gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / altera / altera_tse_main.c
blob1671c1f36691d450d6a2c38905659d511ec5fd32
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Altera Triple-Speed Ethernet MAC driver
3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
5 * Contributors:
6 * Dalon Westergreen
7 * Thomas Chou
8 * Ian Abbott
9 * Yuriy Kozlov
10 * Tobias Klauser
11 * Andriy Smolskyy
12 * Roman Bulgakov
13 * Dmytro Mytarchuk
14 * Matthew Gerlach
16 * Original driver contributed by SLS.
17 * Major updates contributed by GlobalLogic
20 #include <linux/atomic.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/netdevice.h>
31 #include <linux/of_device.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/of_platform.h>
35 #include <linux/phy.h>
36 #include <linux/platform_device.h>
37 #include <linux/skbuff.h>
38 #include <asm/cacheflush.h>
40 #include "altera_utils.h"
41 #include "altera_tse.h"
42 #include "altera_sgdma.h"
43 #include "altera_msgdma.h"
45 static atomic_t instance_count = ATOMIC_INIT(~0);
46 /* Module parameters */
47 static int debug = -1;
48 module_param(debug, int, 0644);
49 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
51 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN);
55 #define RX_DESCRIPTORS 64
56 static int dma_rx_num = RX_DESCRIPTORS;
57 module_param(dma_rx_num, int, 0644);
58 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
60 #define TX_DESCRIPTORS 64
61 static int dma_tx_num = TX_DESCRIPTORS;
62 module_param(dma_tx_num, int, 0644);
63 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
66 #define POLL_PHY (-1)
68 /* Make sure DMA buffer size is larger than the max frame size
69 * plus some alignment offset and a VLAN header. If the max frame size is
70 * 1518, a VLAN header would be additional 4 bytes and additional
71 * headroom for alignment is 2 bytes, 2048 is just fine.
73 #define ALTERA_RXDMABUFFER_SIZE 2048
75 /* Allow network stack to resume queueing packets after we've
76 * finished transmitting at least 1/4 of the packets in the queue.
78 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4)
80 #define TXQUEUESTOP_THRESHHOLD 2
82 static const struct of_device_id altera_tse_ids[];
84 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
86 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
89 /* PCS Register read/write functions
91 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
93 return csrrd32(priv->mac_dev,
94 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
97 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
98 u16 value)
100 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
103 /* Check PCS scratch memory */
104 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
106 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
107 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
110 /* MDIO specific functions
112 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
114 struct net_device *ndev = bus->priv;
115 struct altera_tse_private *priv = netdev_priv(ndev);
117 /* set MDIO address */
118 csrwr32((mii_id & 0x1f), priv->mac_dev,
119 tse_csroffs(mdio_phy1_addr));
121 /* get the data */
122 return csrrd32(priv->mac_dev,
123 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
126 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
127 u16 value)
129 struct net_device *ndev = bus->priv;
130 struct altera_tse_private *priv = netdev_priv(ndev);
132 /* set MDIO address */
133 csrwr32((mii_id & 0x1f), priv->mac_dev,
134 tse_csroffs(mdio_phy1_addr));
136 /* write the data */
137 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
138 return 0;
141 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
143 struct altera_tse_private *priv = netdev_priv(dev);
144 int ret;
145 struct device_node *mdio_node = NULL;
146 struct mii_bus *mdio = NULL;
147 struct device_node *child_node = NULL;
149 for_each_child_of_node(priv->device->of_node, child_node) {
150 if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
151 mdio_node = child_node;
152 break;
156 if (mdio_node) {
157 netdev_dbg(dev, "FOUND MDIO subnode\n");
158 } else {
159 netdev_dbg(dev, "NO MDIO subnode\n");
160 return 0;
163 mdio = mdiobus_alloc();
164 if (mdio == NULL) {
165 netdev_err(dev, "Error allocating MDIO bus\n");
166 return -ENOMEM;
169 mdio->name = ALTERA_TSE_RESOURCE_NAME;
170 mdio->read = &altera_tse_mdio_read;
171 mdio->write = &altera_tse_mdio_write;
172 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
174 mdio->priv = dev;
175 mdio->parent = priv->device;
177 ret = of_mdiobus_register(mdio, mdio_node);
178 if (ret != 0) {
179 netdev_err(dev, "Cannot register MDIO bus %s\n",
180 mdio->id);
181 goto out_free_mdio;
184 if (netif_msg_drv(priv))
185 netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
187 priv->mdio = mdio;
188 return 0;
189 out_free_mdio:
190 mdiobus_free(mdio);
191 mdio = NULL;
192 return ret;
195 static void altera_tse_mdio_destroy(struct net_device *dev)
197 struct altera_tse_private *priv = netdev_priv(dev);
199 if (priv->mdio == NULL)
200 return;
202 if (netif_msg_drv(priv))
