_queue_lock);
2093 bio_list_add(&bbs->bio_queue, bio);
2094 spin_unlock(&bbs->bio_queue_lock);
2095 queue_work(ic->writer_wq, &bbs->work);
2096 return;
2100 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2102 if (need_sync_io) {
2103 init_completion(&read_comp);
2104 dio->completion = &read_comp;
2105 } else
2106 dio->completion = NULL;
2108 dm_bio_record(&dio->bio_details, bio);
2109 bio_set_dev(bio, ic->dev->bdev);
2110 bio->bi_integrity = NULL;
2111 bio->bi_opf &= ~REQ_INTEGRITY;
2112 bio->bi_end_io = integrity_end_io;
2113 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2115 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2116 integrity_metadata(&dio->work);
2117 dm_integrity_flush_buffers(ic);
2119 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2120 dio->completion = NULL;
2122 generic_make_request(bio);
2124 return;
2127 generic_make_request(bio);
2129 if (need_sync_io) {
2130 wait_for_completion_io(&read_comp);
2131 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2132 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2133 goto skip_check;
2134 if (ic->mode == 'B') {
2135 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2136 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2137 goto skip_check;
2140 if (likely(!bio->bi_status))
2141 integrity_metadata(&dio->work);
2142 else
2143 skip_check:
2144 dec_in_flight(dio);
2146 } else {
2147 INIT_WORK(&dio->work, integrity_metadata);
2148 queue_work(ic->metadata_wq, &dio->work);
2151 return;
2153 journal_read_write:
2154 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2155 goto lock_retry;
2157 do_endio_flush(ic, dio);
2161 static void integrity_bio_wait(struct work_struct *w)
2163 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2165 dm_integrity_map_continue(dio, false);
2168 static void pad_uncommitted(struct dm_integrity_c *ic)
2170 if (ic->free_section_entry) {
2171 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2172 ic->free_section_entry = 0;
2173 ic->free_section++;
2174 wraparound_section(ic, &ic->free_section);
2175 ic->n_uncommitted_sections++;
2177 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2178 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2179 ic->journal_section_entries + ic->free_sectors)) {
2180 DMCRIT("journal_sections %u, journal_section_entries %u, "
2181 "n_uncommitted_sections %u, n_committed_sections %u, "
2182 "journal_section_entries %u, free_sectors %u",
2183 ic->journal_sections, ic->journal_section_entries,
2184 ic->n_uncommitted_sections, ic->n_committed_sections,
2185 ic->journal_section_entries, ic->free_sectors);
2189 static void integrity_commit(struct work_struct *w)
2191 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2192 unsigned commit_start, commit_sections;
2193 unsigned i, j, n;
2194 struct bio *flushes;
2196 del_timer(&ic->autocommit_timer);
2198 spin_lock_irq(&ic->endio_wait.lock);
2199 flushes = bio_list_get(&ic->flush_bio_list);
2200 if (unlikely(ic->mode != 'J')) {
2201 spin_unlock_irq(&ic->endio_wait.lock);
2202 dm_integrity_flush_buffers(ic);
2203 goto release_flush_bios;
2206 pad_uncommitted(ic);
2207 commit_start = ic->uncommitted_section;
2208 commit_sections = ic->n_uncommitted_sections;
2209 spin_unlock_irq(&ic->endio_wait.lock);
2211 if (!commit_sections)
2212 goto release_flush_bios;
2214 i = commit_start;
2215 for (n = 0; n < commit_sections; n++) {
2216 for (j = 0; j < ic->journal_section_entries; j++) {
2217 struct journal_entry *je;
2218 je = access_journal_entry(ic, i, j);
2219 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2221 for (j = 0; j < ic->journal_section_sectors; j++) {
2222 struct journal_sector *js;
2223 js = access_journal(ic, i, j);
2224 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2226 i++;
2227 if (unlikely(i >= ic->journal_sections))
2228 ic->commit_seq = next_commit_seq(ic->commit_seq);
2229 wraparound_section(ic, &i);
2231 smp_rmb();
2233 write_journal(ic, commit_start, commit_sections);
2235 spin_lock_irq(&ic->endio_wait.lock);
2236 ic->uncommitted_section += commit_sections;
2237 wraparound_section(ic, &ic->uncommitted_section);
2238 ic->n_uncommitted_sections -= commit_sections;
2239 ic->n_committed_sections += commit_sections;
2240 spin_unlock_irq(&ic->endio_wait.lock);
2242 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2243 queue_work(ic->writer_wq, &ic->writer_work);
2245 release_flush_bios:
2246 while (flushes) {
2247 struct bio *next = flushes->bi_next;
2248 flushes->bi_next = NULL;
2249 do_endio(ic, flushes);
2250 flushes = next;
2254 static void complete_copy_from_journal(unsigned long error, void *context)
2256 struct journal_io *io = context;
2257 struct journal_completion *comp = io->comp;
2258 struct dm_integrity_c *ic = comp->ic;
2259 remove_range(ic, &io->range);
2260 mempool_free(io, &ic->journal_io_mempool);
2261 if (unlikely(error != 0))
2262 dm_integrity_io_error(ic, "copying from journal", -EIO);
2263 complete_journal_op(comp);
2266 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2267 struct journal_entry *je)
2269 unsigned s = 0;
2270 do {
2271 js->commit_id = je->last_bytes[s];
2272 js++;
2273 } while (++s < ic->sectors_per_block);
2276 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2277 unsigned write_sections, bool from_replay)
2279 unsigned i, j, n;
2280 struct journal_completion comp;
2281 struct blk_plug plug;
2283 blk_start_plug(&plug);
2285 comp.ic = ic;
2286 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2287 init_completion(&comp.comp);
2289 i = write_start;
2290 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2291 #ifndef INTERNAL_VERIFY
2292 if (unlikely(from_replay))
2293 #endif
2294 rw_section_mac(ic, i, false);
2295 for (j = 0; j < ic->journal_section_entries; j++) {
2296 struct journal_entry *je = access_journal_entry(ic, i, j);
2297 sector_t sec, area, offset;
2298 unsigned k, l, next_loop;
2299 sector_t metadata_block;
2300 unsigned metadata_offset;
2301 struct journal_io *io;
2303 if (journal_entry_is_unused(je))
2304 continue;
2305 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2306 sec = journal_entry_get_sector(je);
2307 if (unlikely(from_replay)) {
2308 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2309 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2310 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2313 if (unlikely(sec >= ic->provided_data_sectors))
2314 continue;
2315 get_area_and_offset(ic, sec, &area, &offset);
2316 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2317 for (k = j + 1; k < ic->journal_section_entries; k++) {
2318 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2319 sector_t sec2, area2, offset2;
2320 if (journal_entry_is_unused(je2))
2321 break;
2322 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2323 sec2 = journal_entry_get_sector(je2);
2324 if (unlikely(sec2 >= ic->provided_data_sectors))
2325 break;
2326 get_area_and_offset(ic, sec2, &area2, &offset2);
2327 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2328 break;
2329 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2331 next_loop = k - 1;
2333 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2334 io->comp = &comp;
2335 io->range.logical_sector = sec;
2336 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2338 spin_lock_irq(&ic->endio_wait.lock);
2339 add_new_range_and_wait(ic, &io->range);
2341 if (likely(!from_replay)) {
2342 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2344 /* don't write if there is newer committed sector */
2345 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2346 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2348 journal_entry_set_unused(je2);
2349 remove_journal_node(ic, &section_node[j]);
2350 j++;
2351 sec += ic->sectors_per_block;
2352 offset += ic->sectors_per_block;
2354 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2355 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2357 journal_entry_set_unused(je2);
2358 remove_journal_node(ic, &section_node[k - 1]);
2359 k--;
2361 if (j == k) {
2362 remove_range_unlocked(ic, &io->range);
2363 spin_unlock_irq(&ic->endio_wait.lock);
2364 mempool_free(io, &ic->journal_io_mempool);
2365 goto skip_io;
2367 for (l = j; l < k; l++) {
2368 remove_journal_node(ic, &section_node[l]);
2371 spin_unlock_irq(&ic->endio_wait.lock);
2373 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2374 for (l = j; l < k; l++) {
2375 int r;
