gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / media / tuners / mt2063.c
blob2240d214dfac21267355f881891dc5f7919b2121
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for mt2063 Micronas tuner
5 * Copyright (c) 2011 Mauro Carvalho Chehab
7 * This driver came from a driver originally written by:
8 * Henry Wang <Henry.wang@AzureWave.com>
9 * Made publicly available by Terratec, at:
10 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/videodev2.h>
18 #include <linux/gcd.h>
20 #include "mt2063.h"
22 static unsigned int debug;
23 module_param(debug, int, 0644);
24 MODULE_PARM_DESC(debug, "Set Verbosity level");
26 #define dprintk(level, fmt, arg...) do { \
27 if (debug >= level) \
28 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
29 } while (0)
32 /* positive error codes used internally */
34 /* Info: Unavoidable LO-related spur may be present in the output */
35 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
37 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
38 #define MT2063_SPUR_CNT_MASK (0x001f0000)
39 #define MT2063_SPUR_SHIFT (16)
41 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
42 #define MT2063_UPC_RANGE (0x04000000)
44 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
45 #define MT2063_DNC_RANGE (0x08000000)
48 * Constant defining the version of the following structure
49 * and therefore the API for this code.
51 * When compiling the tuner driver, the preprocessor will
52 * check against this version number to make sure that
53 * it matches the version that the tuner driver knows about.
56 /* DECT Frequency Avoidance */
57 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
59 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
61 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
63 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
65 enum MT2063_DECT_Avoid_Type {
66 MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
67 MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
68 MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
69 MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
72 #define MT2063_MAX_ZONES 48
74 struct MT2063_ExclZone_t {
75 u32 min_;
76 u32 max_;
77 struct MT2063_ExclZone_t *next_;
81 * Structure of data needed for Spur Avoidance
83 struct MT2063_AvoidSpursData_t {
84 u32 f_ref;
85 u32 f_in;
86 u32 f_LO1;
87 u32 f_if1_Center;
88 u32 f_if1_Request;
89 u32 f_if1_bw;
90 u32 f_LO2;
91 u32 f_out;
92 u32 f_out_bw;
93 u32 f_LO1_Step;
94 u32 f_LO2_Step;
95 u32 f_LO1_FracN_Avoid;
96 u32 f_LO2_FracN_Avoid;
97 u32 f_zif_bw;
98 u32 f_min_LO_Separation;
99 u32 maxH1;
100 u32 maxH2;
101 enum MT2063_DECT_Avoid_Type avoidDECT;
102 u32 bSpurPresent;
103 u32 bSpurAvoided;
104 u32 nSpursFound;
105 u32 nZones;
106 struct MT2063_ExclZone_t *freeZones;
107 struct MT2063_ExclZone_t *usedZones;
108 struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
112 * Parameter for function MT2063_SetPowerMask that specifies the power down
113 * of various sections of the MT2063.
115 enum MT2063_Mask_Bits {
116 MT2063_REG_SD = 0x0040, /* Shutdown regulator */
117 MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
118 MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
119 MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
120 MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
121 MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
122 MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
123 MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
124 MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
125 MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
126 MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
127 MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
128 MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
129 MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
130 MT2063_NONE_SD = 0x0000 /* No shutdown bits */
134 * Possible values for MT2063_DNC_OUTPUT
136 enum MT2063_DNC_Output_Enable {
137 MT2063_DNC_NONE = 0,
138 MT2063_DNC_1,
139 MT2063_DNC_2,
140 MT2063_DNC_BOTH
144 * Two-wire serial bus subaddresses of the tuner registers.
145 * Also known as the tuner's register addresses.
147 enum MT2063_Register_Offsets {
148 MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
149 MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
150 MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
151 MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
152 MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
153 MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
154 MT2063_REG_RSVD_06, /* 0x06: Reserved */
155 MT2063_REG_LO_STATUS, /* 0x07: LO Status */
156 MT2063_REG_FIFFC, /* 0x08: FIFF Center */
157 MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
158 MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
159 MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
160 MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
161 MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
162 MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
163 MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
164 MT2063_REG_RSVD_10, /* 0x10: Reserved */
165 MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
166 MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
167 MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
168 MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
169 MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
170 MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
171 MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
172 MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
173 MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
174 MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
175 MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
176 MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
177 MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
178 MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
179 MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
180 MT2063_REG_RSVD_20, /* 0x20: Reserved */
181 MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
182 MT2063_REG_RSVD_22, /* 0x22: Reserved */
183 MT2063_REG_RSVD_23, /* 0x23: Reserved */
184 MT2063_REG_RSVD_24, /* 0x24: Reserved */
185 MT2063_REG_RSVD_25, /* 0x25: Reserved */
186 MT2063_REG_RSVD_26, /* 0x26: Reserved */
187 MT2063_REG_RSVD_27, /* 0x27: Reserved */
188 MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
189 MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
190 MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
191 MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
192 MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
193 MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
194 MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
195 MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
196 MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
197 MT2063_REG_RSVD_31, /* 0x31: Reserved */
198 MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
199 MT2063_REG_RSVD_33, /* 0x33: Reserved */
200 MT2063_REG_RSVD_34, /* 0x34: Reserved */
201 MT2063_REG_RSVD_35, /* 0x35: Reserved */
202 MT2063_REG_RSVD_36, /* 0x36: Reserved */
203 MT2063_REG_RSVD_37, /* 0x37: Reserved */
204 MT2063_REG_RSVD_38, /* 0x38: Reserved */
205 MT2063_REG_RSVD_39, /* 0x39: Reserved */
206 MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
207 MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
208 MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
209 MT2063_REG_END_REGS
212 struct mt2063_state {
213 struct i2c_adapter *i2c;
215 bool init;
217 const struct mt2063_config *config;
218 struct dvb_tuner_ops ops;
219 struct dvb_frontend *frontend;
221 u32 frequency;
222 u32 srate;
223 u32 bandwidth;
224 u32 reference;
226 u32 tuner_id;
227 struct MT2063_AvoidSpursData_t AS_Data;
228 u32 f_IF1_actual;
229 u32 rcvr_mode;
230 u32 ctfilt_sw;
231 u32 CTFiltMax[31];
232 u32 num_regs;
233 u8 reg[MT2063_REG_END_REGS];
237 * mt2063_write - Write data into the I2C bus
239 static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
241 struct dvb_frontend *fe = state->frontend;
242 int ret;
243 u8 buf[60];
244 struct i2c_msg msg = {
245 .addr = state->config->tuner_address,
246 .flags = 0,
247 .buf = buf,
248 .len = len + 1
251 dprintk(2, "\n");
253 msg.buf[0] = reg;
254 memcpy(msg.buf + 1, data, len);
256 if (fe->ops.i2c_gate_ctrl)
257 fe->ops.i2c_gate_ctrl(fe, 1);
258 ret = i2c_transfer(state->i2c, &msg, 1);
259 if (fe->ops.i2c_gate_ctrl)
260 fe->ops.i2c_gate_ctrl(fe, 0);
262 if (ret < 0)
263 printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
265 return ret;
269 * mt2063_write - Write register data into the I2C bus, caching the value
271 static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
273 int status;
275 dprintk(2, "\n");
277 if (reg >= MT2063_REG_END_REGS)
278 return -ERANGE;
280 status = mt2063_write(state, reg, &val, 1);
281 if (status < 0)
282 return status;
284 state->reg[reg] = val;
286 return 0;
290 * mt2063_read - Read data from the I2C bus
292 static int mt2063_read(struct mt2063_state *state,
293 u8 subAddress, u8 *pData, u32 cnt)
295 int status = 0; /* Status to be returned */
296 struct dvb_frontend *fe = state->frontend;
297 u32 i = 0;
299 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
301 if (fe->ops.i2c_gate_ctrl)
302 fe->ops.i2c_gate_ctrl(fe, 1);
304 for (i = 0; i < cnt; i++) {
305 u8 b0[] = { subAddress + i };
306 struct i2c_msg msg[] = {
308 .addr = state->config->tuner_address,
309 .flags = 0,
310 .buf = b0,
311 .len = 1
312 }, {
313 .addr = state->config->tuner_address,
314 .flags = I2C_M_RD,
315 .buf = pData + i,
316 .len = 1
320 status = i2c_transfer(state->i2c, msg, 2);
321 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
322 subAddress + i, status, *(pData + i));
323 if (status < 0)
324 break;
326 if (fe->ops.i2c_gate_ctrl)
327 fe->ops.i2c_gate_ctrl(fe, 0);
329 if (status < 0)
330 printk(KERN_ERR "Can't read from address 0x%02x,\n",
331 subAddress + i);
333 return status;
337 * FIXME: Is this really needed?
