1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for mt2063 Micronas tuner
5 * Copyright (c) 2011 Mauro Carvalho Chehab
7 * This driver came from a driver originally written by:
8 * Henry Wang <Henry.wang@AzureWave.com>
9 * Made publicly available by Terratec, at:
10 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/videodev2.h>
18 #include <linux/gcd.h>
22 static unsigned int debug
;
23 module_param(debug
, int, 0644);
24 MODULE_PARM_DESC(debug
, "Set Verbosity level");
26 #define dprintk(level, fmt, arg...) do { \
28 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
32 /* positive error codes used internally */
34 /* Info: Unavoidable LO-related spur may be present in the output */
35 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
37 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
38 #define MT2063_SPUR_CNT_MASK (0x001f0000)
39 #define MT2063_SPUR_SHIFT (16)
41 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
42 #define MT2063_UPC_RANGE (0x04000000)
44 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
45 #define MT2063_DNC_RANGE (0x08000000)
48 * Constant defining the version of the following structure
49 * and therefore the API for this code.
51 * When compiling the tuner driver, the preprocessor will
52 * check against this version number to make sure that
53 * it matches the version that the tuner driver knows about.
56 /* DECT Frequency Avoidance */
57 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
59 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
61 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
63 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
65 enum MT2063_DECT_Avoid_Type
{
66 MT2063_NO_DECT_AVOIDANCE
= 0, /* Do not create DECT exclusion zones. */
67 MT2063_AVOID_US_DECT
= MT2063_DECT_AVOID_US_FREQS
, /* Avoid US DECT frequencies. */
68 MT2063_AVOID_EURO_DECT
= MT2063_DECT_AVOID_EURO_FREQS
, /* Avoid European DECT frequencies. */
69 MT2063_AVOID_BOTH
/* Avoid both regions. Not typically used. */
72 #define MT2063_MAX_ZONES 48
74 struct MT2063_ExclZone_t
{
77 struct MT2063_ExclZone_t
*next_
;
81 * Structure of data needed for Spur Avoidance
83 struct MT2063_AvoidSpursData_t
{
95 u32 f_LO1_FracN_Avoid
;
96 u32 f_LO2_FracN_Avoid
;
98 u32 f_min_LO_Separation
;
101 enum MT2063_DECT_Avoid_Type avoidDECT
;
106 struct MT2063_ExclZone_t
*freeZones
;
107 struct MT2063_ExclZone_t
*usedZones
;
108 struct MT2063_ExclZone_t MT2063_ExclZones
[MT2063_MAX_ZONES
];
112 * Parameter for function MT2063_SetPowerMask that specifies the power down
113 * of various sections of the MT2063.
115 enum MT2063_Mask_Bits
{
116 MT2063_REG_SD
= 0x0040, /* Shutdown regulator */
117 MT2063_SRO_SD
= 0x0020, /* Shutdown SRO */
118 MT2063_AFC_SD
= 0x0010, /* Shutdown AFC A/D */
119 MT2063_PD_SD
= 0x0002, /* Enable power detector shutdown */
120 MT2063_PDADC_SD
= 0x0001, /* Enable power detector A/D shutdown */
121 MT2063_VCO_SD
= 0x8000, /* Enable VCO shutdown */
122 MT2063_LTX_SD
= 0x4000, /* Enable LTX shutdown */
123 MT2063_LT1_SD
= 0x2000, /* Enable LT1 shutdown */
124 MT2063_LNA_SD
= 0x1000, /* Enable LNA shutdown */
125 MT2063_UPC_SD
= 0x0800, /* Enable upconverter shutdown */
126 MT2063_DNC_SD
= 0x0400, /* Enable downconverter shutdown */
127 MT2063_VGA_SD
= 0x0200, /* Enable VGA shutdown */
128 MT2063_AMP_SD
= 0x0100, /* Enable AMP shutdown */
129 MT2063_ALL_SD
= 0xFF73, /* All shutdown bits for this tuner */
130 MT2063_NONE_SD
= 0x0000 /* No shutdown bits */
134 * Possible values for MT2063_DNC_OUTPUT
136 enum MT2063_DNC_Output_Enable
{
144 * Two-wire serial bus subaddresses of the tuner registers.
145 * Also known as the tuner's register addresses.
147 enum MT2063_Register_Offsets
{
148 MT2063_REG_PART_REV
= 0, /* 0x00: Part/Rev Code */
149 MT2063_REG_LO1CQ_1
, /* 0x01: LO1C Queued Byte 1 */
150 MT2063_REG_LO1CQ_2
, /* 0x02: LO1C Queued Byte 2 */
151 MT2063_REG_LO2CQ_1
, /* 0x03: LO2C Queued Byte 1 */
152 MT2063_REG_LO2CQ_2
, /* 0x04: LO2C Queued Byte 2 */
153 MT2063_REG_LO2CQ_3
, /* 0x05: LO2C Queued Byte 3 */
154 MT2063_REG_RSVD_06
, /* 0x06: Reserved */
155 MT2063_REG_LO_STATUS
, /* 0x07: LO Status */
156 MT2063_REG_FIFFC
, /* 0x08: FIFF Center */
157 MT2063_REG_CLEARTUNE
, /* 0x09: ClearTune Filter */
158 MT2063_REG_ADC_OUT
, /* 0x0A: ADC_OUT */
159 MT2063_REG_LO1C_1
, /* 0x0B: LO1C Byte 1 */
160 MT2063_REG_LO1C_2
, /* 0x0C: LO1C Byte 2 */
161 MT2063_REG_LO2C_1
, /* 0x0D: LO2C Byte 1 */
162 MT2063_REG_LO2C_2
, /* 0x0E: LO2C Byte 2 */
163 MT2063_REG_LO2C_3
, /* 0x0F: LO2C Byte 3 */
164 MT2063_REG_RSVD_10
, /* 0x10: Reserved */
165 MT2063_REG_PWR_1
, /* 0x11: PWR Byte 1 */
166 MT2063_REG_PWR_2
, /* 0x12: PWR Byte 2 */
167 MT2063_REG_TEMP_STATUS
, /* 0x13: Temp Status */
168 MT2063_REG_XO_STATUS
, /* 0x14: Crystal Status */
169 MT2063_REG_RF_STATUS
, /* 0x15: RF Attn Status */
170 MT2063_REG_FIF_STATUS
, /* 0x16: FIF Attn Status */
171 MT2063_REG_LNA_OV
, /* 0x17: LNA Attn Override */
172 MT2063_REG_RF_OV
, /* 0x18: RF Attn Override */
173 MT2063_REG_FIF_OV
, /* 0x19: FIF Attn Override */
174 MT2063_REG_LNA_TGT
, /* 0x1A: Reserved */
175 MT2063_REG_PD1_TGT
, /* 0x1B: Pwr Det 1 Target */
176 MT2063_REG_PD2_TGT
, /* 0x1C: Pwr Det 2 Target */
177 MT2063_REG_RSVD_1D
, /* 0x1D: Reserved */
178 MT2063_REG_RSVD_1E
, /* 0x1E: Reserved */
179 MT2063_REG_RSVD_1F
, /* 0x1F: Reserved */
180 MT2063_REG_RSVD_20
, /* 0x20: Reserved */
181 MT2063_REG_BYP_CTRL
, /* 0x21: Bypass Control */
182 MT2063_REG_RSVD_22
, /* 0x22: Reserved */
183 MT2063_REG_RSVD_23
, /* 0x23: Reserved */
184 MT2063_REG_RSVD_24
, /* 0x24: Reserved */
185 MT2063_REG_RSVD_25
, /* 0x25: Reserved */
186 MT2063_REG_RSVD_26
, /* 0x26: Reserved */
187 MT2063_REG_RSVD_27
, /* 0x27: Reserved */
188 MT2063_REG_FIFF_CTRL
, /* 0x28: FIFF Control */
189 MT2063_REG_FIFF_OFFSET
, /* 0x29: FIFF Offset */
190 MT2063_REG_CTUNE_CTRL