2376 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2378 if (
2379 #ifndef INTERNAL_VERIFY
2380 unlikely(from_replay) &&
2381 #endif
2382 ic->internal_hash) {
2383 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2385 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2386 (char *)access_journal_data(ic, i, l), test_tag);
2387 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2388 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2391 journal_entry_set_unused(je2);
2392 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2393 ic->tag_size, TAG_WRITE);
2394 if (unlikely(r)) {
2395 dm_integrity_io_error(ic, "reading tags", r);
2399 atomic_inc(&comp.in_flight);
2400 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2401 (k - j) << ic->sb->log2_sectors_per_block,
2402 get_data_sector(ic, area, offset),
2403 complete_copy_from_journal, io);
2404 skip_io:
2405 j = next_loop;
2409 dm_bufio_write_dirty_buffers_async(ic->bufio);
2411 blk_finish_plug(&plug);
2413 complete_journal_op(&comp);
2414 wait_for_completion_io(&comp.comp);
2416 dm_integrity_flush_buffers(ic);
2419 static void integrity_writer(struct work_struct *w)
2421 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2422 unsigned write_start, write_sections;
2424 unsigned prev_free_sectors;
2426 /* the following test is not needed, but it tests the replay code */
2427 if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev)
2428 return;
2430 spin_lock_irq(&ic->endio_wait.lock);
2431 write_start = ic->committed_section;
2432 write_sections = ic->n_committed_sections;
2433 spin_unlock_irq(&ic->endio_wait.lock);
2435 if (!write_sections)
2436 return;
2438 do_journal_write(ic, write_start, write_sections, false);
2440 spin_lock_irq(&ic->endio_wait.lock);
2442 ic->committed_section += write_sections;
2443 wraparound_section(ic, &ic->committed_section);
2444 ic->n_committed_sections -= write_sections;
2446 prev_free_sectors = ic->free_sectors;
2447 ic->free_sectors += write_sections * ic->journal_section_entries;
2448 if (unlikely(!prev_free_sectors))
2449 wake_up_locked(&ic->endio_wait);
2451 spin_unlock_irq(&ic->endio_wait.lock);
2454 static void recalc_write_super(struct dm_integrity_c *ic)
2456 int r;
2458 dm_integrity_flush_buffers(ic);
2459 if (dm_integrity_failed(ic))
2460 return;
2462 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2463 if (unlikely(r))
2464 dm_integrity_io_error(ic, "writing superblock", r);
2467 static void integrity_recalc(struct work_struct *w)
2469 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2470 struct dm_integrity_range range;
2471 struct dm_io_request io_req;
2472 struct dm_io_region io_loc;
2473 sector_t area, offset;
2474 sector_t metadata_block;
2475 unsigned metadata_offset;
2476 sector_t logical_sector, n_sectors;
2477 __u8 *t;
2478 unsigned i;
2479 int r;
2480 unsigned super_counter = 0;
2482 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2484 spin_lock_irq(&ic->endio_wait.lock);
2486 next_chunk:
2488 if (unlikely(dm_suspended(ic->ti)))
2489 goto unlock_ret;
2491 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2492 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2493 if (ic->mode == 'B') {
2494 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2495 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2497 goto unlock_ret;
2500 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2501 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2502 if (!ic->meta_dev)
2503 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2505 add_new_range_and_wait(ic, &range);
2506 spin_unlock_irq(&ic->endio_wait.lock);
2507 logical_sector = range.logical_sector;
2508 n_sectors = range.n_sectors;
2510 if (ic->mode == 'B') {
2511 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2512 goto advance_and_next;
2514 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2515 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2516 logical_sector += ic->sectors_per_block;
2517 n_sectors -= ic->sectors_per_block;
2518 cond_resched();
2520 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2521 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2522 n_sectors -= ic->sectors_per_block;
2523 cond_resched();
2525 get_area_and_offset(ic, logical_sector, &area, &offset);
2528 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2530 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2531 recalc_write_super(ic);
2532 if (ic->mode == 'B') {
2533 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2535 super_counter = 0;
2538 if (unlikely(dm_integrity_failed(ic)))
2539 goto err;
2541 io_req.bi_op = REQ_OP_READ;
2542 io_req.bi_op_flags = 0;
2543 io_req.mem.type = DM_IO_VMA;
2544 io_req.mem.ptr.addr = ic->recalc_buffer;
2545 io_req.notify.fn = NULL;
2546 io_req.client = ic->io;
2547 io_loc.bdev = ic->dev->bdev;
2548 io_loc.sector = get_data_sector(ic, area, offset);
2549 io_loc.count = n_sectors;
2551 r = dm_io(&io_req, 1, &io_loc, NULL);
2552 if (unlikely(r)) {
2553 dm_integrity_io_error(ic, "reading data", r);
2554 goto err;
2557 t = ic->recalc_tags;
2558 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2559 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2560 t += ic->tag_size;
2563 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2565 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2566 if (unlikely(r)) {
2567 dm_integrity_io_error(ic, "writing tags", r);
2568 goto err;
2571 advance_and_next:
2572 cond_resched();
2574 spin_lock_irq(&ic->endio_wait.lock);
2575 remove_range_unlocked(ic, &range);
2576 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2577 goto next_chunk;
2579 err:
2580 remove_range(ic, &range);
2581 return;
2583 unlock_ret:
2584 spin_unlock_irq(&ic->endio_wait.lock);
2586 recalc_write_super(ic);
2589 static void bitmap_block_work(struct work_struct *w)
2591 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2592 struct dm_integrity_c *ic = bbs->ic;
2593 struct bio *bio;
2594 struct bio_list bio_queue;
2595 struct bio_list waiting;
2597 bio_list_init(&waiting);
2599 spin_lock(&bbs->bio_queue_lock);
2600 bio_queue = bbs->bio_queue;
2601 bio_list_init(&bbs->bio_queue);
2602 spin_unlock(&bbs->bio_queue_lock);
2604 while ((bio = bio_list_pop(&bio_queue))) {
2605 struct dm_integrity_io *dio;
2607 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2609 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2610 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2611 remove_range(ic, &dio->range);
2612 INIT_WORK(&dio->work, integrity_bio_wait);
2613 queue_work(ic->offload_wq, &dio->work);
2614 } else {
2615 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2616 dio->range.n_sectors, BITMAP_OP_SET);
2617 bio_list_add(&waiting, bio);
2621 if (bio_list_empty(&waiting))
2622 return;
2624 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2625 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2626 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2628 while ((bio = bio_list_pop(&waiting))) {
2629 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2631 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2632 dio->range.n_sectors, BITMAP_OP_SET);
2634 remove_range(ic, &dio->range);
2635 INIT_WORK(&dio->work, integrity_bio_wait);
2636 queue_work(ic->offload_wq, &dio->work);
2639 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2642 static void bitmap_flush_work(struct work_struct *work)
2644 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2645 struct dm_integrity_range range;
2646 unsigned long limit;
2647 struct bio *bio;
2649 dm_integrity_flush_buffers(ic);
2651 range.logical_sector = 0;
2652 range.n_sectors = ic->provided_data_sectors;
2654 spin_lock_irq(&ic->endio_wait.lock);
2655 add_new_range_and_wait(ic, &range);
2656 spin_unlock_irq(&ic->endio_wait.lock);
2658 dm_integrity_flush_buffers(ic);
2659 if (ic->meta_dev)
2660 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2662 limit = ic->provided_data_sectors;
2663 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2664 limit = le64_to_cpu(ic->sb->recalc_sector)
2665 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2666 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2668 /*DEBUG_print("zeroing journal\n");*/
2669 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2670 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2672 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2673 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2675 spin_lock_irq(&ic->endio_wait.lock);