339 static int MT2063_Sleep(struct dvb_frontend *fe)
342 * ToDo: Add code here to implement a OS blocking
344 msleep(100);
346 return 0;
350 * Microtune spur avoidance
353 /* Implement ceiling, floor functions. */
354 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
355 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
357 struct MT2063_FIFZone_t {
358 s32 min_;
359 s32 max_;
362 static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
363 *pAS_Info,
364 struct MT2063_ExclZone_t *pPrevNode)
366 struct MT2063_ExclZone_t *pNode;
368 dprintk(2, "\n");
370 /* Check for a node in the free list */
371 if (pAS_Info->freeZones != NULL) {
372 /* Use one from the free list */
373 pNode = pAS_Info->freeZones;
374 pAS_Info->freeZones = pNode->next_;
375 } else {
376 /* Grab a node from the array */
377 pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
380 if (pPrevNode != NULL) {
381 pNode->next_ = pPrevNode->next_;
382 pPrevNode->next_ = pNode;
383 } else { /* insert at the beginning of the list */
385 pNode->next_ = pAS_Info->usedZones;
386 pAS_Info->usedZones = pNode;
389 pAS_Info->nZones++;
390 return pNode;
393 static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
394 *pAS_Info,
395 struct MT2063_ExclZone_t *pPrevNode,
396 struct MT2063_ExclZone_t
397 *pNodeToRemove)
399 struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
401 dprintk(2, "\n");
403 /* Make previous node point to the subsequent node */
404 if (pPrevNode != NULL)
405 pPrevNode->next_ = pNext;
407 /* Add pNodeToRemove to the beginning of the freeZones */
408 pNodeToRemove->next_ = pAS_Info->freeZones;
409 pAS_Info->freeZones = pNodeToRemove;
411 /* Decrement node count */
412 pAS_Info->nZones--;
414 return pNext;
418 * MT_AddExclZone()
420 * Add (and merge) an exclusion zone into the list.
421 * If the range (f_min, f_max) is totally outside the
422 * 1st IF BW, ignore the entry.
423 * If the range (f_min, f_max) is negative, ignore the entry.
425 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
426 u32 f_min, u32 f_max)
428 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
429 struct MT2063_ExclZone_t *pPrev = NULL;
430 struct MT2063_ExclZone_t *pNext = NULL;
432 dprintk(2, "\n");
434 /* Check to see if this overlaps the 1st IF filter */
435 if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
436 && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
437 && (f_min < f_max)) {
439 * 1 2 3 4 5 6
441 * New entry: |---| |--| |--| |-| |---| |--|
442 * or or or or or
443 * Existing: |--| |--| |--| |---| |-| |--|
446 /* Check for our place in the list */
447 while ((pNode != NULL) && (pNode->max_ < f_min)) {
448 pPrev = pNode;
449 pNode = pNode->next_;
452 if ((pNode != NULL) && (pNode->min_ < f_max)) {
453 /* Combine me with pNode */
454 if (f_min < pNode->min_)
455 pNode->min_ = f_min;
456 if (f_max > pNode->max_)
457 pNode->max_ = f_max;
458 } else {
459 pNode = InsertNode(pAS_Info, pPrev);
460 pNode->min_ = f_min;
461 pNode->max_ = f_max;
464 /* Look for merging possibilities */
465 pNext = pNode->next_;
466 while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
467 if (pNext->max_ > pNode->max_)
468 pNode->max_ = pNext->max_;
469 /* Remove pNext, return ptr to pNext->next */
470 pNext = RemoveNode(pAS_Info, pNode, pNext);
476 * Reset all exclusion zones.
477 * Add zones to protect the PLL FracN regions near zero
479 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
481 u32 center;
483 dprintk(2, "\n");
485 pAS_Info->nZones = 0; /* this clears the used list */
486 pAS_Info->usedZones = NULL; /* reset ptr */
487 pAS_Info->freeZones = NULL; /* reset ptr */
489 center =
490 pAS_Info->f_ref *
491 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
492 pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
493 while (center <
494 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
495 pAS_Info->f_LO1_FracN_Avoid) {
496 /* Exclude LO1 FracN */
497 MT2063_AddExclZone(pAS_Info,
498 center - pAS_Info->f_LO1_FracN_Avoid,
499 center - 1);
500 MT2063_AddExclZone(pAS_Info, center + 1,
501 center + pAS_Info->f_LO1_FracN_Avoid);
502 center += pAS_Info->f_ref;
505 center =
506 pAS_Info->f_ref *
507 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
508 pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
509 while (center <
510 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
511 pAS_Info->f_LO2_FracN_Avoid) {
512 /* Exclude LO2 FracN */
513 MT2063_AddExclZone(pAS_Info,
514 center - pAS_Info->f_LO2_FracN_Avoid,
515 center - 1);
516 MT2063_AddExclZone(pAS_Info, center + 1,
517 center + pAS_Info->f_LO2_FracN_Avoid);
518 center += pAS_Info->f_ref;
521 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
522 /* Exclude LO1 values that conflict with DECT channels */
523 MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
524 MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
525 MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
526 MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
527 MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
530 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
531 MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
532 MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
533 MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
534 MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
535 MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
536 MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
537 MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
538 MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
539 MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
540 MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
545 * MT_ChooseFirstIF - Choose the best available 1st IF
546 * If f_Desired is not excluded, choose that first.
547 * Otherwise, return the value closest to f_Center that is
548 * not excluded
550 static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
553 * Update "f_Desired" to be the nearest "combinational-multiple" of
554 * "f_LO1_Step".
555 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
556 * And F_LO1 is the arithmetic sum of f_in + f_Center.
557 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
558 * However, the sum must be.
