1 /* bnx2.c: QLogic bnx2 network driver.
3 * Copyright (c) 2004-2014 Broadcom Corporation
4 * Copyright (c) 2014-2015 QLogic Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
10 * Written by: Michael Chan (mchan@broadcom.com)
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
18 #include <linux/stringify.h>
19 #include <linux/kernel.h>
20 #include <linux/timer.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
41 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/crash_dump.h>
54 #if IS_ENABLED(CONFIG_CNIC)
61 #define DRV_MODULE_NAME "bnx2"
62 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
63 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
64 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
65 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
66 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
68 #define RUN_AT(x) (jiffies + (x))
70 /* Time in jiffies before concluding the transmitter is hung. */
71 #define TX_TIMEOUT (5*HZ)
73 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
74 MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
75 MODULE_LICENSE("GPL");
76 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
77 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
78 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
79 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
80 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
82 static int disable_msi
= 0;
84 module_param(disable_msi
, int, 0444);
85 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
101 /* indexed by board_t, above */
105 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
106 { "HP NC370T Multifunction Gigabit Server Adapter" },
107 { "HP NC370i Multifunction Gigabit Server Adapter" },
108 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
109 { "HP NC370F Multifunction Gigabit Server Adapter" },
110 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
111 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
112 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
113 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
114 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
118 static const struct pci_device_id bnx2_pci_tbl
[] = {
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
120 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
122 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
128 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
137 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
139 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
144 static const struct flash_spec flash_table
[] =
146 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
147 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
149 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
150 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
151 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
153 /* Expansion entry 0001 */
154 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
155 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
156 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
158 /* Saifun SA25F010 (non-buffered flash) */
159 /* strap, cfg1, & write1 need updates */
160 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
163 "Non-buffered flash (128kB)"},
164 /* Saifun SA25F020 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
168 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
169 "Non-buffered flash (256kB)"},
170 /* Expansion entry 0100 */
171 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
175 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
176 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
178 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
179 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
180 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
181 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
184 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
185 /* Saifun SA25F005 (non-buffered flash) */
186 /* strap, cfg1, & write1 need updates */
187 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
190 "Non-buffered flash (64kB)"},
192 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
193 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
194 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
196 /* Expansion entry 1001 */
197 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
198 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
199 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
201 /* Expansion entry 1010 */
202 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* ATMEL AT45DB011B (buffered flash) */
207 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
208 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
209 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
210 "Buffered flash (128kB)"},
211 /* Expansion entry 1100 */
212 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
213 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
214 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
216 /* Expansion entry 1101 */
217 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Ateml Expansion entry 1110 */
222 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
223 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
224 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
225 "Entry 1110 (Atmel)"},
226 /* ATMEL AT45DB021B (buffered flash) */
227 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
230 "Buffered flash (256kB)"},
233 static const struct flash_spec flash_5709
= {
234 .flags
= BNX2_NV_BUFFERED
,
235 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
236 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
237 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
238 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
239 .name
= "5709 Buffered flash (256kB)",
242 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
244 static void bnx2_init_napi(struct bnx2
*bp
);
245 static void bnx2_del_napi(struct bnx2
*bp
);
247 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
251 /* The ring uses 256 indices for 255 entries, one of them
252 * needs to be skipped.
254 diff
= READ_ONCE(txr
->tx_prod
) - READ_ONCE(txr
->tx_cons
);
255 if (unlikely(diff
>= BNX2_TX_DESC_CNT
)) {
257 if (diff
== BNX2_TX_DESC_CNT
)
258 diff
= BNX2_MAX_TX_DESC_CNT
;
260 return bp
->tx_ring_size
- diff
;
264 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
269 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
270 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
271 val
= BNX2_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
272 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
277 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
281 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
282 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
283 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
284 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
288 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
290 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
294 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
296 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
300 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
305 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
306 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
309 BNX2_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
310 BNX2_WR(bp
, BNX2_CTX_CTX_CTRL
,
311 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
312 for (i
= 0; i
< 5; i
++) {
313 val
= BNX2_RD(bp
, BNX2_CTX_CTX_CTRL
);
314 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
319 BNX2_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
320 BNX2_WR(bp
, BNX2_CTX_DATA
, val
);
322 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
327 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
329 struct bnx2
*bp
= netdev_priv(dev
);
330 struct drv_ctl_io
*io
= &info
->data
.io
;
333 case DRV_CTL_IO_WR_CMD
:
334 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
336 case DRV_CTL_IO_RD_CMD
:
337 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
339 case DRV_CTL_CTX_WR_CMD
:
340 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
348 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
350 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
351 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
354 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
355 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
356 bnapi
->cnic_present
= 0;
357 sb_id
= bp
->irq_nvecs
;
358 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
360 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
361 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
362 bnapi
->cnic_present
= 1;
364 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
367 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
368 cp
->irq_arr
[0].status_blk
= (void *)
369 ((unsigned long) bnapi
->status_blk
.msi
+
370 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
371 cp
->irq_arr
[0].status_blk_num
= sb_id
;
375 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
378 struct bnx2
*bp
= netdev_priv(dev
);
379 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
384 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
387 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
390 bp
->cnic_data
= data
;
391 rcu_assign_pointer(bp
->cnic_ops
, ops
);
394 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
396 bnx2_setup_cnic_irq_info(bp
);
401 static int bnx2_unregister_cnic(struct net_device
*dev
)
403 struct bnx2
*bp
= netdev_priv(dev
);
404 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
405 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
407 mutex_lock(&bp
->cnic_lock
);
409 bnapi
->cnic_present
= 0;
410 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
411 mutex_unlock(&bp
->cnic_lock
);
416 static struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
418 struct bnx2
*bp
= netdev_priv(dev
);
419 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
421 if (!cp
->max_iscsi_conn
)
424 cp
->drv_owner
= THIS_MODULE
;
425 cp
->chip_id
= bp
->chip_id
;
427 cp
->io_base
= bp
->regview
;
428 cp
->drv_ctl
= bnx2_drv_ctl
;
429 cp
->drv_register_cnic
= bnx2_register_cnic
