1 // SPDX-License-Identifier: GPL-2.0-only
3 * DB8500 PRCM Unit driver
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
12 * U8500 PRCM Unit interface driver
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "dbx500-prcmu-regs.h"
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE 0x2FC
44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
58 #define PRCM_AVS_VOLTAGE 0
59 #define PRCM_AVS_VOLTAGE_MASK 0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP 6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE 7
63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
65 #define PRCM_BOOT_STATUS 0xFFF
66 #define PRCM_ROMCODE_A2P 0xFFE
67 #define PRCM_ROMCODE_P2A 0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS 0
99 #define MB0H_CONFIG_WAKEUPS_EXE 1
100 #define MB0H_READ_WAKEUP_ACK 3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF 0x1
136 #define PLL_SOC0_ON 0x2
137 #define PLL_SOC1_OFF 0x4
138 #define PLL_SOC1_ON 0x8
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
146 /* Mailbox 2 headers */
148 #define MB2H_AUTO_PWR 0x1
151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
166 /* Mailbox 3 headers */
168 #define MB3H_SIDETONE 0x1
169 #define MB3H_SYSCLK 0xE
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT 0x0
182 #define MB4H_MEM_ST 0x1
183 #define MB4H_HOTDOG 0x12
184 #define MB4H_HOTMON 0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN 0x17
188 #define MB4H_A9WDOG_DIS 0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW BIT(0)
202 #define HOTMON_CONFIG_HIGH BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS 0
209 #define A9WDOG_ID_MASK 0xf
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN BIT(3)
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
266 struct prcmu_fw_version version
;
269 static struct irq_domain
*db8500_irq_domain
;
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
307 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
319 IRQ_ENTRY(HOTMON_LOW
),
320 IRQ_ENTRY(HOTMON_HIGH
),
321 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
343 WAKEUP_ENTRY(ABB_FIFO
),
348 * mb0_transfer - state needed for mailbox 0 communication.
349 * @lock: The transaction lock.
350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
352 * @mask_work: Work structure used for (un)masking wakeup interrupts.
353 * @req: Request data that need to persist between requests.
357 spinlock_t dbb_irqs_lock
;
358 struct work_struct mask_work
;
359 struct mutex ac_wake_lock
;
360 struct completion ac_wake_work
;
369 * mb1_transfer - state needed for mailbox 1 communication.
370 * @lock: The transaction lock.
371 * @work: The transaction completion structure.
372 * @ape_opp: The current APE OPP.
373 * @ack: Reply ("acknowledge") data.
377 struct completion work
;
383 u8 ape_voltage_status
;
388 * mb2_transfer - state needed for mailbox 2 communication.
389 * @lock: The transaction lock.
390 * @work: The transaction completion structure.
391 * @auto_pm_lock: The autonomous power management configuration lock.
392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393 * @req: Request data that need to persist between requests.
394 * @ack: Reply ("acknowledge") data.
398 struct completion work
;
399 spinlock_t auto_pm_lock
;
400 bool auto_pm_enabled
;
407 * mb3_transfer - state needed for mailbox 3 communication.
408 * @lock: The request lock.
409 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
410 * @sysclk_work: Work structure used for sysclk requests.
414 struct mutex sysclk_lock
;
415 struct completion sysclk_work
;
419 * mb4_transfer - state needed for mailbox 4 communication.
420 * @lock: The transaction lock.
421 * @work: The transaction completion structure.
425 struct completion work
;
429 * mb5_transfer - state needed for mailbox 5 communication.
430 * @lock: The transaction lock.
431 * @work: The transaction completion structure.
432 * @ack: Reply ("acknowledge") data.
436 struct completion work
;
443 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
446 static DEFINE_SPINLOCK(prcmu_lock
);
447 static DEFINE_SPINLOCK(clkout_lock
);
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem
void *tcdm_base
;
451 static __iomem
void *prcmu_base
;
466 static DEFINE_SPINLOCK(clk_mgt_lock
);
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
471 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
472 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
475 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
476 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
477 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
478 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
483 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
484 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
485 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
487 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
488 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
489 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
491 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
492 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
493 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
494 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
495 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
496 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
498 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
499 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
508 static struct dsiclk dsiclk
[2] = {
510 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
511 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
512 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
515 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
516 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
517 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
527 static struct dsiescclk dsiescclk
[3] = {
529 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
530 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
531 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
534 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
535 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
536 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
539 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
540 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
541 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
545 u32
db8500_prcmu_read(unsigned int reg
)
547 return readl(prcmu_base
+ reg
);
550 void db8500_prcmu_write(unsigned int reg
, u32 value
)
554 spin_lock_irqsave(&prcmu_lock
, flags
);
555 writel(value
, (prcmu_base
+ reg
));
556 spin_unlock_irqrestore(&prcmu_lock
, flags
);
559 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
564 spin_lock_irqsave(&prcmu_lock
, flags
);
565 val
= readl(prcmu_base
+ reg
);
566 val
= ((val
& ~mask
) | (value
& mask
));
567 writel(val
, (prcmu_base
+ reg
));
568 spin_unlock_irqrestore(&prcmu_lock
, flags
);
571 struct prcmu_fw_version
*prcmu_get_fw_version(void)
573 return fw_info
.valid
? &fw_info
.version
: NULL
;
576 static bool prcmu_is_ulppll_disabled(void)
578 struct prcmu_fw_version
*ver
;
580 ver
= prcmu_get_fw_version();
581 return ver
&& ver
->project
== PRCMU_FW_PROJECT_U8420_SYSCLK
;
584 bool prcmu_has_arm_maxopp(void)
586 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
587 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
591 * prcmu_set_rc_a2p - This function is used to run few power state sequences
592 * @val: Value to be set, i.e. transition requested
593 * Returns: 0 on success, -EINVAL on invalid argument
595 * This function is used to run the following power state sequences -
596 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
598 int prcmu_set_rc_a2p(enum romcode_write val
)
600 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
602 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
607 * prcmu_get_rc_p2a - This function is used to get power state sequences
608 * Returns: the power transition that has last happened
610 * This function can return the following transitions-
611 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
613 enum romcode_read
prcmu_get_rc_p2a(void)
615 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
619 * prcmu_get_current_mode - Return the current XP70 power mode
620 * Returns: Returns the current AP(ARM) power mode: init,
621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
623 enum ap_pwrst
prcmu_get_xp70_current_state(void)
625 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
629 * prcmu_config_clkout - Configure one of the programmable clock outputs.