, /* 0x2A: Reserved */
191 MT2063_REG_CTUNE_OV
, /* 0x2B: Reserved */
192 MT2063_REG_CTRL_2C
, /* 0x2C: Reserved */
193 MT2063_REG_FIFF_CTRL2
, /* 0x2D: Fiff Control */
194 MT2063_REG_RSVD_2E
, /* 0x2E: Reserved */
195 MT2063_REG_DNC_GAIN
, /* 0x2F: DNC Control */
196 MT2063_REG_VGA_GAIN
, /* 0x30: VGA Gain Ctrl */
197 MT2063_REG_RSVD_31
, /* 0x31: Reserved */
198 MT2063_REG_TEMP_SEL
, /* 0x32: Temperature Selection */
199 MT2063_REG_RSVD_33
, /* 0x33: Reserved */
200 MT2063_REG_RSVD_34
, /* 0x34: Reserved */
201 MT2063_REG_RSVD_35
, /* 0x35: Reserved */
202 MT2063_REG_RSVD_36
, /* 0x36: Reserved */
203 MT2063_REG_RSVD_37
, /* 0x37: Reserved */
204 MT2063_REG_RSVD_38
, /* 0x38: Reserved */
205 MT2063_REG_RSVD_39
, /* 0x39: Reserved */
206 MT2063_REG_RSVD_3A
, /* 0x3A: Reserved */
207 MT2063_REG_RSVD_3B
, /* 0x3B: Reserved */
208 MT2063_REG_RSVD_3C
, /* 0x3C: Reserved */
212 struct mt2063_state
{
213 struct i2c_adapter
*i2c
;
217 const struct mt2063_config
*config
;
218 struct dvb_tuner_ops ops
;
219 struct dvb_frontend
*frontend
;
227 struct MT2063_AvoidSpursData_t AS_Data
;
233 u8 reg
[MT2063_REG_END_REGS
];
237 * mt2063_write - Write data into the I2C bus
239 static int mt2063_write(struct mt2063_state
*state
, u8 reg
, u8
*data
, u32 len
)
241 struct dvb_frontend
*fe
= state
->frontend
;
244 struct i2c_msg msg
= {
245 .addr
= state
->config
->tuner_address
,
254 memcpy(msg
.buf
+ 1, data
, len
);
256 if (fe
->ops
.i2c_gate_ctrl
)
257 fe
->ops
.i2c_gate_ctrl(fe
, 1);
258 ret
= i2c_transfer(state
->i2c
, &msg
, 1);
259 if (fe
->ops
.i2c_gate_ctrl
)
260 fe
->ops
.i2c_gate_ctrl(fe
, 0);
263 printk(KERN_ERR
"%s error ret=%d\n", __func__
, ret
);
269 * mt2063_write - Write register data into the I2C bus, caching the value
271 static int mt2063_setreg(struct mt2063_state
*state
, u8 reg
, u8 val
)
277 if (reg
>= MT2063_REG_END_REGS
)
280 status
= mt2063_write(state
, reg
, &val
, 1);
284 state
->reg
[reg
] = val
;
290 * mt2063_read - Read data from the I2C bus
292 static int mt2063_read(struct mt2063_state
*state
,
293 u8 subAddress
, u8
*pData
, u32 cnt
)
295 int status
= 0; /* Status to be returned */
296 struct dvb_frontend
*fe
= state
->frontend
;
299 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress
, cnt
);
301 if (fe
->ops
.i2c_gate_ctrl
)
302 fe
->ops
.i2c_gate_ctrl(fe
, 1);
304 for (i
= 0; i
< cnt
; i
++) {
305 u8 b0
[] = { subAddress
+ i
};
306 struct i2c_msg msg
[] = {
308 .addr
= state
->config
->tuner_address
,
313 .addr
= state
->config
->tuner_address
,
320 status
= i2c_transfer(state
->i2c
, msg
, 2);
321 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
322 subAddress
+ i
, status
, *(pData
+ i
));
326 if (fe
->ops
.i2c_gate_ctrl
)
327 fe
->ops
.i2c_gate_ctrl(fe
, 0);
330 printk(KERN_ERR
"Can't read from address 0x%02x,\n",
337 * FIXME: Is this really needed?
339 static int MT2063_Sleep(struct dvb_frontend
*fe
)
342 * ToDo: Add code here to implement a OS blocking
350 * Microtune spur avoidance
353 /* Implement ceiling, floor functions. */
354 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
355 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
357 struct MT2063_FIFZone_t
{
362 static struct MT2063_ExclZone_t
*InsertNode(struct MT2063_AvoidSpursData_t
364 struct MT2063_ExclZone_t
*pPrevNode
)
366 struct MT2063_ExclZone_t
*pNode
;
370 /* Check for a node in the free list */
371 if (pAS_Info
->freeZones
!= NULL
) {
372 /* Use one from the free list */
373 pNode
= pAS_Info
->freeZones
;
374 pAS_Info
->freeZones
= pNode
->next_
;
376 /* Grab a node from the array */
377 pNode
= &pAS_Info
->MT2063_ExclZones
[pAS_Info
->nZones
];
380 if (pPrevNode
!= NULL
) {
381 pNode
->next_
= pPrevNode
->next_
;
382 pPrevNode
->next_
= pNode
;
383 } else { /* insert at the beginning of the list */
385 pNode
->next_
= pAS_Info
->usedZones
;
386 pAS_Info
->usedZones
= pNode
;
393 static struct MT2063_ExclZone_t
*RemoveNode(struct MT2063_AvoidSpursData_t
395 struct MT2063_ExclZone_t
*pPrevNode
,
396 struct MT2063_ExclZone_t
399 struct MT2063_ExclZone_t
*pNext
= pNodeToRemove
->next_
;
403 /* Make previous node point to the subsequent node */
404 if (pPrevNode
!= NULL
)
405 pPrevNode
->next_
= pNext
;
407 /* Add pNodeToRemove to the beginning of the freeZones */
408 pNodeToRemove
->next_
= pAS_Info
->freeZones
;
409 pAS_Info
->freeZones
= pNodeToRemove
;
411 /* Decrement node count */
420 * Add (and merge) an exclusion zone into the list.
421 * If the range (f_min, f_max) is totally outside the
422 * 1st IF BW, ignore the entry.
423 * If the range (f_min, f_max) is negative, ignore the entry.
425 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t
*pAS_Info
,
426 u32 f_min
, u32 f_max
)
428 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
429 struct MT2063_ExclZone_t
*pPrev
= NULL
;
430 struct MT2063_ExclZone_t
*pNext
= NULL
;
434 /* Check to see if this overlaps the 1st IF filter */
435 if ((f_max
> (pAS_Info
->f_if1_Center
- (pAS_Info
->f_if1_bw
/ 2)))
436 && (f_min
< (pAS_Info
->f_if1_Center
+ (pAS_Info
->f_if1_bw
/ 2)))
437 && (f_min
< f_max
)) {
441 * New entry: |---| |--| |--| |-| |---| |--|
443 * Existing: |--| |--| |--| |---| |-| |--|
446 /* Check for our place in the list */
447 while ((pNode
!= NULL
) && (pNode
->max_
< f_min
)) {
449 pNode
= pNode
->next_
;
452 if ((pNode
!= NULL
) && (pNode
->min_
< f_max
)) {
453 /* Combine me with pNode */
454 if (f_min
< pNode
->min_
)
456 if (f_max
> pNode
->max_
)
459 pNode
= InsertNode(pAS_Info
, pPrev
);
464 /* Look for merging possibilities */
465 pNext
= pNode
->next_
;
466 while ((pNext
!= NULL
) && (pNext
->min_
< pNode
->max_
)) {
467 if (pNext
->max_
> pNode
->max_
)
468 pNode
->max_
= pNext
->max_
;
469 /* Remove pNext, return ptr to pNext->next */
470 pNext
= RemoveNode(pAS_Info
, pNode
, pNext
);
476 * Reset all exclusion zones.