560 const u32 f_Desired =
561 pAS_Info->f_LO1_Step *
562 ((pAS_Info->f_if1_Request + pAS_Info->f_in +
563 pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
564 pAS_Info->f_in;
565 const u32 f_Step =
566 (pAS_Info->f_LO1_Step >
567 pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
568 f_LO2_Step;
569 u32 f_Center;
570 s32 i;
571 s32 j = 0;
572 u32 bDesiredExcluded = 0;
573 u32 bZeroExcluded = 0;
574 s32 tmpMin, tmpMax;
575 s32 bestDiff;
576 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
577 struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
579 dprintk(2, "\n");
581 if (pAS_Info->nZones == 0)
582 return f_Desired;
585 * f_Center needs to be an integer multiple of f_Step away
586 * from f_Desired
588 if (pAS_Info->f_if1_Center > f_Desired)
589 f_Center =
590 f_Desired +
591 f_Step *
592 ((pAS_Info->f_if1_Center - f_Desired +
593 f_Step / 2) / f_Step);
594 else
595 f_Center =
596 f_Desired -
597 f_Step *
598 ((f_Desired - pAS_Info->f_if1_Center +
599 f_Step / 2) / f_Step);
602 * Take MT_ExclZones, center around f_Center and change the
603 * resolution to f_Step
605 while (pNode != NULL) {
606 /* floor function */
607 tmpMin =
608 floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
610 /* ceil function */
611 tmpMax =
612 ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
614 if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
615 bDesiredExcluded = 1;
617 if ((tmpMin < 0) && (tmpMax > 0))
618 bZeroExcluded = 1;
620 /* See if this zone overlaps the previous */
621 if ((j > 0) && (tmpMin < zones[j - 1].max_))
622 zones[j - 1].max_ = tmpMax;
623 else {
624 /* Add new zone */
625 zones[j].min_ = tmpMin;
626 zones[j].max_ = tmpMax;
627 j++;
629 pNode = pNode->next_;
633 * If the desired is okay, return with it
635 if (bDesiredExcluded == 0)
636 return f_Desired;
639 * If the desired is excluded and the center is okay, return with it
641 if (bZeroExcluded == 0)
642 return f_Center;
644 /* Find the value closest to 0 (f_Center) */
645 bestDiff = zones[0].min_;
646 for (i = 0; i < j; i++) {
647 if (abs(zones[i].min_) < abs(bestDiff))
648 bestDiff = zones[i].min_;
649 if (abs(zones[i].max_) < abs(bestDiff))
650 bestDiff = zones[i].max_;
653 if (bestDiff < 0)
654 return f_Center - ((u32) (-bestDiff) * f_Step);
656 return f_Center + (bestDiff * f_Step);
660 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
661 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
663 * ma mb mc md
664 * <--+-+-+-------------------+-------------------+-+-+-->
665 * | ^ 0 ^ |
666 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
667 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
669 * Note that some equations are doubled to prevent round-off
670 * problems when calculating fIFBW/2
672 * @pAS_Info: Avoid Spurs information block
673 * @fm: If spur, amount f_IF1 has to move negative
674 * @fp: If spur, amount f_IF1 has to move positive
676 * Returns 1 if an LO spur would be present, otherwise 0.
678 static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
679 u32 *fm, u32 * fp)
682 ** Calculate LO frequency settings.
684 u32 n, n0;
685 const u32 f_LO1 = pAS_Info->f_LO1;
686 const u32 f_LO2 = pAS_Info->f_LO2;
687 const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
688 const u32 c = d - pAS_Info->f_out_bw;
689 const u32 f = pAS_Info->f_zif_bw / 2;
690 const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
691 s32 f_nsLO1, f_nsLO2;
692 s32 f_Spur;
693 u32 ma, mb, mc, md, me, mf;
694 u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
696 dprintk(2, "\n");
698 *fm = 0;
701 ** For each edge (d, c & f), calculate a scale, based on the gcd
702 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
703 ** gcd-based scale factor or f_Scale.
705 lo_gcd = gcd(f_LO1, f_LO2);
706 gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale);
707 hgds = gd_Scale / 2;
708 gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale);
709 hgcs = gc_Scale / 2;
710 gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale);
711 hgfs = gf_Scale / 2;
713 n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
715 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
716 for (n = n0; n <= pAS_Info->maxH1; ++n) {
717 md = (n * ((f_LO1 + hgds) / gd_Scale) -
718 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
720 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
721 if (md >= pAS_Info->maxH1)
722 break;
724 ma = (n * ((f_LO1 + hgds) / gd_Scale) +
725 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
727 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
728 if (md == ma)
729 continue;
731 mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
732 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
733 if (mc != md) {
734 f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
735 f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
736 f_Spur =
737 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
738 n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
740 *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
741 *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
742 return 1;
745 /* Location of Zero-IF-spur to be checked */
746 me = (n * ((f_LO1 + hgfs) / gf_Scale) +
747 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
748 mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
749 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
750 if (me != mf) {
751 f_nsLO1 = n * (f_LO1 / gf_Scale);
752 f_nsLO2 = me * (f_LO2 / gf_Scale);
753 f_Spur =
754 (gf_Scale * (f_nsLO1 - f_nsLO2)) +
755 n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
757 *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
758 *fm = (((s32) f - f_Spur) / (me - n)) + 1;
759 return 1;
762 mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
763 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
764 if (ma != mb) {
765 f_nsLO1 = n * (f_LO1 / gc_Scale);
766 f_nsLO2 = ma * (f_LO2 / gc_Scale);
767 f_Spur =
768 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
769 n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
771 *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
772 *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
773 return 1;
777 /* No spurs found */
778 return 0;
782 * MT_AvoidSpurs() - Main entry point to avoid spurs.
783 * Checks for existing spurs in present LO1, LO2 freqs
784 * and if present, chooses spur-free LO1, LO2 combination
785 * that tunes the same input/output frequencies.
787 static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
789 int status = 0;
790 u32 fm, fp; /* restricted range on LO's */
791 pAS_Info->bSpurAvoided = 0;
792 pAS_Info->nSpursFound = 0;
794 dprintk(2, "\n");
796 if (pAS_Info->maxH1 == 0)
797 return 0;
800 * Avoid LO Generated Spurs
802 * Make sure that have no LO-related spurs within the IF output
803 * bandwidth.
805 * If there is an LO spur in this band, start at the current IF1 frequency
806 * and work out until we find a spur-free frequency or run up against the
807 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
808 * will be unchanged if a spur-free setting is not found.
810 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
811 if (pAS_Info->bSpurPresent) {
812 u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
813 u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
814 u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
815 u32 delta_IF1;
816 u32 new_IF1;
819 ** Spur was found, attempt to find a spur-free 1st IF
821 do {
822 pAS_Info->nSpursFound++;
824 /* Raise f_IF1_upper, if needed */
825 MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
827 /* Choose next IF1 that is closest to f_IF1_CENTER */
828 new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
830 if (new_IF1 > zfIF1) {
831 pAS_Info->f_LO1 += (new_IF1 - zfIF1);
832 pAS_Info->f_LO2 += (new_IF1 - zfIF1);
833 } else {
834 pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
835 pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
837 zfIF1 = new_IF1;
839 if (zfIF1 > pAS_Info->f_if1_Center)
840 delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
841 else
842 delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
844 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
846 * Continue while the new 1st IF is still within the 1st IF bandwidth
847 * and there is a spur in the band (again)
849 } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
852 * Use the LO-spur free values found. If the search went all
853 * the way to the 1st IF band edge and always found spurs, just
854 * leave the original choice. It's as "good" as any other.