630 * @clkout: The CLKOUT number (0 or 1).
631 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
632 * @div: The divider to be applied.
634 * Configures one of the programmable clock outputs (CLKOUTs).
635 * @div should be in the range [1,63] to request a configuration, or 0 to
636 * inform that the configuration is no longer requested.
638 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
640 static int requests
[2];
650 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
652 if (!div
&& !requests
[clkout
])
656 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
657 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
658 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
659 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
661 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
662 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
663 PRCM_CLKOCR_CLK1TYPE
);
664 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
665 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
669 spin_lock_irqsave(&clkout_lock
, flags
);
671 val
= readl(PRCM_CLKOCR
);
672 if (val
& div_mask
) {
674 if ((val
& mask
) != bits
) {
676 goto unlock_and_return
;
679 if ((val
& mask
& ~div_mask
) != bits
) {
681 goto unlock_and_return
;
685 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
686 requests
[clkout
] += (div
? 1 : -1);
689 spin_unlock_irqrestore(&clkout_lock
, flags
);
694 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
698 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
700 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
702 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
705 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
706 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
707 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
708 writeb((keep_ulp_clk
? 1 : 0),
709 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
710 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
711 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
713 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
718 u8
db8500_prcmu_get_power_state_result(void)
720 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
723 /* This function should only be called while mb0_transfer.lock is held. */
724 static void config_wakeups(void)
726 const u8 header
[2] = {
727 MB0H_CONFIG_WAKEUPS_EXE
,
728 MB0H_CONFIG_WAKEUPS_SLEEP
730 static u32 last_dbb_events
;
731 static u32 last_abb_events
;
736 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
737 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
739 abb_events
= mb0_transfer
.req
.abb_events
;
741 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
744 for (i
= 0; i
< 2; i
++) {
745 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
747 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
748 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
749 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
750 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
752 last_dbb_events
= dbb_events
;
753 last_abb_events
= abb_events
;
756 void db8500_prcmu_enable_wakeups(u32 wakeups
)
762 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
764 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
765 if (wakeups
& BIT(i
))
766 bits
|= prcmu_wakeup_bit
[i
];
769 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
771 mb0_transfer
.req
.dbb_wakeups
= bits
;
774 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
777 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
781 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
783 mb0_transfer
.req
.abb_events
= abb_events
;
786 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
789 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
791 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
792 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
794 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
799 * @opp: The new ARM operating point to which transition is to be made
800 * Returns: 0 on success, non-zero on failure
802 * This function sets the the operating point of the ARM.
804 int db8500_prcmu_set_arm_opp(u8 opp
)
808 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
813 mutex_lock(&mb1_transfer
.lock
);
815 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
818 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
819 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
820 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
822 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
823 wait_for_completion(&mb1_transfer
.work
);
825 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
826 (mb1_transfer
.ack
.arm_opp
!= opp
))
829 mutex_unlock(&mb1_transfer
.lock
);
835 * db8500_prcmu_get_arm_opp - get the current ARM OPP
837 * Returns: the current ARM OPP
839 int db8500_prcmu_get_arm_opp(void)
841 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
847 * Returns: the current DDR OPP
849 int db8500_prcmu_get_ddr_opp(void)
851 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
854 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
855 static void request_even_slower_clocks(bool enable
)
864 spin_lock_irqsave(&clk_mgt_lock
, flags
);
866 /* Grab the HW semaphore. */
867 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
870 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
874 val
= readl(prcmu_base
+ clock_reg
[i
]);
875 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
877 if ((div
<= 1) || (div
> 15)) {
878 pr_err("prcmu: Bad clock divider %d in %s\n",
880 goto unlock_and_return
;
885 goto unlock_and_return
;
888 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
889 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
890 writel(val
, prcmu_base
+ clock_reg
[i
]);
894 /* Release the HW semaphore. */
897 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
901 * db8500_set_ape_opp - set the appropriate APE OPP
902 * @opp: The new APE operating point to which transition is to be made
903 * Returns: 0 on success, non-zero on failure
905 * This function sets the operating point of the APE.
907 int db8500_prcmu_set_ape_opp(u8 opp
)
911 if (opp
== mb1_transfer
.ape_opp
)
914 mutex_lock(&mb1_transfer
.lock
);
916 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
917 request_even_slower_clocks(false);
919 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
922 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
925 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
926 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
927 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
928 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
930 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
931 wait_for_completion(&mb1_transfer
.work
);
933 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
934 (mb1_transfer
.ack
.ape_opp
!= opp
))
938 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
939 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
940 request_even_slower_clocks(true);
942 mb1_transfer
.ape_opp
= opp
;
944 mutex_unlock(&mb1_transfer
.lock
);
950 * db8500_prcmu_get_ape_opp - get the current APE OPP
952 * Returns: the current APE OPP
954 int db8500_prcmu_get_ape_opp(void)
956 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
961 * @enable: true to request the higher voltage, false to drop a request.
963 * Calls to this function to enable and disable requests must be balanced.
965 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
969 static unsigned int requests
;
971 mutex_lock(&mb1_transfer
.lock
);
975 goto unlock_and_return
;
976 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
980 goto unlock_and_return
;
981 } else if (1 != requests
--) {
982 goto unlock_and_return
;
984 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
987 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
990 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
992 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
993 wait_for_completion(&mb1_transfer
.work
);
995 if ((mb1_transfer
.ack
.header
!= header
) ||
996 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1000 mutex_unlock(&mb1_transfer
.lock
);
1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1008 * This function releases the power state requirements of a USB wakeup.
1010 int prcmu_release_usb_wakeup_state(void)
1014 mutex_lock(&mb1_transfer
.lock
);
1016 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1019 writeb(MB1H_RELEASE_USB_WAKEUP
,
1020 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1022 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1023 wait_for_completion(&mb1_transfer
.work
);
1025 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1026 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1029 mutex_unlock(&mb1_transfer
.lock
);
1034 static int request_pll(u8 clock
, bool enable
)
1038 if (clock
== PRCMU_PLLSOC0
)
1039 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1040 else if (clock
== PRCMU_PLLSOC1
)
1041 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1045 mutex_lock(&mb1_transfer
.lock
);
1047 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1050 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1051 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1053 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1054 wait_for_completion(&mb1_transfer
.work
);
1056 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1059 mutex_unlock(&mb1_transfer
.lock
);
1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066 * @epod_id: The EPOD to set
1067 * @epod_state: The new EPOD state
1069 * This function sets the state of a EPOD (power domain). It may not be called
1070 * from interrupt context.