477 * Add zones to protect the PLL FracN regions near zero
479 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t
*pAS_Info
)
485 pAS_Info
->nZones
= 0; /* this clears the used list */
486 pAS_Info
->usedZones
= NULL
; /* reset ptr */
487 pAS_Info
->freeZones
= NULL
; /* reset ptr */
491 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 +
492 pAS_Info
->f_in
) / pAS_Info
->f_ref
) - pAS_Info
->f_in
;
494 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
495 pAS_Info
->f_LO1_FracN_Avoid
) {
496 /* Exclude LO1 FracN */
497 MT2063_AddExclZone(pAS_Info
,
498 center
- pAS_Info
->f_LO1_FracN_Avoid
,
500 MT2063_AddExclZone(pAS_Info
, center
+ 1,
501 center
+ pAS_Info
->f_LO1_FracN_Avoid
);
502 center
+= pAS_Info
->f_ref
;
507 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 -
508 pAS_Info
->f_out
) / pAS_Info
->f_ref
) + pAS_Info
->f_out
;
510 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
511 pAS_Info
->f_LO2_FracN_Avoid
) {
512 /* Exclude LO2 FracN */
513 MT2063_AddExclZone(pAS_Info
,
514 center
- pAS_Info
->f_LO2_FracN_Avoid
,
516 MT2063_AddExclZone(pAS_Info
, center
+ 1,
517 center
+ pAS_Info
->f_LO2_FracN_Avoid
);
518 center
+= pAS_Info
->f_ref
;
521 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
522 /* Exclude LO1 values that conflict with DECT channels */
523 MT2063_AddExclZone(pAS_Info
, 1920836000 - pAS_Info
->f_in
, 1922236000 - pAS_Info
->f_in
); /* Ctr = 1921.536 */
524 MT2063_AddExclZone(pAS_Info
, 1922564000 - pAS_Info
->f_in
, 1923964000 - pAS_Info
->f_in
); /* Ctr = 1923.264 */
525 MT2063_AddExclZone(pAS_Info
, 1924292000 - pAS_Info
->f_in
, 1925692000 - pAS_Info
->f_in
); /* Ctr = 1924.992 */
526 MT2063_AddExclZone(pAS_Info
, 1926020000 - pAS_Info
->f_in
, 1927420000 - pAS_Info
->f_in
); /* Ctr = 1926.720 */
527 MT2063_AddExclZone(pAS_Info
, 1927748000 - pAS_Info
->f_in
, 1929148000 - pAS_Info
->f_in
); /* Ctr = 1928.448 */
530 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
531 MT2063_AddExclZone(pAS_Info
, 1896644000 - pAS_Info
->f_in
, 1898044000 - pAS_Info
->f_in
); /* Ctr = 1897.344 */
532 MT2063_AddExclZone(pAS_Info
, 1894916000 - pAS_Info
->f_in
, 1896316000 - pAS_Info
->f_in
); /* Ctr = 1895.616 */
533 MT2063_AddExclZone(pAS_Info
, 1893188000 - pAS_Info
->f_in
, 1894588000 - pAS_Info
->f_in
); /* Ctr = 1893.888 */
534 MT2063_AddExclZone(pAS_Info
, 1891460000 - pAS_Info
->f_in
, 1892860000 - pAS_Info
->f_in
); /* Ctr = 1892.16 */
535 MT2063_AddExclZone(pAS_Info
, 1889732000 - pAS_Info
->f_in
, 1891132000 - pAS_Info
->f_in
); /* Ctr = 1890.432 */
536 MT2063_AddExclZone(pAS_Info
, 1888004000 - pAS_Info
->f_in
, 1889404000 - pAS_Info
->f_in
); /* Ctr = 1888.704 */
537 MT2063_AddExclZone(pAS_Info
, 1886276000 - pAS_Info
->f_in
, 1887676000 - pAS_Info
->f_in
); /* Ctr = 1886.976 */
538 MT2063_AddExclZone(pAS_Info
, 1884548000 - pAS_Info
->f_in
, 1885948000 - pAS_Info
->f_in
); /* Ctr = 1885.248 */
539 MT2063_AddExclZone(pAS_Info
, 1882820000 - pAS_Info
->f_in
, 1884220000 - pAS_Info
->f_in
); /* Ctr = 1883.52 */
540 MT2063_AddExclZone(pAS_Info
, 1881092000 - pAS_Info
->f_in
, 1882492000 - pAS_Info
->f_in
); /* Ctr = 1881.792 */
545 * MT_ChooseFirstIF - Choose the best available 1st IF
546 * If f_Desired is not excluded, choose that first.
547 * Otherwise, return the value closest to f_Center that is
550 static u32
MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t
*pAS_Info
)
553 * Update "f_Desired" to be the nearest "combinational-multiple" of
555 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
556 * And F_LO1 is the arithmetic sum of f_in + f_Center.
557 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
558 * However, the sum must be.
560 const u32 f_Desired
=
561 pAS_Info
->f_LO1_Step
*
562 ((pAS_Info
->f_if1_Request
+ pAS_Info
->f_in
+
563 pAS_Info
->f_LO1_Step
/ 2) / pAS_Info
->f_LO1_Step
) -
566 (pAS_Info
->f_LO1_Step
>
567 pAS_Info
->f_LO2_Step
) ? pAS_Info
->f_LO1_Step
: pAS_Info
->
572 u32 bDesiredExcluded
= 0;
573 u32 bZeroExcluded
= 0;
576 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
577 struct MT2063_FIFZone_t zones
[MT2063_MAX_ZONES
];
581 if (pAS_Info
->nZones
== 0)
585 * f_Center needs to be an integer multiple of f_Step away
588 if (pAS_Info
->f_if1_Center
> f_Desired
)
592 ((pAS_Info
->f_if1_Center
- f_Desired
+
593 f_Step
/ 2) / f_Step
);
598 ((f_Desired
- pAS_Info
->f_if1_Center
+
599 f_Step
/ 2) / f_Step
);
602 * Take MT_ExclZones, center around f_Center and change the
603 * resolution to f_Step
605 while (pNode
!= NULL
) {
608 floor((s32
) (pNode
->min_
- f_Center
), (s32
) f_Step
);
612 ceil((s32
) (pNode
->max_
- f_Center
), (s32
) f_Step
);
614 if ((pNode
->min_
< f_Desired
) && (pNode
->max_
> f_Desired
))
615 bDesiredExcluded
= 1;
617 if ((tmpMin
< 0) && (tmpMax
> 0))
620 /* See if this zone overlaps the previous */
621 if ((j
> 0) && (tmpMin
< zones
[j
- 1].max_
))
622 zones
[j
- 1].max_
= tmpMax
;
625 zones
[j
].min_
= tmpMin
;
626 zones
[j
].max_
= tmpMax
;
629 pNode
= pNode
->next_
;
633 * If the desired is okay, return with it
635 if (bDesiredExcluded
== 0)
639 * If the desired is excluded and the center is okay, return with it
641 if (bZeroExcluded
== 0)
644 /* Find the value closest to 0 (f_Center) */
645 bestDiff
= zones
[0].min_
;
646 for (i
= 0; i
< j
; i
++) {
647 if (abs(zones
[i
].min_
) < abs(bestDiff
))
648 bestDiff
= zones
[i
].min_
;
649 if (abs(zones
[i
].max_
) < abs(bestDiff
))
650 bestDiff
= zones
[i
].max_
;
654 return f_Center
- ((u32
) (-bestDiff
) * f_Step
);
656 return f_Center
+ (bestDiff
* f_Step
);
660 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
661 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
664 * <--+-+-+-------------------+-------------------+-+-+-->
666 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
667 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
669 * Note that some equations are doubled to prevent round-off
670 * problems when calculating fIFBW/2
672 * @pAS_Info: Avoid Spurs information block
673 * @fm: If spur, amount f_IF1 has to move negative
674 * @fp: If spur, amount f_IF1 has to move positive
676 * Returns 1 if an LO spur would be present, otherwise 0.
678 static u32
IsSpurInBand(struct MT2063_AvoidSpursData_t
*pAS_Info
,
682 ** Calculate LO frequency settings.
685 const u32 f_LO1
= pAS_Info
->f_LO1
;
686 const u32 f_LO2
= pAS_Info
->f_LO2
;
687 const u32 d
= pAS_Info
->f_out
+ pAS_Info
->f_out_bw
/ 2;
688 const u32 c
= d
- pAS_Info
->f_out_bw
;
689 const u32 f
= pAS_Info
->f_zif_bw
/ 2;
690 const u32 f_Scale
= (f_LO1
/ (UINT_MAX
/ 2 / pAS_Info
->maxH1
)) + 1;
691 s32 f_nsLO1
, f_nsLO2
;
693 u32 ma
, mb
, mc
, md
, me
, mf
;
694 u32 lo_gcd
, gd_Scale
, gc_Scale
, gf_Scale
, hgds
, hgfs
, hgcs
;
701 ** For each edge (d, c & f), calculate a scale, based on the gcd
702 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
703 ** gcd-based scale factor or f_Scale.
705 lo_gcd
= gcd(f_LO1
, f_LO2
);
706 gd_Scale
= max((u32
) gcd(lo_gcd
, d
), f_Scale
);
708 gc_Scale
= max((u32
) gcd(lo_gcd
, c
), f_Scale
);
710 gf_Scale
= max((u32
) gcd(lo_gcd
, f
), f_Scale
);
713 n0
= DIV_ROUND_UP(f_LO2
- d
, f_LO1
- f_LO2
);
715 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
716 for (n
= n0
; n
<= pAS_Info
->maxH1
; ++n
) {
717 md
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) -
718 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
720 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
721 if (md
>= pAS_Info
->maxH1
)
724 ma
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) +
725 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
727 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
731 mc
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) -
732 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
734 f_nsLO1
= (s32
) (n
* (f_LO1
/ gc_Scale
));
735 f_nsLO2
= (s32
) (mc
* (f_LO2
/ gc_Scale
));
737 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
738 n
* (f_LO1
% gc_Scale
) - mc
* (f_LO2
% gc_Scale
);
740 *fp
= ((f_Spur
- (s32
) c
) / (mc
- n
)) + 1;
741 *fm
= (((s32
) d
- f_Spur
) / (mc
- n
)) + 1;
745 /* Location of Zero-IF-spur to be checked */
746 me
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) +
747 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
748 mf
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) -
749 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
751 f_nsLO1
= n
* (f_LO1
/ gf_Scale
);
752 f_nsLO2
= me
* (f_LO2
/ gf_Scale
);
754 (gf_Scale
* (f_nsLO1
- f_nsLO2
)) +
755 n
* (f_LO1
% gf_Scale
) - me
* (f_LO2
% gf_Scale
);
757 *fp
= ((f_Spur
+ (s32
) f
) / (me
- n
)) + 1;
758 *fm
= (((s32
) f
- f_Spur
) / (me
- n
)) + 1;
762 mb
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) +
763 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
765 f_nsLO1
= n
* (f_LO1
/ gc_Scale
);
766 f_nsLO2
= ma
* (f_LO2
/ gc_Scale
);
768 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
769 n
* (f_LO1
% gc_Scale
) - ma
* (f_LO2
% gc_Scale
);
771 *fp
= (((s32
) d
+ f_Spur
) / (ma
- n
)) + 1;
772 *fm
= (-(f_Spur
+ (s32
) c
) / (ma
- n
)) + 1;
782 * MT_AvoidSpurs() - Main entry point to avoid spurs.
