gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / media / rc / nuvoton-cir.c
blob48a69bf23236e8d619b3286cc9f78f518c7d7891
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
35 #include "nuvoton-cir.h"
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
39 static const struct nvt_chip nvt_chips[] = {
40 { "w83667hg", NVT_W83667HG },
41 { "NCT6775F", NVT_6775F },
42 { "NCT6776F", NVT_6776F },
43 { "NCT6779D", NVT_6779D },
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
48 return nvt->rdev->dev.parent;
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
53 return nvt->chip_ver == NVT_W83667HG;
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
59 outb(reg, nvt->cr_efir);
60 outb(val, nvt->cr_efdr);
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
66 outb(reg, nvt->cr_efir);
67 return inb(nvt->cr_efdr);
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
73 u8 tmp = nvt_cr_read(nvt, reg) | val;
74 nvt_cr_write(nvt, tmp, reg);
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
80 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 nvt_cr_write(nvt, tmp, reg);
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
87 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 return -EBUSY;
90 /* Enabling Extended Function Mode explicitly requires writing 2x */
91 outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 outb(EFER_EFM_ENABLE, nvt->cr_efir);
94 return 0;
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
100 outb(EFER_EFM_DISABLE, nvt->cr_efir);
102 release_region(nvt->cr_efir, 2);
106 * When you want to address a specific logical device, write its logical
107 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
112 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
118 nvt_efm_enable(nvt);
119 nvt_select_logical_dev(nvt, ldev);
120 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 nvt_efm_disable(nvt);
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
127 nvt_efm_enable(nvt);
128 nvt_select_logical_dev(nvt, ldev);
129 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 nvt_efm_disable(nvt);
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
136 outb(val, nvt->cir_addr + offset);
139 /* read val from cir config register */
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
142 return inb(nvt->cir_addr + offset);
145 /* write val to cir wake register */
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
147 u8 val, u8 offset)
149 outb(val, nvt->cir_wake_addr + offset);
152 /* read val from cir wake config register */
153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
155 return inb(nvt->cir_wake_addr + offset);
158 /* don't override io address if one is set already */
159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
161 unsigned long old_addr;
163 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
164 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
166 if (old_addr)
167 *ioaddr = old_addr;
168 else {
169 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
170 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
174 static void nvt_write_wakeup_codes(struct rc_dev *dev,
175 const u8 *wbuf, int count)
177 u8 tolerance, config;
178 struct nvt_dev *nvt = dev->priv;
179 unsigned long flags;
180 int i;
182 /* hardcode the tolerance to 10% */
183 tolerance = DIV_ROUND_UP(count, 10);
185 spin_lock_irqsave(&nvt->lock, flags);
187 nvt_clear_cir_wake_fifo(nvt);
188 nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
189 nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
191 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
193 /* enable writes to wake fifo */
194 nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
195 CIR_WAKE_IRCON);
197 if (count)
198 pr_info("Wake samples (%d) =", count);
199 else
200 pr_info("Wake sample fifo cleared");
202 for (i = 0; i < count; i++)
203 nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
205 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
207 spin_unlock_irqrestore(&nvt->lock, flags);
210 static ssize_t wakeup_data_show(struct device *dev,
211 struct device_attribute *attr,
212 char *buf)
214 struct rc_dev *rc_dev = to_rc_dev(dev);
215 struct nvt_dev *nvt = rc_dev->priv;
216 int fifo_len, duration;
217 unsigned long flags;
218 ssize_t buf_len = 0;
219 int i;
221 spin_lock_irqsave(&nvt->lock, flags);
223 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
224 fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
226 /* go to first element to be read */
227 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
228 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
230 for (i = 0; i < fifo_len; i++) {
231 duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
232 duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
233 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
234 "%d ", duration);
236 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
238 spin_unlock_irqrestore(&nvt->lock, flags);
240 return buf_len;
243 static ssize_t wakeup_data_store(struct device *dev,
244 struct device_attribute *attr,
245 const char *buf, size_t len)
247 struct rc_dev *rc_dev = to_rc_dev(dev);
248 u8 wake_buf[WAKEUP_MAX_SIZE];
249 char **argv;
250 int i, count;
251 unsigned int val;
252 ssize_t ret;
254 argv = argv_split(GFP_KERNEL, buf, &count);
255 if (!argv)
256 return -ENOMEM;
257 if (!count || count > WAKEUP_MAX_SIZE) {
258 ret = -EINVAL;
259 goto out;
262 for (i = 0; i < count; i++) {
263 ret = kstrtouint(argv[i], 10, &val);
264 if (ret)
265 goto out;
266 val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
267 if (!val || val > 0x7f) {
268 ret = -EINVAL;
269 goto out;
271 wake_buf[i] = val;
272 /* sequence must start with a pulse */
273 if (i % 2 == 0)
274 wake_buf[i] |= BUF_PULSE_BIT;
277 nvt_write_wakeup_codes(rc_dev, wake_buf, count);