;
430 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
436 bnx2_cnic_stop(struct bnx2
*bp
)
438 struct cnic_ops
*c_ops
;
439 struct cnic_ctl_info info
;
441 mutex_lock(&bp
->cnic_lock
);
442 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
443 lockdep_is_held(&bp
->cnic_lock
));
445 info
.cmd
= CNIC_CTL_STOP_CMD
;
446 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
448 mutex_unlock(&bp
->cnic_lock
);
452 bnx2_cnic_start(struct bnx2
*bp
)
454 struct cnic_ops
*c_ops
;
455 struct cnic_ctl_info info
;
457 mutex_lock(&bp
->cnic_lock
);
458 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
459 lockdep_is_held(&bp
->cnic_lock
));
461 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
462 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
464 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
466 info
.cmd
= CNIC_CTL_START_CMD
;
467 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
469 mutex_unlock(&bp
->cnic_lock
);
475 bnx2_cnic_stop(struct bnx2
*bp
)
480 bnx2_cnic_start(struct bnx2
*bp
)
487 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
492 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
493 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
494 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
496 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
497 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
502 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
503 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
504 BNX2_EMAC_MDIO_COMM_START_BUSY
;
505 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
507 for (i
= 0; i
< 50; i
++) {
510 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
511 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
514 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
515 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
521 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
530 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
531 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
532 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
534 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
535 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
544 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
549 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
550 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
551 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
553 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
554 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
559 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
560 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
561 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
562 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
564 for (i
= 0; i
< 50; i
++) {
567 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
568 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
574 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
579 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
580 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
581 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
583 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
584 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
593 bnx2_disable_int(struct bnx2
*bp
)
596 struct bnx2_napi
*bnapi
;
598 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
599 bnapi
= &bp
->bnx2_napi
[i
];
600 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
601 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
603 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
607 bnx2_enable_int(struct bnx2
*bp
)
610 struct bnx2_napi
*bnapi
;
612 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
613 bnapi
= &bp
->bnx2_napi
[i
];
615 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
616 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
617 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
618 bnapi
->last_status_idx
);
620 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
621 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
622 bnapi
->last_status_idx
);
624 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
628 bnx2_disable_int_sync(struct bnx2
*bp
)
632 atomic_inc(&bp
->intr_sem
);
633 if (!netif_running(bp
->dev
))
636 bnx2_disable_int(bp
);
637 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
638 synchronize_irq(bp
->irq_tbl
[i
].vector
);
642 bnx2_napi_disable(struct bnx2
*bp
)
646 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
647 napi_disable(&bp
->bnx2_napi
[i
].napi
);
651 bnx2_napi_enable(struct bnx2
*bp
)
655 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
656 napi_enable(&bp
->bnx2_napi
[i
].napi
);
660 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
664 if (netif_running(bp
->dev
)) {
665 bnx2_napi_disable(bp
);
666 netif_tx_disable(bp
->dev
);
668 bnx2_disable_int_sync(bp
);
669 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
673 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
675 if (atomic_dec_and_test(&bp
->intr_sem
)) {
676 if (netif_running(bp
->dev
)) {
677 netif_tx_wake_all_queues(bp
->dev
);
678 spin_lock_bh(&bp
->phy_lock
);
680 netif_carrier_on(bp
->dev
);
681 spin_unlock_bh(&bp
->phy_lock
);
682 bnx2_napi_enable(bp
);
691 bnx2_free_tx_mem(struct bnx2
*bp
)
695 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
696 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
697 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
699 if (txr
->tx_desc_ring
) {
700 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
702 txr
->tx_desc_mapping
);
703 txr
->tx_desc_ring
= NULL
;
705 kfree(txr
->tx_buf_ring
);
706 txr
->tx_buf_ring
= NULL
;
711 bnx2_free_rx_mem(struct bnx2
*bp
)
715 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
716 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
717 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
720 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
721 if (rxr
->rx_desc_ring
[j
])
722 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
723 rxr
->rx_desc_ring
[j
],
724 rxr
->rx_desc_mapping
[j
]);
725 rxr
->rx_desc_ring
[j
] = NULL
;
727 vfree(rxr
->rx_buf_ring
);
728 rxr
->rx_buf_ring
= NULL
;
730 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
731 if (rxr
->rx_pg_desc_ring
[j
])
732 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
733 rxr
->rx_pg_desc_ring
[j
],
734 rxr
->rx_pg_desc_mapping
[j
]);
735 rxr
->rx_pg_desc_ring
[j
] = NULL
;
737 vfree(rxr
->rx_pg_ring
);
738 rxr
->rx_pg_ring
= NULL
;
743 bnx2_alloc_tx_mem(struct bnx2
*bp
)
747 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
748 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
749 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
751 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
752 if (!txr
->tx_buf_ring
)
756 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
757 &txr
->tx_desc_mapping
, GFP_KERNEL
);
758 if (!txr
->tx_desc_ring
)
765 bnx2_alloc_rx_mem(struct bnx2
*bp
)
769 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
770 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
771 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
775 vzalloc(array_size(SW_RXBD_RING_SIZE
, bp
->rx_max_ring
));
776 if (!rxr
->rx_buf_ring
)
779 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
780 rxr
->rx_desc_ring
[j
] =
781 dma_alloc_coherent(&bp
->pdev
->dev
,
783 &rxr
->rx_desc_mapping
[j
],
785 if (!rxr
->rx_desc_ring
[j
])
790 if (bp
->rx_pg_ring_size
) {
792 vzalloc(array_size(SW_RXPG_RING_SIZE
,
793 bp
->rx_max_pg_ring
));
794 if (!rxr
->rx_pg_ring
)
799 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
800 rxr
->rx_pg_desc_ring
[j
] =
801 dma_alloc_coherent(&bp
->pdev
->dev
,
803 &rxr
->rx_pg_desc_mapping
[j
],
805 if (!rxr
->rx_pg_desc_ring
[j
])
814 bnx2_free_stats_blk(struct net_device
*dev
)
816 struct bnx2
*bp
= netdev_priv(dev
);
818 if (bp
->status_blk
) {
819 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
821 bp
->status_blk_mapping
);
822 bp
->status_blk
= NULL
;
823 bp
->stats_blk
= NULL
;
828 bnx2_alloc_stats_blk(struct net_device
*dev
)
832 struct bnx2
*bp
= netdev_priv(dev
);
834 /* Combine status and statistics blocks into one allocation. */
835 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
836 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
837 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
838 BNX2_SBLK_MSIX_ALIGN_SIZE
);
839 bp
->status_stats_size
= status_blk_size
+
840 sizeof(struct statistics_block
);
841 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
842 &bp
->status_blk_mapping
, GFP_KERNEL
);
846 bp
->status_blk
= status_blk
;
847 bp
->stats_blk
= status_blk
+ status_blk_size
;
848 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
854 bnx2_free_mem(struct bnx2
*bp
)
857 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
859 bnx2_free_tx_mem(bp
);
860 bnx2_free_rx_mem(bp
);
862 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
863 if (bp
->ctx_blk
[i
]) {
864 dma_free_coherent(&bp
->pdev
->dev
, BNX2_PAGE_SIZE
,
866 bp
->ctx_blk_mapping
[i
]);
867 bp
->ctx_blk
[i
] = NULL
;
871 if (bnapi
->status_blk
.msi
)
872 bnapi
->status_blk
.msi
= NULL
;
876 bnx2_alloc_mem(struct bnx2
*bp
)
879 struct bnx2_napi
*bnapi
;
881 bnapi
= &bp
->bnx2_napi
[0];
882 bnapi
->status_blk
.msi
= bp
->status_blk
;
883 bnapi
->hw_tx_cons_ptr
=
884 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
885 bnapi
->hw_rx_cons_ptr
=
886 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
887 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
888 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
889 struct status_block_msix
*sblk
;
891 bnapi
= &bp
->bnx2_napi
[i
];
893 sblk
= (bp
->status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
894 bnapi
->status_blk
.msix
= sblk
;
895 bnapi
->hw_tx_cons_ptr
=
896 &sblk
->status_tx_quick_consumer_index
;
897 bnapi
->hw_rx_cons_ptr
=
898 &sblk
->status_rx_quick_consumer_index
;
899 bnapi
->int_num
= i
<< 24;
903 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
904 bp
->ctx_pages
= 0x2000 / BNX2_PAGE_SIZE
;
905 if (bp
->ctx_pages
== 0)
907 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
908 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
910 &bp
->ctx_blk_mapping
[i
],
