gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / media / rc / rc-ir-raw.c
blob39dd46bbd0c1f044041f1d8a4b078d225b5016fb
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-ir-raw.c - handle IR pulse/space events
3 //
4 // Copyright (C) 2010 by Mauro Carvalho Chehab
6 #include <linux/export.h>
7 #include <linux/kthread.h>
8 #include <linux/mutex.h>
9 #include <linux/kmod.h>
10 #include <linux/sched.h>
11 #include "rc-core-priv.h"
13 /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
14 static LIST_HEAD(ir_raw_client_list);
16 /* Used to handle IR raw handler extensions */
17 DEFINE_MUTEX(ir_raw_handler_lock);
18 static LIST_HEAD(ir_raw_handler_list);
19 static atomic64_t available_protocols = ATOMIC64_INIT(0);
21 static int ir_raw_event_thread(void *data)
23 struct ir_raw_event ev;
24 struct ir_raw_handler *handler;
25 struct ir_raw_event_ctrl *raw = data;
26 struct rc_dev *dev = raw->dev;
28 while (1) {
29 mutex_lock(&ir_raw_handler_lock);
30 while (kfifo_out(&raw->kfifo, &ev, 1)) {
31 if (is_timing_event(ev)) {
32 if (ev.duration == 0)
33 dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
34 if (is_timing_event(raw->prev_ev) &&
35 !is_transition(&ev, &raw->prev_ev))
36 dev_warn_once(&dev->dev, "two consecutive events of type %s",
37 TO_STR(ev.pulse));
38 if (raw->prev_ev.reset && ev.pulse == 0)
39 dev_warn_once(&dev->dev, "timing event after reset should be pulse");
41 list_for_each_entry(handler, &ir_raw_handler_list, list)
42 if (dev->enabled_protocols &
43 handler->protocols || !handler->protocols)
44 handler->decode(dev, ev);
45 ir_lirc_raw_event(dev, ev);
46 raw->prev_ev = ev;
48 mutex_unlock(&ir_raw_handler_lock);
50 set_current_state(TASK_INTERRUPTIBLE);
52 if (kthread_should_stop()) {
53 __set_current_state(TASK_RUNNING);
54 break;
55 } else if (!kfifo_is_empty(&raw->kfifo))
56 set_current_state(TASK_RUNNING);
58 schedule();
61 return 0;
64 /**
65 * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
66 * @dev: the struct rc_dev device descriptor
67 * @ev: the struct ir_raw_event descriptor of the pulse/space
69 * This routine (which may be called from an interrupt context) stores a
70 * pulse/space duration for the raw ir decoding state machines. Pulses are
71 * signalled as positive values and spaces as negative values. A zero value
72 * will reset the decoding state machines.
74 int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
76 if (!dev->raw)
77 return -EINVAL;
79 dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
80 TO_US(ev->duration), TO_STR(ev->pulse));
82 if (!kfifo_put(&dev->raw->kfifo, *ev)) {
83 dev_err(&dev->dev, "IR event FIFO is full!\n");
84 return -ENOSPC;
87 return 0;
89 EXPORT_SYMBOL_GPL(ir_raw_event_store);
91 /**
92 * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
93 * @dev: the struct rc_dev device descriptor
94 * @pulse: true for pulse, false for space
96 * This routine (which may be called from an interrupt context) is used to
97 * store the beginning of an ir pulse or space (or the start/end of ir
98 * reception) for the raw ir decoding state machines. This is used by
99 * hardware which does not provide durations directly but only interrupts
100 * (or similar events) on state change.
102 int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
104 ktime_t now;
105 struct ir_raw_event ev = {};
107 if (!dev->raw)
108 return -EINVAL;
110 now = ktime_get();
111 ev.duration = ktime_to_ns(ktime_sub(now, dev->raw->last_event));
112 ev.pulse = !pulse;
114 return ir_raw_event_store_with_timeout(dev, &ev);
116 EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
119 * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
120 * ir decoders, schedule decoding and
121 * timeout
122 * @dev: the struct rc_dev device descriptor
123 * @ev: the struct ir_raw_event descriptor of the pulse/space
125 * This routine (which may be called from an interrupt context) stores a
126 * pulse/space duration for the raw ir decoding state machines, schedules
127 * decoding and generates a timeout.