1072 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1075 bool ram_retention
= false;
1078 /* check argument */
1079 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1081 /* set flag if retention is possible */
1083 case EPOD_ID_SVAMMDSP
:
1084 case EPOD_ID_SIAMMDSP
:
1085 case EPOD_ID_ESRAM12
:
1086 case EPOD_ID_ESRAM34
:
1087 ram_retention
= true;
1091 /* check argument */
1092 BUG_ON(epod_state
> EPOD_STATE_ON
);
1093 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1096 mutex_lock(&mb2_transfer
.lock
);
1098 /* wait for mailbox */
1099 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1102 /* fill in mailbox */
1103 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1104 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1105 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1107 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1109 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1112 * The current firmware version does not handle errors correctly,
1113 * and we cannot recover if there is an error.
1114 * This is expected to change when the firmware is updated.
1116 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1117 msecs_to_jiffies(20000))) {
1118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1121 goto unlock_and_return
;
1124 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1128 mutex_unlock(&mb2_transfer
.lock
);
1133 * prcmu_configure_auto_pm - Configure autonomous power management.
1134 * @sleep: Configuration for ApSleep.
1135 * @idle: Configuration for ApIdle.
1137 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1138 struct prcmu_auto_pm_config
*idle
)
1142 unsigned long flags
;
1144 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1146 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1147 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1148 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1149 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1150 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1151 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1153 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1154 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1155 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1156 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1157 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1158 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1160 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1163 * The autonomous power management configuration is done through
1164 * fields in mailbox 2, but these fields are only used as shared
1165 * variables - i.e. there is no need to send a message.
1167 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1168 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1170 mb2_transfer
.auto_pm_enabled
=
1171 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1172 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1173 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1174 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1176 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1178 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1180 bool prcmu_is_auto_pm_enabled(void)
1182 return mb2_transfer
.auto_pm_enabled
;
1185 static int request_sysclk(bool enable
)
1188 unsigned long flags
;
1192 mutex_lock(&mb3_transfer
.sysclk_lock
);
1194 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1196 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1199 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1201 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1202 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1204 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1207 * The firmware only sends an ACK if we want to enable the
1208 * SysClk, and it succeeds.
1210 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1211 msecs_to_jiffies(20000))) {
1212 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1217 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1222 static int request_timclk(bool enable
)
1227 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228 * PLL is disabled so we cannot use doze mode, this will
1229 * stop the clock on this firmware.
1231 if (prcmu_is_ulppll_disabled())
1234 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1237 val
|= PRCM_TCR_STOP_TIMERS
|
1238 PRCM_TCR_DOZE_MODE
|
1239 PRCM_TCR_TENSEL_MASK
;
1241 writel(val
, PRCM_TCR
);
1246 static int request_clock(u8 clock
, bool enable
)
1249 unsigned long flags
;
1251 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1253 /* Grab the HW semaphore. */
1254 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1257 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1259 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1261 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1262 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1264 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1266 /* Release the HW semaphore. */
1267 writel(0, PRCM_SEM
);
1269 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1274 static int request_sga_clock(u8 clock
, bool enable
)
1280 val
= readl(PRCM_CGATING_BYPASS
);
1281 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1284 ret
= request_clock(clock
, enable
);
1286 if (!ret
&& !enable
) {
1287 val
= readl(PRCM_CGATING_BYPASS
);
1288 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1294 static inline bool plldsi_locked(void)
1296 return (readl(PRCM_PLLDSI_LOCKP
) &
1297 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1298 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1299 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1300 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1303 static int request_plldsi(bool enable
)
1308 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1309 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1310 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1312 val
= readl(PRCM_PLLDSI_ENABLE
);
1314 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1316 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1317 writel(val
, PRCM_PLLDSI_ENABLE
);
1321 bool locked
= plldsi_locked();
1323 for (i
= 10; !locked
&& (i
> 0); --i
) {
1325 locked
= plldsi_locked();
1328 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1329 PRCM_APE_RESETN_SET
);
1331 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1332 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1333 PRCM_MMIP_LS_CLAMP_SET
);
1334 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1335 writel(val
, PRCM_PLLDSI_ENABLE
);
1339 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1344 static int request_dsiclk(u8 n
, bool enable
)
1348 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1349 val
&= ~dsiclk
[n
].divsel_mask
;
1350 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1351 dsiclk
[n
].divsel_shift
);
1352 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1356 static int request_dsiescclk(u8 n
, bool enable
)
1360 val
= readl(PRCM_DSITVCLK_DIV
);
1361 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1362 writel(val
, PRCM_DSITVCLK_DIV
);
1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368 * @clock: The clock for which the request is made.
1369 * @enable: Whether the clock should be enabled (true) or disabled (false).
1371 * This function should only be used by the clock implementation.
1372 * Do not use it from any other place!