279 ret = len;
280 out:
281 argv_free(argv);
282 return ret;
284 static DEVICE_ATTR_RW(wakeup_data);
286 /* dump current cir register contents */
287 static void cir_dump_regs(struct nvt_dev *nvt)
289 nvt_efm_enable(nvt);
290 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
292 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
293 pr_info(" * CR CIR ACTIVE : 0x%x\n",
294 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
295 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
296 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
297 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
298 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
299 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
301 nvt_efm_disable(nvt);
303 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
304 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
305 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
306 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
307 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
308 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
309 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
310 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
311 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
312 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
313 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
314 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
315 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
316 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
317 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
318 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
319 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
322 /* dump current cir wake register contents */
323 static void cir_wake_dump_regs(struct nvt_dev *nvt)
325 u8 i, fifo_len;
327 nvt_efm_enable(nvt);
328 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
330 pr_info("%s: Dump CIR WAKE logical device registers:\n",
331 NVT_DRIVER_NAME);
332 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
333 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
334 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
335 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
336 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
337 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
338 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
340 nvt_efm_disable(nvt);
342 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
343 pr_info(" * IRCON: 0x%x\n",
344 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
345 pr_info(" * IRSTS: 0x%x\n",
346 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
347 pr_info(" * IREN: 0x%x\n",
348 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
349 pr_info(" * FIFO CMP DEEP: 0x%x\n",
350 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
351 pr_info(" * FIFO CMP TOL: 0x%x\n",
352 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
353 pr_info(" * FIFO COUNT: 0x%x\n",
354 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
355 pr_info(" * SLCH: 0x%x\n",
356 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
357 pr_info(" * SLCL: 0x%x\n",
358 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
359 pr_info(" * FIFOCON: 0x%x\n",
360 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
361 pr_info(" * SRXFSTS: 0x%x\n",
362 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
363 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
364 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
365 pr_info(" * WR FIFO DATA: 0x%x\n",
366 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
367 pr_info(" * RD FIFO ONLY: 0x%x\n",
368 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
369 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
370 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
371 pr_info(" * FIFO IGNORE: 0x%x\n",
372 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
373 pr_info(" * IRFSM: 0x%x\n",
374 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
376 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
377 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
378 pr_info("* Contents =");
379 for (i = 0; i < fifo_len; i++)
380 pr_cont(" %02x",
381 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
382 pr_cont("\n");
385 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
387 int i;
389 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
390 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
391 nvt->chip_ver = nvt_chips[i].chip_ver;
392 return nvt_chips[i].name;
395 return NULL;
399 /* detect hardware features */
400 static int nvt_hw_detect(struct nvt_dev *nvt)
402 struct device *dev = nvt_get_dev(nvt);
403 const char *chip_name;
404 int chip_id;
406 nvt_efm_enable(nvt);
408 /* Check if we're wired for the alternate EFER setup */
409 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
410 if (nvt->chip_major == 0xff) {
411 nvt_efm_disable(nvt);
412 nvt->cr_efir = CR_EFIR2;
413 nvt->cr_efdr = CR_EFDR2;
414 nvt_efm_enable(nvt);
415 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
417 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
419 nvt_efm_disable(nvt);
421 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
422 if (chip_id == NVT_INVALID) {
423 dev_err(dev, "No device found on either EFM port\n");
424 return -ENODEV;
427 chip_name = nvt_find_chip(nvt, chip_id);
429 /* warn, but still let the driver load, if we don't know this chip */
430 if (!chip_name)
431 dev_warn(dev,
432 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
433 nvt->chip_major, nvt->chip_minor);
434 else
435 dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
436 chip_name, nvt->chip_major, nvt->chip_minor);