203 netdev_info(dev, "MDIO bus %s: removed\n",
204 priv->mdio->id);
206 mdiobus_unregister(priv->mdio);
207 mdiobus_free(priv->mdio);
208 priv->mdio = NULL;
211 static int tse_init_rx_buffer(struct altera_tse_private *priv,
212 struct tse_buffer *rxbuffer, int len)
214 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
215 if (!rxbuffer->skb)
216 return -ENOMEM;
218 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
219 len,
220 DMA_FROM_DEVICE);
222 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
223 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
224 dev_kfree_skb_any(rxbuffer->skb);
225 return -EINVAL;
227 rxbuffer->dma_addr &= (dma_addr_t)~3;
228 rxbuffer->len = len;
229 return 0;
232 static void tse_free_rx_buffer(struct altera_tse_private *priv,
233 struct tse_buffer *rxbuffer)
235 struct sk_buff *skb = rxbuffer->skb;
236 dma_addr_t dma_addr = rxbuffer->dma_addr;
238 if (skb != NULL) {
239 if (dma_addr)
240 dma_unmap_single(priv->device, dma_addr,
241 rxbuffer->len,
242 DMA_FROM_DEVICE);
243 dev_kfree_skb_any(skb);
244 rxbuffer->skb = NULL;
245 rxbuffer->dma_addr = 0;
249 /* Unmap and free Tx buffer resources
251 static void tse_free_tx_buffer(struct altera_tse_private *priv,
252 struct tse_buffer *buffer)
254 if (buffer->dma_addr) {
255 if (buffer->mapped_as_page)
256 dma_unmap_page(priv->device, buffer->dma_addr,
257 buffer->len, DMA_TO_DEVICE);
258 else
259 dma_unmap_single(priv->device, buffer->dma_addr,
260 buffer->len, DMA_TO_DEVICE);
261 buffer->dma_addr = 0;
263 if (buffer->skb) {
264 dev_kfree_skb_any(buffer->skb);
265 buffer->skb = NULL;
269 static int alloc_init_skbufs(struct altera_tse_private *priv)
271 unsigned int rx_descs = priv->rx_ring_size;
272 unsigned int tx_descs = priv->tx_ring_size;
273 int ret = -ENOMEM;
274 int i;
276 /* Create Rx ring buffer */
277 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
278 GFP_KERNEL);
279 if (!priv->rx_ring)
280 goto err_rx_ring;
282 /* Create Tx ring buffer */
283 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
284 GFP_KERNEL);
285 if (!priv->tx_ring)
286 goto err_tx_ring;
288 priv->tx_cons = 0;
289 priv->tx_prod = 0;
291 /* Init Rx ring */
292 for (i = 0; i < rx_descs; i++) {
293 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
294 priv->rx_dma_buf_sz);
295 if (ret)
296 goto err_init_rx_buffers;
299 priv->rx_cons = 0;
300 priv->rx_prod = 0;
302 return 0;
303 err_init_rx_buffers:
304 while (--i >= 0)
305 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
306 kfree(priv->tx_ring);
307 err_tx_ring:
308 kfree(priv->rx_ring);
309 err_rx_ring:
310 return ret;
313 static void free_skbufs(struct net_device *dev)
315 struct altera_tse_private *priv = netdev_priv(dev);
316 unsigned int rx_descs = priv->rx_ring_size;
317 unsigned int tx_descs = priv->tx_ring_size;
318 int i;
320 /* Release the DMA TX/RX socket buffers */
321 for (i = 0; i < rx_descs; i++)
322 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
323 for (i = 0; i < tx_descs; i++)
324 tse_free_tx_buffer(priv, &priv->tx_ring[i]);
327 kfree(priv->tx_ring);
330 /* Reallocate the skb for the reception process
332 static inline void tse_rx_refill(struct altera_tse_private *priv)
334 unsigned int rxsize = priv->rx_ring_size;
335 unsigned int entry;
336 int ret;
338 for (; priv->rx_cons - priv->rx_prod > 0;
339 priv->rx_prod++) {
340 entry = priv->rx_prod % rxsize;
341 if (likely(priv->rx_ring[entry].skb == NULL)) {
342 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
343 priv->rx_dma_buf_sz);
344 if (unlikely(ret != 0))
345 break;
346 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
351 /* Pull out the VLAN tag and fix up the packet
353 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
355 struct ethhdr *eth_hdr;
356 u16 vid;
357 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
358 !__vlan_get_tag(skb, &vid)) {
359 eth_hdr = (struct ethhdr *)skb->data;
360 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
361 skb_pull(skb, VLAN_HLEN);
362 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
366 /* Receive a packet: retrieve and pass over to upper levels
368 static int tse_rx(struct altera_tse_private *priv, int limit)
370 unsigned int count = 0;
371 unsigned int next_entry;
372 struct sk_buff *skb;
373 unsigned int entry = priv->rx_cons % priv->rx_ring_size;
374 u32 rxstatus;
375 u16 pktlength;
376 u16 pktstatus;
378 /* Check for count < limit first as get_rx_status is changing
379 * the response-fifo so we must process the next packet
380 * after calling get_rx_status if a response is pending.
381 * (reading the last byte of the response pops the value from the fifo.)
383 while ((count < limit) &&
384 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
385 pktstatus = rxstatus >> 16;
386 pktlength = rxstatus & 0xffff;
388 if ((pktstatus & 0xFF) || (pktlength == 0))
389 netdev_err(priv->dev,
390 "RCV pktstatus %08X pktlength %08X\n",
391 pktstatus, pktlength);
393 /* DMA trasfer from TSE starts with 2 aditional bytes for
394 * IP payload alignment. Status returned by get_rx_status()
395 * contains DMA transfer length. Packet is 2 bytes shorter.