917 err
= bnx2_alloc_rx_mem(bp
);
921 err
= bnx2_alloc_tx_mem(bp
);
933 bnx2_report_fw_link(struct bnx2
*bp
)
935 u32 fw_link_status
= 0;
937 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
943 switch (bp
->line_speed
) {
945 if (bp
->duplex
== DUPLEX_HALF
)
946 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
948 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
951 if (bp
->duplex
== DUPLEX_HALF
)
952 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
954 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
957 if (bp
->duplex
== DUPLEX_HALF
)
958 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
960 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
963 if (bp
->duplex
== DUPLEX_HALF
)
964 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
966 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
970 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
973 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
975 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
976 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
978 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
979 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
980 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
982 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
986 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
988 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
992 bnx2_xceiver_str(struct bnx2
*bp
)
994 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
995 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
1000 bnx2_report_link(struct bnx2
*bp
)
1003 netif_carrier_on(bp
->dev
);
1004 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
1005 bnx2_xceiver_str(bp
),
1007 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
1009 if (bp
->flow_ctrl
) {
1010 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
1011 pr_cont(", receive ");
1012 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1013 pr_cont("& transmit ");
1016 pr_cont(", transmit ");
1018 pr_cont("flow control ON");
1022 netif_carrier_off(bp
->dev
);
1023 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1024 bnx2_xceiver_str(bp
));
1027 bnx2_report_fw_link(bp
);
1031 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1033 u32 local_adv
, remote_adv
;
1036 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1037 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1039 if (bp
->duplex
== DUPLEX_FULL
) {
1040 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1045 if (bp
->duplex
!= DUPLEX_FULL
) {
1049 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1050 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
1053 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1054 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1055 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1056 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1057 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1061 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1062 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1064 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1065 u32 new_local_adv
= 0;
1066 u32 new_remote_adv
= 0;
1068 if (local_adv
& ADVERTISE_1000XPAUSE
)
1069 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1070 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1071 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1072 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1073 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1074 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1075 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1077 local_adv
= new_local_adv
;
1078 remote_adv
= new_remote_adv
;
1081 /* See Table 28B-3 of 802.3ab-1999 spec. */
1082 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1083 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1084 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1085 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1087 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1088 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1092 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1093 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1097 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1098 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1099 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1101 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1107 bnx2_5709s_linkup(struct bnx2
*bp
)
1113 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1114 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1115 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1117 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1118 bp
->line_speed
= bp
->req_line_speed
;
1119 bp
->duplex
= bp
->req_duplex
;
1122 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1124 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1125 bp
->line_speed
= SPEED_10
;
1127 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1128 bp
->line_speed
= SPEED_100
;
1130 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1131 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1132 bp
->line_speed
= SPEED_1000
;
1134 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1135 bp
->line_speed
= SPEED_2500
;
1138 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1139 bp
->duplex
= DUPLEX_FULL
;
1141 bp
->duplex
= DUPLEX_HALF
;
1146 bnx2_5708s_linkup(struct bnx2
*bp
)
1151 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1152 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1153 case BCM5708S_1000X_STAT1_SPEED_10
:
1154 bp
->line_speed
= SPEED_10
;
1156 case BCM5708S_1000X_STAT1_SPEED_100
:
1157 bp
->line_speed
= SPEED_100
;
1159 case BCM5708S_1000X_STAT1_SPEED_1G
:
1160 bp
->line_speed
= SPEED_1000
;
1162 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1163 bp
->line_speed
= SPEED_2500
;
1166 if (val
& BCM5708S_1000X_STAT1_FD
)
1167 bp
->duplex
= DUPLEX_FULL
;
1169 bp
->duplex
= DUPLEX_HALF
;
1175 bnx2_5706s_linkup(struct bnx2
*bp
)
1177 u32 bmcr
, local_adv
, remote_adv
, common
;
1180 bp
->line_speed
= SPEED_1000
;
1182 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1183 if (bmcr
& BMCR_FULLDPLX
) {
1184 bp
->duplex
= DUPLEX_FULL
;
1187 bp
->duplex
= DUPLEX_HALF
;
1190 if (!(bmcr
& BMCR_ANENABLE
)) {
1194 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1195 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1197 common
= local_adv
& remote_adv
;
1198 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1200 if (common
& ADVERTISE_1000XFULL
) {
1201 bp
->duplex
= DUPLEX_FULL
;
1204 bp
->duplex
= DUPLEX_HALF
;
1212 bnx2_copper_linkup(struct bnx2
*bp
)
1216 bp
->phy_flags
&= ~BNX2_PHY_FLAG_MDIX
;
1218 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1219 if (bmcr
& BMCR_ANENABLE
) {
1220 u32 local_adv
, remote_adv
, common
;
1222 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1223 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1225 common
= local_adv
& (remote_adv
>> 2);
1226 if (common
& ADVERTISE_1000FULL
) {
1227 bp
->line_speed
= SPEED_1000
;
1228 bp
->duplex
= DUPLEX_FULL
;
1230 else if (common
& ADVERTISE_1000HALF
) {
1231 bp
->line_speed
= SPEED_1000
;
1232 bp
->duplex
= DUPLEX_HALF
;
1235 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1236 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1238 common
= local_adv
& remote_adv
;
1239 if (common
& ADVERTISE_100FULL
) {
1240 bp
->line_speed
= SPEED_100
;
1241 bp
->duplex
= DUPLEX_FULL
;
1243 else if (common
& ADVERTISE_100HALF
) {
1244 bp
->line_speed
= SPEED_100
;
1245 bp
->duplex
= DUPLEX_HALF
;
1247 else if (common
& ADVERTISE_10FULL
) {
1248 bp
->line_speed
= SPEED_10
;
1249 bp
->duplex
= DUPLEX_FULL
;
1251 else if (common
& ADVERTISE_10HALF
) {
1252 bp
->line_speed
= SPEED_10
;
1253 bp
->duplex
= DUPLEX_HALF
;
1262 if (bmcr
& BMCR_SPEED100
) {
1263 bp
->line_speed
= SPEED_100
;
1266 bp
->line_speed
= SPEED_10
;
1268 if (bmcr
& BMCR_FULLDPLX
) {
1269 bp
->duplex
= DUPLEX_FULL
;
1272 bp
->duplex
= DUPLEX_HALF
;
1279 bnx2_read_phy(bp
, MII_BNX2_EXT_STATUS
, &ext_status
);
1280 if (ext_status
& EXT_STATUS_MDIX
)
1281 bp
->phy_flags
|= BNX2_PHY_FLAG_MDIX
;
1288 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1290 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1292 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1293 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1296 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1297 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1299 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1303 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1308 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1311 bnx2_init_rx_context(bp
, cid
);
1316 bnx2_set_mac_link(struct bnx2
*bp
)
1320 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1321 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1322 (bp
->duplex
== DUPLEX_HALF
)) {
1323 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1326 /* Configure the EMAC mode register. */
1327 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
1329 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1330 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1331 BNX2_EMAC_MODE_25G_MODE
);
1334 switch (bp
->line_speed
) {
1336 if (BNX2_CHIP(bp
) != BNX2_CHIP_5706
) {
1337 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1342 val
|= BNX2_EMAC_MODE_PORT_MII
;
1345 val
|= BNX2_EMAC_MODE_25G_MODE
;
1348 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1353 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1356 /* Set the MAC to operate in the appropriate duplex mode. */
1357 if (bp
->duplex
== DUPLEX_HALF
)
1358 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1359 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
1361 /* Enable/disable rx PAUSE. */
1362 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1364 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1365 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1366 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1368 /* Enable/disable tx PAUSE. */
1369 val
= BNX2_RD(bp
, BNX2_EMAC_TX_MODE
);