783 * Checks for existing spurs in present LO1, LO2 freqs
784 * and if present, chooses spur-free LO1, LO2 combination
785 * that tunes the same input/output frequencies.
787 static u32
MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t
*pAS_Info
)
790 u32 fm
, fp
; /* restricted range on LO's */
791 pAS_Info
->bSpurAvoided
= 0;
792 pAS_Info
->nSpursFound
= 0;
796 if (pAS_Info
->maxH1
== 0)
800 * Avoid LO Generated Spurs
802 * Make sure that have no LO-related spurs within the IF output
805 * If there is an LO spur in this band, start at the current IF1 frequency
806 * and work out until we find a spur-free frequency or run up against the
807 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
808 * will be unchanged if a spur-free setting is not found.
810 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
811 if (pAS_Info
->bSpurPresent
) {
812 u32 zfIF1
= pAS_Info
->f_LO1
- pAS_Info
->f_in
; /* current attempt at a 1st IF */
813 u32 zfLO1
= pAS_Info
->f_LO1
; /* current attempt at an LO1 freq */
814 u32 zfLO2
= pAS_Info
->f_LO2
; /* current attempt at an LO2 freq */
819 ** Spur was found, attempt to find a spur-free 1st IF
822 pAS_Info
->nSpursFound
++;
824 /* Raise f_IF1_upper, if needed */
825 MT2063_AddExclZone(pAS_Info
, zfIF1
- fm
, zfIF1
+ fp
);
827 /* Choose next IF1 that is closest to f_IF1_CENTER */
828 new_IF1
= MT2063_ChooseFirstIF(pAS_Info
);
830 if (new_IF1
> zfIF1
) {
831 pAS_Info
->f_LO1
+= (new_IF1
- zfIF1
);
832 pAS_Info
->f_LO2
+= (new_IF1
- zfIF1
);
834 pAS_Info
->f_LO1
-= (zfIF1
- new_IF1
);
835 pAS_Info
->f_LO2
-= (zfIF1
- new_IF1
);
839 if (zfIF1
> pAS_Info
->f_if1_Center
)
840 delta_IF1
= zfIF1
- pAS_Info
->f_if1_Center
;
842 delta_IF1
= pAS_Info
->f_if1_Center
- zfIF1
;
844 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
846 * Continue while the new 1st IF is still within the 1st IF bandwidth
847 * and there is a spur in the band (again)
849 } while ((2 * delta_IF1
+ pAS_Info
->f_out_bw
<= pAS_Info
->f_if1_bw
) && pAS_Info
->bSpurPresent
);
852 * Use the LO-spur free values found. If the search went all
853 * the way to the 1st IF band edge and always found spurs, just
854 * leave the original choice. It's as "good" as any other.
856 if (pAS_Info
->bSpurPresent
== 1) {
857 status
|= MT2063_SPUR_PRESENT_ERR
;
858 pAS_Info
->f_LO1
= zfLO1
;
859 pAS_Info
->f_LO2
= zfLO2
;
861 pAS_Info
->bSpurAvoided
= 1;
866 nSpursFound
<< MT2063_SPUR_SHIFT
) & MT2063_SPUR_CNT_MASK
);
872 * Constants used by the tuning algorithm
874 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
875 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
876 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
877 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
878 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
879 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
880 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
881 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
882 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
883 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
884 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
885 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
886 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
887 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
888 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
889 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
890 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
891 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
894 * Define the supported Part/Rev codes for the MT2063
896 #define MT2063_B0 (0x9B)
897 #define MT2063_B1 (0x9C)
898 #define MT2063_B2 (0x9D)
899 #define MT2063_B3 (0x9E)
902 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
904 * @state: struct mt2063_state pointer
906 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
908 static int mt2063_lockStatus(struct mt2063_state
*state
)
910 const u32 nMaxWait
= 100; /* wait a maximum of 100 msec */
911 const u32 nPollRate
= 2; /* poll status bits every 2 ms */
912 const u32 nMaxLoops
= nMaxWait
/ nPollRate
;
913 const u8 LO1LK
= 0x80;
920 /* LO2 Lock bit was in a different place for B0 version */
921 if (state
->tuner_id
== MT2063_B0
)
925 status
= mt2063_read(state
, MT2063_REG_LO_STATUS
,
926 &state
->reg
[MT2063_REG_LO_STATUS
], 1);
931 if ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) ==
933 return TUNER_STATUS_LOCKED
| TUNER_STATUS_STEREO
;
935 msleep(nPollRate
); /* Wait between retries */
936 } while (++nDelays
< nMaxLoops
);
939 * Got no lock or partial lock
945 * Constants for setting receiver modes.
946 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
947 * (DNC1GC & DNC2GC are the values, which are used, when the specific
948 * DNC Output is selected, the other is always off)
950 * enum mt2063_delivery_sys
951 * -------------+----------------------------------------------
952 * Mode 0 : | MT2063_CABLE_QAM
953 * Mode 1 : | MT2063_CABLE_ANALOG
954 * Mode 2 : | MT2063_OFFAIR_COFDM
955 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
956 * Mode 4 : | MT2063_OFFAIR_ANALOG
957 * Mode 5 : | MT2063_OFFAIR_8VSB
958 * --------------+----------------------------------------------
960 * |<---------- Mode -------------->|
961 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
962 * ------------+-----+-----+-----+-----+-----+-----+
963 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
964 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
965 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
966 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
967 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
968 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
969 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
970 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
971 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
972 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
973 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
974 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
975 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
976 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
977 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
980 enum mt2063_delivery_sys
{
981 MT2063_CABLE_QAM
= 0,
984 MT2063_OFFAIR_COFDM_SAWLESS
,
985 MT2063_OFFAIR_ANALOG
,
987 MT2063_NUM_RCVR_MODES
990 static const char *mt2063_mode_name
[] = {
991 [MT2063_CABLE_QAM
] = "digital cable",
992 [MT2063_CABLE_ANALOG
] = "analog cable",
993 [MT2063_OFFAIR_COFDM
] = "digital offair",
994 [MT2063_OFFAIR_COFDM_SAWLESS
] = "digital offair without SAW",
995 [MT2063_OFFAIR_ANALOG
] = "analog offair",
996 [MT2063_OFFAIR_8VSB
] = "analog offair 8vsb",
999 static const u8 RFAGCEN
[] = { 0, 0, 0, 0, 0, 0 };
1000 static const u8 LNARIN
[] = { 0, 0, 3, 3, 3, 3 };
1001 static const u8 FIFFQEN
[] = { 1, 1, 1, 1, 1, 1 };
1002 static const u8 FIFFQ
[] = { 0, 0, 0, 0, 0, 0 };
1003 static const u8 DNC1GC
[] = { 0, 0, 0, 0, 0, 0 };
1004 static const u8 DNC2GC
[] = { 0, 0, 0, 0, 0, 0 };
1005 static const u8 ACLNAMAX
[] = { 31, 31, 31, 31, 31, 31 };
1006 static const u8 LNATGT
[] = { 44, 43, 43, 43, 43, 43 };
1007 static const u8 RFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1008 static const u8 ACRFMAX
[] = { 31, 31, 31, 31, 31, 31 };
1009 static const u8 PD1TGT
[] = { 36, 36, 38, 38, 36, 38 };
1010 static const u8 FIFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1011 static const u8 ACFIFMAX
[] = { 29, 29, 29, 29, 29, 29 };
1012 static const u8 PD2TGT
[] = { 40, 33, 38, 42, 30, 38 };
1015 * mt2063_set_dnc_output_enable()
1017 static u32
mt2063_get_dnc_output_enable(struct mt2063_state
*state
,
1018 enum MT2063_DNC_Output_Enable
*pValue
)
1022 if ((state
->reg
[MT2063_REG_DNC_GAIN
] & 0x03) == 0x03) { /* if DNC1 is off */
1023 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1024 *pValue
= MT2063_DNC_NONE
;
1026 *pValue
= MT2063_DNC_2
;
1027 } else { /* DNC1 is on */
1028 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1029 *pValue
= MT2063_DNC_1
;
1031 *pValue
= MT2063_DNC_BOTH
;
1037 * mt2063_set_dnc_output_enable()
1039 static u32
mt2063_set_dnc_output_enable(struct mt2063_state
*state
,
1040 enum MT2063_DNC_Output_Enable nValue
)
1042 int status
= 0; /* Status to be returned */
1047 /* selects, which DNC output is used */
1049 case MT2063_DNC_NONE
:
1050 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1051 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1054 mt2063_setreg(state
,
1055 MT2063_REG_DNC_GAIN
,
1058 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1059 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1062 mt2063_setreg(state
,
1063 MT2063_REG_VGA_GAIN
,
1066 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1067 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1070 mt2063_setreg(state
,
1076 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1077 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1080 mt2063_setreg(state
,
1081 MT2063_REG_DNC_GAIN
,
1084 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1085 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1088 mt2063_setreg(state
,
1089 MT2063_REG_VGA_GAIN
,
1092 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1093 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1096 mt2063_setreg(state
,
1102 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1103 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1106 mt2063_setreg(state
,
1107 MT2063_REG_DNC_GAIN
,
1110 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1111 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1114 mt2063_setreg(state
,
1115 MT2063_REG_VGA_GAIN
,
1118 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1119 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1122 mt2063_setreg(state
,
1127 case MT2063_DNC_BOTH
:
1128 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1129 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1132 mt2063_setreg(state
,
1133 MT2063_REG_DNC_GAIN
,
1136 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1137 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1140 mt2063_setreg(state
,
1141 MT2063_REG_VGA_GAIN
,
1144 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1145 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1148 mt2063_setreg(state
,
1161 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1162 * the selected enum mt2063_delivery_sys type.