397 pktlength -= 2;
399 count++;
400 next_entry = (++priv->rx_cons) % priv->rx_ring_size;
402 skb = priv->rx_ring[entry].skb;
403 if (unlikely(!skb)) {
404 netdev_err(priv->dev,
405 "%s: Inconsistent Rx descriptor chain\n",
406 __func__);
407 priv->dev->stats.rx_dropped++;
408 break;
410 priv->rx_ring[entry].skb = NULL;
412 skb_put(skb, pktlength);
414 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
415 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
417 if (netif_msg_pktdata(priv)) {
418 netdev_info(priv->dev, "frame received %d bytes\n",
419 pktlength);
420 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
421 16, 1, skb->data, pktlength, true);
424 tse_rx_vlan(priv->dev, skb);
426 skb->protocol = eth_type_trans(skb, priv->dev);
427 skb_checksum_none_assert(skb);
429 napi_gro_receive(&priv->napi, skb);
431 priv->dev->stats.rx_packets++;
432 priv->dev->stats.rx_bytes += pktlength;
434 entry = next_entry;
436 tse_rx_refill(priv);
439 return count;
442 /* Reclaim resources after transmission completes
444 static int tse_tx_complete(struct altera_tse_private *priv)
446 unsigned int txsize = priv->tx_ring_size;
447 u32 ready;
448 unsigned int entry;
449 struct tse_buffer *tx_buff;
450 int txcomplete = 0;
452 spin_lock(&priv->tx_lock);
454 ready = priv->dmaops->tx_completions(priv);
456 /* Free sent buffers */
457 while (ready && (priv->tx_cons != priv->tx_prod)) {
458 entry = priv->tx_cons % txsize;
459 tx_buff = &priv->tx_ring[entry];
461 if (netif_msg_tx_done(priv))
462 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
463 __func__, priv->tx_prod, priv->tx_cons);
465 if (likely(tx_buff->skb))
466 priv->dev->stats.tx_packets++;
468 tse_free_tx_buffer(priv, tx_buff);
469 priv->tx_cons++;
471 txcomplete++;
472 ready--;
475 if (unlikely(netif_queue_stopped(priv->dev) &&
476 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
477 if (netif_queue_stopped(priv->dev) &&
478 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
479 if (netif_msg_tx_done(priv))
480 netdev_dbg(priv->dev, "%s: restart transmit\n",
481 __func__);
482 netif_wake_queue(priv->dev);
486 spin_unlock(&priv->tx_lock);
487 return txcomplete;
490 /* NAPI polling function
492 static int tse_poll(struct napi_struct *napi, int budget)
494 struct altera_tse_private *priv =
495 container_of(napi, struct altera_tse_private, napi);
496 int rxcomplete = 0;
497 unsigned long int flags;
499 tse_tx_complete(priv);
501 rxcomplete = tse_rx(priv, budget);
503 if (rxcomplete < budget) {
505 napi_complete_done(napi, rxcomplete);
507 netdev_dbg(priv->dev,
508 "NAPI Complete, did %d packets with budget %d\n",
509 rxcomplete, budget);
511 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
512 priv->dmaops->enable_rxirq(priv);
513 priv->dmaops->enable_txirq(priv);
514 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
516 return rxcomplete;
519 /* DMA TX & RX FIFO interrupt routing
521 static irqreturn_t altera_isr(int irq, void *dev_id)
523 struct net_device *dev = dev_id;
524 struct altera_tse_private *priv;
526 if (unlikely(!dev)) {
527 pr_err("%s: invalid dev pointer\n", __func__);
528 return IRQ_NONE;
530 priv = netdev_priv(dev);
532 spin_lock(&priv->rxdma_irq_lock);
533 /* reset IRQs */
534 priv->dmaops->clear_rxirq(priv);
535 priv->dmaops->clear_txirq(priv);
536 spin_unlock(&priv->rxdma_irq_lock);
538 if (likely(napi_schedule_prep(&priv->napi))) {
539 spin_lock(&priv->rxdma_irq_lock);
540 priv->dmaops->disable_rxirq(priv);
541 priv->dmaops->disable_txirq(priv);
542 spin_unlock(&priv->rxdma_irq_lock);
543 __napi_schedule(&priv->napi);
547 return IRQ_HANDLED;
550 /* Transmit a packet (called by the kernel). Dispatches
551 * either the SGDMA method for transmitting or the
552 * MSGDMA method, assumes no scatter/gather support,
553 * implying an assumption that there's only one
554 * physically contiguous fragment starting at
555 * skb->data, for length of skb_headlen(skb).
557 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
559 struct altera_tse_private *priv = netdev_priv(dev);
560 unsigned int txsize = priv->tx_ring_size;
561 unsigned int entry;
562 struct tse_buffer *buffer = NULL;
563 int nfrags = skb_shinfo(skb)->nr_frags;
564 unsigned int nopaged_len = skb_headlen(skb);
565 enum netdev_tx ret = NETDEV_TX_OK;
566 dma_addr_t dma_addr;
568 spin_lock_bh(&priv->tx_lock);
570 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
571 if (!netif_queue_stopped(dev)) {
572 netif_stop_queue(dev);
573 /* This is a hard error, log it. */
574 netdev_err(priv->dev,
575 "%s: Tx list full when queue awake\n",
576 __func__);
578 ret = NETDEV_TX_BUSY;
579 goto out;
582 /* Map the first skb fragment */
583 entry = priv->tx_prod % txsize;
584 buffer = &priv->tx_ring[entry];
586 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
587 DMA_TO_DEVICE);
588 if (dma_mapping_error(priv->device, dma_addr)) {
589 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
590 ret = NETDEV_TX_OK;
591 goto out;
594 buffer->skb = skb;
595 buffer->dma_addr = dma_addr;
596 buffer->len = nopaged_len;
598 priv->dmaops->tx_buffer(priv, buffer);
600 skb_tx_timestamp(skb);
602 priv->tx_prod++;
603 dev->stats.tx_bytes += skb->len;
605 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
606 if (netif_msg_hw(priv))
607 netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
608 __func__);
609 netif_stop_queue(dev);
612 out:
613 spin_unlock_bh(&priv->tx_lock);
615 return ret;
618 /* Called every time the controller might need to be made
619 * aware of new link state. The PHY code conveys this
620 * information through variables in the phydev structure, and this
621 * function converts those variables into the appropriate
622 * register values, and can bring down the device if needed.