856 if (pAS_Info->bSpurPresent == 1) {
857 status |= MT2063_SPUR_PRESENT_ERR;
858 pAS_Info->f_LO1 = zfLO1;
859 pAS_Info->f_LO2 = zfLO2;
860 } else
861 pAS_Info->bSpurAvoided = 1;
864 status |=
865 ((pAS_Info->
866 nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
868 return status;
872 * Constants used by the tuning algorithm
874 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
875 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
876 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
877 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
878 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
879 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
880 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
881 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
882 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
883 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
884 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
885 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
886 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
887 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
888 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
889 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
890 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
891 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
894 * Define the supported Part/Rev codes for the MT2063
896 #define MT2063_B0 (0x9B)
897 #define MT2063_B1 (0x9C)
898 #define MT2063_B2 (0x9D)
899 #define MT2063_B3 (0x9E)
902 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
904 * @state: struct mt2063_state pointer
906 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
908 static int mt2063_lockStatus(struct mt2063_state *state)
910 const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
911 const u32 nPollRate = 2; /* poll status bits every 2 ms */
912 const u32 nMaxLoops = nMaxWait / nPollRate;
913 const u8 LO1LK = 0x80;
914 u8 LO2LK = 0x08;
915 int status;
916 u32 nDelays = 0;
918 dprintk(2, "\n");
920 /* LO2 Lock bit was in a different place for B0 version */
921 if (state->tuner_id == MT2063_B0)
922 LO2LK = 0x40;
924 do {
925 status = mt2063_read(state, MT2063_REG_LO_STATUS,
926 &state->reg[MT2063_REG_LO_STATUS], 1);
928 if (status < 0)
929 return status;
931 if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
932 (LO1LK | LO2LK)) {
933 return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
935 msleep(nPollRate); /* Wait between retries */
936 } while (++nDelays < nMaxLoops);
939 * Got no lock or partial lock
941 return 0;
945 * Constants for setting receiver modes.
946 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
947 * (DNC1GC & DNC2GC are the values, which are used, when the specific
948 * DNC Output is selected, the other is always off)
950 * enum mt2063_delivery_sys
951 * -------------+----------------------------------------------
952 * Mode 0 : | MT2063_CABLE_QAM
953 * Mode 1 : | MT2063_CABLE_ANALOG
954 * Mode 2 : | MT2063_OFFAIR_COFDM
955 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
956 * Mode 4 : | MT2063_OFFAIR_ANALOG
957 * Mode 5 : | MT2063_OFFAIR_8VSB
958 * --------------+----------------------------------------------
960 * |<---------- Mode -------------->|
961 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
962 * ------------+-----+-----+-----+-----+-----+-----+
963 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
964 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
965 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
966 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
967 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
968 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
969 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
970 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
971 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
972 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
973 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
974 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
975 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
976 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
977 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
980 enum mt2063_delivery_sys {
981 MT2063_CABLE_QAM = 0,
982 MT2063_CABLE_ANALOG,
983 MT2063_OFFAIR_COFDM,
984 MT2063_OFFAIR_COFDM_SAWLESS,
985 MT2063_OFFAIR_ANALOG,
986 MT2063_OFFAIR_8VSB,
987 MT2063_NUM_RCVR_MODES
990 static const char *mt2063_mode_name[] = {
991 [MT2063_CABLE_QAM] = "digital cable",
992 [MT2063_CABLE_ANALOG] = "analog cable",
993 [MT2063_OFFAIR_COFDM] = "digital offair",
994 [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
995 [MT2063_OFFAIR_ANALOG] = "analog offair",
996 [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
999 static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
1000 static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
1001 static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
1002 static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
1003 static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
1004 static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
1005 static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
1006 static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
1007 static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1008 static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
1009 static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
1010 static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1011 static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
1012 static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
1015 * mt2063_set_dnc_output_enable()
1017 static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1018 enum MT2063_DNC_Output_Enable *pValue)
1020 dprintk(2, "\n");
1022 if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
1023 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1024 *pValue = MT2063_DNC_NONE;
1025 else
1026 *pValue = MT2063_DNC_2;
1027 } else { /* DNC1 is on */
1028 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1029 *pValue = MT2063_DNC_1;
1030 else
1031 *pValue = MT2063_DNC_BOTH;
1033 return 0;
1037 * mt2063_set_dnc_output_enable()
1039 static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1040 enum MT2063_DNC_Output_Enable nValue)
1042 int status = 0; /* Status to be returned */
1043 u8 val = 0;
1045 dprintk(2, "\n");
1047 /* selects, which DNC output is used */
1048 switch (nValue) {
1049 case MT2063_DNC_NONE:
1050 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1051 if (state->reg[MT2063_REG_DNC_GAIN] !=
1052 val)
1053 status |=
1054 mt2063_setreg(state,
1055 MT2063_REG_DNC_GAIN,
1056 val);
1058 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1059 if (state->reg[MT2063_REG_VGA_GAIN] !=
1060 val)
1061 status |=
1062 mt2063_setreg(state,
1063 MT2063_REG_VGA_GAIN,
1064 val);
1066 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1067 if (state->reg[MT2063_REG_RSVD_20] !=
1068 val)
1069 status |=
1070 mt2063_setreg(state,
1071 MT2063_REG_RSVD_20,
1072 val);
1074 break;
1075 case MT2063_DNC_1:
1076 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1077 if (state->reg[MT2063_REG_DNC_GAIN] !=
1078 val)
1079 status |=
1080 mt2063_setreg(state,
1081 MT2063_REG_DNC_GAIN,
1082 val);
1084 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1085 if (state->reg[MT2063_REG_VGA_GAIN] !=
1086 val)
1087 status |=
1088 mt2063_setreg(state,
1089 MT2063_REG_VGA_GAIN,
1090 val);
1092 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1093 if (state->reg[MT2063_REG_RSVD_20] !=
1094 val)
1095 status |=
1096 mt2063_setreg(state,
1097 MT2063_REG_RSVD_20,
1098 val);
1100 break;
1101 case MT2063_DNC_2:
1102 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1103 if (state->reg[MT2063_REG_DNC_GAIN] !=
1104 val)
1105 status |=
1106 mt2063_setreg(state,
1107 MT2063_REG_DNC_GAIN,
1108 val);
1110 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1111 if (state->reg[MT2063_REG_VGA_GAIN] !=
1112 val)
1113 status |=
1114 mt2063_setreg(state,
1115 MT2063_REG_VGA_GAIN,
1116 val);
1118 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1119 if (state->reg[MT2063_REG_RSVD_20] !=
1120 val)
1121 status |=
1122 mt2063_setreg(state,
1123 MT2063_REG_RSVD_20,
1124 val);
1126 break;
1127 case MT2063_DNC_BOTH:
1128 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1129 if (state->reg[MT2063_REG_DNC_GAIN] !=
1130 val)
1131 status |=
1132 mt2063_setreg(state,
1133 MT2063_REG_DNC_GAIN,
1134 val);
1136 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1137 if (state->reg[MT2063_REG_VGA_GAIN] !=
1138 val)
1139 status |=
1140 mt2063_setreg(state,
1141 MT2063_REG_VGA_GAIN,
1142 val);
1144 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1145 if (state->reg[MT2063_REG_RSVD_20] !=
1146 val)
1147 status |=
1148 mt2063_setreg(state,
1149 MT2063_REG_RSVD_20,
1150 val);
1152 break;
1153 default:
1154 break;
1157 return status;
1161 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1162 * the selected enum mt2063_delivery_sys type.