1164 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1165 * DNC Output is selected, the other is always off)
1167 * @state: ptr to mt2063_state structure
1168 * @Mode: desired receiver delivery system
1170 * Note: Register cache must be valid for it to work
1173 static u32
MT2063_SetReceiverMode(struct mt2063_state
*state
,
1174 enum mt2063_delivery_sys Mode
)
1176 int status
= 0; /* Status to be returned */
1182 if (Mode
>= MT2063_NUM_RCVR_MODES
)
1189 reg
[MT2063_REG_PD1_TGT
] & ~0x40) | (RFAGCEN
[Mode
]
1192 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1193 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1198 u8 val
= (state
->reg
[MT2063_REG_CTRL_2C
] & ~0x03) |
1199 (LNARIN
[Mode
] & 0x03);
1200 if (state
->reg
[MT2063_REG_CTRL_2C
] != val
)
1201 status
|= mt2063_setreg(state
, MT2063_REG_CTRL_2C
, val
);
1204 /* FIFFQEN and FIFFQ */
1208 reg
[MT2063_REG_FIFF_CTRL2
] & ~0xF0) |
1209 (FIFFQEN
[Mode
] << 7) | (FIFFQ
[Mode
] << 4);
1210 if (state
->reg
[MT2063_REG_FIFF_CTRL2
] != val
) {
1212 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL2
, val
);
1213 /* trigger FIFF calibration, needed after changing FIFFQ */
1215 (state
->reg
[MT2063_REG_FIFF_CTRL
] | 0x01);
1217 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1220 reg
[MT2063_REG_FIFF_CTRL
] & ~0x01);
1222 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1226 /* DNC1GC & DNC2GC */
1227 status
|= mt2063_get_dnc_output_enable(state
, &longval
);
1228 status
|= mt2063_set_dnc_output_enable(state
, longval
);
1232 u8 val
= (state
->reg
[MT2063_REG_LNA_OV
] & ~0x1F) |
1233 (ACLNAMAX
[Mode
] & 0x1F);
1234 if (state
->reg
[MT2063_REG_LNA_OV
] != val
)
1235 status
|= mt2063_setreg(state
, MT2063_REG_LNA_OV
, val
);
1240 u8 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x3F) |
1241 (LNATGT
[Mode
] & 0x3F);
1242 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1243 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1248 u8 val
= (state
->reg
[MT2063_REG_RF_OV
] & ~0x1F) |
1249 (ACRFMAX
[Mode
] & 0x1F);
1250 if (state
->reg
[MT2063_REG_RF_OV
] != val
)
1251 status
|= mt2063_setreg(state
, MT2063_REG_RF_OV
, val
);
1256 u8 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x3F) |
1257 (PD1TGT
[Mode
] & 0x3F);
1258 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1259 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1264 u8 val
= ACFIFMAX
[Mode
];
1265 if (state
->reg
[MT2063_REG_PART_REV
] != MT2063_B3
&& val
> 5)
1267 val
= (state
->reg
[MT2063_REG_FIF_OV
] & ~0x1F) |
1269 if (state
->reg
[MT2063_REG_FIF_OV
] != val
)
1270 status
|= mt2063_setreg(state
, MT2063_REG_FIF_OV
, val
);
1275 u8 val
= (state
->reg
[MT2063_REG_PD2_TGT
] & ~0x3F) |
1276 (PD2TGT
[Mode
] & 0x3F);
1277 if (state
->reg
[MT2063_REG_PD2_TGT
] != val
)
1278 status
|= mt2063_setreg(state
, MT2063_REG_PD2_TGT
, val
);
1281 /* Ignore ATN Overload */
1283 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x80) |
1284 (RFOVDIS
[Mode
] ? 0x80 : 0x00);
1285 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1286 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1289 /* Ignore FIF Overload */
1291 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x80) |
1292 (FIFOVDIS
[Mode
] ? 0x80 : 0x00);
1293 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1294 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1298 state
->rcvr_mode
= Mode
;
1299 dprintk(1, "mt2063 mode changed to %s\n",
1300 mt2063_mode_name
[state
->rcvr_mode
]);
1307 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1308 * sections of the MT2063
1310 * @Bits: Mask bits to be cleared.
1312 * See definition of MT2063_Mask_Bits type for description
1313 * of each of the power bits.
1315 static u32
MT2063_ClearPowerMaskBits(struct mt2063_state
*state
,
1316 enum MT2063_Mask_Bits Bits
)
1321 Bits
= (enum MT2063_Mask_Bits
)(Bits
& MT2063_ALL_SD
); /* Only valid bits for this tuner */
1322 if ((Bits
& 0xFF00) != 0) {
1323 state
->reg
[MT2063_REG_PWR_2
] &= ~(u8
) (Bits
>> 8);
1327 &state
->reg
[MT2063_REG_PWR_2
], 1);
1329 if ((Bits
& 0xFF) != 0) {
1330 state
->reg
[MT2063_REG_PWR_1
] &= ~(u8
) (Bits
& 0xFF);
1334 &state
->reg
[MT2063_REG_PWR_1
], 1);
1341 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1342 * When Shutdown is 1, any section whose power
1343 * mask is set will be shutdown.
1345 static u32
MT2063_SoftwareShutdown(struct mt2063_state
*state
, u8 Shutdown
)
1351 state
->reg
[MT2063_REG_PWR_1
] |= 0x04;
1353 state
->reg
[MT2063_REG_PWR_1
] &= ~0x04;
1355 status
= mt2063_write(state
,
1357 &state
->reg
[MT2063_REG_PWR_1
], 1);
1359 if (Shutdown
!= 1) {
1360 state
->reg
[MT2063_REG_BYP_CTRL
] =
1361 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F) | 0x40;
1364 MT2063_REG_BYP_CTRL
,
1365 &state
->reg
[MT2063_REG_BYP_CTRL
],
1367 state
->reg
[MT2063_REG_BYP_CTRL
] =
1368 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F);
1371 MT2063_REG_BYP_CTRL
,
1372 &state
->reg
[MT2063_REG_BYP_CTRL
],
1379 static u32
MT2063_Round_fLO(u32 f_LO
, u32 f_LO_Step
, u32 f_ref
)
1381 return f_ref
* (f_LO
/ f_ref
)
1382 + f_LO_Step
* (((f_LO
% f_ref
) + (f_LO_Step
/ 2)) / f_LO_Step
);
1386 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1387 * This function preserves maximum precision without
1388 * risk of overflow. It accurately calculates
1389 * f_ref * num / denom to within 1 HZ with fixed math.
1391 * @f_ref: SRO frequency.
1392 * @num: Fractional portion of the multiplier
1393 * @denom: denominator portion of the ratio
1395 * This calculation handles f_ref as two separate 14-bit fields.