1370 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1372 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1373 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1374 BNX2_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1376 /* Acknowledge the interrupt. */
1377 BNX2_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1379 bnx2_init_all_rx_contexts(bp
);
1383 bnx2_enable_bmsr1(struct bnx2
*bp
)
1385 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1386 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1387 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1388 MII_BNX2_BLK_ADDR_GP_STATUS
);
1392 bnx2_disable_bmsr1(struct bnx2
*bp
)
1394 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1395 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1396 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1397 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1401 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1406 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1409 if (bp
->autoneg
& AUTONEG_SPEED
)
1410 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1412 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1413 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1415 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1416 if (!(up1
& BCM5708S_UP1_2G5
)) {
1417 up1
|= BCM5708S_UP1_2G5
;
1418 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1422 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1423 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1424 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1430 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1435 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1438 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1439 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1441 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1442 if (up1
& BCM5708S_UP1_2G5
) {
1443 up1
&= ~BCM5708S_UP1_2G5
;
1444 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1448 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1449 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1450 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1456 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1458 u32
uninitialized_var(bmcr
);
1461 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1464 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1467 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1468 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1469 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1470 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1471 val
|= MII_BNX2_SD_MISC1_FORCE
|
1472 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1473 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1476 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1477 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1478 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1480 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1481 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1483 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1491 if (bp
->autoneg
& AUTONEG_SPEED
) {
1492 bmcr
&= ~BMCR_ANENABLE
;
1493 if (bp
->req_duplex
== DUPLEX_FULL
)
1494 bmcr
|= BMCR_FULLDPLX
;
1496 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1500 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1502 u32
uninitialized_var(bmcr
);
1505 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1508 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1511 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1512 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1513 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1514 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1515 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1518 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1519 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1520 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1522 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1523 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1525 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1533 if (bp
->autoneg
& AUTONEG_SPEED
)
1534 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1535 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1539 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1543 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1544 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1546 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1548 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1552 bnx2_set_link(struct bnx2
*bp
)
1557 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1562 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1565 link_up
= bp
->link_up
;
1567 bnx2_enable_bmsr1(bp
);
1568 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1569 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1570 bnx2_disable_bmsr1(bp
);
1572 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1573 (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)) {
1576 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1577 bnx2_5706s_force_link_dn(bp
, 0);
1578 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1580 val
= BNX2_RD(bp
, BNX2_EMAC_STATUS
);
1582 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1583 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1584 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1586 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1587 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1588 bmsr
|= BMSR_LSTATUS
;
1590 bmsr
&= ~BMSR_LSTATUS
;
1593 if (bmsr
& BMSR_LSTATUS
) {
1596 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1597 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
1598 bnx2_5706s_linkup(bp
);
1599 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
1600 bnx2_5708s_linkup(bp
);
1601 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1602 bnx2_5709s_linkup(bp
);
1605 bnx2_copper_linkup(bp
);
1607 bnx2_resolve_flow_ctrl(bp
);
1610 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1611 (bp
->autoneg
& AUTONEG_SPEED
))
1612 bnx2_disable_forced_2g5(bp
);
1614 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1617 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1618 bmcr
|= BMCR_ANENABLE
;
1619 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1621 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1626 if (bp
->link_up
!= link_up
) {
1627 bnx2_report_link(bp
);
1630 bnx2_set_mac_link(bp
);
1636 bnx2_reset_phy(struct bnx2
*bp
)
1641 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1643 #define PHY_RESET_MAX_WAIT 100
1644 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1647 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1648 if (!(reg
& BMCR_RESET
)) {
1653 if (i
== PHY_RESET_MAX_WAIT
) {
1660 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1664 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1665 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1667 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1668 adv
= ADVERTISE_1000XPAUSE
;
1671 adv
= ADVERTISE_PAUSE_CAP
;
1674 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1675 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1676 adv
= ADVERTISE_1000XPSE_ASYM
;
1679 adv
= ADVERTISE_PAUSE_ASYM
;
1682 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1683 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1684 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1687 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1693 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1696 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1697 __releases(&bp
->phy_lock
)
1698 __acquires(&bp
->phy_lock
)
1700 u32 speed_arg
= 0, pause_adv
;
1702 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1704 if (bp
->autoneg
& AUTONEG_SPEED
) {
1705 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1706 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1707 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1708 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1709 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1710 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1711 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1712 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1713 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1714 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1716 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1717 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1719 if (bp
->req_line_speed
== SPEED_2500
)
1720 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1721 else if (bp
->req_line_speed
== SPEED_1000
)
1722 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1723 else if (bp
->req_line_speed
== SPEED_100
) {
1724 if (bp
->req_duplex
== DUPLEX_FULL
)
1725 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1727 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1728 } else if (bp
->req_line_speed
== SPEED_10
) {
1729 if (bp
->req_duplex
== DUPLEX_FULL
)
1730 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1732 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1736 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1737 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1738 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1739 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1741 if (port
== PORT_TP
)
1742 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1743 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1745 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1747 spin_unlock_bh(&bp
->phy_lock
);
1748 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1749 spin_lock_bh(&bp
->phy_lock
);
1755 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1756 __releases(&bp
->phy_lock
)
1757 __acquires(&bp
->phy_lock
)
1762 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1763 return bnx2_setup_remote_phy(bp
, port
);
1765 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1767 int force_link_down
= 0;
1769 if (bp
->req_line_speed
== SPEED_2500
) {
1770 if (!bnx2_test_and_enable_2g5(bp
))
1771 force_link_down
= 1;
1772 } else if (bp
->req_line_speed
== SPEED_1000
) {
1773 if (bnx2_test_and_disable_2g5(bp
))
1774 force_link_down
= 1;