2676 remove_range_unlocked(ic, &range);
2677 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2678 bio_endio(bio);
2679 spin_unlock_irq(&ic->endio_wait.lock);
2680 spin_lock_irq(&ic->endio_wait.lock);
2682 spin_unlock_irq(&ic->endio_wait.lock);
2686 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2687 unsigned n_sections, unsigned char commit_seq)
2689 unsigned i, j, n;
2691 if (!n_sections)
2692 return;
2694 for (n = 0; n < n_sections; n++) {
2695 i = start_section + n;
2696 wraparound_section(ic, &i);
2697 for (j = 0; j < ic->journal_section_sectors; j++) {
2698 struct journal_sector *js = access_journal(ic, i, j);
2699 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2700 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2702 for (j = 0; j < ic->journal_section_entries; j++) {
2703 struct journal_entry *je = access_journal_entry(ic, i, j);
2704 journal_entry_set_unused(je);
2708 write_journal(ic, start_section, n_sections);
2711 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2713 unsigned char k;
2714 for (k = 0; k < N_COMMIT_IDS; k++) {
2715 if (dm_integrity_commit_id(ic, i, j, k) == id)
2716 return k;
2718 dm_integrity_io_error(ic, "journal commit id", -EIO);
2719 return -EIO;
2722 static void replay_journal(struct dm_integrity_c *ic)
2724 unsigned i, j;
2725 bool used_commit_ids[N_COMMIT_IDS];
2726 unsigned max_commit_id_sections[N_COMMIT_IDS];
2727 unsigned write_start, write_sections;
2728 unsigned continue_section;
2729 bool journal_empty;
2730 unsigned char unused, last_used, want_commit_seq;
2732 if (ic->mode == 'R')
2733 return;
2735 if (ic->journal_uptodate)
2736 return;
2738 last_used = 0;
2739 write_start = 0;
2741 if (!ic->just_formatted) {
2742 DEBUG_print("reading journal\n");
2743 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2744 if (ic->journal_io)
2745 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2746 if (ic->journal_io) {
2747 struct journal_completion crypt_comp;
2748 crypt_comp.ic = ic;
2749 init_completion(&crypt_comp.comp);
2750 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2751 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2752 wait_for_completion(&crypt_comp.comp);
2754 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2757 if (dm_integrity_failed(ic))
2758 goto clear_journal;
2760 journal_empty = true;
2761 memset(used_commit_ids, 0, sizeof used_commit_ids);
2762 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2763 for (i = 0; i < ic->journal_sections; i++) {
2764 for (j = 0; j < ic->journal_section_sectors; j++) {
2765 int k;
2766 struct journal_sector *js = access_journal(ic, i, j);
2767 k = find_commit_seq(ic, i, j, js->commit_id);
2768 if (k < 0)
2769 goto clear_journal;
2770 used_commit_ids[k] = true;
2771 max_commit_id_sections[k] = i;
2773 if (journal_empty) {
2774 for (j = 0; j < ic->journal_section_entries; j++) {
2775 struct journal_entry *je = access_journal_entry(ic, i, j);
2776 if (!journal_entry_is_unused(je)) {
2777 journal_empty = false;
2778 break;
2784 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2785 unused = N_COMMIT_IDS - 1;
2786 while (unused && !used_commit_ids[unused - 1])
2787 unused--;
2788 } else {
2789 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2790 if (!used_commit_ids[unused])
2791 break;
2792 if (unused == N_COMMIT_IDS) {
2793 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2794 goto clear_journal;
2797 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2798 unused, used_commit_ids[0], used_commit_ids[1],
2799 used_commit_ids[2], used_commit_ids[3]);
2801 last_used = prev_commit_seq(unused);
2802 want_commit_seq = prev_commit_seq(last_used);
2804 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2805 journal_empty = true;
2807 write_start = max_commit_id_sections[last_used] + 1;
2808 if (unlikely(write_start >= ic->journal_sections))
2809 want_commit_seq = next_commit_seq(want_commit_seq);
2810 wraparound_section(ic, &write_start);
2812 i = write_start;
2813 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2814 for (j = 0; j < ic->journal_section_sectors; j++) {
2815 struct journal_sector *js = access_journal(ic, i, j);
2817 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2819 * This could be caused by crash during writing.
2820 * We won't replay the inconsistent part of the
2821 * journal.
2823 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2824 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2825 goto brk;
2828 i++;
2829 if (unlikely(i >= ic->journal_sections))
2830 want_commit_seq = next_commit_seq(want_commit_seq);
2831 wraparound_section(ic, &i);
2833 brk:
2835 if (!journal_empty) {
2836 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2837 write_sections, write_start, want_commit_seq);
2838 do_journal_write(ic, write_start, write_sections, true);
2841 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2842 continue_section = write_start;
2843 ic->commit_seq = want_commit_seq;
2844 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2845 } else {
2846 unsigned s;
2847 unsigned char erase_seq;
2848 clear_journal:
2849 DEBUG_print("clearing journal\n");
2851 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2852 s = write_start;
2853 init_journal(ic, s, 1, erase_seq);
2854 s++;
2855 wraparound_section(ic, &s);
2856 if (ic->journal_sections >= 2) {
2857 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2858 s += ic->journal_sections - 2;
2859 wraparound_section(ic, &s);
2860 init_journal(ic, s, 1, erase_seq);
2863 continue_section = 0;
2864 ic->commit_seq = next_commit_seq(erase_seq);
2867 ic->committed_section = continue_section;
2868 ic->n_committed_sections = 0;
2870 ic->uncommitted_section = continue_section;
2871 ic->n_uncommitted_sections = 0;
2873 ic->free_section = continue_section;
2874 ic->free_section_entry = 0;
2875 ic->free_sectors = ic->journal_entries;
2877 ic->journal_tree_root = RB_ROOT;
2878 for (i = 0; i < ic->journal_entries; i++)
2879 init_journal_node(&ic->journal_tree[i]);
2882 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2884 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2886 if (ic->mode == 'B') {
2887 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2888 ic->synchronous_mode = 1;
2890 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2891 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2892 flush_workqueue(ic->commit_wq);
2896 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2898 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2900 DEBUG_print("dm_integrity_reboot\n");
2902 dm_integrity_enter_synchronous_mode(ic);
2904 return NOTIFY_DONE;
2907 static void dm_integrity_postsuspend(struct dm_target *ti)
2909 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2910 int r;
2912 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2914 del_timer_sync(&ic->autocommit_timer);
2916 if (ic->recalc_wq)
2917 drain_workqueue(ic->recalc_wq);
2919 if (ic->mode == 'B')
2920 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2922 queue_work(ic->commit_wq, &ic->commit_work);
2923 drain_workqueue(ic->commit_wq);
2925 if (ic->mode == 'J') {
2926 if (ic->meta_dev)
2927 queue_work(ic->writer_wq, &ic->writer_work);
2928 drain_workqueue(ic->writer_wq);
2929 dm_integrity_flush_buffers(ic);
2932 if (ic->mode == 'B') {
2933 dm_integrity_flush_buffers(ic);
2934 #if 1
2935 /* set to 0 to test bitmap replay code */
2936 init_journal(ic, 0, ic->journal_sections, 0);
2937 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2938 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2939 if (unlikely(r))
2940 dm_integrity_io_error(ic, "writing superblock", r);
2941 #endif
2944 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2946 ic->journal_uptodate = true;
2949 static void dm_integrity_resume(struct dm_target *ti)
2951 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2952 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
2953 int r;
2955 DEBUG_print("resume\n");
2957 if (ic->provided_data_sectors != old_provided_data_sectors) {
2958 if (ic->provided_data_sectors > old_provided_data_sectors &&
2959 ic->mode == 'B' &&
2960 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2961 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2962 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2963 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
2964 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