1396 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1397 * This is the genesis of the magic number "14" and the magic mask value of
1400 * This routine successfully handles denom values up to and including 2^18.
1401 * Returns: f_ref * num / denom
1403 static u32
MT2063_fLO_FractionalTerm(u32 f_ref
, u32 num
, u32 denom
)
1405 u32 t1
= (f_ref
>> 14) * num
;
1406 u32 term1
= t1
/ denom
;
1407 u32 loss
= t1
% denom
;
1409 (((f_ref
& 0x00003FFF) * num
+ (loss
<< 14)) + (denom
/ 2)) / denom
;
1410 return (term1
<< 14) + term2
;
1414 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1415 * value for a FracN PLL.
1417 * This function assumes that the f_LO and f_Ref are
1418 * evenly divisible by f_LO_Step.
1420 * @Div: OUTPUT: Whole number portion of the multiplier
1421 * @FracN: OUTPUT: Fractional portion of the multiplier
1422 * @f_LO: desired LO frequency.
1423 * @f_LO_Step: Minimum step size for the LO (in Hz).
1424 * @f_Ref: SRO frequency.
1425 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1428 * Returns: Recalculated LO frequency.
1430 static u32
MT2063_CalcLO1Mult(u32
*Div
,
1433 u32 f_LO_Step
, u32 f_Ref
)
1435 /* Calculate the whole number portion of the divider */
1436 *Div
= f_LO
/ f_Ref
;
1438 /* Calculate the numerator value (round to nearest f_LO_Step) */
1440 (64 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1441 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1443 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
, 64);
1447 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1448 * value for a FracN PLL.
1450 * This function assumes that the f_LO and f_Ref are
1451 * evenly divisible by f_LO_Step.
1453 * @Div: OUTPUT: Whole number portion of the multiplier
1454 * @FracN: OUTPUT: Fractional portion of the multiplier
1455 * @f_LO: desired LO frequency.
1456 * @f_LO_Step: Minimum step size for the LO (in Hz).
1457 * @f_Ref: SRO frequency.
1459 * Returns: Recalculated LO frequency.
1461 static u32
MT2063_CalcLO2Mult(u32
*Div
,
1464 u32 f_LO_Step
, u32 f_Ref
)
1466 /* Calculate the whole number portion of the divider */
1467 *Div
= f_LO
/ f_Ref
;
1469 /* Calculate the numerator value (round to nearest f_LO_Step) */
1471 (8191 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1472 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1474 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
,
1479 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1480 * used for a given input frequency.
1482 * @state: ptr to tuner data structure
1483 * @f_in: RF input center frequency (in Hz).
1485 * Returns: ClearTune filter number (0-31)
1487 static u32
FindClearTuneFilter(struct mt2063_state
*state
, u32 f_in
)
1490 u32 idx
; /* index loop */
1493 ** Find RF Band setting
1495 RFBand
= 31; /* def when f_in > all */
1496 for (idx
= 0; idx
< 31; ++idx
) {
1497 if (state
->CTFiltMax
[idx
] >= f_in
) {
1506 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1508 static u32
MT2063_Tune(struct mt2063_state
*state
, u32 f_in
)
1509 { /* RF input center frequency */
1512 u32 LO1
; /* 1st LO register value */
1513 u32 Num1
; /* Numerator for LO1 reg. value */
1514 u32 f_IF1
; /* 1st IF requested */
1515 u32 LO2
; /* 2nd LO register value */
1516 u32 Num2
; /* Numerator for LO2 reg. value */
1517 u32 ofLO1
, ofLO2
; /* last time's LO frequencies */
1518 u8 fiffc
= 0x80; /* FIFF center freq from tuner */
1519 u32 fiffof
; /* Offset from FIFF center freq */
1520 const u8 LO1LK
= 0x80; /* Mask for LO1 Lock bit */
1521 u8 LO2LK
= 0x08; /* Mask for LO2 Lock bit */
1526 /* Check the input and output frequency ranges */
1527 if ((f_in
< MT2063_MIN_FIN_FREQ
) || (f_in
> MT2063_MAX_FIN_FREQ
))
1530 if ((state
->AS_Data
.f_out
< MT2063_MIN_FOUT_FREQ
)
1531 || (state
->AS_Data
.f_out
> MT2063_MAX_FOUT_FREQ
))
1535 * Save original LO1 and LO2 register values
1537 ofLO1
= state
->AS_Data
.f_LO1
;
1538 ofLO2
= state
->AS_Data
.f_LO2
;
1541 * Find and set RF Band setting
1543 if (state
->ctfilt_sw
== 1) {
1544 val
= (state
->reg
[MT2063_REG_CTUNE_CTRL
] | 0x08);
1545 if (state
->reg
[MT2063_REG_CTUNE_CTRL
] != val
) {
1547 mt2063_setreg(state
, MT2063_REG_CTUNE_CTRL
, val
);
1549 val
= state
->reg
[MT2063_REG_CTUNE_OV
];
1550 RFBand
= FindClearTuneFilter(state
, f_in
);
1551 state
->reg
[MT2063_REG_CTUNE_OV
] =
1552 (u8
) ((state
->reg
[MT2063_REG_CTUNE_OV
] & ~0x1F)
1554 if (state
->reg
[MT2063_REG_CTUNE_OV
] != val
) {
1556 mt2063_setreg(state
, MT2063_REG_CTUNE_OV
, val
);
1561 * Read the FIFF Center Frequency from the tuner
1567 &state
->reg
[MT2063_REG_FIFFC
], 1);
1568 fiffc
= state
->reg
[MT2063_REG_FIFFC
];
1571 * Assign in the requested values
1573 state
->AS_Data
.f_in
= f_in
;
1574 /* Request a 1st IF such that LO1 is on a step size */
1575 state
->AS_Data
.f_if1_Request
=
1576 MT2063_Round_fLO(state
->AS_Data
.f_if1_Request
+ f_in
,
1577 state
->AS_Data
.f_LO1_Step
,
1578 state
->AS_Data
.f_ref
) - f_in
;
1581 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1582 * desired LO1 frequency
1584 MT2063_ResetExclZones(&state
->AS_Data
);
1586 f_IF1
= MT2063_ChooseFirstIF(&state
->AS_Data
);
1588 state
->AS_Data
.f_LO1
=
1589 MT2063_Round_fLO(f_IF1
+ f_in
, state
->AS_Data
.f_LO1_Step
,
1590 state
->AS_Data
.f_ref
);
1592 state
->AS_Data
.f_LO2
=
1593 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1594 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1597 * Check for any LO spurs in the output bandwidth and adjust
1598 * the LO settings to avoid them if needed
1600 status
|= MT2063_AvoidSpurs(&state
->AS_Data
);
1602 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1603 * Recalculate the LO frequencies and the values to be placed
1604 * in the tuning registers.
1606 state
->AS_Data
.f_LO1
=
1607 MT2063_CalcLO1Mult(&LO1
, &Num1
, state
->AS_Data
.f_LO1
,
1608 state
->AS_Data
.f_LO1_Step
, state
->AS_Data
.f_ref
);
1609 state
->AS_Data
.f_LO2
=
1610 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1611 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1612 state
->AS_Data
.f_LO2
=
1613 MT2063_CalcLO2Mult(&LO2
, &Num2
, state
->AS_Data
.f_LO2
,
1614 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1617 * Check the upconverter and downconverter frequency ranges
1619 if ((state
->AS_Data
.f_LO1
< MT2063_MIN_UPC_FREQ
)
1620 || (state
->AS_Data
.f_LO1
> MT2063_MAX_UPC_FREQ
))
1621 status
|= MT2063_UPC_RANGE
;
1622 if ((state
->AS_Data
.f_LO2
< MT2063_MIN_DNC_FREQ
)
1623 || (state
->AS_Data
.f_LO2
> MT2063_MAX_DNC_FREQ
))
1624 status
|= MT2063_DNC_RANGE
;
1625 /* LO2 Lock bit was in a different place for B0 version */
1626 if (state
->tuner_id
== MT2063_B0
)
1630 * If we have the same LO frequencies and we're already locked,
1631 * then skip re-programming the LO registers.