129 int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
131 ktime_t now;
132 int rc = 0;
134 if (!dev->raw)
135 return -EINVAL;
137 now = ktime_get();
139 spin_lock(&dev->raw->edge_spinlock);
140 rc = ir_raw_event_store(dev, ev);
142 dev->raw->last_event = now;
144 /* timer could be set to timeout (125ms by default) */
145 if (!timer_pending(&dev->raw->edge_handle) ||
146 time_after(dev->raw->edge_handle.expires,
147 jiffies + msecs_to_jiffies(15))) {
148 mod_timer(&dev->raw->edge_handle,
149 jiffies + msecs_to_jiffies(15));
151 spin_unlock(&dev->raw->edge_spinlock);
153 return rc;
155 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
158 * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
159 * @dev: the struct rc_dev device descriptor
160 * @ev: the event that has occurred
162 * This routine (which may be called from an interrupt context) works
163 * in similar manner to ir_raw_event_store_edge.
164 * This routine is intended for devices with limited internal buffer
165 * It automerges samples of same type, and handles timeouts. Returns non-zero
166 * if the event was added, and zero if the event was ignored due to idle
167 * processing.
169 int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
171 if (!dev->raw)
172 return -EINVAL;
174 /* Ignore spaces in idle mode */
175 if (dev->idle && !ev->pulse)
176 return 0;
177 else if (dev->idle)
178 ir_raw_event_set_idle(dev, false);
180 if (!dev->raw->this_ev.duration)
181 dev->raw->this_ev = *ev;
182 else if (ev->pulse == dev->raw->this_ev.pulse)
183 dev->raw->this_ev.duration += ev->duration;
184 else {
185 ir_raw_event_store(dev, &dev->raw->this_ev);
186 dev->raw->this_ev = *ev;
189 /* Enter idle mode if necessary */
190 if (!ev->pulse && dev->timeout &&
191 dev->raw->this_ev.duration >= dev->timeout)
192 ir_raw_event_set_idle(dev, true);
194 return 1;
196 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
199 * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
200 * @dev: the struct rc_dev device descriptor
201 * @idle: whether the device is idle or not
203 void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
205 if (!dev->raw)
206 return;
208 dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
210 if (idle) {
211 dev->raw->this_ev.timeout = true;
212 ir_raw_event_store(dev, &dev->raw->this_ev);
213 dev->raw->this_ev = (struct ir_raw_event) {};
216 if (dev->s_idle)
217 dev->s_idle(dev, idle);
219 dev->idle = idle;
221 EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
224 * ir_raw_event_handle() - schedules the decoding of stored ir data
225 * @dev: the struct rc_dev device descriptor
227 * This routine will tell rc-core to start decoding stored ir data.
229 void ir_raw_event_handle(struct rc_dev *dev)
231 if (!dev->raw || !dev->raw->thread)
232 return;
234 wake_up_process(dev->raw->thread);
236 EXPORT_SYMBOL_GPL(ir_raw_event_handle);
238 /* used internally by the sysfs interface */
240 ir_raw_get_allowed_protocols(void)
242 return atomic64_read(&available_protocols);
245 static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
247 struct ir_raw_handler *handler;
248 u32 timeout = 0;
250 mutex_lock(&ir_raw_handler_lock);
251 list_for_each_entry(handler, &ir_raw_handler_list, list) {
252 if (!(dev->enabled_protocols & handler->protocols) &&
253 (*rc_proto & handler->protocols) && handler->raw_register)
254 handler->raw_register(dev);
256 if ((dev->enabled_protocols & handler->protocols) &&
257 !(*rc_proto & handler->protocols) &&
258 handler->raw_unregister)
259 handler->raw_unregister(dev);
261 mutex_unlock(&ir_raw_handler_lock);
263 if (!dev->max_timeout)
264 return 0;
266 mutex_lock(&ir_raw_handler_lock);
267 list_for_each_entry(handler, &ir_raw_handler_list, list) {
268 if (handler->protocols & *rc_proto) {
269 if (timeout < handler->min_timeout)
270 timeout = handler->min_timeout;
273 mutex_unlock(&ir_raw_handler_lock);
275 if (timeout == 0)
276 timeout = IR_DEFAULT_TIMEOUT;
277 else
278 timeout += MS_TO_NS(10);
280 if (timeout < dev->min_timeout)
281 timeout = dev->min_timeout;
282 else if (timeout > dev->max_timeout)
283 timeout = dev->max_timeout;
285 if (dev->s_timeout)
286 dev->s_timeout(dev, timeout);
287 else
288 dev->timeout = timeout;
290 return 0;
293 static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
295 mutex_lock(&dev->lock);
296 dev->enabled_protocols &= ~protocols;
297 mutex_unlock(&dev->lock);
301 * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
302 * @ev: Pointer to pointer to next free event. *@ev is incremented for
303 * each raw event filled.