1164 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1165 * DNC Output is selected, the other is always off)
1167 * @state: ptr to mt2063_state structure
1168 * @Mode: desired receiver delivery system
1170 * Note: Register cache must be valid for it to work
1173 static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1174 enum mt2063_delivery_sys Mode)
1176 int status = 0; /* Status to be returned */
1177 u8 val;
1178 u32 longval;
1180 dprintk(2, "\n");
1182 if (Mode >= MT2063_NUM_RCVR_MODES)
1183 status = -ERANGE;
1185 /* RFAGCen */
1186 if (status >= 0) {
1187 val =
1188 (state->
1189 reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
1190 ? 0x40 :
1191 0x00);
1192 if (state->reg[MT2063_REG_PD1_TGT] != val)
1193 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1196 /* LNARin */
1197 if (status >= 0) {
1198 u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
1199 (LNARIN[Mode] & 0x03);
1200 if (state->reg[MT2063_REG_CTRL_2C] != val)
1201 status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1204 /* FIFFQEN and FIFFQ */
1205 if (status >= 0) {
1206 val =
1207 (state->
1208 reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
1209 (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1210 if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1211 status |=
1212 mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1213 /* trigger FIFF calibration, needed after changing FIFFQ */
1214 val =
1215 (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
1216 status |=
1217 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1218 val =
1219 (state->
1220 reg[MT2063_REG_FIFF_CTRL] & ~0x01);
1221 status |=
1222 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1226 /* DNC1GC & DNC2GC */
1227 status |= mt2063_get_dnc_output_enable(state, &longval);
1228 status |= mt2063_set_dnc_output_enable(state, longval);
1230 /* acLNAmax */
1231 if (status >= 0) {
1232 u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
1233 (ACLNAMAX[Mode] & 0x1F);
1234 if (state->reg[MT2063_REG_LNA_OV] != val)
1235 status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1238 /* LNATGT */
1239 if (status >= 0) {
1240 u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
1241 (LNATGT[Mode] & 0x3F);
1242 if (state->reg[MT2063_REG_LNA_TGT] != val)
1243 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1246 /* ACRF */
1247 if (status >= 0) {
1248 u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
1249 (ACRFMAX[Mode] & 0x1F);
1250 if (state->reg[MT2063_REG_RF_OV] != val)
1251 status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1254 /* PD1TGT */
1255 if (status >= 0) {
1256 u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
1257 (PD1TGT[Mode] & 0x3F);
1258 if (state->reg[MT2063_REG_PD1_TGT] != val)
1259 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1262 /* FIFATN */
1263 if (status >= 0) {
1264 u8 val = ACFIFMAX[Mode];
1265 if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
1266 val = 5;
1267 val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
1268 (val & 0x1F);
1269 if (state->reg[MT2063_REG_FIF_OV] != val)
1270 status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1273 /* PD2TGT */
1274 if (status >= 0) {
1275 u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
1276 (PD2TGT[Mode] & 0x3F);
1277 if (state->reg[MT2063_REG_PD2_TGT] != val)
1278 status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1281 /* Ignore ATN Overload */
1282 if (status >= 0) {
1283 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
1284 (RFOVDIS[Mode] ? 0x80 : 0x00);
1285 if (state->reg[MT2063_REG_LNA_TGT] != val)
1286 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1289 /* Ignore FIF Overload */
1290 if (status >= 0) {
1291 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
1292 (FIFOVDIS[Mode] ? 0x80 : 0x00);
1293 if (state->reg[MT2063_REG_PD1_TGT] != val)
1294 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1297 if (status >= 0) {
1298 state->rcvr_mode = Mode;
1299 dprintk(1, "mt2063 mode changed to %s\n",
1300 mt2063_mode_name[state->rcvr_mode]);
1303 return status;
1307 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1308 * sections of the MT2063
1310 * @Bits: Mask bits to be cleared.
1312 * See definition of MT2063_Mask_Bits type for description
1313 * of each of the power bits.
1315 static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
1316 enum MT2063_Mask_Bits Bits)
1318 int status = 0;
1320 dprintk(2, "\n");
1321 Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
1322 if ((Bits & 0xFF00) != 0) {
1323 state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1324 status |=
1325 mt2063_write(state,
1326 MT2063_REG_PWR_2,
1327 &state->reg[MT2063_REG_PWR_2], 1);
1329 if ((Bits & 0xFF) != 0) {
1330 state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1331 status |=
1332 mt2063_write(state,
1333 MT2063_REG_PWR_1,
1334 &state->reg[MT2063_REG_PWR_1], 1);
1337 return status;
1341 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1342 * When Shutdown is 1, any section whose power
1343 * mask is set will be shutdown.
1345 static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1347 int status;
1349 dprintk(2, "\n");
1350 if (Shutdown == 1)
1351 state->reg[MT2063_REG_PWR_1] |= 0x04;
1352 else
1353 state->reg[MT2063_REG_PWR_1] &= ~0x04;
1355 status = mt2063_write(state,
1356 MT2063_REG_PWR_1,
1357 &state->reg[MT2063_REG_PWR_1], 1);
1359 if (Shutdown != 1) {
1360 state->reg[MT2063_REG_BYP_CTRL] =
1361 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1362 status |=
1363 mt2063_write(state,
1364 MT2063_REG_BYP_CTRL,
1365 &state->reg[MT2063_REG_BYP_CTRL],
1367 state->reg[MT2063_REG_BYP_CTRL] =
1368 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1369 status |=
1370 mt2063_write(state,
1371 MT2063_REG_BYP_CTRL,
1372 &state->reg[MT2063_REG_BYP_CTRL],
1376 return status;
1379 static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1381 return f_ref * (f_LO / f_ref)
1382 + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
1386 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1387 * This function preserves maximum precision without
1388 * risk of overflow. It accurately calculates
1389 * f_ref * num / denom to within 1 HZ with fixed math.
1391 * @f_ref: SRO frequency.
1392 * @num: Fractional portion of the multiplier
1393 * @denom: denominator portion of the ratio
1395 * This calculation handles f_ref as two separate 14-bit fields.
1396 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1397 * This is the genesis of the magic number "14" and the magic mask value of
1398 * 0x03FFF.
1400 * This routine successfully handles denom values up to and including 2^18.
1401 * Returns: f_ref * num / denom
1403 static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1405 u32 t1 = (f_ref >> 14) * num;
1406 u32 term1 = t1 / denom;
1407 u32 loss = t1 % denom;
1408 u32 term2 =
1409 (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1410 return (term1 << 14) + term2;
1414 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1415 * value for a FracN PLL.
1417 * This function assumes that the f_LO and f_Ref are
1418 * evenly divisible by f_LO_Step.
1420 * @Div: OUTPUT: Whole number portion of the multiplier
1421 * @FracN: OUTPUT: Fractional portion of the multiplier
1422 * @f_LO: desired LO frequency.
1423 * @f_LO_Step: Minimum step size for the LO (in Hz).
1424 * @f_Ref: SRO frequency.
1425 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1426 * of f_Ref (in Hz).
1428 * Returns: Recalculated LO frequency.
1430 static u32 MT2063_CalcLO1Mult(u32 *Div,
1431 u32 *FracN,
1432 u32 f_LO,
1433 u32 f_LO_Step, u32 f_Ref)
1435 /* Calculate the whole number portion of the divider */
1436 *Div = f_LO / f_Ref;
1438 /* Calculate the numerator value (round to nearest f_LO_Step) */
1439 *FracN =
1440 (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1441 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1443 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
1447 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1448 * value for a FracN PLL.
1450 * This function assumes that the f_LO and f_Ref are
1451 * evenly divisible by f_LO_Step.
1453 * @Div: OUTPUT: Whole number portion of the multiplier
1454 * @FracN: OUTPUT: Fractional portion of the multiplier
1455 * @f_LO: desired LO frequency.
1456 * @f_LO_Step: Minimum step size for the LO (in Hz).
1457 * @f_Ref: SRO frequency.
1459 * Returns: Recalculated LO frequency.
1461 static u32 MT2063_CalcLO2Mult(u32 *Div,
1462 u32 *FracN,
1463 u32 f_LO,
1464 u32 f_LO_Step, u32 f_Ref)
1466 /* Calculate the whole number portion of the divider */
1467 *Div = f_LO / f_Ref;
1469 /* Calculate the numerator value (round to nearest f_LO_Step) */
1470 *FracN =
1471 (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1472 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1474 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
1475 8191);
1479 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1480 * used for a given input frequency.
1482 * @state: ptr to tuner data structure
1483 * @f_in: RF input center frequency (in Hz).