1633 if ((ofLO1
!= state
->AS_Data
.f_LO1
)
1634 || (ofLO2
!= state
->AS_Data
.f_LO2
)
1635 || ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) !=
1638 * Calculate the FIFFOF register value
1641 * FIFFOF = ------------ - 8 * FIFFC - 4992
1645 (state
->AS_Data
.f_LO1
-
1646 f_in
) / (state
->AS_Data
.f_ref
/ 64) - 8 * (u32
) fiffc
-
1652 * Place all of the calculated values into the local tuner
1656 state
->reg
[MT2063_REG_LO1CQ_1
] = (u8
) (LO1
& 0xFF); /* DIV1q */
1657 state
->reg
[MT2063_REG_LO1CQ_2
] = (u8
) (Num1
& 0x3F); /* NUM1q */
1658 state
->reg
[MT2063_REG_LO2CQ_1
] = (u8
) (((LO2
& 0x7F) << 1) /* DIV2q */
1659 |(Num2
>> 12)); /* NUM2q (hi) */
1660 state
->reg
[MT2063_REG_LO2CQ_2
] = (u8
) ((Num2
& 0x0FF0) >> 4); /* NUM2q (mid) */
1661 state
->reg
[MT2063_REG_LO2CQ_3
] = (u8
) (0xE0 | (Num2
& 0x000F)); /* NUM2q (lo) */
1664 * Now write out the computed register values
1665 * IMPORTANT: There is a required order for writing
1666 * (0x05 must follow all the others).
1668 status
|= mt2063_write(state
, MT2063_REG_LO1CQ_1
, &state
->reg
[MT2063_REG_LO1CQ_1
], 5); /* 0x01 - 0x05 */
1669 if (state
->tuner_id
== MT2063_B0
) {
1670 /* Re-write the one-shot bits to trigger the tune operation */
1671 status
|= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &state
->reg
[MT2063_REG_LO2CQ_3
], 1); /* 0x05 */
1673 /* Write out the FIFF offset only if it's changing */
1674 if (state
->reg
[MT2063_REG_FIFF_OFFSET
] !=
1676 state
->reg
[MT2063_REG_FIFF_OFFSET
] =
1680 MT2063_REG_FIFF_OFFSET
,
1682 reg
[MT2063_REG_FIFF_OFFSET
],
1688 * Check for LO's locking
1694 status
= mt2063_lockStatus(state
);
1698 return -EINVAL
; /* Couldn't lock */
1701 * If we locked OK, assign calculated data to mt2063_state structure
1703 state
->f_IF1_actual
= state
->AS_Data
.f_LO1
- f_in
;
1709 static const u8 MT2063B0_defaults
[] = {
1723 0x2C, 0x27, /* bit at 0x20 is cleared below */
1725 0x2C, 0x07, /* bit at 0x20 is cleared here */
1728 0x28, 0xE1, /* Set the FIFCrst bit here */
1729 0x28, 0xE0, /* Clear the FIFCrst bit here */
1733 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1734 static const u8 MT2063B1_defaults
[] = {
1737 0x11, 0x10, /* New Enable AFCsd */
1746 0x22, 0x21, /* New - ver 1.03 */
1747 0x23, 0x3C, /* New - ver 1.10 */
1748 0x24, 0x20, /* New - ver 1.03 */
1749 0x2C, 0x24, /* bit at 0x20 is cleared below */
1750 0x2D, 0x87, /* FIFFQ=0 */
1752 0x30, 0x0C, /* New - ver 1.11 */
1753 0x31, 0x1B, /* New - ver 1.11 */
1754 0x2C, 0x04, /* bit at 0x20 is cleared here */
1755 0x28, 0xE1, /* Set the FIFCrst bit here */
1756 0x28, 0xE0, /* Clear the FIFCrst bit here */
1760 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1761 static const u8 MT2063B3_defaults
[] = {
1765 0x2C, 0x24, /* bit at 0x20 is cleared below */
1766 0x2C, 0x04, /* bit at 0x20 is cleared here */
1767 0x28, 0xE1, /* Set the FIFCrst bit here */
1768 0x28, 0xE0, /* Clear the FIFCrst bit here */
1772 static int mt2063_init(struct dvb_frontend
*fe
)
1775 struct mt2063_state
*state
= fe
->tuner_priv
;
1776 u8 all_resets
= 0xF0; /* reset/load bits */
1777 const u8
*def
= NULL
;
1786 state
->rcvr_mode
= MT2063_CABLE_QAM
;
1788 /* Read the Part/Rev code from the tuner */
1789 status
= mt2063_read(state
, MT2063_REG_PART_REV
,
1790 &state
->reg
[MT2063_REG_PART_REV
], 1);
1792 printk(KERN_ERR
"Can't read mt2063 part ID\n");
1796 /* Check the part/rev code */
1797 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1811 printk(KERN_ERR
"mt2063: Unknown mt2063 device ID (0x%02x)\n",
1812 state
->reg
[MT2063_REG_PART_REV
]);
1813 return -ENODEV
; /* Wrong tuner Part/Rev code */
1816 /* Check the 2nd byte of the Part/Rev code from the tuner */
1817 status
= mt2063_read(state
, MT2063_REG_RSVD_3B
,
1818 &state
->reg
[MT2063_REG_RSVD_3B
], 1);
1820 /* b7 != 0 ==> NOT MT2063 */
1821 if (status
< 0 || ((state
->reg
[MT2063_REG_RSVD_3B
] & 0x80) != 0x00)) {
1822 printk(KERN_ERR
"mt2063: Unknown part ID (0x%02x%02x)\n",
1823 state
->reg
[MT2063_REG_PART_REV
],
1824 state
->reg
[MT2063_REG_RSVD_3B
]);
1825 return -ENODEV
; /* Wrong tuner Part/Rev code */
1828 printk(KERN_INFO
"mt2063: detected a mt2063 %s\n", step
);
1830 /* Reset the tuner */
1831 status
= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &all_resets
, 1);
1835 /* change all of the default values that vary from the HW reset values */
1836 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1837 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1839 def
= MT2063B3_defaults
;
1843 def
= MT2063B1_defaults
;
1847 def
= MT2063B0_defaults
;
1855 while (status
>= 0 && *def
) {
1858 status
= mt2063_write(state
, reg
, &val
, 1);
1863 /* Wait for FIFF location to complete. */
1866 while (status
>= 0 && (FCRUN
!= 0) && (maxReads
-- > 0)) {
1868 status
= mt2063_read(state
,
1869 MT2063_REG_XO_STATUS
,
1871 reg
[MT2063_REG_XO_STATUS
], 1);
1872 FCRUN
= (state
->reg
[MT2063_REG_XO_STATUS
] & 0x40) >> 6;
1875 if (FCRUN
!= 0 || status
< 0)
1878 status
= mt2063_read(state
,
1880 &state
->reg
[MT2063_REG_FIFFC
], 1);
1884 /* Read back all the registers from the tuner */
1885 status
= mt2063_read(state
,
1886 MT2063_REG_PART_REV
,
1887 state
->reg
, MT2063_REG_END_REGS
);
1891 /* Initialize the tuner state. */
1892 state
->tuner_id
= state
->reg
[MT2063_REG_PART_REV
];
1893 state
->AS_Data
.f_ref
= MT2063_REF_FREQ
;
1894 state
->AS_Data
.f_if1_Center
= (state
->AS_Data
.f_ref
/ 8) *
1895 ((u32
) state
->reg
[MT2063_REG_FIFFC
] + 640);
1896 state
->AS_Data
.f_if1_bw
= MT2063_IF1_BW
;
1897 state
->AS_Data
.f_out
= 43750000UL;
1898 state
->AS_Data
.f_out_bw
= 6750000UL;
1899 state
->AS_Data
.f_zif_bw
= MT2063_ZIF_BW
;
1900 state
->AS_Data
.f_LO1_Step
= state
->AS_Data
.f_ref
/ 64;
1901 state
->AS_Data
.f_LO2_Step
= MT2063_TUNE_STEP_SIZE
;
1902 state
->AS_Data
.maxH1
= MT2063_MAX_HARMONICS_1
;
1903 state
->AS_Data
.maxH2
= MT2063_MAX_HARMONICS_2
;
1904 state
->AS_Data
.f_min_LO_Separation
= MT2063_MIN_LO_SEP
;
1905 state
->AS_Data
.f_if1_Request
= state
->AS_Data
.f_if1_Center
;
1906 state
->AS_Data
.f_LO1
= 2181000000UL;
1907 state
->AS_Data
.f_LO2
= 1486249786UL;
1908 state
->f_IF1_actual
= state
->AS_Data
.f_if1_Center
;
1909 state
->AS_Data
.f_in
= state
->AS_Data
.f_LO1
- state
->f_IF1_actual
;
1910 state
->AS_Data
.f_LO1_FracN_Avoid
= MT2063_LO1_FRACN_AVOID
;
1911 state
->AS_Data
.f_LO2_FracN_Avoid
= MT2063_LO2_FRACN_AVOID
;
1912 state
->num_regs
= MT2063_REG_END_REGS
;
1913 state
->AS_Data
.avoidDECT
= MT2063_AVOID_BOTH
;
1914 state
->ctfilt_sw
= 0;
1916 state
->CTFiltMax
[0] = 69230000;
1917 state
->CTFiltMax
[1] = 105770000;
1918 state
->CTFiltMax
[2] = 140350000;
1919 state
->CTFiltMax
[3] = 177110000;
1920 state
->CTFiltMax
[4] = 212860000;
1921 state
->CTFiltMax
[5] = 241130000;
1922 state
->CTFiltMax
[6] = 274370000;
1923 state
->CTFiltMax
[7] = 309820000;
1924 state
->CTFiltMax
[8] = 342450000;
1925 state
->CTFiltMax
[9] = 378870000;
1926 state
->CTFiltMax
[10] = 416210000;
1927 state
->CTFiltMax
[11] = 456500000;
1928 state
->CTFiltMax