304 * @max: Maximum number of raw events to fill.
305 * @timings: Manchester modulation timings.
306 * @n: Number of bits of data.
307 * @data: Data bits to encode.
309 * Encodes the @n least significant bits of @data using Manchester (bi-phase)
310 * modulation with the timing characteristics described by @timings, writing up
311 * to @max raw IR events using the *@ev pointer.
313 * Returns: 0 on success.
314 * -ENOBUFS if there isn't enough space in the array to fit the
315 * full encoded data. In this case all @max events will have been
316 * written.
318 int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
319 const struct ir_raw_timings_manchester *timings,
320 unsigned int n, u64 data)
322 bool need_pulse;
323 u64 i;
324 int ret = -ENOBUFS;
326 i = BIT_ULL(n - 1);
328 if (timings->leader_pulse) {
329 if (!max--)
330 return ret;
331 init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
332 if (timings->leader_space) {
333 if (!max--)
334 return ret;
335 init_ir_raw_event_duration(++(*ev), 0,
336 timings->leader_space);
338 } else {
339 /* continue existing signal */
340 --(*ev);
342 /* from here on *ev will point to the last event rather than the next */
344 while (n && i > 0) {
345 need_pulse = !(data & i);
346 if (timings->invert)
347 need_pulse = !need_pulse;
348 if (need_pulse == !!(*ev)->pulse) {
349 (*ev)->duration += timings->clock;
350 } else {
351 if (!max--)
352 goto nobufs;
353 init_ir_raw_event_duration(++(*ev), need_pulse,
354 timings->clock);
357 if (!max--)
358 goto nobufs;
359 init_ir_raw_event_duration(++(*ev), !need_pulse,
360 timings->clock);
361 i >>= 1;
364 if (timings->trailer_space) {
365 if (!(*ev)->pulse)
366 (*ev)->duration += timings->trailer_space;
367 else if (!max--)
368 goto nobufs;
369 else
370 init_ir_raw_event_duration(++(*ev), 0,
371 timings->trailer_space);
374 ret = 0;
375 nobufs:
376 /* point to the next event rather than last event before returning */
377 ++(*ev);
378 return ret;
380 EXPORT_SYMBOL(ir_raw_gen_manchester);
383 * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
384 * @ev: Pointer to pointer to next free event. *@ev is incremented for
385 * each raw event filled.
386 * @max: Maximum number of raw events to fill.
387 * @timings: Pulse distance modulation timings.
388 * @n: Number of bits of data.
389 * @data: Data bits to encode.
391 * Encodes the @n least significant bits of @data using pulse-distance
392 * modulation with the timing characteristics described by @timings, writing up
393 * to @max raw IR events using the *@ev pointer.
395 * Returns: 0 on success.
396 * -ENOBUFS if there isn't enough space in the array to fit the
397 * full encoded data. In this case all @max events will have been
398 * written.
400 int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
401 const struct ir_raw_timings_pd *timings,
402 unsigned int n, u64 data)
404 int i;
405 int ret;
406 unsigned int space;
408 if (timings->header_pulse) {
409 ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
410 timings->header_space);
411 if (ret)
412 return ret;
415 if (timings->msb_first) {
416 for (i = n - 1; i >= 0; --i) {
417 space = timings->bit_space[(data >> i) & 1];
418 ret = ir_raw_gen_pulse_space(ev, &max,
419 timings->bit_pulse,
420 space);
421 if (ret)
422 return ret;
424 } else {
425 for (i = 0; i < n; ++i, data >>= 1) {
426 space = timings->bit_space[data & 1];
427 ret = ir_raw_gen_pulse_space(ev, &max,
428 timings->bit_pulse,
429 space);
430 if (ret)
431 return ret;
435 ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
436 timings->trailer_space);
437 return ret;
439 EXPORT_SYMBOL(ir_raw_gen_pd);
442 * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
443 * @ev: Pointer to pointer to next free event. *@ev is incremented for
444 * each raw event filled.