1485 * Returns: ClearTune filter number (0-31)
1487 static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1489 u32 RFBand;
1490 u32 idx; /* index loop */
1493 ** Find RF Band setting
1495 RFBand = 31; /* def when f_in > all */
1496 for (idx = 0; idx < 31; ++idx) {
1497 if (state->CTFiltMax[idx] >= f_in) {
1498 RFBand = idx;
1499 break;
1502 return RFBand;
1506 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1508 static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1509 { /* RF input center frequency */
1511 int status = 0;
1512 u32 LO1; /* 1st LO register value */
1513 u32 Num1; /* Numerator for LO1 reg. value */
1514 u32 f_IF1; /* 1st IF requested */
1515 u32 LO2; /* 2nd LO register value */
1516 u32 Num2; /* Numerator for LO2 reg. value */
1517 u32 ofLO1, ofLO2; /* last time's LO frequencies */
1518 u8 fiffc = 0x80; /* FIFF center freq from tuner */
1519 u32 fiffof; /* Offset from FIFF center freq */
1520 const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
1521 u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
1522 u8 val;
1523 u32 RFBand;
1525 dprintk(2, "\n");
1526 /* Check the input and output frequency ranges */
1527 if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1528 return -EINVAL;
1530 if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
1531 || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1532 return -EINVAL;
1535 * Save original LO1 and LO2 register values
1537 ofLO1 = state->AS_Data.f_LO1;
1538 ofLO2 = state->AS_Data.f_LO2;
1541 * Find and set RF Band setting
1543 if (state->ctfilt_sw == 1) {
1544 val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
1545 if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1546 status |=
1547 mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1549 val = state->reg[MT2063_REG_CTUNE_OV];
1550 RFBand = FindClearTuneFilter(state, f_in);
1551 state->reg[MT2063_REG_CTUNE_OV] =
1552 (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1553 | RFBand);
1554 if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1555 status |=
1556 mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1561 * Read the FIFF Center Frequency from the tuner
1563 if (status >= 0) {
1564 status |=
1565 mt2063_read(state,
1566 MT2063_REG_FIFFC,
1567 &state->reg[MT2063_REG_FIFFC], 1);
1568 fiffc = state->reg[MT2063_REG_FIFFC];
1571 * Assign in the requested values
1573 state->AS_Data.f_in = f_in;
1574 /* Request a 1st IF such that LO1 is on a step size */
1575 state->AS_Data.f_if1_Request =
1576 MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
1577 state->AS_Data.f_LO1_Step,
1578 state->AS_Data.f_ref) - f_in;
1581 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1582 * desired LO1 frequency
1584 MT2063_ResetExclZones(&state->AS_Data);
1586 f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1588 state->AS_Data.f_LO1 =
1589 MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
1590 state->AS_Data.f_ref);
1592 state->AS_Data.f_LO2 =
1593 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1594 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1597 * Check for any LO spurs in the output bandwidth and adjust
1598 * the LO settings to avoid them if needed
1600 status |= MT2063_AvoidSpurs(&state->AS_Data);
1602 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1603 * Recalculate the LO frequencies and the values to be placed
1604 * in the tuning registers.
1606 state->AS_Data.f_LO1 =
1607 MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
1608 state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
1609 state->AS_Data.f_LO2 =
1610 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1611 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1612 state->AS_Data.f_LO2 =
1613 MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
1614 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1617 * Check the upconverter and downconverter frequency ranges
1619 if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
1620 || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1621 status |= MT2063_UPC_RANGE;
1622 if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
1623 || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1624 status |= MT2063_DNC_RANGE;
1625 /* LO2 Lock bit was in a different place for B0 version */
1626 if (state->tuner_id == MT2063_B0)
1627 LO2LK = 0x40;
1630 * If we have the same LO frequencies and we're already locked,
1631 * then skip re-programming the LO registers.
1633 if ((ofLO1 != state->AS_Data.f_LO1)
1634 || (ofLO2 != state->AS_Data.f_LO2)
1635 || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1636 (LO1LK | LO2LK))) {
1638 * Calculate the FIFFOF register value
1640 * IF1_Actual
1641 * FIFFOF = ------------ - 8 * FIFFC - 4992
1642 * f_ref/64
1644 fiffof =
1645 (state->AS_Data.f_LO1 -
1646 f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1647 4992;
1648 if (fiffof > 0xFF)
1649 fiffof = 0xFF;
1652 * Place all of the calculated values into the local tuner
1653 * register fields.
1655 if (status >= 0) {
1656 state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
1657 state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
1658 state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
1659 |(Num2 >> 12)); /* NUM2q (hi) */
1660 state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
1661 state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
1664 * Now write out the computed register values
1665 * IMPORTANT: There is a required order for writing
1666 * (0x05 must follow all the others).
1668 status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
1669 if (state->tuner_id == MT2063_B0) {
1670 /* Re-write the one-shot bits to trigger the tune operation */
1671 status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
1673 /* Write out the FIFF offset only if it's changing */
1674 if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1675 (u8) fiffof) {
1676 state->reg[MT2063_REG_FIFF_OFFSET] =
1677 (u8) fiffof;
1678 status |=
1679 mt2063_write(state,
1680 MT2063_REG_FIFF_OFFSET,
1681 &state->
1682 reg[MT2063_REG_FIFF_OFFSET],
1688 * Check for LO's locking
1691 if (status < 0)
1692 return status;
1694 status = mt2063_lockStatus(state);
1695 if (status < 0)
1696 return status;
1697 if (!status)
1698 return -EINVAL; /* Couldn't lock */
1701 * If we locked OK, assign calculated data to mt2063_state structure
1703 state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1706 return status;
1709 static const u8 MT2063B0_defaults[] = {
1710 /* Reg, Value */
1711 0x19, 0x05,
1712 0x1B, 0x1D,
1713 0x1C, 0x1F,
1714 0x1D, 0x0F,
1715 0x1E, 0x3F,
1716 0x1F, 0x0F,
1717 0x20, 0x3F,
1718 0x22, 0x21,
1719 0x23, 0x3F,
1720 0x24, 0x20,
1721 0x25, 0x3F,
1722 0x27, 0xEE,
1723 0x2C, 0x27, /* bit at 0x20 is cleared below */
1724 0x30, 0x03,
1725 0x2C, 0x07, /* bit at 0x20 is cleared here */
1726 0x2D, 0x87,
1727 0x2E, 0xAA,
1728 0x28, 0xE1, /* Set the FIFCrst bit here */
1729 0x28, 0xE0, /* Clear the FIFCrst bit here */
1730 0x00
1733 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1734 static const u8 MT2063B1_defaults[] = {
1735 /* Reg, Value */
1736 0x05, 0xF0,
1737 0x11, 0x10, /* New Enable AFCsd */