2965 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2966 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2969 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2970 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2971 if (unlikely(r))
2972 dm_integrity_io_error(ic, "writing superblock", r);
2975 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2976 DEBUG_print("resume dirty_bitmap\n");
2977 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2978 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2979 if (ic->mode == 'B') {
2980 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2981 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2982 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2983 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2984 BITMAP_OP_TEST_ALL_CLEAR)) {
2985 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2986 ic->sb->recalc_sector = cpu_to_le64(0);
2988 } else {
2989 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2990 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2991 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2992 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2993 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2994 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2995 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2996 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2997 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2998 ic->sb->recalc_sector = cpu_to_le64(0);
3000 } else {
3001 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3002 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3003 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3004 ic->sb->recalc_sector = cpu_to_le64(0);
3006 init_journal(ic, 0, ic->journal_sections, 0);
3007 replay_journal(ic);
3008 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3010 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3011 if (unlikely(r))
3012 dm_integrity_io_error(ic, "writing superblock", r);
3013 } else {
3014 replay_journal(ic);
3015 if (ic->mode == 'B') {
3016 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3017 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3018 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3019 if (unlikely(r))
3020 dm_integrity_io_error(ic, "writing superblock", r);
3022 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3023 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3024 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3025 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3026 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3027 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3028 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3029 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3030 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3031 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3032 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3034 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3035 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3039 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3040 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3041 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3042 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3043 if (recalc_pos < ic->provided_data_sectors) {
3044 queue_work(ic->recalc_wq, &ic->recalc_work);
3045 } else if (recalc_pos > ic->provided_data_sectors) {
3046 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3047 recalc_write_super(ic);
3051 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3052 ic->reboot_notifier.next = NULL;
3053 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3054 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3056 #if 0
3057 /* set to 1 to stress test synchronous mode */
3058 dm_integrity_enter_synchronous_mode(ic);
3059 #endif
3062 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3063 unsigned status_flags, char *result, unsigned maxlen)
3065 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3066 unsigned arg_count;
3067 size_t sz = 0;
3069 switch (type) {
3070 case STATUSTYPE_INFO:
3071 DMEMIT("%llu %llu",
3072 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3073 ic->provided_data_sectors);
3074 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3075 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3076 else
3077 DMEMIT(" -");
3078 break;
3080 case STATUSTYPE_TABLE: {
3081 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3082 watermark_percentage += ic->journal_entries / 2;
3083 do_div(watermark_percentage, ic->journal_entries);
3084 arg_count = 3;
3085 arg_count += !!ic->meta_dev;
3086 arg_count += ic->sectors_per_block != 1;
3087 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3088 arg_count += ic->discard;
3089 arg_count += ic->mode == 'J';
3090 arg_count += ic->mode == 'J';
3091 arg_count += ic->mode == 'B';
3092 arg_count += ic->mode == 'B';
3093 arg_count += !!ic->internal_hash_alg.alg_string;
3094 arg_count += !!ic->journal_crypt_alg.alg_string;
3095 arg_count += !!ic->journal_mac_alg.alg_string;
3096 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3097 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3098 ic->tag_size, ic->mode, arg_count);
3099 if (ic->meta_dev)
3100 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3101 if (ic->sectors_per_block != 1)
3102 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3103 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3104 DMEMIT(" recalculate");
3105 if (ic->discard)
3106 DMEMIT(" allow_discards");
3107 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3108 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3109 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3110 if (ic->mode == 'J') {
3111 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3112 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3114 if (ic->mode == 'B') {
3115 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3116 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3118 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3119 DMEMIT(" fix_padding");
3121 #define EMIT_ALG(a, n) \
3122 do { \
3123 if (ic->a.alg_string) { \
3124 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3125 if (ic->a.key_string) \
3126 DMEMIT(":%s", ic->a.key_string);\
3128 } while (0)
3129 EMIT_ALG(internal_hash_alg, "internal_hash");
3130 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3131 EMIT_ALG(journal_mac_alg, "journal_mac");
3132 break;
3137 static int dm_integrity_iterate_devices(struct dm_target *ti,
3138 iterate_devices_callout_fn fn, void *data)
3140 struct dm_integrity_c *ic = ti->private;
3142 if (!ic->meta_dev)
3143 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3144 else
3145 return fn(ti, ic->dev, 0, ti->len, data);
3148 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3150 struct dm_integrity_c *ic = ti->private;
3152 if (ic->sectors_per_block > 1) {
3153 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3154 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3155 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3159 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3161 unsigned sector_space = JOURNAL_SECTOR_DATA;
3163 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3164 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3165 JOURNAL_ENTRY_ROUNDUP);
3167 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3168 sector_space -= JOURNAL_MAC_PER_SECTOR;
3169 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3170 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3171 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3172 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3175 static int calculate_device_limits(struct dm_integrity_c *ic)
3177 __u64 initial_sectors;
3179 calculate_journal_section_size(ic);
3180 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3181 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3182 return -EINVAL;
3183 ic->initial_sectors = initial_sectors;
3185 if (!ic->meta_dev) {
3186 sector_t last_sector, last_area, last_offset;
3188 /* we have to maintain excessive padding for compatibility with existing volumes */
3189 __u64 metadata_run_padding =
3190 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3191 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3192 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3194 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3195 metadata_run_padding) >> SECTOR_SHIFT;