445 * @max: Maximum number of raw events to fill.
446 * @timings: Pulse distance modulation timings.
447 * @n: Number of bits of data.
448 * @data: Data bits to encode.
450 * Encodes the @n least significant bits of @data using space-distance
451 * modulation with the timing characteristics described by @timings, writing up
452 * to @max raw IR events using the *@ev pointer.
454 * Returns: 0 on success.
455 * -ENOBUFS if there isn't enough space in the array to fit the
456 * full encoded data. In this case all @max events will have been
457 * written.
459 int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
460 const struct ir_raw_timings_pl *timings,
461 unsigned int n, u64 data)
463 int i;
464 int ret = -ENOBUFS;
465 unsigned int pulse;
467 if (!max--)
468 return ret;
470 init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
472 if (timings->msb_first) {
473 for (i = n - 1; i >= 0; --i) {
474 if (!max--)
475 return ret;
476 init_ir_raw_event_duration((*ev)++, 0,
477 timings->bit_space);
478 if (!max--)
479 return ret;
480 pulse = timings->bit_pulse[(data >> i) & 1];
481 init_ir_raw_event_duration((*ev)++, 1, pulse);
483 } else {
484 for (i = 0; i < n; ++i, data >>= 1) {
485 if (!max--)
486 return ret;
487 init_ir_raw_event_duration((*ev)++, 0,
488 timings->bit_space);
489 if (!max--)
490 return ret;
491 pulse = timings->bit_pulse[data & 1];
492 init_ir_raw_event_duration((*ev)++, 1, pulse);
496 if (!max--)
497 return ret;
499 init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
501 return 0;
503 EXPORT_SYMBOL(ir_raw_gen_pl);
506 * ir_raw_encode_scancode() - Encode a scancode as raw events
508 * @protocol: protocol
509 * @scancode: scancode filter describing a single scancode
510 * @events: array of raw events to write into
511 * @max: max number of raw events
513 * Attempts to encode the scancode as raw events.
515 * Returns: The number of events written.
516 * -ENOBUFS if there isn't enough space in the array to fit the
517 * encoding. In this case all @max events will have been written.
518 * -EINVAL if the scancode is ambiguous or invalid, or if no
519 * compatible encoder was found.
521 int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
522 struct ir_raw_event *events, unsigned int max)
524 struct ir_raw_handler *handler;
525 int ret = -EINVAL;
526 u64 mask = 1ULL << protocol;
528 ir_raw_load_modules(&mask);
530 mutex_lock(&ir_raw_handler_lock);
531 list_for_each_entry(handler, &ir_raw_handler_list, list) {
532 if (handler->protocols & mask && handler->encode) {
533 ret = handler->encode(protocol, scancode, events, max);
534 if (ret >= 0 || ret == -ENOBUFS)
535 break;
538 mutex_unlock(&ir_raw_handler_lock);
540 return ret;
542 EXPORT_SYMBOL(ir_raw_encode_scancode);
545 * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
547 * @t: timer_list
549 * This callback is armed by ir_raw_event_store_edge(). It does two things:
550 * first of all, rather than calling ir_raw_event_handle() for each
551 * edge and waking up the rc thread, 15 ms after the first edge
552 * ir_raw_event_handle() is called. Secondly, generate a timeout event
553 * no more IR is received after the rc_dev timeout.