438 return 0;
441 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
443 u8 val, psreg, psmask, psval;
445 if (is_w83667hg(nvt)) {
446 psreg = CR_MULTIFUNC_PIN_SEL;
447 psmask = MULTIFUNC_PIN_SEL_MASK;
448 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
449 } else {
450 psreg = CR_OUTPUT_PIN_SEL;
451 psmask = OUTPUT_PIN_SEL_MASK;
452 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
455 /* output pin selection: enable CIR, with WB sensor enabled */
456 val = nvt_cr_read(nvt, psreg);
457 val &= psmask;
458 val |= psval;
459 nvt_cr_write(nvt, val, psreg);
461 /* Select CIR logical device */
462 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
464 nvt_set_ioaddr(nvt, &nvt->cir_addr);
466 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
468 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
469 nvt->cir_addr, nvt->cir_irq);
472 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
474 /* Select ACPI logical device and anable it */
475 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
476 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
478 /* Enable CIR Wake via PSOUT# (Pin60) */
479 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
481 /* enable pme interrupt of cir wakeup event */
482 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
484 /* Select CIR Wake logical device */
485 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
487 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
489 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
490 nvt->cir_wake_addr);
493 /* clear out the hardware's cir rx fifo */
494 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
496 u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
497 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
500 /* clear out the hardware's cir wake rx fifo */
501 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
503 u8 val, config;
505 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
507 /* clearing wake fifo works in learning mode only */
508 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
509 CIR_WAKE_IRCON);
511 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
512 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
513 CIR_WAKE_FIFOCON);
515 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
518 /* clear out the hardware's cir tx fifo */
519 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
521 u8 val;
523 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
524 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
527 /* enable RX Trigger Level Reach and Packet End interrupts */
528 static void nvt_set_cir_iren(struct nvt_dev *nvt)
530 u8 iren;
532 iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
533 nvt_cir_reg_write(nvt, iren, CIR_IREN);
536 static void nvt_cir_regs_init(struct nvt_dev *nvt)
538 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
540 /* set sample limit count (PE interrupt raised when reached) */
541 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
542 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
544 /* set fifo irq trigger levels */
545 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
546 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
548 /* clear hardware rx and tx fifos */
549 nvt_clear_cir_fifo(nvt);
550 nvt_clear_tx_fifo(nvt);
552 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
555 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
557 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
560 * Disable RX, set specific carrier on = low, off = high,
561 * and sample period (currently 50us)
563 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
564 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
565 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
566 CIR_WAKE_IRCON);
568 /* clear any and all stray interrupts */
569 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
572 static void nvt_enable_wake(struct nvt_dev *nvt)
574 unsigned long flags;
576 nvt_efm_enable(nvt);
578 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
579 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
580 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
582 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
583 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
585 nvt_efm_disable(nvt);
587 spin_lock_irqsave(&nvt->lock, flags);
589 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
590 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
591 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
592 CIR_WAKE_IRCON);
593 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
594 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
596 spin_unlock_irqrestore(&nvt->lock, flags);
599 #if 0 /* Currently unused */
600 /* rx carrier detect only works in learning mode, must be called w/lock */
601 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
603 u32 count, carrier, duration = 0;
604 int i;
606 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
607 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
609 for (i = 0; i < nvt->pkts; i++) {
610 if (nvt->buf[i] & BUF_PULSE_BIT)
611 duration += nvt->buf[i] & BUF_LEN_MASK;
614 duration *= SAMPLE_PERIOD;
616 if (!count || !duration) {
617 dev_notice(nvt_get_dev(nvt),
618 "Unable to determine carrier! (c:%u, d:%u)",
619 count, duration);
620 return 0;
623 carrier = MS_TO_NS(count) / duration;
625 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
626 nvt_dbg("WTF? Carrier frequency out of range!");
628 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
629 carrier, count, duration);
631 return carrier;
633 #endif
635 * set carrier frequency
637 * set carrier on 2 registers: CP & CC
638 * always set CP as 0x81
639 * set CC by SPEC, CC = 3MHz/carrier - 1