3196 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3197 ic->log2_metadata_run = __ffs(ic->metadata_run);
3198 else
3199 ic->log2_metadata_run = -1;
3201 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3202 last_sector = get_data_sector(ic, last_area, last_offset);
3203 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3204 return -EINVAL;
3205 } else {
3206 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3207 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3208 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3209 meta_size <<= ic->log2_buffer_sectors;
3210 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3211 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3212 return -EINVAL;
3213 ic->metadata_run = 1;
3214 ic->log2_metadata_run = 0;
3217 return 0;
3220 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3222 if (!ic->meta_dev) {
3223 int test_bit;
3224 ic->provided_data_sectors = 0;
3225 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3226 __u64 prev_data_sectors = ic->provided_data_sectors;
3228 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3229 if (calculate_device_limits(ic))
3230 ic->provided_data_sectors = prev_data_sectors;
3232 } else {
3233 ic->provided_data_sectors = ic->data_device_sectors;
3234 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3238 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3240 unsigned journal_sections;
3241 int test_bit;
3243 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3244 memcpy(ic->sb->magic, SB_MAGIC, 8);
3245 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3246 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3247 if (ic->journal_mac_alg.alg_string)
3248 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3250 calculate_journal_section_size(ic);
3251 journal_sections = journal_sectors / ic->journal_section_sectors;
3252 if (!journal_sections)
3253 journal_sections = 1;
3255 if (!ic->meta_dev) {
3256 if (ic->fix_padding)
3257 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3258 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3259 if (!interleave_sectors)
3260 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3261 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3262 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3263 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3265 get_provided_data_sectors(ic);
3266 if (!ic->provided_data_sectors)
3267 return -EINVAL;
3268 } else {
3269 ic->sb->log2_interleave_sectors = 0;
3271 get_provided_data_sectors(ic);
3272 if (!ic->provided_data_sectors)
3273 return -EINVAL;
3275 try_smaller_buffer:
3276 ic->sb->journal_sections = cpu_to_le32(0);
3277 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3278 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3279 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3280 if (test_journal_sections > journal_sections)
3281 continue;
3282 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3283 if (calculate_device_limits(ic))
3284 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3287 if (!le32_to_cpu(ic->sb->journal_sections)) {
3288 if (ic->log2_buffer_sectors > 3) {
3289 ic->log2_buffer_sectors--;
3290 goto try_smaller_buffer;
3292 return -EINVAL;
3296 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3298 sb_set_version(ic);
3300 return 0;
3303 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3305 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3306 struct blk_integrity bi;
3308 memset(&bi, 0, sizeof(bi));
3309 bi.profile = &dm_integrity_profile;
3310 bi.tuple_size = ic->tag_size;
3311 bi.tag_size = bi.tuple_size;
3312 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3314 blk_integrity_register(disk, &bi);
3315 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3318 static void dm_integrity_free_page_list(struct page_list *pl)
3320 unsigned i;
3322 if (!pl)
3323 return;
3324 for (i = 0; pl[i].page; i++)
3325 __free_page(pl[i].page);
3326 kvfree(pl);
3329 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3331 struct page_list *pl;
3332 unsigned i;
3334 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3335 if (!pl)
3336 return NULL;
3338 for (i = 0; i < n_pages; i++) {
3339 pl[i].page = alloc_page(GFP_KERNEL);
3340 if (!pl[i].page) {
3341 dm_integrity_free_page_list(pl);
3342 return NULL;
3344 if (i)
3345 pl[i - 1].next = &pl[i];
3347 pl[i].page = NULL;
3348 pl[i].next = NULL;
3350 return pl;
3353 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3355 unsigned i;
3356 for (i = 0; i < ic->journal_sections; i++)
3357 kvfree(sl[i]);
3358 kvfree(sl);
3361 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3362 struct page_list *pl)
3364 struct scatterlist **sl;
3365 unsigned i;
3367 sl = kvmalloc_array(ic->journal_sections,
3368 sizeof(struct scatterlist *),
3369 GFP_KERNEL | __GFP_ZERO);
3370 if (!sl)
3371 return NULL;
3373 for (i = 0; i < ic->journal_sections; i++) {
3374 struct scatterlist *s;
3375 unsigned start_index, start_offset;
3376 unsigned end_index, end_offset;
3377 unsigned n_pages;
3378 unsigned idx;
3380 page_list_location(ic, i, 0, &start_index, &start_offset);
3381 page_list_location(ic, i, ic->journal_section_sectors - 1,
3382 &end_index, &end_offset);
3384 n_pages = (end_index - start_index + 1);
3386 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3387 GFP_KERNEL);
3388 if (!s) {
3389 dm_integrity_free_journal_scatterlist(ic, sl);
3390 return NULL;
3393 sg_init_table(s, n_pages);
3394 for (idx = start_index; idx <= end_index; idx++) {
3395 char *va = lowmem_page_address(pl[idx].page);
3396 unsigned start = 0, end = PAGE_SIZE;
3397 if (idx == start_index)
3398 start = start_offset;
3399 if (idx == end_index)
3400 end = end_offset + (1 << SECTOR_SHIFT);
3401 sg_set_buf(&s[idx - start_index], va + start, end - start);
3404 sl[i] = s;
3407 return sl;
3410 static void free_alg(struct alg_spec *a)
3412 kzfree(a->alg_string);
3413 kzfree(a->key);
3414 memset(a, 0, sizeof *a);
3417 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3419 char *k;
3421 free_alg(a);
3423 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3424 if (!a->alg_string)
3425 goto nomem;
3427 k = strchr(a->alg_string, ':');
3428 if (k) {
3429 *k = 0;
3430 a->key_string = k + 1;
3431 if (strlen(a->key_string) & 1)
3432 goto inval;
3434 a->key_size = strlen(a->key_string) / 2;
3435 a->key = kmalloc(a->key_size, GFP_KERNEL);
3436 if (!a->key)
3437 goto nomem;
3438 if (hex2bin(a->key, a->key_string, a->key_size))
3439 goto inval;
3442 return 0;
3443 inval:
3444 *error = error_inval;
3445 return -EINVAL;
3446 nomem:
3447 *error = "Out of memory for an argument";
3448 return -ENOMEM;
3451 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3452 char *error_alg, char *error_key)
3454 int r;
3456 if (a->alg_string) {
3457 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3458 if (IS_ERR(*hash)) {
3459 *error = error_alg;
3460 r = PTR_ERR(*hash);
3461 *hash = NULL;
3462 return r;
3465 if (a->key) {
3466 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3467 if (r) {
3468 *error = error_key;
3469 return r;
3471 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3472 *error = error_key;
3473 return -ENOKEY;
3477 return 0;
3480 static int create_journal(struct dm_integrity_c *ic, char **error)
3482 int r = 0;
3483 unsigned i;
3484 __u64 journal_pages, journal_desc_size, journal_tree_size;
3485 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3486 struct skcipher_request *req = NULL;
3488 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3489 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3490 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3491 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3493 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3494 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3495 journal_desc_size = journal_pages * sizeof(struct page_list);
3496 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3497 *error = "Journal doesn't fit into memory";
3498 r = -ENOMEM;
3499 goto bad;
3501 ic->journal_pages = journal_pages;
3503 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3504 if (!ic->journal) {
3505 *error = "Could not allocate memory for journal";
3506 r = -ENOMEM;
3507 goto bad;
3509 if (ic->journal_crypt_alg.alg_string) {
3510 unsigned ivsize, blocksize;
3511 struct journal_completion comp;