1776 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1777 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1779 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1780 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1781 new_bmcr
|= BMCR_SPEED1000
;
1783 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1784 if (bp
->req_line_speed
== SPEED_2500
)
1785 bnx2_enable_forced_2g5(bp
);
1786 else if (bp
->req_line_speed
== SPEED_1000
) {
1787 bnx2_disable_forced_2g5(bp
);
1788 new_bmcr
&= ~0x2000;
1791 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1792 if (bp
->req_line_speed
== SPEED_2500
)
1793 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1795 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1798 if (bp
->req_duplex
== DUPLEX_FULL
) {
1799 adv
|= ADVERTISE_1000XFULL
;
1800 new_bmcr
|= BMCR_FULLDPLX
;
1803 adv
|= ADVERTISE_1000XHALF
;
1804 new_bmcr
&= ~BMCR_FULLDPLX
;
1806 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1807 /* Force a link down visible on the other side */
1809 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1810 ~(ADVERTISE_1000XFULL
|
1811 ADVERTISE_1000XHALF
));
1812 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1813 BMCR_ANRESTART
| BMCR_ANENABLE
);
1816 netif_carrier_off(bp
->dev
);
1817 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1818 bnx2_report_link(bp
);
1820 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1821 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1823 bnx2_resolve_flow_ctrl(bp
);
1824 bnx2_set_mac_link(bp
);
1829 bnx2_test_and_enable_2g5(bp
);
1831 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1832 new_adv
|= ADVERTISE_1000XFULL
;
1834 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1836 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1837 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1839 bp
->serdes_an_pending
= 0;
1840 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1841 /* Force a link down visible on the other side */
1843 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1844 spin_unlock_bh(&bp
->phy_lock
);
1846 spin_lock_bh(&bp
->phy_lock
);
1849 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1850 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1852 /* Speed up link-up time when the link partner
1853 * does not autonegotiate which is very common
1854 * in blade servers. Some blade servers use
1855 * IPMI for kerboard input and it's important
1856 * to minimize link disruptions. Autoneg. involves
1857 * exchanging base pages plus 3 next pages and
1858 * normally completes in about 120 msec.
1860 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1861 bp
->serdes_an_pending
= 1;
1862 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1864 bnx2_resolve_flow_ctrl(bp
);
1865 bnx2_set_mac_link(bp
);
1871 #define ETHTOOL_ALL_FIBRE_SPEED \
1872 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1873 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1874 (ADVERTISED_1000baseT_Full)
1876 #define ETHTOOL_ALL_COPPER_SPEED \
1877 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1878 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1879 ADVERTISED_1000baseT_Full)
1881 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1882 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1884 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1887 bnx2_set_default_remote_link(struct bnx2
*bp
)
1891 if (bp
->phy_port
== PORT_TP
)
1892 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1894 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1896 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1897 bp
->req_line_speed
= 0;
1898 bp
->autoneg
|= AUTONEG_SPEED
;
1899 bp
->advertising
= ADVERTISED_Autoneg
;
1900 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1901 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1902 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1903 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1904 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1905 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1906 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1907 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1908 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1909 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1910 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1911 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1914 bp
->advertising
= 0;
1915 bp
->req_duplex
= DUPLEX_FULL
;
1916 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1917 bp
->req_line_speed
= SPEED_10
;
1918 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1919 bp
->req_duplex
= DUPLEX_HALF
;
1921 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1922 bp
->req_line_speed
= SPEED_100
;
1923 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1924 bp
->req_duplex
= DUPLEX_HALF
;
1926 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1927 bp
->req_line_speed
= SPEED_1000
;
1928 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1929 bp
->req_line_speed
= SPEED_2500
;
1934 bnx2_set_default_link(struct bnx2
*bp
)
1936 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1937 bnx2_set_default_remote_link(bp
);
1941 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1942 bp
->req_line_speed
= 0;
1943 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1946 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1948 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1949 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1950 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1952 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1953 bp
->req_duplex
= DUPLEX_FULL
;
1956 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1960 bnx2_send_heart_beat(struct bnx2
*bp
)
1965 spin_lock(&bp
->indirect_lock
);
1966 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1967 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1968 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1969 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1970 spin_unlock(&bp
->indirect_lock
);
1974 bnx2_remote_phy_event(struct bnx2
*bp
)
1977 u8 link_up
= bp
->link_up
;
1980 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1982 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1983 bnx2_send_heart_beat(bp
);
1985 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1987 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1993 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1994 bp
->duplex
= DUPLEX_FULL
;
1996 case BNX2_LINK_STATUS_10HALF
:
1997 bp
->duplex
= DUPLEX_HALF
;
1999 case BNX2_LINK_STATUS_10FULL
:
2000 bp
->line_speed
= SPEED_10
;
2002 case BNX2_LINK_STATUS_100HALF
:
2003 bp
->duplex
= DUPLEX_HALF
;
2005 case BNX2_LINK_STATUS_100BASE_T4
:
2006 case BNX2_LINK_STATUS_100FULL
:
2007 bp
->line_speed
= SPEED_100
;
2009 case BNX2_LINK_STATUS_1000HALF
:
2010 bp
->duplex
= DUPLEX_HALF
;
2012 case BNX2_LINK_STATUS_1000FULL
:
2013 bp
->line_speed
= SPEED_1000
;
2015 case BNX2_LINK_STATUS_2500HALF
:
2016 bp
->duplex
= DUPLEX_HALF
;
2018 case BNX2_LINK_STATUS_2500FULL
:
2019 bp
->line_speed
= SPEED_2500
;
2027 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2028 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2029 if (bp
->duplex
== DUPLEX_FULL
)
2030 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2032 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2033 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2034 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2035 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2038 old_port
= bp
->phy_port
;
2039 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2040 bp
->phy_port
= PORT_FIBRE
;
2042 bp
->phy_port
= PORT_TP
;
2044 if (old_port
!= bp
->phy_port
)
2045 bnx2_set_default_link(bp
);
2048 if (bp
->link_up
!= link_up
)
2049 bnx2_report_link(bp
);
2051 bnx2_set_mac_link(bp
);
2055 bnx2_set_remote_link(struct bnx2
*bp
)
2059 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2061 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2062 bnx2_remote_phy_event(bp
);
2064 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2066 bnx2_send_heart_beat(bp
);
2073 bnx2_setup_copper_phy(struct bnx2
*bp
)
2074 __releases(&bp
->phy_lock
)
2075 __acquires(&bp
->phy_lock
)
2077 u32 bmcr
, adv_reg
, new_adv
= 0;
2080 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2082 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2083 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2084 ADVERTISE_PAUSE_ASYM
);
2086 new_adv
= ADVERTISE_CSMA
| ethtool_adv_to_mii_adv_t(bp
->advertising
);
2088 if (bp
->autoneg
& AUTONEG_SPEED
) {
2090 u32 new_adv1000
= 0;
2092 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2094 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2095 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2097 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2098 if ((adv1000_reg
!= new_adv1000
) ||
2099 (adv_reg
!= new_adv
) ||
2100 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2102 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2103 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2104 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2107 else if (bp
->link_up
) {
2108 /* Flow ctrl may have changed from auto to forced */
2109 /* or vice-versa. */
2111 bnx2_resolve_flow_ctrl(bp
);
2112 bnx2_set_mac_link(bp
);
2117 /* advertise nothing when forcing speed */
2118 if (adv_reg
!= new_adv
)
2119 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2122 if (bp
->req_line_speed
== SPEED_100
) {
2123 new_bmcr
|= BMCR_SPEED100
;
2125 if (bp
->req_duplex
== DUPLEX_FULL
) {
2126 new_bmcr
|= BMCR_FULLDPLX
;
2128 if (new_bmcr
!= bmcr
) {
2131 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2132 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2134 if (bmsr
& BMSR_LSTATUS
) {
2135 /* Force link down */
2136 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2137 spin_unlock_bh(&bp
->phy_lock
);
2139 spin_lock_bh(&bp
->phy_lock
);
2141 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2142 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2145 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2147 /* Normally, the new speed is setup after the link has
2148 * gone down and up again. In some cases, link will not go
2149 * down so we need to set up the new speed here.