641 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
643 struct nvt_dev *nvt = dev->priv;
644 u16 val;
646 if (carrier == 0)
647 return -EINVAL;
649 nvt_cir_reg_write(nvt, 1, CIR_CP);
650 val = 3000000 / (carrier) - 1;
651 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
653 nvt_dbg("cp: 0x%x cc: 0x%x\n",
654 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
656 return 0;
659 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
660 struct rc_scancode_filter *sc_filter)
662 u8 buf_val;
663 int i, ret, count;
664 unsigned int val;
665 struct ir_raw_event *raw;
666 u8 wake_buf[WAKEUP_MAX_SIZE];
667 bool complete;
669 /* Require mask to be set */
670 if (!sc_filter->mask)
671 return 0;
673 raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
674 if (!raw)
675 return -ENOMEM;
677 ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
678 raw, WAKEUP_MAX_SIZE);
679 complete = (ret != -ENOBUFS);
680 if (!complete)
681 ret = WAKEUP_MAX_SIZE;
682 else if (ret < 0)
683 goto out_raw;
685 /* Inspect the ir samples */
686 for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
687 /* NS to US */
688 val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
690 /* Split too large values into several smaller ones */
691 while (val > 0 && count < WAKEUP_MAX_SIZE) {
692 /* Skip last value for better comparison tolerance */
693 if (complete && i == ret - 1 && val < BUF_LEN_MASK)
694 break;
696 /* Clamp values to BUF_LEN_MASK at most */
697 buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
699 wake_buf[count] = buf_val;
700 val -= buf_val;
701 if ((raw[i]).pulse)
702 wake_buf[count] |= BUF_PULSE_BIT;
703 count++;
707 nvt_write_wakeup_codes(dev, wake_buf, count);
708 ret = 0;
709 out_raw:
710 kfree(raw);
712 return ret;
715 /* dump contents of the last rx buffer we got from the hw rx fifo */
716 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
718 int i;
720 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
721 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
722 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
723 printk(KERN_CONT "\n");
727 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
728 * trigger decode when appropriate.
730 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
731 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
732 * (default 50us) intervals for that pulse/space. A discrete signal is
733 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
734 * to signal more IR coming (repeats) or end of IR, respectively. We store
735 * sample data in the raw event kfifo until we see 0x7<something> (except f)
736 * or 0x80, at which time, we trigger a decode operation.
738 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
740 struct ir_raw_event rawir = {};
741 u8 sample;
742 int i;
744 nvt_dbg_verbose("%s firing", __func__);
746 if (debug)
747 nvt_dump_rx_buf(nvt);
749 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
751 for (i = 0; i < nvt->pkts; i++) {
752 sample = nvt->buf[i];
754 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
755 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
756 * SAMPLE_PERIOD);
758 nvt_dbg("Storing %s with duration %d",
759 rawir.pulse ? "pulse" : "space", rawir.duration);
761 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
764 nvt->pkts = 0;
766 nvt_dbg("Calling ir_raw_event_handle\n");
767 ir_raw_event_handle(nvt->rdev);
769 nvt_dbg_verbose("%s done", __func__);
772 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
774 dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
776 nvt->pkts = 0;
777 nvt_clear_cir_fifo(nvt);
778 ir_raw_event_reset(nvt->rdev);
781 /* copy data from hardware rx fifo into driver buffer */
782 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
784 u8 fifocount;
785 int i;
787 /* Get count of how many bytes to read from RX FIFO */
788 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
790 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
792 /* Read fifocount bytes from CIR Sample RX FIFO register */
793 for (i = 0; i < fifocount; i++)
794 nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
796 nvt->pkts = fifocount;
797 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
799 nvt_process_rx_ir_data(nvt);
802 static void nvt_cir_log_irqs(u8 status, u8 iren)
804 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
805 status, iren,
806 status & CIR_IRSTS_RDR ? " RDR" : "",
807 status & CIR_IRSTS_RTR ? " RTR" : "",
808 status & CIR_IRSTS_PE ? " PE" : "",
809 status & CIR_IRSTS_RFO ? " RFO" : "",
810 status & CIR_IRSTS_TE ? " TE" : "",
811 status & CIR_IRSTS_TTR ? " TTR" : "",
812 status & CIR_IRSTS_TFU ? " TFU" : "",
813 status & CIR_IRSTS_GH ? " GH" : "",
814 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
815 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
816 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
819 /* interrupt service routine for incoming and outgoing CIR data */
820 static irqreturn_t nvt_cir_isr(int irq, void *data)
822 struct nvt_dev *nvt = data;
823 u8 status, iren;
825 nvt_dbg_verbose("%s firing", __func__);
827 spin_lock(&nvt->lock);
830 * Get IR Status register contents. Write 1 to ack/clear
832 * bit: reg name - description
833 * 7: CIR_IRSTS_RDR - RX Data Ready
834 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
835 * 5: CIR_IRSTS_PE - Packet End
836 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
837 * 3: CIR_IRSTS_TE - TX FIFO Empty
838 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
839 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
840 * 0: CIR_IRSTS_GH - Min Length Detected
842 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
843 iren = nvt_cir_reg_read(nvt, CIR_IREN);
845 /* At least NCT6779D creates a spurious interrupt when the
846 * logical device is being disabled.