1374 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1376 if (clock
== PRCMU_SGACLK
)
1377 return request_sga_clock(clock
, enable
);
1378 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1379 return request_clock(clock
, enable
);
1380 else if (clock
== PRCMU_TIMCLK
)
1381 return request_timclk(enable
);
1382 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1383 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1384 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1385 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1386 else if (clock
== PRCMU_PLLDSI
)
1387 return request_plldsi(enable
);
1388 else if (clock
== PRCMU_SYSCLK
)
1389 return request_sysclk(enable
);
1390 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1391 return request_pll(clock
, enable
);
1396 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1407 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1409 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1413 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1417 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1420 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1421 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1422 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1423 (reg
== PRCM_PLLARM_FREQ
) ||
1424 (reg
== PRCM_PLLDDR_FREQ
))))
1427 (void)do_div(rate
, div
);
1429 return (unsigned long)rate
;
1432 #define ROOT_CLOCK_RATE 38400000
1434 static unsigned long clock_rate(u8 clock
)
1438 unsigned long rate
= ROOT_CLOCK_RATE
;
1440 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1442 if (val
& PRCM_CLK_MGT_CLK38
) {
1443 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1448 val
|= clk_mgt
[clock
].pllsw
;
1449 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1451 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1452 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1453 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1454 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1455 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1456 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1460 if ((clock
== PRCMU_SGACLK
) &&
1461 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1462 u64 r
= (rate
* 10);
1464 (void)do_div(r
, 25);
1465 return (unsigned long)r
;
1467 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1474 static unsigned long armss_rate(void)
1479 r
= readl(PRCM_ARM_CHGCLKREQ
);
1481 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1482 /* External ARMCLKFIX clock */
1484 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1486 /* Check PRCM_ARM_CHGCLKREQ divider */
1487 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1490 /* Check PRCM_ARMCLKFIX_MGT divider */
1491 r
= readl(PRCM_ARMCLKFIX_MGT
);
1492 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1495 } else {/* ARM PLL */
1496 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1502 static unsigned long dsiclk_rate(u8 n
)
1507 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1508 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1510 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1511 divsel
= dsiclk
[n
].divsel
;
1513 dsiclk
[n
].divsel
= divsel
;
1516 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1519 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1522 case PRCM_DSI_PLLOUT_SEL_PHI
:
1523 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1530 static unsigned long dsiescclk_rate(u8 n
)
1534 div
= readl(PRCM_DSITVCLK_DIV
);
1535 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1536 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1539 unsigned long prcmu_clock_rate(u8 clock
)
1541 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1542 return clock_rate(clock
);
1543 else if (clock
== PRCMU_TIMCLK
)
1544 return prcmu_is_ulppll_disabled() ?
1545 32768 : ROOT_CLOCK_RATE
/ 16;
1546 else if (clock
== PRCMU_SYSCLK
)
1547 return ROOT_CLOCK_RATE
;
1548 else if (clock
== PRCMU_PLLSOC0
)
1549 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1550 else if (clock
== PRCMU_PLLSOC1
)
1551 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1552 else if (clock
== PRCMU_ARMSS
)
1553 return armss_rate();
1554 else if (clock
== PRCMU_PLLDDR
)
1555 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1556 else if (clock
== PRCMU_PLLDSI
)
1557 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1559 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1560 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1561 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1562 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1567 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1569 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1570 return ROOT_CLOCK_RATE
;
1571 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1572 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1573 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1574 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1575 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1576 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1577 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1582 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1586 div
= (src_rate
/ rate
);
1589 if (rate
< (src_rate
/ div
))
1594 static long round_clock_rate(u8 clock
, unsigned long rate
)
1598 unsigned long src_rate
;
1601 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1602 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1603 clk_mgt
[clock
].branch
);
1604 div
= clock_divider(src_rate
, rate
);
1605 if (val
& PRCM_CLK_MGT_CLK38
) {
1606 if (clk_mgt
[clock
].clk38div
) {
1612 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1613 u64 r
= (src_rate
* 10);
1615 (void)do_div(r
, 25);
1617 return (unsigned long)r
;
1619 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1621 return rounded_rate
;
1624 static const unsigned long db8500_armss_freqs
[] = {
1631 /* The DB8520 has slightly higher ARMSS max frequency */
1632 static const unsigned long db8520_armss_freqs
[] = {
1641 static long round_armss_rate(unsigned long rate
)
1643 unsigned long freq
= 0;
1644 const unsigned long *freqs
;
1648 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1649 freqs
= db8520_armss_freqs
;
1650 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1652 freqs
= db8500_armss_freqs
;
1653 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1656 /* Find the corresponding arm opp from the cpufreq table. */
1657 for (i
= 0; i
< nfreqs
; i
++) {
1663 /* Return the last valid value, even if a match was not found. */
1667 #define MIN_PLL_VCO_RATE 600000000ULL
1668 #define MAX_PLL_VCO_RATE 1680640000ULL
1670 static long round_plldsi_rate(unsigned long rate
)
1672 long rounded_rate
= 0;
1673 unsigned long src_rate
;
1677 src_rate
= clock_rate(PRCMU_HDMICLK
);
1680 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1684 (void)do_div(d
, src_rate
);
1690 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1691 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1695 if (rounded_rate
== 0)
1696 rounded_rate
= (long)d
;
1699 if ((rate
- d
) < rem
) {
1701 rounded_rate
= (long)d
;
1704 return rounded_rate
;
1707 static long round_dsiclk_rate(unsigned long rate
)
1710 unsigned long src_rate
;
1713 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1715 div
= clock_divider(src_rate
, rate
);
1716 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1718 return rounded_rate
;
1721 static long round_dsiescclk_rate(unsigned long rate
)
1724 unsigned long src_rate
;
1727 src_rate
= clock_rate(PRCMU_TVCLK
);
1728 div
= clock_divider(src_rate
, rate
);
1729 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1731 return rounded_rate
;
1734 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1736 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1737 return round_clock_rate(clock
, rate
);
1738 else if (clock
== PRCMU_ARMSS
)
1739 return round_armss_rate(rate
);
1740 else if (clock
== PRCMU_PLLDSI
)
1741 return round_plldsi_rate(rate
);
1742 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1743 return round_dsiclk_rate(rate
);
1744 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1745 return round_dsiescclk_rate(rate
);
1747 return (long)prcmu_clock_rate(clock
);
1750 static void set_clock_rate(u8 clock
, unsigned long rate
)
1754 unsigned long src_rate
;
1755 unsigned long flags
;
1757 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1759 /* Grab the HW semaphore. */
1760 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1763 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1764 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1765 clk_mgt
[clock
].branch
);
1766 div
= clock_divider(src_rate
, rate
);
1767 if (val
& PRCM_CLK_MGT_CLK38
) {
1768 if (clk_mgt
[clock
].clk38div
) {
1770 val
|= PRCM_CLK_MGT_CLK38DIV
;
1772 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1774 } else if (clock
== PRCMU_SGACLK
) {
1775 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1776 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1778 u64 r
= (src_rate
* 10);
1780 (void)do_div(r
, 25);
1782 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1786 val
|= min(div
, (u32
)31);
1788 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1789 val
|= min(div
, (u32
)31);
1791 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1793 /* Release the HW semaphore. */
1794 writel(0, PRCM_SEM
);
1796 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1799 static int set_armss_rate(unsigned long rate
)
1802 u8 opps
[] = { ARM_EXTCLK
, ARM_50_OPP
, ARM_100_OPP
, ARM_MAX_OPP
};
1803 const unsigned long *freqs
;