624 static void altera_tse_adjust_link(struct net_device *dev)
626 struct altera_tse_private *priv = netdev_priv(dev);
627 struct phy_device *phydev = dev->phydev;
628 int new_state = 0;
630 /* only change config if there is a link */
631 spin_lock(&priv->mac_cfg_lock);
632 if (phydev->link) {
633 /* Read old config */
634 u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
636 /* Check duplex */
637 if (phydev->duplex != priv->oldduplex) {
638 new_state = 1;
639 if (!(phydev->duplex))
640 cfg_reg |= MAC_CMDCFG_HD_ENA;
641 else
642 cfg_reg &= ~MAC_CMDCFG_HD_ENA;
644 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
645 dev->name, phydev->duplex);
647 priv->oldduplex = phydev->duplex;
650 /* Check speed */
651 if (phydev->speed != priv->oldspeed) {
652 new_state = 1;
653 switch (phydev->speed) {
654 case 1000:
655 cfg_reg |= MAC_CMDCFG_ETH_SPEED;
656 cfg_reg &= ~MAC_CMDCFG_ENA_10;
657 break;
658 case 100:
659 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
660 cfg_reg &= ~MAC_CMDCFG_ENA_10;
661 break;
662 case 10:
663 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
664 cfg_reg |= MAC_CMDCFG_ENA_10;
665 break;
666 default:
667 if (netif_msg_link(priv))
668 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
669 phydev->speed);
670 break;
672 priv->oldspeed = phydev->speed;
674 iowrite32(cfg_reg, &priv->mac_dev->command_config);
676 if (!priv->oldlink) {
677 new_state = 1;
678 priv->oldlink = 1;
680 } else if (priv->oldlink) {
681 new_state = 1;
682 priv->oldlink = 0;
683 priv->oldspeed = 0;
684 priv->oldduplex = -1;
687 if (new_state && netif_msg_link(priv))
688 phy_print_status(phydev);
690 spin_unlock(&priv->mac_cfg_lock);
692 static struct phy_device *connect_local_phy(struct net_device *dev)
694 struct altera_tse_private *priv = netdev_priv(dev);
695 struct phy_device *phydev = NULL;
696 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
698 if (priv->phy_addr != POLL_PHY) {
699 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
700 priv->mdio->id, priv->phy_addr);
702 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
704 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
705 priv->phy_iface);
706 if (IS_ERR(phydev)) {
707 netdev_err(dev, "Could not attach to PHY\n");
708 phydev = NULL;
711 } else {
712 int ret;
713 phydev = phy_find_first(priv->mdio);
714 if (phydev == NULL) {
715 netdev_err(dev, "No PHY found\n");
716 return phydev;
719 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
720 priv->phy_iface);
721 if (ret != 0) {
722 netdev_err(dev, "Could not attach to PHY\n");
723 phydev = NULL;
726 return phydev;
729 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
731 struct altera_tse_private *priv = netdev_priv(dev);
732 struct device_node *np = priv->device->of_node;
733 int ret;
735 ret = of_get_phy_mode(np, &priv->phy_iface);
737 /* Avoid get phy addr and create mdio if no phy is present */
738 if (ret)
739 return 0;
741 /* try to get PHY address from device tree, use PHY autodetection if
742 * no valid address is given
745 if (of_property_read_u32(priv->device->of_node, "phy-addr",
746 &priv->phy_addr)) {
747 priv->phy_addr = POLL_PHY;
750 if (!((priv->phy_addr == POLL_PHY) ||
751 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
752 netdev_err(dev, "invalid phy-addr specified %d\n",
753 priv->phy_addr);
754 return -ENODEV;
757 /* Create/attach to MDIO bus */
758 ret = altera_tse_mdio_create(dev,
759 atomic_add_return(1, &instance_count));
761 if (ret)
762 return -ENODEV;
764 return 0;
767 /* Initialize driver's PHY state, and attach to the PHY
769 static int init_phy(struct net_device *dev)
771 struct altera_tse_private *priv = netdev_priv(dev);
772 struct phy_device *phydev;
773 struct device_node *phynode;
774 bool fixed_link = false;
775 int rc = 0;
777 /* Avoid init phy in case of no phy present */
778 if (!priv->phy_iface)
779 return 0;
781 priv->oldlink = 0;
782 priv->oldspeed = 0;
783 priv->oldduplex = -1;
785 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
787 if (!phynode) {
788 /* check if a fixed-link is defined in device-tree */
789 if (of_phy_is_fixed_link(priv->device->of_node)) {
790 rc = of_phy_register_fixed_link(priv->device->of_node);
791 if (rc < 0) {
792 netdev_err(dev, "cannot register fixed PHY\n");
793 return rc;
796 /* In the case of a fixed PHY, the DT node associated
797 * to the PHY is the Ethernet MAC DT node.
799 phynode = of_node_get(priv->device->of_node);
800 fixed_link = true;
802 netdev_dbg(dev, "fixed-link detected\n");
803 phydev = of_phy_connect(dev, phynode,
804 &altera_tse_adjust_link,
805 0, priv->phy_iface);
806 } else {
807 netdev_dbg(dev, "no phy-handle found\n");
808 if (!priv->mdio) {
809 netdev_err(dev, "No phy-handle nor local mdio specified\n");
810 return -ENODEV;
812 phydev = connect_local_phy(dev);
814 } else {
815 netdev_dbg(dev, "phy-handle found\n");
816 phydev = of_phy_connect(dev, phynode,
817 &altera_tse_adjust_link, 0, priv->phy_iface);
819 of_node_put(phynode);
821 if (!phydev) {
822 netdev_err(dev, "Could not find the PHY\n");
823 if (fixed_link)
824 of_phy_deregister_fixed_link(priv->device->of_node);
825 return -ENODEV;
828 /* Stop Advertising 1000BASE Capability if interface is not GMII
830 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
831 (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
832 phy_set_max_speed(phydev, SPEED_100);
834 /* Broken HW is sometimes missing the pull-up resistor on the
835 * MDIO line, which results in reads to non-existent devices returning
836 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
837 * device as well. If a fixed-link is used the phy_id is always 0.
838 * Note: phydev->phy_id is the result of reading the UID PHY registers.
840 if ((phydev->phy_id == 0) && !fixed_link) {
841 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
842 phy_disconnect(phydev);
843 return -ENODEV;
846 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
847 phydev->mdio.addr, phydev->phy_id, phydev->link);
849 return 0;
852 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
854 u32 msb;
855 u32 lsb;
857 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
858 lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
860 /* Set primary MAC address */
861 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
862 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
865 /* MAC software reset.
866 * When reset is triggered, the MAC function completes the current
867 * transmission or reception, and subsequently disables the transmit and
868 * receive logic, flushes the receive FIFO buffer, and resets the statistics
869 * counters.