2151 if (bmsr
& BMSR_LSTATUS
) {
2152 bp
->line_speed
= bp
->req_line_speed
;
2153 bp
->duplex
= bp
->req_duplex
;
2154 bnx2_resolve_flow_ctrl(bp
);
2155 bnx2_set_mac_link(bp
);
2158 bnx2_resolve_flow_ctrl(bp
);
2159 bnx2_set_mac_link(bp
);
2165 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2166 __releases(&bp
->phy_lock
)
2167 __acquires(&bp
->phy_lock
)
2169 if (bp
->loopback
== MAC_LOOPBACK
)
2172 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2173 return bnx2_setup_serdes_phy(bp
, port
);
2176 return bnx2_setup_copper_phy(bp
);
2181 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2185 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2186 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2187 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2188 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2189 bp
->mii_lpa
= MII_LPA
+ 0x10;
2190 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2192 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2193 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2195 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2199 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2201 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2202 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2203 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2204 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2206 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2207 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2208 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2209 val
|= BCM5708S_UP1_2G5
;
2211 val
&= ~BCM5708S_UP1_2G5
;
2212 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2214 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2215 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2216 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2217 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2219 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2221 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2222 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2223 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2225 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2231 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2238 bp
->mii_up1
= BCM5708S_UP1
;
2240 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2241 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2244 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2245 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2246 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2248 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2249 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2250 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2252 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2253 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2254 val
|= BCM5708S_UP1_2G5
;
2255 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2258 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
2259 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
2260 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
)) {
2261 /* increase tx signal amplitude */
2262 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2263 BCM5708S_BLK_ADDR_TX_MISC
);
2264 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2265 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2266 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2267 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2270 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2271 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2276 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2277 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2278 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2279 BCM5708S_BLK_ADDR_TX_MISC
);
2280 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2281 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2282 BCM5708S_BLK_ADDR_DIG
);
2289 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2294 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2296 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2297 BNX2_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2299 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2302 /* Set extended packet length bit */
2303 bnx2_write_phy(bp
, 0x18, 0x7);
2304 bnx2_read_phy(bp
, 0x18, &val
);
2305 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2307 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2308 bnx2_read_phy(bp
, 0x1c, &val
);
2309 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2314 bnx2_write_phy(bp
, 0x18, 0x7);
2315 bnx2_read_phy(bp
, 0x18, &val
);
2316 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2318 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2319 bnx2_read_phy(bp
, 0x1c, &val
);
2320 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2327 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2334 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2335 bnx2_write_phy(bp
, 0x18, 0x0c00);
2336 bnx2_write_phy(bp
, 0x17, 0x000a);
2337 bnx2_write_phy(bp
, 0x15, 0x310b);
2338 bnx2_write_phy(bp
, 0x17, 0x201f);
2339 bnx2_write_phy(bp
, 0x15, 0x9506);
2340 bnx2_write_phy(bp
, 0x17, 0x401f);
2341 bnx2_write_phy(bp
, 0x15, 0x14e2);
2342 bnx2_write_phy(bp
, 0x18, 0x0400);
2345 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2346 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2347 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2348 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2350 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2353 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2354 /* Set extended packet length bit */
2355 bnx2_write_phy(bp
, 0x18, 0x7);
2356 bnx2_read_phy(bp
, 0x18, &val
);
2357 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2359 bnx2_read_phy(bp
, 0x10, &val
);
2360 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2363 bnx2_write_phy(bp
, 0x18, 0x7);
2364 bnx2_read_phy(bp
, 0x18, &val
);
2365 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2367 bnx2_read_phy(bp
, 0x10, &val
);
2368 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2371 /* ethernet@wirespeed */
2372 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, AUX_CTL_MISC_CTL
);
2373 bnx2_read_phy(bp
, MII_BNX2_AUX_CTL
, &val
);
2374 val
|= AUX_CTL_MISC_CTL_WR
| AUX_CTL_MISC_CTL_WIRESPEED
;
2377 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2378 val
|= AUX_CTL_MISC_CTL_AUTOMDIX
;
2380 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, val
);
2386 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2387 __releases(&bp
->phy_lock
)
2388 __acquires(&bp
->phy_lock
)
2393 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2394 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2396 bp
->mii_bmcr
= MII_BMCR
;
2397 bp
->mii_bmsr
= MII_BMSR
;
2398 bp
->mii_bmsr1
= MII_BMSR
;
2399 bp
->mii_adv
= MII_ADVERTISE
;
2400 bp
->mii_lpa
= MII_LPA
;
2402 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2404 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2407 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2408 bp
->phy_id
= val
<< 16;
2409 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2410 bp
->phy_id
|= val
& 0xffff;
2412 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2413 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2414 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2415 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
2416 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2417 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2418 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2421 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2426 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2432 bnx2_set_mac_loopback(struct bnx2
*bp
)
2436 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2437 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2438 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2439 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2444 static int bnx2_test_link(struct bnx2
*);
2447 bnx2_set_phy_loopback(struct bnx2
*bp
)
2452 spin_lock_bh(&bp
->phy_lock
);
2453 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2455 spin_unlock_bh(&bp
->phy_lock
);
2459 for (i
= 0; i
< 10; i
++) {
2460 if (bnx2_test_link(bp
) == 0)
2465 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2466 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2467 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2468 BNX2_EMAC_MODE_25G_MODE
);
2470 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2471 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2477 bnx2_dump_mcp_state(struct bnx2
*bp
)
2479 struct net_device
*dev
= bp
->dev
;
2482 netdev_err(dev
, "<--- start MCP states dump --->\n");
2483 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
2484 mcp_p0
= BNX2_MCP_STATE_P0
;
2485 mcp_p1
= BNX2_MCP_STATE_P1
;
2487 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2488 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2490 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2491 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2492 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2493 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2494 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2495 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2496 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2497 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2498 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2499 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2500 netdev_err(dev
, "DEBUG: shmem states:\n");