1807 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1808 freqs
= db8520_armss_freqs
;
1809 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1811 freqs
= db8500_armss_freqs
;
1812 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1815 /* Find the corresponding arm opp from the cpufreq table. */
1816 for (i
= 0; i
< nfreqs
; i
++) {
1825 /* Set the new arm opp. */
1826 pr_debug("SET ARM OPP 0x%02x\n", opps
[i
]);
1827 return db8500_prcmu_set_arm_opp(opps
[i
]);
1830 static int set_plldsi_rate(unsigned long rate
)
1832 unsigned long src_rate
;
1837 src_rate
= clock_rate(PRCMU_HDMICLK
);
1840 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1845 (void)do_div(d
, src_rate
);
1850 hwrate
= (d
* src_rate
);
1851 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1852 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1854 (void)do_div(hwrate
, r
);
1855 if (rate
< hwrate
) {
1857 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1858 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1861 if ((rate
- hwrate
) < rem
) {
1862 rem
= (rate
- hwrate
);
1863 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1864 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1870 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1871 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1876 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1881 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1882 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1884 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1885 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1886 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1888 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1889 val
&= ~dsiclk
[n
].divsel_mask
;
1890 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1891 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1894 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1899 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1900 val
= readl(PRCM_DSITVCLK_DIV
);
1901 val
&= ~dsiescclk
[n
].div_mask
;
1902 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1903 writel(val
, PRCM_DSITVCLK_DIV
);
1906 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1908 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1909 set_clock_rate(clock
, rate
);
1910 else if (clock
== PRCMU_ARMSS
)
1911 return set_armss_rate(rate
);
1912 else if (clock
== PRCMU_PLLDSI
)
1913 return set_plldsi_rate(rate
);
1914 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1915 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1916 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1917 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1921 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
1923 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
1924 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
1927 mutex_lock(&mb4_transfer
.lock
);
1929 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1932 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1933 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
1934 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
1935 writeb(DDR_PWR_STATE_ON
,
1936 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
1937 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
1939 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1940 wait_for_completion(&mb4_transfer
.work
);
1942 mutex_unlock(&mb4_transfer
.lock
);
1947 int db8500_prcmu_config_hotdog(u8 threshold
)
1949 mutex_lock(&mb4_transfer
.lock
);
1951 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1954 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
1955 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1957 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1958 wait_for_completion(&mb4_transfer
.work
);
1960 mutex_unlock(&mb4_transfer
.lock
);
1965 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
1967 mutex_lock(&mb4_transfer
.lock
);
1969 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1972 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
1973 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
1974 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
1975 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
1976 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1978 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1979 wait_for_completion(&mb4_transfer
.work
);
1981 mutex_unlock(&mb4_transfer
.lock
);
1985 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon
);
1987 static int config_hot_period(u16 val
)
1989 mutex_lock(&mb4_transfer
.lock
);
1991 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1994 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
1995 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1997 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1998 wait_for_completion(&mb4_transfer
.work
);
2000 mutex_unlock(&mb4_transfer
.lock
);
2005 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2007 if (cycles32k
== 0xFFFF)
2010 return config_hot_period(cycles32k
);
2012 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense
);
2014 int db8500_prcmu_stop_temp_sense(void)
2016 return config_hot_period(0xFFFF);
2018 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense
);
2020 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2023 mutex_lock(&mb4_transfer
.lock
);
2025 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2028 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2029 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2030 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2031 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2033 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2036 wait_for_completion(&mb4_transfer
.work
);
2038 mutex_unlock(&mb4_transfer
.lock
);
2044 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2046 BUG_ON(num
== 0 || num
> 0xf);
2047 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2048 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2049 A9WDOG_AUTO_OFF_DIS
);
2051 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2053 int db8500_prcmu_enable_a9wdog(u8 id
)
2055 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2057 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2059 int db8500_prcmu_disable_a9wdog(u8 id
)
2061 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2063 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2065 int db8500_prcmu_kick_a9wdog(u8 id
)
2067 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2069 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2072 * timeout is 28 bit, in ms.
2074 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2076 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2077 (id
& A9WDOG_ID_MASK
) |
2079 * Put the lowest 28 bits of timeout at
2080 * offset 4. Four first bits are used for id.
2082 (u8
)((timeout
<< 4) & 0xf0),
2083 (u8
)((timeout
>> 4) & 0xff),
2084 (u8
)((timeout
>> 12) & 0xff),
2085 (u8
)((timeout
>> 20) & 0xff));
2087 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2090 * prcmu_abb_read() - Read register value(s) from the ABB.
2091 * @slave: The I2C slave address.
2092 * @reg: The (start) register address.
2093 * @value: The read out value(s).
2094 * @size: The number of registers to read.
2096 * Reads register value(s) from the ABB.
2097 * @size has to be 1 for the current firmware version.
2099 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2106 mutex_lock(&mb5_transfer
.lock
);
2108 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2111 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2112 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2113 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2114 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2115 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2117 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2119 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2120 msecs_to_jiffies(20000))) {
2121 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2125 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2129 *value
= mb5_transfer
.ack
.value
;
2131 mutex_unlock(&mb5_transfer
.lock
);
2137 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2138 * @slave: The I2C slave address.
2139 * @reg: The (start) register address.
2140 * @value: The value(s) to write.
2141 * @mask: The mask(s) to use.
2142 * @size: The number of registers to write.
2144 * Writes masked register value(s) to the ABB.
2145 * For each @value, only the bits set to 1 in the corresponding @mask
2146 * will be written. The other bits are not changed.
2147 * @size has to be 1 for the current firmware version.
2149 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2156 mutex_lock(&mb5_transfer
.lock
);
2158 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2161 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2162 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2163 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2164 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2165 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2167 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2169 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2170 msecs_to_jiffies(20000))) {
2171 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2175 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2178 mutex_unlock(&mb5_transfer
.lock
);
2184 * prcmu_abb_write() - Write register value(s) to the ABB.
2185 * @slave: The I2C slave address.
2186 * @reg: The (start) register address.
2187 * @value: The value(s) to write.
2188 * @size: The number of registers to write.
2190 * Writes register value(s) to the ABB.