871 static int reset_mac(struct altera_tse_private *priv)
873 int counter;
874 u32 dat;
876 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
877 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
878 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
879 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
881 counter = 0;
882 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
883 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
884 MAC_CMDCFG_SW_RESET))
885 break;
886 udelay(1);
889 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
890 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
891 dat &= ~MAC_CMDCFG_SW_RESET;
892 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
893 return -1;
895 return 0;
898 /* Initialize MAC core registers
900 static int init_mac(struct altera_tse_private *priv)
902 unsigned int cmd = 0;
903 u32 frm_length;
905 /* Setup Rx FIFO */
906 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
907 priv->mac_dev, tse_csroffs(rx_section_empty));
909 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
910 tse_csroffs(rx_section_full));
912 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
913 tse_csroffs(rx_almost_empty));
915 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
916 tse_csroffs(rx_almost_full));
918 /* Setup Tx FIFO */
919 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
920 priv->mac_dev, tse_csroffs(tx_section_empty));
922 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
923 tse_csroffs(tx_section_full));
925 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
926 tse_csroffs(tx_almost_empty));
928 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
929 tse_csroffs(tx_almost_full));
931 /* MAC Address Configuration */
932 tse_update_mac_addr(priv, priv->dev->dev_addr);
934 /* MAC Function Configuration */
935 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
936 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
938 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
939 tse_csroffs(tx_ipg_length));
941 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
942 * start address
944 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
945 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
947 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
948 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
949 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
951 /* Set the MAC options */
952 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
953 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */
954 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */
955 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames
956 * with CRC errors
958 cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
959 cmd &= ~MAC_CMDCFG_TX_ENA;
960 cmd &= ~MAC_CMDCFG_RX_ENA;
962 /* Default speed and duplex setting, full/100 */
963 cmd &= ~MAC_CMDCFG_HD_ENA;
964 cmd &= ~MAC_CMDCFG_ETH_SPEED;
965 cmd &= ~MAC_CMDCFG_ENA_10;
967 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
969 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
970 tse_csroffs(pause_quanta));
972 if (netif_msg_hw(priv))
973 dev_dbg(priv->device,
974 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
976 return 0;
979 /* Start/stop MAC transmission logic
981 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
983 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
985 if (enable)
986 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
987 else
988 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
990 csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
993 /* Change the MTU
995 static int tse_change_mtu(struct net_device *dev, int new_mtu)
997 if (netif_running(dev)) {
998 netdev_err(dev, "must be stopped to change its MTU\n");
999 return -EBUSY;
1002 dev->mtu = new_mtu;
1003 netdev_update_features(dev);
1005 return 0;
1008 static void altera_tse_set_mcfilter(struct net_device *dev)
1010 struct altera_tse_private *priv = netdev_priv(dev);
1011 int i;
1012 struct netdev_hw_addr *ha;
1014 /* clear the hash filter */
1015 for (i = 0; i < 64; i++)
1016 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1018 netdev_for_each_mc_addr(ha, dev) {
1019 unsigned int hash = 0;
1020 int mac_octet;
1022 for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1023 unsigned char xor_bit = 0;
1024 unsigned char octet = ha->addr[mac_octet];
1025 unsigned int bitshift;
1027 for (bitshift = 0; bitshift < 8; bitshift++)
1028 xor_bit ^= ((octet >> bitshift) & 0x01);
1030 hash = (hash << 1) | xor_bit;
1032 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1037 static void altera_tse_set_mcfilterall(struct net_device *dev)
1039 struct altera_tse_private *priv = netdev_priv(dev);
1040 int i;
1042 /* set the hash filter */
1043 for (i = 0; i < 64; i++)
1044 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1047 /* Set or clear the multicast filter for this adaptor
1049 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1051 struct altera_tse_private *priv = netdev_priv(dev);
1053 spin_lock(&priv->mac_cfg_lock);
1055 if (dev->flags & IFF_PROMISC)
1056 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1057 MAC_CMDCFG_PROMIS_EN);
1059 if (dev->flags & IFF_ALLMULTI)
1060 altera_tse_set_mcfilterall(dev);
1061 else
1062 altera_tse_set_mcfilter(dev);
1064 spin_unlock(&priv->mac_cfg_lock);
1067 /* Set or clear the multicast filter for this adaptor
1069 static void tse_set_rx_mode(struct net_device *dev)
1071 struct altera_tse_private *priv = netdev_priv(dev);
1073 spin_lock(&priv->mac_cfg_lock);
1075 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1076 !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1077 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1078 MAC_CMDCFG_PROMIS_EN);
1079 else
1080 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1081 MAC_CMDCFG_PROMIS_EN);
1083 spin_unlock(&priv->mac_cfg_lock);
1086 /* Initialise (if necessary) the SGMII PCS component
1088 static int init_sgmii_pcs(struct net_device *dev)
1090 struct altera_tse_private *priv = netdev_priv(dev);
1091 int n;
1092 unsigned int tmp_reg = 0;
1094 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1095 return 0; /* Nothing to do, not in SGMII mode */
1097 /* The TSE SGMII PCS block looks a little like a PHY, it is
1098 * mapped into the zeroth MDIO space of the MAC and it has
1099 * ID registers like a PHY would. Sadly this is often
1100 * configured to zeroes, so don't be surprised if it does
1101 * show 0x00000000.