555 static void ir_raw_edge_handle(struct timer_list *t)
557 struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
558 struct rc_dev *dev = raw->dev;
559 unsigned long flags;
560 ktime_t interval;
562 spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
563 interval = ktime_sub(ktime_get(), dev->raw->last_event);
564 if (ktime_to_ns(interval) >= dev->timeout) {
565 struct ir_raw_event ev = {
566 .timeout = true,
567 .duration = ktime_to_ns(interval)
570 ir_raw_event_store(dev, &ev);
571 } else {
572 mod_timer(&dev->raw->edge_handle,
573 jiffies + nsecs_to_jiffies(dev->timeout -
574 ktime_to_ns(interval)));
576 spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
578 ir_raw_event_handle(dev);
582 * ir_raw_encode_carrier() - Get carrier used for protocol
584 * @protocol: protocol
586 * Attempts to find the carrier for the specified protocol
588 * Returns: The carrier in Hz
589 * -EINVAL if the protocol is invalid, or if no
590 * compatible encoder was found.
592 int ir_raw_encode_carrier(enum rc_proto protocol)
594 struct ir_raw_handler *handler;
595 int ret = -EINVAL;
596 u64 mask = BIT_ULL(protocol);
598 mutex_lock(&ir_raw_handler_lock);
599 list_for_each_entry(handler, &ir_raw_handler_list, list) {
600 if (handler->protocols & mask && handler->encode) {
601 ret = handler->carrier;
602 break;
605 mutex_unlock(&ir_raw_handler_lock);
607 return ret;
609 EXPORT_SYMBOL(ir_raw_encode_carrier);
612 * Used to (un)register raw event clients
614 int ir_raw_event_prepare(struct rc_dev *dev)
616 if (!dev)
617 return -EINVAL;
619 dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
620 if (!dev->raw)
621 return -ENOMEM;
623 dev->raw->dev = dev;
624 dev->change_protocol = change_protocol;
625 dev->idle = true;
626 spin_lock_init(&dev->raw->edge_spinlock);
627 timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
628 INIT_KFIFO(dev->raw->kfifo);
630 return 0;
633 int ir_raw_event_register(struct rc_dev *dev)
635 struct task_struct *thread;
637 thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
638 if (IS_ERR(thread))
639 return PTR_ERR(thread);
641 dev->raw->thread = thread;
643 mutex_lock(&ir_raw_handler_lock);
644 list_add_tail(&dev->raw->list, &ir_raw_client_list);
645 mutex_unlock(&ir_raw_handler_lock);
647 return 0;
650 void ir_raw_event_free(struct rc_dev *dev)
652 if (!dev)
653 return;
655 kfree(dev->raw);
656 dev->raw = NULL;
659 void ir_raw_event_unregister(struct rc_dev *dev)
661 struct ir_raw_handler *handler;
663 if (!dev || !dev->raw)
664 return;
666 kthread_stop(dev->raw->thread);
667 del_timer_sync(&dev->raw->edge_handle);
669 mutex_lock(&ir_raw_handler_lock);
670 list_del(&dev->raw->list);
671 list_for_each_entry(handler, &ir_raw_handler_list, list)
672 if (handler->raw_unregister &&
673 (handler->protocols & dev->enabled_protocols))
674 handler->raw_unregister(dev);
676 lirc_bpf_free(dev);
678 ir_raw_event_free(dev);
681 * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
682 * ensure that the raw member is null on unlock; this is how
683 * "device gone" is checked.
685 mutex_unlock(&ir_raw_handler_lock);
689 * Extension interface - used to register the IR decoders
692 int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
694 mutex_lock(&ir_raw_handler_lock);
695 list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
696 atomic64_or(ir_raw_handler->protocols, &available_protocols);
697 mutex_unlock(&ir_raw_handler_lock);
699 return 0;
701 EXPORT_SYMBOL(ir_raw_handler_register);
703 void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
705 struct ir_raw_event_ctrl *raw;
706 u64 protocols = ir_raw_handler->protocols;
708 mutex_lock(&ir_raw_handler_lock);
709 list_del(&ir_raw_handler->list);
710 list_for_each_entry(raw, &ir_raw_client_list, list) {
711 if (ir_raw_handler->raw_unregister &&
712 (raw->dev->enabled_protocols & protocols))
713 ir_raw_handler->raw_unregister(raw->dev);
714 ir_raw_disable_protocols(raw->dev, protocols);
716 atomic64_andnot(protocols, &available_protocols);
717 mutex_unlock(&ir_raw_handler_lock);
719 EXPORT_SYMBOL(ir_raw_handler_unregister);