3513 comp.ic = ic;
3514 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3515 if (IS_ERR(ic->journal_crypt)) {
3516 *error = "Invalid journal cipher";
3517 r = PTR_ERR(ic->journal_crypt);
3518 ic->journal_crypt = NULL;
3519 goto bad;
3521 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3522 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3524 if (ic->journal_crypt_alg.key) {
3525 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3526 ic->journal_crypt_alg.key_size);
3527 if (r) {
3528 *error = "Error setting encryption key";
3529 goto bad;
3532 DEBUG_print("cipher %s, block size %u iv size %u\n",
3533 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3535 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3536 if (!ic->journal_io) {
3537 *error = "Could not allocate memory for journal io";
3538 r = -ENOMEM;
3539 goto bad;
3542 if (blocksize == 1) {
3543 struct scatterlist *sg;
3545 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3546 if (!req) {
3547 *error = "Could not allocate crypt request";
3548 r = -ENOMEM;
3549 goto bad;
3552 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3553 if (!crypt_iv) {
3554 *error = "Could not allocate iv";
3555 r = -ENOMEM;
3556 goto bad;
3559 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3560 if (!ic->journal_xor) {
3561 *error = "Could not allocate memory for journal xor";
3562 r = -ENOMEM;
3563 goto bad;
3566 sg = kvmalloc_array(ic->journal_pages + 1,
3567 sizeof(struct scatterlist),
3568 GFP_KERNEL);
3569 if (!sg) {
3570 *error = "Unable to allocate sg list";
3571 r = -ENOMEM;
3572 goto bad;
3574 sg_init_table(sg, ic->journal_pages + 1);
3575 for (i = 0; i < ic->journal_pages; i++) {
3576 char *va = lowmem_page_address(ic->journal_xor[i].page);
3577 clear_page(va);
3578 sg_set_buf(&sg[i], va, PAGE_SIZE);
3580 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3582 skcipher_request_set_crypt(req, sg, sg,
3583 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3584 init_completion(&comp.comp);
3585 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3586 if (do_crypt(true, req, &comp))
3587 wait_for_completion(&comp.comp);
3588 kvfree(sg);
3589 r = dm_integrity_failed(ic);
3590 if (r) {
3591 *error = "Unable to encrypt journal";
3592 goto bad;
3594 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3596 crypto_free_skcipher(ic->journal_crypt);
3597 ic->journal_crypt = NULL;
3598 } else {
3599 unsigned crypt_len = roundup(ivsize, blocksize);
3601 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3602 if (!req) {
3603 *error = "Could not allocate crypt request";
3604 r = -ENOMEM;
3605 goto bad;
3608 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3609 if (!crypt_iv) {
3610 *error = "Could not allocate iv";
3611 r = -ENOMEM;
3612 goto bad;
3615 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3616 if (!crypt_data) {
3617 *error = "Unable to allocate crypt data";
3618 r = -ENOMEM;
3619 goto bad;
3622 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3623 if (!ic->journal_scatterlist) {
3624 *error = "Unable to allocate sg list";
3625 r = -ENOMEM;
3626 goto bad;
3628 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3629 if (!ic->journal_io_scatterlist) {
3630 *error = "Unable to allocate sg list";
3631 r = -ENOMEM;
3632 goto bad;
3634 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3635 sizeof(struct skcipher_request *),
3636 GFP_KERNEL | __GFP_ZERO);
3637 if (!ic->sk_requests) {
3638 *error = "Unable to allocate sk requests";
3639 r = -ENOMEM;
3640 goto bad;
3642 for (i = 0; i < ic->journal_sections; i++) {
3643 struct scatterlist sg;
3644 struct skcipher_request *section_req;
3645 __u32 section_le = cpu_to_le32(i);
3647 memset(crypt_iv, 0x00, ivsize);
3648 memset(crypt_data, 0x00, crypt_len);
3649 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3651 sg_init_one(&sg, crypt_data, crypt_len);
3652 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3653 init_completion(&comp.comp);
3654 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3655 if (do_crypt(true, req, &comp))
3656 wait_for_completion(&comp.comp);
3658 r = dm_integrity_failed(ic);
3659 if (r) {
3660 *error = "Unable to generate iv";
3661 goto bad;
3664 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3665 if (!section_req) {
3666 *error = "Unable to allocate crypt request";
3667 r = -ENOMEM;
3668 goto bad;
3670 section_req->iv = kmalloc_array(ivsize, 2,
3671 GFP_KERNEL);
3672 if (!section_req->iv) {
3673 skcipher_request_free(section_req);
3674 *error = "Unable to allocate iv";
3675 r = -ENOMEM;
3676 goto bad;
3678 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3679 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3680 ic->sk_requests[i] = section_req;
3681 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3686 for (i = 0; i < N_COMMIT_IDS; i++) {
3687 unsigned j;
3688 retest_commit_id:
3689 for (j = 0; j < i; j++) {
3690 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3691 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3692 goto retest_commit_id;
3695 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3698 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3699 if (journal_tree_size > ULONG_MAX) {
3700 *error = "Journal doesn't fit into memory";
3701 r = -ENOMEM;
3702 goto bad;
3704 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3705 if (!ic->journal_tree) {
3706 *error = "Could not allocate memory for journal tree";
3707 r = -ENOMEM;
3709 bad:
3710 kfree(crypt_data);
3711 kfree(crypt_iv);
3712 skcipher_request_free(req);
3714 return r;
3718 * Construct a integrity mapping
3720 * Arguments:
3721 * device
3722 * offset from the start of the device
3723 * tag size
3724 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3725 * number of optional arguments
3726 * optional arguments:
3727 * journal_sectors
3728 * interleave_sectors
3729 * buffer_sectors
3730 * journal_watermark
3731 * commit_time
3732 * meta_device
3733 * block_size
3734 * sectors_per_bit
3735 * bitmap_flush_interval
3736 * internal_hash
3737 * journal_crypt
3738 * journal_mac
3739 * recalculate
3741 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3743 struct dm_integrity_c *ic;
3744 char dummy;
3745 int r;
3746 unsigned extra_args;
3747 struct dm_arg_set as;
3748 static const struct dm_arg _args[] = {
3749 {0, 9, "Invalid number of feature args"},
3751 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3752 bool should_write_sb;
3753 __u64 threshold;
3754 unsigned long long start;
3755 __s8 log2_sectors_per_bitmap_bit = -1;
3756 __s8 log2_blocks_per_bitmap_bit;
3757 __u64 bits_in_journal;
3758 __u64 n_bitmap_bits;
3760 #define DIRECT_ARGUMENTS 4
3762 if (argc <= DIRECT_ARGUMENTS) {
3763 ti->error = "Invalid argument count";
3764 return -EINVAL;
3767 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3768 if (!ic) {
3769 ti->error = "Cannot allocate integrity context";
3770 return -ENOMEM;
3772 ti->private = ic;
3773 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3774 ic->ti = ti;
3776 ic->in_progress = RB_ROOT;
3777 INIT_LIST_HEAD(&ic->wait_list);
3778 init_waitqueue_head(&ic->endio_wait);
3779 bio_list_init(&ic->flush_bio_list);
3780 init_waitqueue_head(&ic->copy_to_journal_wait);
3781 init_completion(&ic->crypto_backoff);
3782 atomic64_set(&ic->number_of_mismatches, 0);
3783 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3785 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3786 if (r) {
3787 ti->error = "Device lookup failed";
3788 goto bad;
3791 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3792 ti->error = "Invalid starting offset";
3793 r = -EINVAL;
3794 goto bad;
3796 ic->start = start;
3798 if (strcmp(argv[2], "-")) {
3799 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3800 ti->error = "Invalid tag size";
3801 r = -EINVAL;
3802 goto bad;
3806 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3807 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3808 ic->mode = argv[3][0];
3809 } else {
3810 ti->error = "Invalid mode (expecting J, B, D, R)";
3811 r = -EINVAL;
3812 goto bad;
3815 journal_sectors = 0;
3816 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3817 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3818 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3819 sync_msec = DEFAULT_SYNC_MSEC;
3820 ic->sectors_per_block = 1;
3822 as.argc = argc - DIRECT_ARGUMENTS;
3823 as.argv = argv + DIRECT_ARGUMENTS;