848 if (status == 0xff && iren == 0xff) {
849 spin_unlock(&nvt->lock);
850 nvt_dbg_verbose("Spurious interrupt detected");
851 return IRQ_HANDLED;
854 /* IRQ may be shared with CIR WAKE, therefore check for each
855 * status bit whether the related interrupt source is enabled
857 if (!(status & iren)) {
858 spin_unlock(&nvt->lock);
859 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
860 return IRQ_NONE;
863 /* ack/clear all irq flags we've got */
864 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
865 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
867 nvt_cir_log_irqs(status, iren);
869 if (status & CIR_IRSTS_RFO)
870 nvt_handle_rx_fifo_overrun(nvt);
871 else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
872 nvt_get_rx_ir_data(nvt);
874 spin_unlock(&nvt->lock);
876 nvt_dbg_verbose("%s done", __func__);
877 return IRQ_HANDLED;
880 static void nvt_enable_cir(struct nvt_dev *nvt)
882 unsigned long flags;
884 /* enable the CIR logical device */
885 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
887 spin_lock_irqsave(&nvt->lock, flags);
890 * Enable TX and RX, specify carrier on = low, off = high, and set
891 * sample period (currently 50us)
893 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
894 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
895 CIR_IRCON);
897 /* clear all pending interrupts */
898 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
900 /* enable interrupts */
901 nvt_set_cir_iren(nvt);
903 spin_unlock_irqrestore(&nvt->lock, flags);
906 static void nvt_disable_cir(struct nvt_dev *nvt)
908 unsigned long flags;
910 spin_lock_irqsave(&nvt->lock, flags);
912 /* disable CIR interrupts */
913 nvt_cir_reg_write(nvt, 0, CIR_IREN);
915 /* clear any and all pending interrupts */
916 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
918 /* clear all function enable flags */
919 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
921 /* clear hardware rx and tx fifos */
922 nvt_clear_cir_fifo(nvt);
923 nvt_clear_tx_fifo(nvt);
925 spin_unlock_irqrestore(&nvt->lock, flags);
927 /* disable the CIR logical device */
928 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
931 static int nvt_open(struct rc_dev *dev)
933 struct nvt_dev *nvt = dev->priv;
935 nvt_enable_cir(nvt);
937 return 0;
940 static void nvt_close(struct rc_dev *dev)
942 struct nvt_dev *nvt = dev->priv;
944 nvt_disable_cir(nvt);
947 /* Allocate memory, probe hardware, and initialize everything */
948 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
950 struct nvt_dev *nvt;
951 struct rc_dev *rdev;
952 int ret;
954 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
955 if (!nvt)
956 return -ENOMEM;
958 /* input device for IR remote */
959 nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
960 if (!nvt->rdev)
961 return -ENOMEM;
962 rdev = nvt->rdev;
964 /* activate pnp device */
965 ret = pnp_activate_dev(pdev);
966 if (ret) {
967 dev_err(&pdev->dev, "Could not activate PNP device!\n");
968 return ret;
971 /* validate pnp resources */
972 if (!pnp_port_valid(pdev, 0) ||
973 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
974 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
975 return -EINVAL;
978 if (!pnp_irq_valid(pdev, 0)) {
979 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
980 return -EINVAL;
983 if (!pnp_port_valid(pdev, 1) ||
984 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
985 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
986 return -EINVAL;
989 nvt->cir_addr = pnp_port_start(pdev, 0);
990 nvt->cir_irq = pnp_irq(pdev, 0);
992 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
994 nvt->cr_efir = CR_EFIR;
995 nvt->cr_efdr = CR_EFDR;
997 spin_lock_init(&nvt->lock);
999 pnp_set_drvdata(pdev, nvt);
1001 ret = nvt_hw_detect(nvt);
1002 if (ret)
1003 return ret;
1005 /* Initialize CIR & CIR Wake Logical Devices */
1006 nvt_efm_enable(nvt);
1007 nvt_cir_ldev_init(nvt);