1104 if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1105 sgmii_pcs_scratch_test(priv, 0xffff) &&
1106 sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1107 sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1108 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1109 sgmii_pcs_read(priv, MII_PHYSID1),
1110 sgmii_pcs_read(priv, MII_PHYSID2));
1111 } else {
1112 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1113 return -ENOMEM;
1116 /* Starting on page 5-29 of the MegaCore Function User Guide
1117 * Set SGMII Link timer to 1.6ms
1119 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1120 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1122 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1123 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1125 /* Enable Autonegotiation */
1126 tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1127 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1128 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1130 /* Reset PCS block */
1131 tmp_reg |= BMCR_RESET;
1132 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1133 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1134 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1135 netdev_info(dev, "SGMII PCS block initialised OK\n");
1136 return 0;
1138 udelay(1);
1141 /* We failed to reset the block, return a timeout */
1142 netdev_err(dev, "SGMII PCS block reset failed.\n");
1143 return -ETIMEDOUT;
1146 /* Open and initialize the interface
1148 static int tse_open(struct net_device *dev)
1150 struct altera_tse_private *priv = netdev_priv(dev);
1151 int ret = 0;
1152 int i;
1153 unsigned long int flags;
1155 /* Reset and configure TSE MAC and probe associated PHY */
1156 ret = priv->dmaops->init_dma(priv);
1157 if (ret != 0) {
1158 netdev_err(dev, "Cannot initialize DMA\n");
1159 goto phy_error;
1162 if (netif_msg_ifup(priv))
1163 netdev_warn(dev, "device MAC address %pM\n",
1164 dev->dev_addr);
1166 if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1167 netdev_warn(dev, "TSE revision %x\n", priv->revision);
1169 spin_lock(&priv->mac_cfg_lock);
1170 /* no-op if MAC not operating in SGMII mode*/
1171 ret = init_sgmii_pcs(dev);
1172 if (ret) {
1173 netdev_err(dev,
1174 "Cannot init the SGMII PCS (error: %d)\n", ret);
1175 spin_unlock(&priv->mac_cfg_lock);
1176 goto phy_error;
1179 ret = reset_mac(priv);
1180 /* Note that reset_mac will fail if the clocks are gated by the PHY
1181 * due to the PHY being put into isolation or power down mode.
1182 * This is not an error if reset fails due to no clock.
1184 if (ret)
1185 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1187 ret = init_mac(priv);
1188 spin_unlock(&priv->mac_cfg_lock);
1189 if (ret) {
1190 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1191 goto alloc_skbuf_error;
1194 priv->dmaops->reset_dma(priv);
1196 /* Create and initialize the TX/RX descriptors chains. */
1197 priv->rx_ring_size = dma_rx_num;
1198 priv->tx_ring_size = dma_tx_num;
1199 ret = alloc_init_skbufs(priv);
1200 if (ret) {
1201 netdev_err(dev, "DMA descriptors initialization failed\n");
1202 goto alloc_skbuf_error;
1206 /* Register RX interrupt */
1207 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1208 dev->name, dev);
1209 if (ret) {
1210 netdev_err(dev, "Unable to register RX interrupt %d\n",
1211 priv->rx_irq);
1212 goto init_error;
1215 /* Register TX interrupt */
1216 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1217 dev->name, dev);
1218 if (ret) {
1219 netdev_err(dev, "Unable to register TX interrupt %d\n",
1220 priv->tx_irq);
1221 goto tx_request_irq_error;
1224 /* Enable DMA interrupts */
1225 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1226 priv->dmaops->enable_rxirq(priv);
1227 priv->dmaops->enable_txirq(priv);
1229 /* Setup RX descriptor chain */
1230 for (i = 0; i < priv->rx_ring_size; i++)
1231 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1233 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1235 if (dev->phydev)
1236 phy_start(dev->phydev);
1238 napi_enable(&priv->napi);
1239 netif_start_queue(dev);
1241 priv->dmaops->start_rxdma(priv);
1243 /* Start MAC Rx/Tx */
1244 spin_lock(&priv->mac_cfg_lock);
1245 tse_set_mac(priv, true);
1246 spin_unlock(&priv->mac_cfg_lock);
1248 return 0;
1250 tx_request_irq_error:
1251 free_irq(priv->rx_irq, dev);
1252 init_error:
1253 free_skbufs(dev);
1254 alloc_skbuf_error:
1255 phy_error:
1256 return ret;
1259 /* Stop TSE MAC interface and put the device in an inactive state
1261 static int tse_shutdown(struct net_device *dev)
1263 struct altera_tse_private *priv = netdev_priv(dev);
1264 int ret;
1265 unsigned long int flags;
1267 /* Stop the PHY */
1268 if (dev->phydev)
1269 phy_stop(dev->phydev);
1271 netif_stop_queue(dev);
1272 napi_disable(&priv->napi);
1274 /* Disable DMA interrupts */
1275 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1276 priv->dmaops->disable_rxirq(priv);
1277 priv->dmaops->disable_txirq(priv);
1278 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1280 /* Free the IRQ lines */
1281 free_irq(priv->rx_irq, dev);
1282 free_irq(priv->tx_irq, dev);
1284 /* disable and reset the MAC, empties fifo */
1285 spin_lock(&priv->mac_cfg_lock);
1286 spin_lock(&priv->tx_lock);
1288 ret = reset_mac(priv);
1289 /* Note that reset_mac will fail if the clocks are gated by the PHY
1290 * due to the PHY being put into isolation or power down mode.
1291 * This is not an error if reset fails due to no clock.