2501 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2502 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2503 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2504 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2505 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2506 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2507 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2508 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2509 pr_cont(" condition[%08x]\n",
2510 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2511 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2512 DP_SHMEM_LINE(bp
, 0x3cc);
2513 DP_SHMEM_LINE(bp
, 0x3dc);
2514 DP_SHMEM_LINE(bp
, 0x3ec);
2515 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2516 netdev_err(dev
, "<--- end MCP states dump --->\n");
2520 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2526 msg_data
|= bp
->fw_wr_seq
;
2527 bp
->fw_last_msg
= msg_data
;
2529 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2534 /* wait for an acknowledgement. */
2535 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2538 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2540 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2543 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2546 /* If we timed out, inform the firmware that this is the case. */
2547 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2548 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2549 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2551 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2553 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2554 bnx2_dump_mcp_state(bp
);
2560 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2567 bnx2_init_5709_context(struct bnx2
*bp
)
2572 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2573 val
|= (BNX2_PAGE_BITS
- 8) << 16;
2574 BNX2_WR(bp
, BNX2_CTX_COMMAND
, val
);
2575 for (i
= 0; i
< 10; i
++) {
2576 val
= BNX2_RD(bp
, BNX2_CTX_COMMAND
);
2577 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2581 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2584 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2588 memset(bp
->ctx_blk
[i
], 0, BNX2_PAGE_SIZE
);
2592 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2593 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2594 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2595 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2596 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2597 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2598 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2599 for (j
= 0; j
< 10; j
++) {
2601 val
= BNX2_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2602 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2606 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2615 bnx2_init_context(struct bnx2
*bp
)
2621 u32 vcid_addr
, pcid_addr
, offset
;
2626 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
2629 vcid_addr
= GET_PCID_ADDR(vcid
);
2631 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2636 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2639 vcid_addr
= GET_CID_ADDR(vcid
);
2640 pcid_addr
= vcid_addr
;
2643 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2644 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2645 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2647 BNX2_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2648 BNX2_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2650 /* Zero out the context. */
2651 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2652 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2658 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2664 good_mbuf
= kmalloc_array(512, sizeof(u16
), GFP_KERNEL
);
2668 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2669 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2673 /* Allocate a bunch of mbufs and save the good ones in an array. */
2674 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2675 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2676 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2677 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2679 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2681 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2683 /* The addresses with Bit 9 set are bad memory blocks. */
2684 if (!(val
& (1 << 9))) {
2685 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2689 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2692 /* Free the good ones back to the mbuf pool thus discarding
2693 * all the bad ones. */
2694 while (good_mbuf_cnt
) {
2697 val
= good_mbuf
[good_mbuf_cnt
];
2698 val
= (val
<< 9) | val
| 1;
2700 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2707 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2711 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2713 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2715 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2716 (mac_addr
[4] << 8) | mac_addr
[5];
2718 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2722 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2725 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2726 struct bnx2_rx_bd
*rxbd
=
2727 &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2728 struct page
*page
= alloc_page(gfp
);
2732 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2733 PCI_DMA_FROMDEVICE
);
2734 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2740 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2741 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2742 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2747 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2749 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2750 struct page
*page
= rx_pg
->page
;
2755 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2756 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2763 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2766 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2768 struct bnx2_rx_bd
*rxbd
=
2769 &rxr
->rx_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2771 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2775 mapping
= dma_map_single(&bp
->pdev
->dev
,
2777 bp
->rx_buf_use_size
,
2778 PCI_DMA_FROMDEVICE
);
2779 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2784 rx_buf
->data
= data
;
2785 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2787 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2788 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2790 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2796 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2798 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2799 u32 new_link_state
, old_link_state
;
2802 new_link_state
= sblk
->status_attn_bits
& event
;
2803 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2804 if (new_link_state
!= old_link_state
) {
2806 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2808 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2816 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2818 spin_lock(&bp
->phy_lock
);
2820 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2822 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2823 bnx2_set_remote_link(bp
);
2825 spin_unlock(&bp
->phy_lock
);
2830 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2834 cons
= READ_ONCE(*bnapi
->hw_tx_cons_ptr
);
2836 if (unlikely((cons
& BNX2_MAX_TX_DESC_CNT
) == BNX2_MAX_TX_DESC_CNT
))
2842 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2844 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2845 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2846 int tx_pkt
= 0, index
;
2847 unsigned int tx_bytes
= 0;
2848 struct netdev_queue
*txq
;
2850 index
= (bnapi
- bp
->bnx2_napi
);
2851 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2853 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2854 sw_cons
= txr
->tx_cons
;
2856 while (sw_cons
!= hw_cons
) {
2857 struct bnx2_sw_tx_bd
*tx_buf
;
2858 struct sk_buff
*skb
;
2861 sw_ring_cons
= BNX2_TX_RING_IDX(sw_cons
);
2863 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2866 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2867 prefetch(&skb
->end
);
2869 /* partial BD completions possible with TSO packets */
2870 if (tx_buf
->is_gso
) {
2871 u16 last_idx
, last_ring_idx
;
2873 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2874 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2875 if (unlikely(last_ring_idx
>= BNX2_MAX_TX_DESC_CNT
)) {
2878 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2883 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2884 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2887 last
= tx_buf
->nr_frags
;
2889 for (i
= 0; i
< last
; i
++) {
2890 struct bnx2_sw_tx_bd
*tx_buf
;
2892 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2894 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(sw_cons
)];
2895 dma_unmap_page(&bp
->pdev
->dev
,
2896 dma_unmap_addr(tx_buf
, mapping
),
2897 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2901 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2903 tx_bytes
+= skb
->len
;
2904 dev_kfree_skb_any(skb
);
2906 if (tx_pkt
== budget
)
2909 if (hw_cons
== sw_cons
)
2910 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2913 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2914 txr
->hw_tx_cons
= hw_cons
;
2915 txr
->tx_cons
= sw_cons
;
2917 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2918 * before checking for netif_tx_queue_stopped(). Without the
2919 * memory barrier, there is a small possibility that bnx2_start_xmit()
2920 * will miss it and cause the queue to be stopped forever.