1738 0x19, 0x05,
1739 0x1A, 0x6C,
1740 0x1B, 0x24,
1741 0x1C, 0x28,
1742 0x1D, 0x8F,
1743 0x1E, 0x14,
1744 0x1F, 0x8F,
1745 0x20, 0x57,
1746 0x22, 0x21, /* New - ver 1.03 */
1747 0x23, 0x3C, /* New - ver 1.10 */
1748 0x24, 0x20, /* New - ver 1.03 */
1749 0x2C, 0x24, /* bit at 0x20 is cleared below */
1750 0x2D, 0x87, /* FIFFQ=0 */
1751 0x2F, 0xF3,
1752 0x30, 0x0C, /* New - ver 1.11 */
1753 0x31, 0x1B, /* New - ver 1.11 */
1754 0x2C, 0x04, /* bit at 0x20 is cleared here */
1755 0x28, 0xE1, /* Set the FIFCrst bit here */
1756 0x28, 0xE0, /* Clear the FIFCrst bit here */
1757 0x00
1760 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1761 static const u8 MT2063B3_defaults[] = {
1762 /* Reg, Value */
1763 0x05, 0xF0,
1764 0x19, 0x3D,
1765 0x2C, 0x24, /* bit at 0x20 is cleared below */
1766 0x2C, 0x04, /* bit at 0x20 is cleared here */
1767 0x28, 0xE1, /* Set the FIFCrst bit here */
1768 0x28, 0xE0, /* Clear the FIFCrst bit here */
1769 0x00
1772 static int mt2063_init(struct dvb_frontend *fe)
1774 int status;
1775 struct mt2063_state *state = fe->tuner_priv;
1776 u8 all_resets = 0xF0; /* reset/load bits */
1777 const u8 *def = NULL;
1778 char *step;
1779 u32 FCRUN;
1780 s32 maxReads;
1781 u32 fcu_osc;
1782 u32 i;
1784 dprintk(2, "\n");
1786 state->rcvr_mode = MT2063_CABLE_QAM;
1788 /* Read the Part/Rev code from the tuner */
1789 status = mt2063_read(state, MT2063_REG_PART_REV,
1790 &state->reg[MT2063_REG_PART_REV], 1);
1791 if (status < 0) {
1792 printk(KERN_ERR "Can't read mt2063 part ID\n");
1793 return status;
1796 /* Check the part/rev code */
1797 switch (state->reg[MT2063_REG_PART_REV]) {
1798 case MT2063_B0:
1799 step = "B0";
1800 break;
1801 case MT2063_B1:
1802 step = "B1";
1803 break;
1804 case MT2063_B2:
1805 step = "B2";
1806 break;
1807 case MT2063_B3:
1808 step = "B3";
1809 break;
1810 default:
1811 printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
1812 state->reg[MT2063_REG_PART_REV]);
1813 return -ENODEV; /* Wrong tuner Part/Rev code */
1816 /* Check the 2nd byte of the Part/Rev code from the tuner */
1817 status = mt2063_read(state, MT2063_REG_RSVD_3B,
1818 &state->reg[MT2063_REG_RSVD_3B], 1);
1820 /* b7 != 0 ==> NOT MT2063 */
1821 if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1822 printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
1823 state->reg[MT2063_REG_PART_REV],
1824 state->reg[MT2063_REG_RSVD_3B]);
1825 return -ENODEV; /* Wrong tuner Part/Rev code */
1828 printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
1830 /* Reset the tuner */
1831 status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
1832 if (status < 0)
1833 return status;
1835 /* change all of the default values that vary from the HW reset values */
1836 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1837 switch (state->reg[MT2063_REG_PART_REV]) {
1838 case MT2063_B3:
1839 def = MT2063B3_defaults;
1840 break;
1842 case MT2063_B1:
1843 def = MT2063B1_defaults;
1844 break;
1846 case MT2063_B0:
1847 def = MT2063B0_defaults;
1848 break;
1850 default:
1851 return -ENODEV;
1852 break;
1855 while (status >= 0 && *def) {
1856 u8 reg = *def++;
1857 u8 val = *def++;
1858 status = mt2063_write(state, reg, &val, 1);
1860 if (status < 0)
1861 return status;
1863 /* Wait for FIFF location to complete. */
1864 FCRUN = 1;
1865 maxReads = 10;
1866 while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
1867 msleep(2);
1868 status = mt2063_read(state,
1869 MT2063_REG_XO_STATUS,
1870 &state->
1871 reg[MT2063_REG_XO_STATUS], 1);
1872 FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
1875 if (FCRUN != 0 || status < 0)
1876 return -ENODEV;
1878 status = mt2063_read(state,
1879 MT2063_REG_FIFFC,
1880 &state->reg[MT2063_REG_FIFFC], 1);
1881 if (status < 0)
1882 return status;
1884 /* Read back all the registers from the tuner */
1885 status = mt2063_read(state,
1886 MT2063_REG_PART_REV,
1887 state->reg, MT2063_REG_END_REGS);
1888 if (status < 0)
1889 return status;
1891 /* Initialize the tuner state. */
1892 state->tuner_id = state->reg[MT2063_REG_PART_REV];
1893 state->AS_Data.f_ref = MT2063_REF_FREQ;
1894 state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
1895 ((u32) state->reg[MT2063_REG_FIFFC] + 640);
1896 state->AS_Data.f_if1_bw = MT2063_IF1_BW;
1897 state->AS_Data.f_out = 43750000UL;
1898 state->AS_Data.f_out_bw = 6750000UL;
1899 state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
1900 state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
1901 state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
1902 state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
1903 state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
1904 state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
1905 state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
1906 state->AS_Data.f_LO1 = 2181000000UL;
1907 state->AS_Data.f_LO2 = 1486249786UL;
1908 state->f_IF1_actual = state->AS_Data.f_if1_Center;
1909 state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
1910 state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
1911 state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
1912 state->num_regs = MT2063_REG_END_REGS;
1913 state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
1914 state->ctfilt_sw = 0;
1916 state->CTFiltMax[0] = 69230000;
1917 state->CTFiltMax[1] = 105770000;
1918 state->CTFiltMax[2] = 140350000;
1919 state->CTFiltMax[3] = 177110000;
1920 state->CTFiltMax[4] = 212860000;
1921 state->CTFiltMax[5] = 241130000;
1922 state->CTFiltMax[6] = 274370000;
1923 state->CTFiltMax[7] = 309820000;
1924 state->CTFiltMax[8] = 342450000;
1925 state->CTFiltMax[9] = 378870000;
1926 state->CTFiltMax[10] = 416210000;
1927 state->CTFiltMax[11] = 456500000;
1928 state->CTFiltMax[12] = 495790000;
1929 state->CTFiltMax[13] = 534530000;
1930 state->CTFiltMax[14] = 572610000;
1931 state->CTFiltMax[15] = 598970000;
1932 state->CTFiltMax[16] = 635910000;
1933 state->CTFiltMax[17] = 672130000;
1934 state->CTFiltMax[18] = 714840000;
1935 state->CTFiltMax[19] = 739660000;
1936 state->CTFiltMax[20] = 770410000;
1937 state->CTFiltMax[21] = 814660000;
1938 state->CTFiltMax[22] = 846950000;
1939 state->CTFiltMax[23] = 867820000;
1940 state->CTFiltMax[24] = 915980000;
1941 state->CTFiltMax[25] = 947450000;
1942 state->CTFiltMax[26] = 983110000;
1943 state->CTFiltMax[27] = 1021630000;
1944 state->CTFiltMax[28] = 1061870000;
1945 state->CTFiltMax[29] = 1098330000;
1946 state->CTFiltMax[30] = 1138990000;
1949 ** Fetch the FCU osc value and use it and the fRef value to
1950 ** scale all of the Band Max values
1953 state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
1954 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1955 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1956 if (status < 0)
1957 return status;
1959 /* Read the ClearTune filter calibration value */
1960 status = mt2063_read(state, MT2063_REG_FIFFC,
1961 &state->reg[MT2063_REG_FIFFC], 1);
1962 if (status < 0)
1963 return status;
1965 fcu_osc = state->reg[MT2063_REG_FIFFC];
1967 state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