1008 nvt_cir_wake_ldev_init(nvt);
1009 nvt_efm_disable(nvt);
1012 * Initialize CIR & CIR Wake Config Registers
1013 * and enable logical devices
1015 nvt_cir_regs_init(nvt);
1016 nvt_cir_wake_regs_init(nvt);
1018 /* Set up the rc device */
1019 rdev->priv = nvt;
1020 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
1021 rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
1022 rdev->encode_wakeup = true;
1023 rdev->open = nvt_open;
1024 rdev->close = nvt_close;
1025 rdev->s_tx_carrier = nvt_set_tx_carrier;
1026 rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1027 rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1028 rdev->input_phys = "nuvoton/cir0";
1029 rdev->input_id.bustype = BUS_HOST;
1030 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1031 rdev->input_id.product = nvt->chip_major;
1032 rdev->input_id.version = nvt->chip_minor;
1033 rdev->driver_name = NVT_DRIVER_NAME;
1034 rdev->map_name = RC_MAP_RC6_MCE;
1035 rdev->timeout = MS_TO_NS(100);
1036 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1037 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1038 #if 0
1039 rdev->min_timeout = XYZ;
1040 rdev->max_timeout = XYZ;
1041 #endif
1042 ret = devm_rc_register_device(&pdev->dev, rdev);
1043 if (ret)
1044 return ret;
1046 /* now claim resources */
1047 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1048 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1049 return -EBUSY;
1051 ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1052 IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1053 if (ret)
1054 return ret;
1056 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1057 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1058 return -EBUSY;
1060 ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1061 if (ret)
1062 return ret;
1064 device_init_wakeup(&pdev->dev, true);
1066 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1067 if (debug) {
1068 cir_dump_regs(nvt);
1069 cir_wake_dump_regs(nvt);
1072 return 0;
1075 static void nvt_remove(struct pnp_dev *pdev)
1077 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1079 device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1081 nvt_disable_cir(nvt);
1083 /* enable CIR Wake (for IR power-on) */
1084 nvt_enable_wake(nvt);
1087 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1089 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1091 nvt_dbg("%s called", __func__);
1093 mutex_lock(&nvt->rdev->lock);
1094 if (nvt->rdev->users)
1095 nvt_disable_cir(nvt);
1096 mutex_unlock(&nvt->rdev->lock);
1098 /* make sure wake is enabled */
1099 nvt_enable_wake(nvt);
1101 return 0;
1104 static int nvt_resume(struct pnp_dev *pdev)
1106 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1108 nvt_dbg("%s called", __func__);
1110 nvt_cir_regs_init(nvt);
1111 nvt_cir_wake_regs_init(nvt);
1113 mutex_lock(&nvt->rdev->lock);
1114 if (nvt->rdev->users)
1115 nvt_enable_cir(nvt);
1116 mutex_unlock(&nvt->rdev->lock);
1118 return 0;
1121 static void nvt_shutdown(struct pnp_dev *pdev)
1123 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1125 nvt_enable_wake(nvt);
1128 static const struct pnp_device_id nvt_ids[] = {
1129 { "WEC0530", 0 }, /* CIR */
1130 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1131 { "", 0 },
1134 static struct pnp_driver nvt_driver = {
1135 .name = NVT_DRIVER_NAME,
1136 .id_table = nvt_ids,
1137 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1138 .probe = nvt_probe,
1139 .remove = nvt_remove,
1140 .suspend = nvt_suspend,
1141 .resume = nvt_resume,
1142 .shutdown = nvt_shutdown,
1145 module_param(debug, int, S_IRUGO | S_IWUSR);
1146 MODULE_PARM_DESC(debug, "Enable debugging output");
1148 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1149 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1151 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1152 MODULE_LICENSE("GPL");
1154 module_pnp_driver(nvt_driver);