3824 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3825 if (r)
3826 goto bad;
3828 while (extra_args--) {
3829 const char *opt_string;
3830 unsigned val;
3831 unsigned long long llval;
3832 opt_string = dm_shift_arg(&as);
3833 if (!opt_string) {
3834 r = -EINVAL;
3835 ti->error = "Not enough feature arguments";
3836 goto bad;
3838 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3839 journal_sectors = val ? val : 1;
3840 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3841 interleave_sectors = val;
3842 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3843 buffer_sectors = val;
3844 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3845 journal_watermark = val;
3846 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3847 sync_msec = val;
3848 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3849 if (ic->meta_dev) {
3850 dm_put_device(ti, ic->meta_dev);
3851 ic->meta_dev = NULL;
3853 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3854 dm_table_get_mode(ti->table), &ic->meta_dev);
3855 if (r) {
3856 ti->error = "Device lookup failed";
3857 goto bad;
3859 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3860 if (val < 1 << SECTOR_SHIFT ||
3861 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3862 (val & (val -1))) {
3863 r = -EINVAL;
3864 ti->error = "Invalid block_size argument";
3865 goto bad;
3867 ic->sectors_per_block = val >> SECTOR_SHIFT;
3868 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3869 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3870 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3871 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3872 r = -EINVAL;
3873 ti->error = "Invalid bitmap_flush_interval argument";
3875 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3876 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3877 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3878 "Invalid internal_hash argument");
3879 if (r)
3880 goto bad;
3881 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3882 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3883 "Invalid journal_crypt argument");
3884 if (r)
3885 goto bad;
3886 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3887 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3888 "Invalid journal_mac argument");
3889 if (r)
3890 goto bad;
3891 } else if (!strcmp(opt_string, "recalculate")) {
3892 ic->recalculate_flag = true;
3893 } else if (!strcmp(opt_string, "allow_discards")) {
3894 ic->discard = true;
3895 } else if (!strcmp(opt_string, "fix_padding")) {
3896 ic->fix_padding = true;
3897 } else {
3898 r = -EINVAL;
3899 ti->error = "Invalid argument";
3900 goto bad;
3904 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3905 if (!ic->meta_dev)
3906 ic->meta_device_sectors = ic->data_device_sectors;
3907 else
3908 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3910 if (!journal_sectors) {
3911 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3912 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3915 if (!buffer_sectors)
3916 buffer_sectors = 1;
3917 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3919 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3920 "Invalid internal hash", "Error setting internal hash key");
3921 if (r)
3922 goto bad;
3924 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3925 "Invalid journal mac", "Error setting journal mac key");
3926 if (r)
3927 goto bad;
3929 if (!ic->tag_size) {
3930 if (!ic->internal_hash) {
3931 ti->error = "Unknown tag size";
3932 r = -EINVAL;
3933 goto bad;
3935 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3937 if (ic->tag_size > MAX_TAG_SIZE) {
3938 ti->error = "Too big tag size";
3939 r = -EINVAL;
3940 goto bad;
3942 if (!(ic->tag_size & (ic->tag_size - 1)))
3943 ic->log2_tag_size = __ffs(ic->tag_size);
3944 else
3945 ic->log2_tag_size = -1;
3947 if (ic->mode == 'B' && !ic->internal_hash) {
3948 r = -EINVAL;
3949 ti->error = "Bitmap mode can be only used with internal hash";
3950 goto bad;
3953 if (ic->discard && !ic->internal_hash) {
3954 r = -EINVAL;
3955 ti->error = "Discard can be only used with internal hash";
3956 goto bad;
3959 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3960 ic->autocommit_msec = sync_msec;
3961 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3963 ic->io = dm_io_client_create();
3964 if (IS_ERR(ic->io)) {
3965 r = PTR_ERR(ic->io);
3966 ic->io = NULL;
3967 ti->error = "Cannot allocate dm io";
3968 goto bad;
3971 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3972 if (r) {
3973 ti->error = "Cannot allocate mempool";
3974 goto bad;
3977 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3978 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3979 if (!ic->metadata_wq) {
3980 ti->error = "Cannot allocate workqueue";
3981 r = -ENOMEM;
3982 goto bad;
3986 * If this workqueue were percpu, it would cause bio reordering
3987 * and reduced performance.
3989 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3990 if (!ic->wait_wq) {
3991 ti->error = "Cannot allocate workqueue";
3992 r = -ENOMEM;
3993 goto bad;
3996 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3997 METADATA_WORKQUEUE_MAX_ACTIVE);
3998 if (!ic->offload_wq) {
3999 ti->error = "Cannot allocate workqueue";
4000 r = -ENOMEM;
4001 goto bad;
4004 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4005 if (!ic->commit_wq) {
4006 ti->error = "Cannot allocate workqueue";
4007 r = -ENOMEM;
4008 goto bad;
4010 INIT_WORK(&ic->commit_work, integrity_commit);
4012 if (ic->mode == 'J' || ic->mode == 'B') {
4013 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4014 if (!ic->writer_wq) {
4015 ti->error = "Cannot allocate workqueue";
4016 r = -ENOMEM;
4017 goto bad;
4019 INIT_WORK(&ic->writer_work, integrity_writer);
4022 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4023 if (!ic->sb) {
4024 r = -ENOMEM;
4025 ti->error = "Cannot allocate superblock area";
4026 goto bad;
4029 r = sync_rw_sb(ic, REQ_OP_READ, 0);
4030 if (r) {
4031 ti->error = "Error reading superblock";
4032 goto bad;
4034 should_write_sb = false;
4035 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4036 if (ic->mode != 'R') {
4037 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4038 r = -EINVAL;
4039 ti->error = "The device is not initialized";
4040 goto bad;
4044 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4045 if (r) {
4046 ti->error = "Could not initialize superblock";
4047 goto bad;
4049 if (ic->mode != 'R')
4050 should_write_sb = true;
4053 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4054 r = -EINVAL;
4055 ti->error = "Unknown version";
4056 goto bad;
4058 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4059 r = -EINVAL;
4060 ti->error = "Tag size doesn't match the information in superblock";
4061 goto bad;
4063 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4064 r = -EINVAL;
4065 ti->error = "Block size doesn't match the information in superblock";
4066 goto bad;
4068 if (!le32_to_cpu(ic->sb->journal_sections)) {
4069 r = -EINVAL;
4070 ti->error = "Corrupted superblock, journal_sections is 0";
4071 goto bad;
4073 /* make sure that ti->max_io_len doesn't overflow */
4074 if (!ic->meta_dev) {
4075 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4076 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4077 r = -EINVAL;
4078 ti->error = "Invalid interleave_sectors in the superblock";
4079 goto bad;
4081 } else {
4082 if (ic->sb->log2_interleave_sectors) {
4083 r = -EINVAL;
4084 ti->error = "Invalid interleave_sectors in the superblock";
4085 goto bad;
4088 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4089 r = -EINVAL;
4090 ti->error = "Journal mac mismatch";
4091 goto bad;
4094 get_provided_data_sectors(ic);
4095 if (!ic->provided_data_sectors) {
4096 r = -EINVAL;
4097 ti->error = "The device is too small";
4098 goto bad;
4101 try_smaller_buffer:
4102 r = calculate_device_limits(ic);
4103 if (r) {
4104 if (ic->meta_dev) {
4105 if (ic->log2_buffer_sectors > 3) {
4106 ic->log2_buffer_sectors--;
4107 goto try_smaller_buffer;
4110 ti->error = "The device is too small";
4111 goto bad;
4114 if (log2_sectors_per_bitmap_bit < 0)
4115 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4116 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4117 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4119 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4120 if (bits_in_journal > UINT_MAX)
4121 bits_in_journal = UINT_MAX;