1968 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1969 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1970 if (status < 0)
1971 return status;
1973 /* Adjust each of the values in the ClearTune filter cross-over table */
1974 for (i = 0; i < 31; i++)
1975 state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
1977 status = MT2063_SoftwareShutdown(state, 1);
1978 if (status < 0)
1979 return status;
1980 status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
1981 if (status < 0)
1982 return status;
1984 state->init = true;
1986 return 0;
1989 static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
1991 struct mt2063_state *state = fe->tuner_priv;
1992 int status;
1994 dprintk(2, "\n");
1996 if (!state->init)
1997 return -ENODEV;
1999 *tuner_status = 0;
2000 status = mt2063_lockStatus(state);
2001 if (status < 0)
2002 return status;
2003 if (status)
2004 *tuner_status = TUNER_STATUS_LOCKED;
2006 dprintk(1, "Tuner status: %d", *tuner_status);
2008 return 0;
2011 static void mt2063_release(struct dvb_frontend *fe)
2013 struct mt2063_state *state = fe->tuner_priv;
2015 dprintk(2, "\n");
2017 fe->tuner_priv = NULL;
2018 kfree(state);
2021 static int mt2063_set_analog_params(struct dvb_frontend *fe,
2022 struct analog_parameters *params)
2024 struct mt2063_state *state = fe->tuner_priv;
2025 s32 pict_car;
2026 s32 pict2chanb_vsb;
2027 s32 ch_bw;
2028 s32 if_mid;
2029 s32 rcvr_mode;
2030 int status;
2032 dprintk(2, "\n");
2034 if (!state->init) {
2035 status = mt2063_init(fe);
2036 if (status < 0)
2037 return status;
2040 switch (params->mode) {
2041 case V4L2_TUNER_RADIO:
2042 pict_car = 38900000;
2043 ch_bw = 8000000;
2044 pict2chanb_vsb = -(ch_bw / 2);
2045 rcvr_mode = MT2063_OFFAIR_ANALOG;
2046 break;
2047 case V4L2_TUNER_ANALOG_TV:
2048 rcvr_mode = MT2063_CABLE_ANALOG;
2049 if (params->std & ~V4L2_STD_MN) {
2050 pict_car = 38900000;
2051 ch_bw = 6000000;
2052 pict2chanb_vsb = -1250000;
2053 } else if (params->std & V4L2_STD_PAL_G) {
2054 pict_car = 38900000;
2055 ch_bw = 7000000;
2056 pict2chanb_vsb = -1250000;
2057 } else { /* PAL/SECAM standards */
2058 pict_car = 38900000;
2059 ch_bw = 8000000;
2060 pict2chanb_vsb = -1250000;
2062 break;
2063 default:
2064 return -EINVAL;
2066 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2068 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2069 state->AS_Data.f_out = if_mid;
2070 state->AS_Data.f_out_bw = ch_bw + 750000;
2071 status = MT2063_SetReceiverMode(state, rcvr_mode);
2072 if (status < 0)
2073 return status;
2075 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2076 params->frequency, ch_bw, pict2chanb_vsb);
2078 status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2079 if (status < 0)
2080 return status;
2082 state->frequency = params->frequency;
2083 return 0;
2087 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2088 * So, the amount of the needed bandwidth is given by:
2089 * Bw = Symbol_rate * (1 + 0.15)
2090 * As such, the maximum symbol rate supported by 6 MHz is given by:
2091 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2093 #define MAX_SYMBOL_RATE_6MHz 5217391
2095 static int mt2063_set_params(struct dvb_frontend *fe)
2097 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2098 struct mt2063_state *state = fe->tuner_priv;
2099 int status;
2100 s32 pict_car;
2101 s32 pict2chanb_vsb;
2102 s32 ch_bw;
2103 s32 if_mid;
2104 s32 rcvr_mode;
2106 if (!state->init) {
2107 status = mt2063_init(fe);
2108 if (status < 0)
2109 return status;
2112 dprintk(2, "\n");
2114 if (c->bandwidth_hz == 0)
2115 return -EINVAL;
2116 if (c->bandwidth_hz <= 6000000)
2117 ch_bw = 6000000;
2118 else if (c->bandwidth_hz <= 7000000)
2119 ch_bw = 7000000;
2120 else
2121 ch_bw = 8000000;
2123 switch (c->delivery_system) {
2124 case SYS_DVBT:
2125 rcvr_mode = MT2063_OFFAIR_COFDM;
2126 pict_car = 36125000;
2127 pict2chanb_vsb = -(ch_bw / 2);
2128 break;
2129 case SYS_DVBC_ANNEX_A:
2130 case SYS_DVBC_ANNEX_C:
2131 rcvr_mode = MT2063_CABLE_QAM;
2132 pict_car = 36125000;
2133 pict2chanb_vsb = -(ch_bw / 2);
2134 break;
2135 default:
2136 return -EINVAL;
2138 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2140 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2141 state->AS_Data.f_out = if_mid;
2142 state->AS_Data.f_out_bw = ch_bw + 750000;
2143 status = MT2063_SetReceiverMode(state, rcvr_mode);
2144 if (status < 0)
2145 return status;
2147 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2148 c->frequency, ch_bw, pict2chanb_vsb);
2150 status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2152 if (status < 0)
2153 return status;
2155 state->frequency = c->frequency;
2156 return 0;
2159 static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
2161 struct mt2063_state *state = fe->tuner_priv;
2163 dprintk(2, "\n");
2165 if (!state->init)
2166 return -ENODEV;
2168 *freq = state->AS_Data.f_out;
2170 dprintk(1, "IF frequency: %d\n", *freq);
2172 return 0;
2175 static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
2177 struct mt2063_state *state = fe->tuner_priv;
2179 dprintk(2, "\n");
2181 if (!state->init)
2182 return -ENODEV;
2184 *bw = state->AS_Data.f_out_bw - 750000;
2186 dprintk(1, "bandwidth: %d\n", *bw);
2188 return 0;
2191 static const struct dvb_tuner_ops mt2063_ops = {
2192 .info = {
2193 .name = "MT2063 Silicon Tuner",
2194 .frequency_min_hz = 45 * MHz,
2195 .frequency_max_hz = 865 * MHz,
2198 .init = mt2063_init,
2199 .sleep = MT2063_Sleep,
2200 .get_status = mt2063_get_status,
2201 .set_analog_params = mt2063_set_analog_params,
2202 .set_params = mt2063_set_params,
2203 .get_if_frequency = mt2063_get_if_frequency,
2204 .get_bandwidth = mt2063_get_bandwidth,
2205 .release = mt2063_release,
2208 struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
2209 struct mt2063_config *config,
2210 struct i2c_adapter *i2c)
2212 struct mt2063_state *state = NULL;
2214 dprintk(2, "\n");
2216 state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2217 if (!state)
2218 return NULL;
2220 state->config = config;
2221 state->i2c = i2c;
2222 state->frontend = fe;
2223 state->reference = config->refclock / 1000; /* kHz */
2224 fe->tuner_priv = state;
2225 fe->ops.tuner_ops = mt2063_ops;
2227 printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2228 return fe;
2230 EXPORT_SYMBOL_GPL(mt2063_attach);
2232 #if 0
2234 * Ancillary routines visible outside mt2063
2235 * FIXME: Remove them in favor of using standard tuner callbacks
2237 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
2239 struct mt2063_state *state = fe->tuner_priv;
2240 int err = 0;
2242 dprintk(2, "\n");
2244 err = MT2063_SoftwareShutdown(state, 1);
2245 if (err < 0)
2246 printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
2248 return err;
2251 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
2253 struct mt2063_state *state = fe->tuner_priv;
2254 int err = 0;
2256 dprintk(2, "\n");
2258 err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
2259 if (err < 0)
2260 printk(KERN_ERR "%s: Invalid parameter\n", __func__);
2262 return err;
2264 #endif
2266 MODULE_AUTHOR("Mauro Carvalho Chehab");
2267 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2268 MODULE_LICENSE("GPL");