[12] = 495790000;
1929 state
->CTFiltMax
[13] = 534530000;
1930 state
->CTFiltMax
[14] = 572610000;
1931 state
->CTFiltMax
[15] = 598970000;
1932 state
->CTFiltMax
[16] = 635910000;
1933 state
->CTFiltMax
[17] = 672130000;
1934 state
->CTFiltMax
[18] = 714840000;
1935 state
->CTFiltMax
[19] = 739660000;
1936 state
->CTFiltMax
[20] = 770410000;
1937 state
->CTFiltMax
[21] = 814660000;
1938 state
->CTFiltMax
[22] = 846950000;
1939 state
->CTFiltMax
[23] = 867820000;
1940 state
->CTFiltMax
[24] = 915980000;
1941 state
->CTFiltMax
[25] = 947450000;
1942 state
->CTFiltMax
[26] = 983110000;
1943 state
->CTFiltMax
[27] = 1021630000;
1944 state
->CTFiltMax
[28] = 1061870000;
1945 state
->CTFiltMax
[29] = 1098330000;
1946 state
->CTFiltMax
[30] = 1138990000;
1949 ** Fetch the FCU osc value and use it and the fRef value to
1950 ** scale all of the Band Max values
1953 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x0A;
1954 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
1955 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
1959 /* Read the ClearTune filter calibration value */
1960 status
= mt2063_read(state
, MT2063_REG_FIFFC
,
1961 &state
->reg
[MT2063_REG_FIFFC
], 1);
1965 fcu_osc
= state
->reg
[MT2063_REG_FIFFC
];
1967 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x00;
1968 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
1969 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
1973 /* Adjust each of the values in the ClearTune filter cross-over table */
1974 for (i
= 0; i
< 31; i
++)
1975 state
->CTFiltMax
[i
] = (state
->CTFiltMax
[i
] / 768) * (fcu_osc
+ 640);
1977 status
= MT2063_SoftwareShutdown(state
, 1);
1980 status
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
1989 static int mt2063_get_status(struct dvb_frontend
*fe
, u32
*tuner_status
)
1991 struct mt2063_state
*state
= fe
->tuner_priv
;
2000 status
= mt2063_lockStatus(state
);
2004 *tuner_status
= TUNER_STATUS_LOCKED
;
2006 dprintk(1, "Tuner status: %d", *tuner_status
);
2011 static void mt2063_release(struct dvb_frontend
*fe
)
2013 struct mt2063_state
*state
= fe
->tuner_priv
;
2017 fe
->tuner_priv
= NULL
;
2021 static int mt2063_set_analog_params(struct dvb_frontend
*fe
,
2022 struct analog_parameters
*params
)
2024 struct mt2063_state
*state
= fe
->tuner_priv
;
2035 status
= mt2063_init(fe
);
2040 switch (params
->mode
) {
2041 case V4L2_TUNER_RADIO
:
2042 pict_car
= 38900000;
2044 pict2chanb_vsb
= -(ch_bw
/ 2);
2045 rcvr_mode
= MT2063_OFFAIR_ANALOG
;
2047 case V4L2_TUNER_ANALOG_TV
:
2048 rcvr_mode
= MT2063_CABLE_ANALOG
;
2049 if (params
->std
& ~V4L2_STD_MN
) {
2050 pict_car
= 38900000;
2052 pict2chanb_vsb
= -1250000;
2053 } else if (params
->std
& V4L2_STD_PAL_G
) {
2054 pict_car
= 38900000;
2056 pict2chanb_vsb
= -1250000;
2057 } else { /* PAL/SECAM standards */
2058 pict_car
= 38900000;
2060 pict2chanb_vsb
= -1250000;
2066 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2068 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2069 state
->AS_Data
.f_out
= if_mid
;
2070 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2071 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2075 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2076 params
->frequency
, ch_bw
, pict2chanb_vsb
);
2078 status
= MT2063_Tune(state
, (params
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2082 state
->frequency
= params
->frequency
;
2087 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2088 * So, the amount of the needed bandwidth is given by:
2089 * Bw = Symbol_rate * (1 + 0.15)
2090 * As such, the maximum symbol rate supported by 6 MHz is given by:
2091 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2093 #define MAX_SYMBOL_RATE_6MHz 5217391
2095 static int mt2063_set_params(struct dvb_frontend
*fe
)
2097 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
2098 struct mt2063_state
*state
= fe
->tuner_priv
;
2107 status
= mt2063_init(fe
);
2114 if (c
->bandwidth_hz
== 0)
2116 if (c
->bandwidth_hz
<= 6000000)
2118 else if (c
->bandwidth_hz
<= 7000000)
2123 switch (c
->delivery_system
) {
2125 rcvr_mode
= MT2063_OFFAIR_COFDM
;
2126 pict_car
= 36125000;
2127 pict2chanb_vsb
= -(ch_bw
/ 2);
2129 case SYS_DVBC_ANNEX_A
:
2130 case SYS_DVBC_ANNEX_C
:
2131 rcvr_mode
= MT2063_CABLE_QAM
;
2132 pict_car
= 36125000;
2133 pict2chanb_vsb
= -(ch_bw
/ 2);
2138 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2140 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2141 state
->AS_Data
.f_out
= if_mid
;
2142 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2143 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2147 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2148 c
->frequency
, ch_bw
, pict2chanb_vsb
);
2150 status
= MT2063_Tune(state
, (c
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2155 state
->frequency
= c
->frequency
;
2159 static int mt2063_get_if_frequency(struct dvb_frontend
*fe
, u32
*freq
)
2161 struct mt2063_state
*state
= fe
->tuner_priv
;
2168 *freq
= state
->AS_Data
.f_out
;
2170 dprintk(1, "IF frequency: %d\n", *freq
);
2175 static int mt2063_get_bandwidth(struct dvb_frontend
*fe
, u32
*bw
)
2177 struct mt2063_state
*state
= fe
->tuner_priv
;
2184 *bw
= state
->AS_Data
.f_out_bw
- 750000;
2186 dprintk(1, "bandwidth: %d\n", *bw
);
2191 static const struct dvb_tuner_ops mt2063_ops
= {
2193 .name
= "MT2063 Silicon Tuner",
2194 .frequency_min_hz
= 45 * MHz
,
2195 .frequency_max_hz
= 865 * MHz
,
2198 .init
= mt2063_init
,
2199 .sleep
= MT2063_Sleep
,
2200 .get_status
= mt2063_get_status
,
2201 .set_analog_params
= mt2063_set_analog_params
,
2202 .set_params
= mt2063_set_params
,
2203 .get_if_frequency
= mt2063_get_if_frequency
,
2204 .get_bandwidth
= mt2063_get_bandwidth
,
2205 .release
= mt2063_release
,
2208 struct dvb_frontend
*mt2063_attach(struct dvb_frontend
*fe
,
2209 struct mt2063_config
*config
,
2210 struct i2c_adapter
*i2c
)
2212 struct mt2063_state
*state
= NULL
;
2216 state
= kzalloc(sizeof(struct mt2063_state
), GFP_KERNEL
);
2220 state
->config
= config
;
2222 state
->frontend
= fe
;
2223 state
->reference
= config
->refclock
/ 1000; /* kHz */
2224 fe
->tuner_priv
= state
;
2225 fe
->ops
.tuner_ops
= mt2063_ops
;
2227 printk(KERN_INFO
"%s: Attaching MT2063\n", __func__
);
2230 EXPORT_SYMBOL_GPL(mt2063_attach
);
2234 * Ancillary routines visible outside mt2063
2235 * FIXME: Remove them in favor of using standard tuner callbacks
2237 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend
*fe
)
2239 struct mt2063_state
*state
= fe
->tuner_priv
;
2244 err
= MT2063_SoftwareShutdown(state
, 1);
2246 printk(KERN_ERR
"%s: Couldn't shutdown\n", __func__
);
2251 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend
*fe
)
2253 struct mt2063_state
*state
= fe
->tuner_priv
;
2258 err
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
2260 printk(KERN_ERR
"%s: Invalid parameter\n", __func__
);
2266 MODULE_AUTHOR("Mauro Carvalho Chehab");
2267 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2268 MODULE_LICENSE("GPL");