4122 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4123 log2_sectors_per_bitmap_bit++;
4125 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4126 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4127 if (should_write_sb) {
4128 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4130 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4131 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4132 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4134 if (!ic->meta_dev)
4135 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4137 if (ti->len > ic->provided_data_sectors) {
4138 r = -EINVAL;
4139 ti->error = "Not enough provided sectors for requested mapping size";
4140 goto bad;
4144 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4145 threshold += 50;
4146 do_div(threshold, 100);
4147 ic->free_sectors_threshold = threshold;
4149 DEBUG_print("initialized:\n");
4150 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4151 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4152 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4153 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4154 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4155 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4156 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4157 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4158 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4159 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4160 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4161 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4162 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4163 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4164 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4166 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4167 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4168 ic->sb->recalc_sector = cpu_to_le64(0);
4171 if (ic->internal_hash) {
4172 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4173 if (!ic->recalc_wq ) {
4174 ti->error = "Cannot allocate workqueue";
4175 r = -ENOMEM;
4176 goto bad;
4178 INIT_WORK(&ic->recalc_work, integrity_recalc);
4179 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4180 if (!ic->recalc_buffer) {
4181 ti->error = "Cannot allocate buffer for recalculating";
4182 r = -ENOMEM;
4183 goto bad;
4185 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4186 ic->tag_size, GFP_KERNEL);
4187 if (!ic->recalc_tags) {
4188 ti->error = "Cannot allocate tags for recalculating";
4189 r = -ENOMEM;
4190 goto bad;
4194 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4195 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4196 if (IS_ERR(ic->bufio)) {
4197 r = PTR_ERR(ic->bufio);
4198 ti->error = "Cannot initialize dm-bufio";
4199 ic->bufio = NULL;
4200 goto bad;
4202 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4204 if (ic->mode != 'R') {
4205 r = create_journal(ic, &ti->error);
4206 if (r)
4207 goto bad;
4211 if (ic->mode == 'B') {
4212 unsigned i;
4213 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4215 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4216 if (!ic->recalc_bitmap) {
4217 r = -ENOMEM;
4218 goto bad;
4220 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4221 if (!ic->may_write_bitmap) {
4222 r = -ENOMEM;
4223 goto bad;
4225 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4226 if (!ic->bbs) {
4227 r = -ENOMEM;
4228 goto bad;
4230 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4231 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4232 struct bitmap_block_status *bbs = &ic->bbs[i];
4233 unsigned sector, pl_index, pl_offset;
4235 INIT_WORK(&bbs->work, bitmap_block_work);
4236 bbs->ic = ic;
4237 bbs->idx = i;
4238 bio_list_init(&bbs->bio_queue);
4239 spin_lock_init(&bbs->bio_queue_lock);
4241 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4242 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4243 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4245 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4249 if (should_write_sb) {
4250 int r;
4252 init_journal(ic, 0, ic->journal_sections, 0);
4253 r = dm_integrity_failed(ic);
4254 if (unlikely(r)) {
4255 ti->error = "Error initializing journal";
4256 goto bad;
4258 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4259 if (r) {
4260 ti->error = "Error initializing superblock";
4261 goto bad;
4263 ic->just_formatted = true;
4266 if (!ic->meta_dev) {
4267 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4268 if (r)
4269 goto bad;
4271 if (ic->mode == 'B') {
4272 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4273 if (!max_io_len)
4274 max_io_len = 1U << 31;
4275 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4276 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4277 r = dm_set_target_max_io_len(ti, max_io_len);
4278 if (r)
4279 goto bad;
4283 if (!ic->internal_hash)
4284 dm_integrity_set(ti, ic);
4286 ti->num_flush_bios = 1;
4287 ti->flush_supported = true;
4288 if (ic->discard)
4289 ti->num_discard_bios = 1;
4291 return 0;
4293 bad:
4294 dm_integrity_dtr(ti);
4295 return r;
4298 static void dm_integrity_dtr(struct dm_target *ti)
4300 struct dm_integrity_c *ic = ti->private;
4302 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4303 BUG_ON(!list_empty(&ic->wait_list));
4305 if (ic->metadata_wq)
4306 destroy_workqueue(ic->metadata_wq);
4307 if (ic->wait_wq)
4308 destroy_workqueue(ic->wait_wq);
4309 if (ic->offload_wq)
4310 destroy_workqueue(ic->offload_wq);
4311 if (ic->commit_wq)
4312 destroy_workqueue(ic->commit_wq);
4313 if (ic->writer_wq)
4314 destroy_workqueue(ic->writer_wq);
4315 if (ic->recalc_wq)
4316 destroy_workqueue(ic->recalc_wq);
4317 vfree(ic->recalc_buffer);
4318 kvfree(ic->recalc_tags);
4319 kvfree(ic->bbs);
4320 if (ic->bufio)
4321 dm_bufio_client_destroy(ic->bufio);
4322 mempool_exit(&ic->journal_io_mempool);
4323 if (ic->io)
4324 dm_io_client_destroy(ic->io);
4325 if (ic->dev)
4326 dm_put_device(ti, ic->dev);
4327 if (ic->meta_dev)
4328 dm_put_device(ti, ic->meta_dev);
4329 dm_integrity_free_page_list(ic->journal);
4330 dm_integrity_free_page_list(ic->journal_io);
4331 dm_integrity_free_page_list(ic->journal_xor);
4332 dm_integrity_free_page_list(ic->recalc_bitmap);
4333 dm_integrity_free_page_list(ic->may_write_bitmap);
4334 if (ic->journal_scatterlist)
4335 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4336 if (ic->journal_io_scatterlist)
4337 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4338 if (ic->sk_requests) {
4339 unsigned i;
4341 for (i = 0; i < ic->journal_sections; i++) {
4342 struct skcipher_request *req = ic->sk_requests[i];
4343 if (req) {
4344 kzfree(req->iv);
4345 skcipher_request_free(req);
4348 kvfree(ic->sk_requests);
4350 kvfree(ic->journal_tree);
4351 if (ic->sb)
4352 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4354 if (ic->internal_hash)
4355 crypto_free_shash(ic->internal_hash);
4356 free_alg(&ic->internal_hash_alg);
4358 if (ic->journal_crypt)
4359 crypto_free_skcipher(ic->journal_crypt);
4360 free_alg(&ic->journal_crypt_alg);
4362 if (ic->journal_mac)
4363 crypto_free_shash(ic->journal_mac);
4364 free_alg(&ic->journal_mac_alg);
4366 kfree(ic);
4369 static struct target_type integrity_target = {
4370 .name = "integrity",
4371 .version = {1, 6, 0},
4372 .module = THIS_MODULE,
4373 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4374 .ctr = dm_integrity_ctr,
4375 .dtr = dm_integrity_dtr,
4376 .map = dm_integrity_map,
4377 .postsuspend = dm_integrity_postsuspend,
4378 .resume = dm_integrity_resume,
4379 .status = dm_integrity_status,
4380 .iterate_devices = dm_integrity_iterate_devices,
4381 .io_hints = dm_integrity_io_hints,
4384 static int __init dm_integrity_init(void)
4386 int r;
4388 journal_io_cache = kmem_cache_create("integrity_journal_io",
4389 sizeof(struct journal_io), 0, 0, NULL);
4390 if (!journal_io_cache) {
4391 DMERR("can't allocate journal io cache");
4392 return -ENOMEM;
4395 r = dm_register_target(&integrity_target);
4397 if (r < 0)
4398 DMERR("register failed %d", r);
4400 return r;
4403 static void __exit dm_integrity_exit(void)
4405 dm_unregister_target(&integrity_target);
4406 kmem_cache_destroy(journal_io_cache);
4409 module_init(dm_integrity_init);
4410 module_exit(dm_integrity_exit);
4412 MODULE_AUTHOR("Milan Broz");
4413 MODULE_AUTHOR("Mikulas Patocka");
4414 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4415 MODULE_LICENSE("GPL");