1293 if (ret)
1294 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1295 priv->dmaops->reset_dma(priv);
1296 free_skbufs(dev);
1298 spin_unlock(&priv->tx_lock);
1299 spin_unlock(&priv->mac_cfg_lock);
1301 priv->dmaops->uninit_dma(priv);
1303 return 0;
1306 static struct net_device_ops altera_tse_netdev_ops = {
1307 .ndo_open = tse_open,
1308 .ndo_stop = tse_shutdown,
1309 .ndo_start_xmit = tse_start_xmit,
1310 .ndo_set_mac_address = eth_mac_addr,
1311 .ndo_set_rx_mode = tse_set_rx_mode,
1312 .ndo_change_mtu = tse_change_mtu,
1313 .ndo_validate_addr = eth_validate_addr,
1316 static int request_and_map(struct platform_device *pdev, const char *name,
1317 struct resource **res, void __iomem **ptr)
1319 struct resource *region;
1320 struct device *device = &pdev->dev;
1322 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1323 if (*res == NULL) {
1324 dev_err(device, "resource %s not defined\n", name);
1325 return -ENODEV;
1328 region = devm_request_mem_region(device, (*res)->start,
1329 resource_size(*res), dev_name(device));
1330 if (region == NULL) {
1331 dev_err(device, "unable to request %s\n", name);
1332 return -EBUSY;
1335 *ptr = devm_ioremap(device, region->start,
1336 resource_size(region));
1337 if (*ptr == NULL) {
1338 dev_err(device, "ioremap of %s failed!", name);
1339 return -ENOMEM;
1342 return 0;
1345 /* Probe Altera TSE MAC device
1347 static int altera_tse_probe(struct platform_device *pdev)
1349 struct net_device *ndev;
1350 int ret = -ENODEV;
1351 struct resource *control_port;
1352 struct resource *dma_res;
1353 struct altera_tse_private *priv;
1354 const unsigned char *macaddr;
1355 void __iomem *descmap;
1356 const struct of_device_id *of_id = NULL;
1358 ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1359 if (!ndev) {
1360 dev_err(&pdev->dev, "Could not allocate network device\n");
1361 return -ENODEV;
1364 SET_NETDEV_DEV(ndev, &pdev->dev);
1366 priv = netdev_priv(ndev);
1367 priv->device = &pdev->dev;
1368 priv->dev = ndev;
1369 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1371 of_id = of_match_device(altera_tse_ids, &pdev->dev);
1373 if (of_id)
1374 priv->dmaops = (struct altera_dmaops *)of_id->data;
1377 if (priv->dmaops &&
1378 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1379 /* Get the mapped address to the SGDMA descriptor memory */
1380 ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1381 if (ret)
1382 goto err_free_netdev;
1384 /* Start of that memory is for transmit descriptors */
1385 priv->tx_dma_desc = descmap;
1387 /* First half is for tx descriptors, other half for tx */
1388 priv->txdescmem = resource_size(dma_res)/2;
1390 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1392 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1393 priv->txdescmem));
1394 priv->rxdescmem = resource_size(dma_res)/2;
1395 priv->rxdescmem_busaddr = dma_res->start;
1396 priv->rxdescmem_busaddr += priv->txdescmem;
1398 if (upper_32_bits(priv->rxdescmem_busaddr)) {
1399 dev_dbg(priv->device,
1400 "SGDMA bus addresses greater than 32-bits\n");
1401 ret = -EINVAL;
1402 goto err_free_netdev;
1404 if (upper_32_bits(priv->txdescmem_busaddr)) {
1405 dev_dbg(priv->device,
1406 "SGDMA bus addresses greater than 32-bits\n");
1407 ret = -EINVAL;
1408 goto err_free_netdev;
1410 } else if (priv->dmaops &&
1411 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1412 ret = request_and_map(pdev, "rx_resp", &dma_res,
1413 &priv->rx_dma_resp);
1414 if (ret)
1415 goto err_free_netdev;
1417 ret = request_and_map(pdev, "tx_desc", &dma_res,
1418 &priv->tx_dma_desc);
1419 if (ret)
1420 goto err_free_netdev;
1422 priv->txdescmem = resource_size(dma_res);
1423 priv->txdescmem_busaddr = dma_res->start;
1425 ret = request_and_map(pdev, "rx_desc", &dma_res,
1426 &priv->rx_dma_desc);
1427 if (ret)
1428 goto err_free_netdev;
1430 priv->rxdescmem = resource_size(dma_res);
1431 priv->rxdescmem_busaddr = dma_res->start;
1433 } else {
1434 goto err_free_netdev;
1437 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1438 dma_set_coherent_mask(priv->device,
1439 DMA_BIT_MASK(priv->dmaops->dmamask));
1440 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1441 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1442 else
1443 goto err_free_netdev;
1445 /* MAC address space */
1446 ret = request_and_map(pdev, "control_port", &control_port,
1447 (void __iomem **)&priv->mac_dev);
1448 if (ret)
1449 goto err_free_netdev;
1451 /* xSGDMA Rx Dispatcher address space */
1452 ret = request_and_map(pdev, "rx_csr", &dma_res,
1453 &priv->rx_dma_csr);
1454 if (ret)
1455 goto err_free_netdev;
1458 /* xSGDMA Tx Dispatcher address space */
1459 ret = request_and_map(pdev, "tx_csr", &dma_res,
1460 &priv->tx_dma_csr);
1461 if (ret)
1462 goto err_free_netdev;
1465 /* Rx IRQ */
1466 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1467 if (priv->rx_irq == -ENXIO) {
1468 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1469 ret = -ENXIO;
1470 goto err_free_netdev;
1473 /* Tx IRQ */
1474 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1475 if (priv->tx_irq == -ENXIO) {
1476 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1477 ret = -ENXIO;
1478 goto err_free_netdev;
1481 /* get FIFO depths from device tree */
1482 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1483 &priv->rx_fifo_depth)) {
1484 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1485 ret = -ENXIO;
1486 goto err_free_netdev;
1489 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1490 &priv->tx_fifo_depth)) {
1491 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1492 ret = -ENXIO;
1493 goto err_free_netdev;
1496 /* get hash filter settings for this instance */
1497 priv->hash_filter =
1498 of_property_read_bool(pdev->dev.of_node,
1499 "altr,has-hash-multicast-filter");