2191 * @size has to be 1 for the current firmware version.
2193 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2197 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2201 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2203 int prcmu_ac_wake_req(void)
2208 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2210 val
= readl(PRCM_HOSTACCESS_REQ
);
2211 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2212 goto unlock_and_return
;
2214 atomic_set(&ac_wake_req_state
, 1);
2217 * Force Modem Wake-up before hostaccess_req ping-pong.
2218 * It prevents Modem to enter in Sleep while acking the hostaccess
2219 * request. The 31us delay has been calculated by HWI.
2221 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2222 writel(val
, PRCM_HOSTACCESS_REQ
);
2226 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2227 writel(val
, PRCM_HOSTACCESS_REQ
);
2229 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2230 msecs_to_jiffies(5000))) {
2231 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2237 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2242 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2244 void prcmu_ac_sleep_req(void)
2248 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2250 val
= readl(PRCM_HOSTACCESS_REQ
);
2251 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2252 goto unlock_and_return
;
2254 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2255 PRCM_HOSTACCESS_REQ
);
2257 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2258 msecs_to_jiffies(5000))) {
2259 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2263 atomic_set(&ac_wake_req_state
, 0);
2266 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2269 bool db8500_prcmu_is_ac_wake_requested(void)
2271 return (atomic_read(&ac_wake_req_state
) != 0);
2275 * db8500_prcmu_system_reset - System reset
2277 * Saves the reset reason code and then sets the APE_SOFTRST register which
2278 * fires interrupt to fw
2280 void db8500_prcmu_system_reset(u16 reset_code
)
2282 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2283 writel(1, PRCM_APE_SOFTRST
);
2287 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2289 * Retrieves the reset reason code stored by prcmu_system_reset() before
2292 u16
db8500_prcmu_get_reset_code(void)
2294 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2298 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2300 void db8500_prcmu_modem_reset(void)
2302 mutex_lock(&mb1_transfer
.lock
);
2304 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2307 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2308 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2309 wait_for_completion(&mb1_transfer
.work
);
2312 * No need to check return from PRCMU as modem should go in reset state
2313 * This state is already managed by upper layer
2316 mutex_unlock(&mb1_transfer
.lock
);
2319 static void ack_dbb_wakeup(void)
2321 unsigned long flags
;
2323 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2325 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2328 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2329 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2331 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2334 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2336 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2340 static bool read_mailbox_0(void)
2347 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2349 case MB0H_WAKEUP_EXE
:
2350 case MB0H_WAKEUP_SLEEP
:
2351 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2352 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2354 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2356 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2357 complete(&mb0_transfer
.ac_wake_work
);
2358 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2359 complete(&mb3_transfer
.sysclk_work
);
2361 ev
&= mb0_transfer
.req
.dbb_irqs
;
2363 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2364 if (ev
& prcmu_irq_bit
[n
])
2365 generic_handle_irq(irq_find_mapping(db8500_irq_domain
, n
));
2370 print_unknown_header_warning(0, header
);
2374 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2378 static bool read_mailbox_1(void)
2380 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2381 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2382 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2383 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2384 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2385 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2386 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2387 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2388 complete(&mb1_transfer
.work
);
2392 static bool read_mailbox_2(void)
2394 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2395 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2396 complete(&mb2_transfer
.work
);
2400 static bool read_mailbox_3(void)
2402 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2406 static bool read_mailbox_4(void)
2409 bool do_complete
= true;
2411 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2416 case MB4H_HOT_PERIOD
:
2417 case MB4H_A9WDOG_CONF
:
2418 case MB4H_A9WDOG_EN
:
2419 case MB4H_A9WDOG_DIS
:
2420 case MB4H_A9WDOG_LOAD
:
2421 case MB4H_A9WDOG_KICK
:
2424 print_unknown_header_warning(4, header
);
2425 do_complete
= false;
2429 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2432 complete(&mb4_transfer
.work
);
2437 static bool read_mailbox_5(void)
2439 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2440 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2441 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2442 complete(&mb5_transfer
.work
);
2446 static bool read_mailbox_6(void)
2448 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2452 static bool read_mailbox_7(void)
2454 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2458 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2469 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2475 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2476 if (unlikely(!bits
))
2480 for (n
= 0; bits
; n
++) {
2481 if (bits
& MBOX_BIT(n
)) {
2482 bits
-= MBOX_BIT(n
);
2483 if (read_mailbox
[n
]())
2484 r
= IRQ_WAKE_THREAD
;
2490 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2496 static void prcmu_mask_work(struct work_struct
*work
)
2498 unsigned long flags
;
2500 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2504 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2507 static void prcmu_irq_mask(struct irq_data
*d
)
2509 unsigned long flags
;
2511 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2513 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2515 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2517 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2518 schedule_work(&mb0_transfer
.mask_work
);
2521 static void prcmu_irq_unmask(struct irq_data
*d
)
2523 unsigned long flags
;
2525 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2527 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2529 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2531 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2532 schedule_work(&mb0_transfer
.mask_work
);
2535 static void noop(struct irq_data
*d
)
2539 static struct irq_chip prcmu_irq_chip
= {
2541 .irq_disable
= prcmu_irq_mask
,
2543 .irq_mask
= prcmu_irq_mask
,