1501 /* Set hash filter to not set for now until the
1502 * multicast filter receive issue is debugged
1504 priv->hash_filter = 0;
1506 /* get supplemental address settings for this instance */
1507 priv->added_unicast =
1508 of_property_read_bool(pdev->dev.of_node,
1509 "altr,has-supplementary-unicast");
1511 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1512 /* Max MTU is 1500, ETH_DATA_LEN */
1513 priv->dev->max_mtu = ETH_DATA_LEN;
1515 /* Get the max mtu from the device tree. Note that the
1516 * "max-frame-size" parameter is actually max mtu. Definition
1517 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1519 of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1520 &priv->dev->max_mtu);
1522 /* The DMA buffer size already accounts for an alignment bias
1523 * to avoid unaligned access exceptions for the NIOS processor,
1525 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1527 /* get default MAC address from device tree */
1528 macaddr = of_get_mac_address(pdev->dev.of_node);
1529 if (!IS_ERR(macaddr))
1530 ether_addr_copy(ndev->dev_addr, macaddr);
1531 else
1532 eth_hw_addr_random(ndev);
1534 /* get phy addr and create mdio */
1535 ret = altera_tse_phy_get_addr_mdio_create(ndev);
1537 if (ret)
1538 goto err_free_netdev;
1540 /* initialize netdev */
1541 ndev->mem_start = control_port->start;
1542 ndev->mem_end = control_port->end;
1543 ndev->netdev_ops = &altera_tse_netdev_ops;
1544 altera_tse_set_ethtool_ops(ndev);
1546 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1548 if (priv->hash_filter)
1549 altera_tse_netdev_ops.ndo_set_rx_mode =
1550 tse_set_rx_mode_hashfilter;
1552 /* Scatter/gather IO is not supported,
1553 * so it is turned off
1555 ndev->hw_features &= ~NETIF_F_SG;
1556 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1558 /* VLAN offloading of tagging, stripping and filtering is not
1559 * supported by hardware, but driver will accommodate the
1560 * extra 4-byte VLAN tag for processing by upper layers
1562 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1564 /* setup NAPI interface */
1565 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1567 spin_lock_init(&priv->mac_cfg_lock);
1568 spin_lock_init(&priv->tx_lock);
1569 spin_lock_init(&priv->rxdma_irq_lock);
1571 netif_carrier_off(ndev);
1572 ret = register_netdev(ndev);
1573 if (ret) {
1574 dev_err(&pdev->dev, "failed to register TSE net device\n");
1575 goto err_register_netdev;
1578 platform_set_drvdata(pdev, ndev);
1580 priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1582 if (netif_msg_probe(priv))
1583 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1584 (priv->revision >> 8) & 0xff,
1585 priv->revision & 0xff,
1586 (unsigned long) control_port->start, priv->rx_irq,
1587 priv->tx_irq);
1589 ret = init_phy(ndev);
1590 if (ret != 0) {
1591 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1592 goto err_init_phy;
1594 return 0;
1596 err_init_phy:
1597 unregister_netdev(ndev);
1598 err_register_netdev:
1599 netif_napi_del(&priv->napi);
1600 altera_tse_mdio_destroy(ndev);
1601 err_free_netdev:
1602 free_netdev(ndev);
1603 return ret;
1606 /* Remove Altera TSE MAC device
1608 static int altera_tse_remove(struct platform_device *pdev)
1610 struct net_device *ndev = platform_get_drvdata(pdev);
1611 struct altera_tse_private *priv = netdev_priv(ndev);
1613 if (ndev->phydev) {
1614 phy_disconnect(ndev->phydev);
1616 if (of_phy_is_fixed_link(priv->device->of_node))
1617 of_phy_deregister_fixed_link(priv->device->of_node);
1620 platform_set_drvdata(pdev, NULL);
1621 altera_tse_mdio_destroy(ndev);
1622 unregister_netdev(ndev);
1623 free_netdev(ndev);
1625 return 0;
1628 static const struct altera_dmaops altera_dtype_sgdma = {
1629 .altera_dtype = ALTERA_DTYPE_SGDMA,
1630 .dmamask = 32,
1631 .reset_dma = sgdma_reset,
1632 .enable_txirq = sgdma_enable_txirq,
1633 .enable_rxirq = sgdma_enable_rxirq,
1634 .disable_txirq = sgdma_disable_txirq,
1635 .disable_rxirq = sgdma_disable_rxirq,
1636 .clear_txirq = sgdma_clear_txirq,
1637 .clear_rxirq = sgdma_clear_rxirq,
1638 .tx_buffer = sgdma_tx_buffer,
1639 .tx_completions = sgdma_tx_completions,
1640 .add_rx_desc = sgdma_add_rx_desc,
1641 .get_rx_status = sgdma_rx_status,
1642 .init_dma = sgdma_initialize,
1643 .uninit_dma = sgdma_uninitialize,
1644 .start_rxdma = sgdma_start_rxdma,
1647 static const struct altera_dmaops altera_dtype_msgdma = {
1648 .altera_dtype = ALTERA_DTYPE_MSGDMA,
1649 .dmamask = 64,
1650 .reset_dma = msgdma_reset,
1651 .enable_txirq = msgdma_enable_txirq,
1652 .enable_rxirq = msgdma_enable_rxirq,
1653 .disable_txirq = msgdma_disable_txirq,
1654 .disable_rxirq = msgdma_disable_rxirq,
1655 .clear_txirq = msgdma_clear_txirq,
1656 .clear_rxirq = msgdma_clear_rxirq,
1657 .tx_buffer = msgdma_tx_buffer,
1658 .tx_completions = msgdma_tx_completions,
1659 .add_rx_desc = msgdma_add_rx_desc,
1660 .get_rx_status = msgdma_rx_status,
1661 .init_dma = msgdma_initialize,
1662 .uninit_dma = msgdma_uninitialize,
1663 .start_rxdma = msgdma_start_rxdma,
1666 static const struct of_device_id altera_tse_ids[] = {
1667 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1668 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1669 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1672 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1674 static struct platform_driver altera_tse_driver = {
1675 .probe = altera_tse_probe,
1676 .remove = altera_tse_remove,
1677 .suspend = NULL,
1678 .resume = NULL,
1679 .driver = {
1680 .name = ALTERA_TSE_RESOURCE_NAME,
1681 .of_match_table = altera_tse_ids,
1685 module_platform_driver(altera_tse_driver);
1687 MODULE_AUTHOR("Altera Corporation");
1688 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1689 MODULE_LICENSE("GPL v2");