2544 .irq_unmask
= prcmu_irq_unmask
,
2547 static char *fw_project_name(u32 project
)
2550 case PRCMU_FW_PROJECT_U8500
:
2552 case PRCMU_FW_PROJECT_U8400
:
2554 case PRCMU_FW_PROJECT_U9500
:
2556 case PRCMU_FW_PROJECT_U8500_MBB
:
2558 case PRCMU_FW_PROJECT_U8500_C1
:
2560 case PRCMU_FW_PROJECT_U8500_C2
:
2562 case PRCMU_FW_PROJECT_U8500_C3
:
2564 case PRCMU_FW_PROJECT_U8500_C4
:
2566 case PRCMU_FW_PROJECT_U9500_MBL
:
2568 case PRCMU_FW_PROJECT_U8500_MBL
:
2570 case PRCMU_FW_PROJECT_U8500_MBL2
:
2571 return "U8500 MBL2";
2572 case PRCMU_FW_PROJECT_U8520
:
2574 case PRCMU_FW_PROJECT_U8420
:
2576 case PRCMU_FW_PROJECT_U8420_SYSCLK
:
2577 return "U8420-sysclk";
2578 case PRCMU_FW_PROJECT_U9540
:
2580 case PRCMU_FW_PROJECT_A9420
:
2582 case PRCMU_FW_PROJECT_L8540
:
2584 case PRCMU_FW_PROJECT_L8580
:
2591 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2592 irq_hw_number_t hwirq
)
2594 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2600 static const struct irq_domain_ops db8500_irq_ops
= {
2601 .map
= db8500_irq_map
,
2602 .xlate
= irq_domain_xlate_twocell
,
2605 static int db8500_irq_init(struct device_node
*np
)
2609 db8500_irq_domain
= irq_domain_add_simple(
2610 np
, NUM_PRCMU_WAKEUPS
, 0,
2611 &db8500_irq_ops
, NULL
);
2613 if (!db8500_irq_domain
) {
2614 pr_err("Failed to create irqdomain\n");
2618 /* All wakeups will be used, so create mappings for all */
2619 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2620 irq_create_mapping(db8500_irq_domain
, i
);
2625 static void dbx500_fw_version_init(struct device_node
*np
)
2627 void __iomem
*tcpm_base
;
2630 tcpm_base
= of_iomap(np
, 1);
2632 pr_err("no prcmu tcpm mem region provided\n");
2636 version
= readl(tcpm_base
+ DB8500_PRCMU_FW_VERSION_OFFSET
);
2637 fw_info
.version
.project
= (version
& 0xFF);
2638 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2639 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2640 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2641 strncpy(fw_info
.version
.project_name
,
2642 fw_project_name(fw_info
.version
.project
),
2643 PRCMU_FW_PROJECT_NAME_LEN
);
2644 fw_info
.valid
= true;
2645 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2646 fw_info
.version
.project_name
,
2647 fw_info
.version
.project
,
2648 fw_info
.version
.api_version
,
2649 fw_info
.version
.func_version
,
2650 fw_info
.version
.errata
);
2654 void __init
db8500_prcmu_early_init(void)
2657 * This is a temporary remap to bring up the clocks. It is
2658 * subsequently replaces with a real remap. After the merge of
2659 * the mailbox subsystem all of this early code goes away, and the
2660 * clock driver can probe independently. An early initcall will
2661 * still be needed, but it can be diverted into drivers/clk/ux500.
2663 struct device_node
*np
;
2665 np
= of_find_compatible_node(NULL
, NULL
, "stericsson,db8500-prcmu");
2666 prcmu_base
= of_iomap(np
, 0);
2669 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2672 dbx500_fw_version_init(np
);
2675 spin_lock_init(&mb0_transfer
.lock
);
2676 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2677 mutex_init(&mb0_transfer
.ac_wake_lock
);
2678 init_completion(&mb0_transfer
.ac_wake_work
);
2679 mutex_init(&mb1_transfer
.lock
);
2680 init_completion(&mb1_transfer
.work
);
2681 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2682 mutex_init(&mb2_transfer
.lock
);
2683 init_completion(&mb2_transfer
.work
);
2684 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2685 spin_lock_init(&mb3_transfer
.lock
);
2686 mutex_init(&mb3_transfer
.sysclk_lock
);
2687 init_completion(&mb3_transfer
.sysclk_work
);
2688 mutex_init(&mb4_transfer
.lock
);
2689 init_completion(&mb4_transfer
.work
);
2690 mutex_init(&mb5_transfer
.lock
);
2691 init_completion(&mb5_transfer
.work
);
2693 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2696 static void init_prcm_registers(void)
2700 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2701 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2702 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2703 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2707 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2710 REGULATOR_SUPPLY("v-ape", NULL
),
2711 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2716 /* "v-mmc" changed to "vcore" in the mainline kernel */
2717 REGULATOR_SUPPLY("vcore", "sdi0"),
2718 REGULATOR_SUPPLY("vcore", "sdi1"),
2719 REGULATOR_SUPPLY("vcore", "sdi2"),
2720 REGULATOR_SUPPLY("vcore", "sdi3"),
2721 REGULATOR_SUPPLY("vcore", "sdi4"),
2722 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2723 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2724 /* "v-uart" changed to "vcore" in the mainline kernel */
2725 REGULATOR_SUPPLY("vcore", "uart0"),
2726 REGULATOR_SUPPLY("vcore", "uart1"),
2727 REGULATOR_SUPPLY("vcore", "uart2"),
2728 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2729 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2730 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2734 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2735 /* AV8100 regulator */
2736 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2740 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2741 REGULATOR_SUPPLY("vsupply", "mcde"),
2744 /* SVA MMDSP regulator switch */
2745 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2746 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 /* SVA pipe regulator switch */
2750 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2751 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 /* SIA MMDSP regulator switch */
2755 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2756 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 /* SIA pipe regulator switch */
2760 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2761 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2765 REGULATOR_SUPPLY("v-mali", NULL
),
2768 /* ESRAM1 and 2 regulator switch */
2769 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2770 REGULATOR_SUPPLY("esram12", "cm_control"),
2773 /* ESRAM3 and 4 regulator switch */
2774 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2775 REGULATOR_SUPPLY("v-esram34", "mcde"),
2776 REGULATOR_SUPPLY("esram34", "cm_control"),
2777 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2781 [DB8500_REGULATOR_VAPE
] = {
2783 .name
= "db8500-vape",
2784 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2787 .consumer_supplies
= db8500_vape_consumers
,
2788 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2790 [DB8500_REGULATOR_VARM
] = {
2792 .name
= "db8500-varm",
2793 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2796 [DB8500_REGULATOR_VMODEM
] = {
2798 .name
= "db8500-vmodem",
2799 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2802 [DB8500_REGULATOR_VPLL
] = {
2804 .name
= "db8500-vpll",
2805 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2808 [DB8500_REGULATOR_VSMPS1
] = {
2810 .name
= "db8500-vsmps1",
2811 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2814 [DB8500_REGULATOR_VSMPS2
] = {
2816 .name
= "db8500-vsmps2",
2817 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2819 .consumer_supplies
= db8500_vsmps2_consumers
,
2820 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2822 [DB8500_REGULATOR_VSMPS3
] = {
2824 .name
= "db8500-vsmps3",
2825 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2828 [DB8500_REGULATOR_VRF1
] = {
2830 .name
= "db8500-vrf1",
2831 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2834 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2835 /* dependency to u8500-vape is handled outside regulator framework */
2837 .name
= "db8500-sva-mmdsp",
2838 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2840 .consumer_supplies
= db8500_svammdsp_consumers
,
2841 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2843 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2845 /* "ret" means "retention" */
2846 .name
= "db8500-sva-mmdsp-ret",
2847 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2850 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2851 /* dependency to u8500-vape is handled outside regulator framework */
2853 .name
= "db8500-sva-pipe",
2854 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2856 .consumer_supplies
= db8500_svapipe_consumers
,
2857 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2859 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2860 /* dependency to u8500-vape is handled outside regulator framework */
2862 .name
= "db8500-sia-mmdsp",
2863 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2865 .consumer_supplies
= db8500_siammdsp_consumers
,
2866 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2868 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2870 .name
= "db8500-sia-mmdsp-ret",
2871 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2874 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2875 /* dependency to u8500-vape is handled outside regulator framework */
2877 .name
= "db8500-sia-pipe",
2878 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2880 .consumer_supplies
= db8500_siapipe_consumers
,
2881 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2883 [DB8500_REGULATOR_SWITCH_SGA
] = {
2884 .supply_regulator
= "db8500-vape",
2886 .name
= "db8500-sga",
2887 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2889 .consumer_supplies
= db8500_sga_consumers
,
2890 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2893 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2894 .supply_regulator
= "db8500-vape",
2896 .name
= "db8500-b2r2-mcde",
2897 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2899 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2900 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2902 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2904 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2905 * no need to hold Vape
2908 .name
= "db8500-esram12",
2909 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2911 .consumer_supplies
= db8500_esram12_consumers
,
2912 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2914 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2916 .name
= "db8500-esram12-ret",
2917 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2920 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2922 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2923 * no need to hold Vape
2926 .name
= "db8500-esram34",
2927 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2929 .consumer_supplies
= db8500_esram34_consumers
,
2930 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2932 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2934 .name
= "db8500-esram34-ret",
2935 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2940 static struct ux500_wdt_data db8500_wdt_pdata
= {
2941 .timeout
= 600, /* 10 minutes */
2942 .has_28_bits_resolution
= true,
2945 static const struct mfd_cell common_prcmu_devs
[] = {
2947 .name
= "ux500_wdt",
2948 .platform_data
= &db8500_wdt_pdata
,
2949 .pdata_size
= sizeof(db8500_wdt_pdata
),
2954 static const struct mfd_cell db8500_prcmu_devs
[] = {
2955 OF_MFD_CELL("db8500-prcmu-regulators", NULL
,
2956 &db8500_regulators
, sizeof(db8500_regulators
), 0,
2957 "stericsson,db8500-prcmu-regulator"),
2958 OF_MFD_CELL("cpuidle-dbx500",
2959 NULL
, NULL
, 0, 0, "stericsson,cpuidle-dbx500"),
2960 OF_MFD_CELL("db8500-thermal",
2961 NULL
, NULL
, 0, 0, "stericsson,db8500-thermal"),
2964 static int db8500_prcmu_register_ab8500(struct device
*parent
)
2966 struct device_node
*np
;
2967 struct resource ab850x_resource
;
2968 const struct mfd_cell ab8500_cell
= {
2969 .name
= "ab8500-core",
2970 .of_compatible
= "stericsson,ab8500",
2971 .id
= AB8500_VERSION_AB8500
,
2972 .resources
= &ab850x_resource
,
2975 const struct mfd_cell ab8505_cell
= {
2976 .name
= "ab8505-core",
2977 .of_compatible
= "stericsson,ab8505",
2978 .id
= AB8500_VERSION_AB8505
,
2979 .resources
= &ab850x_resource
,
2982 const struct mfd_cell
*ab850x_cell
;
2984 if (!parent
->of_node
)
2987 /* Look up the device node, sneak the IRQ out of it */
2988 for_each_child_of_node(parent
->of_node
, np
) {
2989 if (of_device_is_compatible(np
, ab8500_cell
.of_compatible
)) {
2990 ab850x_cell
= &ab8500_cell
;
2993 if (of_device_is_compatible(np
, ab8505_cell
.of_compatible
)) {
2994 ab850x_cell
= &ab8505_cell
;
2999 dev_info(parent
, "could not find AB850X node in the device tree\n");
3002 of_irq_to_resource_table(np
, &ab850x_resource
, 1);
3004 return mfd_add_devices(parent
, 0, ab850x_cell
, 1, NULL
, 0, NULL
);
3008 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3011 static int db8500_prcmu_probe(struct platform_device
*pdev
)
3013 struct device_node
*np
= pdev
->dev
.of_node
;
3014 int irq
= 0, err
= 0;
3015 struct resource
*res
;
3017 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3019 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3022 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3025 "failed to ioremap prcmu register memory\n");
3028 init_prcm_registers();
3029 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3031 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3034 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3035 resource_size(res
));
3038 "failed to ioremap prcmu-tcdm register memory\n");
3042 /* Clean up the mailbox interrupts after pre-kernel code. */
3043 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3045 irq
= platform_get_irq(pdev
, 0);
3049 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3050 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3052 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3056 db8500_irq_init(np
);
3058 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3060 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3061 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3063 pr_err("prcmu: Failed to add subdevices\n");
3067 /* TODO: Remove restriction when clk definitions are available. */
3068 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3069 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3070 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3073 mfd_remove_devices(&pdev
->dev
);
3074 pr_err("prcmu: Failed to add subdevices\n");
3079 err
= db8500_prcmu_register_ab8500(&pdev
->dev
);
3081 mfd_remove_devices(&pdev
->dev
);
3082 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3086 pr_info("DB8500 PRCMU initialized\n");
3089 static const struct of_device_id db8500_prcmu_match
[] = {
3090 { .compatible
= "stericsson,db8500-prcmu"},
3094 static struct platform_driver db8500_prcmu_driver
= {
3096 .name
= "db8500-prcmu",
3097 .of_match_table
= db8500_prcmu_match
,
3099 .probe
= db8500_prcmu_probe
,
3102 static int __init
db8500_prcmu_init(void)
3104 return platform_driver_register(&db8500_prcmu_driver
);
3106 core_initcall(db8500_prcmu_init
);