2924 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2925 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2926 __netif_tx_lock(txq
, smp_processor_id());
2927 if ((netif_tx_queue_stopped(txq
)) &&
2928 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2929 netif_tx_wake_queue(txq
);
2930 __netif_tx_unlock(txq
);
2937 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2938 struct sk_buff
*skb
, int count
)
2940 struct bnx2_sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2941 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2944 u16 cons
= rxr
->rx_pg_cons
;
2946 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2948 /* The caller was unable to allocate a new page to replace the
2949 * last one in the frags array, so we need to recycle that page
2950 * and then free the skb.
2954 struct skb_shared_info
*shinfo
;
2956 shinfo
= skb_shinfo(skb
);
2958 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2959 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2961 cons_rx_pg
->page
= page
;
2965 hw_prod
= rxr
->rx_pg_prod
;
2967 for (i
= 0; i
< count
; i
++) {
2968 prod
= BNX2_RX_PG_RING_IDX(hw_prod
);
2970 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2971 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2972 cons_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(cons
)]
2973 [BNX2_RX_IDX(cons
)];
2974 prod_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(prod
)]
2975 [BNX2_RX_IDX(prod
)];
2978 prod_rx_pg
->page
= cons_rx_pg
->page
;
2979 cons_rx_pg
->page
= NULL
;
2980 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2981 dma_unmap_addr(cons_rx_pg
, mapping
));
2983 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2984 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2987 cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons
));
2988 hw_prod
= BNX2_NEXT_RX_BD(hw_prod
);
2990 rxr
->rx_pg_prod
= hw_prod
;
2991 rxr
->rx_pg_cons
= cons
;
2995 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2996 u8
*data
, u16 cons
, u16 prod
)
2998 struct bnx2_sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2999 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
3001 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
3002 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
3004 dma_sync_single_for_device(&bp
->pdev
->dev
,
3005 dma_unmap_addr(cons_rx_buf
, mapping
),
3006 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
3008 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
3010 prod_rx_buf
->data
= data
;
3015 dma_unmap_addr_set(prod_rx_buf
, mapping
,
3016 dma_unmap_addr(cons_rx_buf
, mapping
));
3018 cons_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(cons
)][BNX2_RX_IDX(cons
)];
3019 prod_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(prod
)][BNX2_RX_IDX(prod
)];
3020 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
3021 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
3024 static struct sk_buff
*
3025 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
3026 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3030 u16 prod
= ring_idx
& 0xffff;
3031 struct sk_buff
*skb
;
3033 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3034 if (unlikely(err
)) {
3035 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3038 unsigned int raw_len
= len
+ 4;
3039 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3041 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3046 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3047 PCI_DMA_FROMDEVICE
);
3048 skb
= build_skb(data
, 0);
3053 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3058 unsigned int i
, frag_len
, frag_size
, pages
;
3059 struct bnx2_sw_pg
*rx_pg
;
3060 u16 pg_cons
= rxr
->rx_pg_cons
;
3061 u16 pg_prod
= rxr
->rx_pg_prod
;
3063 frag_size
= len
+ 4 - hdr_len
;
3064 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3065 skb_put(skb
, hdr_len
);
3067 for (i
= 0; i
< pages
; i
++) {
3068 dma_addr_t mapping_old
;
3070 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3071 if (unlikely(frag_len
<= 4)) {
3072 unsigned int tail
= 4 - frag_len
;
3074 rxr
->rx_pg_cons
= pg_cons
;
3075 rxr
->rx_pg_prod
= pg_prod
;
3076 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3083 &skb_shinfo(skb
)->frags
[i
- 1];
3084 skb_frag_size_sub(frag
, tail
);
3085 skb
->data_len
-= tail
;
3089 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3091 /* Don't unmap yet. If we're unable to allocate a new
3092 * page, we need to recycle the page and the DMA addr.
3094 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3098 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3101 err
= bnx2_alloc_rx_page(bp
, rxr
,
3102 BNX2_RX_PG_RING_IDX(pg_prod
),
3104 if (unlikely(err
)) {
3105 rxr
->rx_pg_cons
= pg_cons
;
3106 rxr
->rx_pg_prod
= pg_prod
;
3107 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3112 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3113 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3115 frag_size
-= frag_len
;
3116 skb
->data_len
+= frag_len
;
3117 skb
->truesize
+= PAGE_SIZE
;
3118 skb
->len
+= frag_len
;
3120 pg_prod
= BNX2_NEXT_RX_BD(pg_prod
);
3121 pg_cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons
));
3123 rxr
->rx_pg_prod
= pg_prod
;
3124 rxr
->rx_pg_cons
= pg_cons
;
3130 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3134 cons
= READ_ONCE(*bnapi
->hw_rx_cons_ptr
);
3136 if (unlikely((cons
& BNX2_MAX_RX_DESC_CNT
) == BNX2_MAX_RX_DESC_CNT
))
3142 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3144 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3145 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3146 struct l2_fhdr
*rx_hdr
;
3147 int rx_pkt
= 0, pg_ring_used
= 0;
3152 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3153 sw_cons
= rxr
->rx_cons
;
3154 sw_prod
= rxr
->rx_prod
;
3156 /* Memory barrier necessary as speculative reads of the rx
3157 * buffer can be ahead of the index in the status block
3160 while (sw_cons
!= hw_cons
) {
3161 unsigned int len
, hdr_len
;
3163 struct bnx2_sw_bd
*rx_buf
, *next_rx_buf
;
3164 struct sk_buff
*skb
;
3165 dma_addr_t dma_addr
;
3169 sw_ring_cons
= BNX2_RX_RING_IDX(sw_cons
);
3170 sw_ring_prod
= BNX2_RX_RING_IDX(sw_prod
);
3172 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3173 data
= rx_buf
->data
;
3174 rx_buf
->data
= NULL
;
3176 rx_hdr
= get_l2_fhdr(data
);
3179 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3181 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3182 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3183 PCI_DMA_FROMDEVICE
);
3185 next_ring_idx
= BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons
));
3186 next_rx_buf
= &rxr
->rx_buf_ring
[next_ring_idx
];
3187 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3189 len
= rx_hdr
->l2_fhdr_pkt_len
;
3190 status
= rx_hdr
->l2_fhdr_status
;
3193 if (status
& L2_FHDR_STATUS_SPLIT
) {
3194 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3196 } else if (len
> bp
->rx_jumbo_thresh
) {
3197 hdr_len
= bp
->rx_jumbo_thresh
;
3201 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3202 L2_FHDR_ERRORS_PHY_DECODE
|
3203 L2_FHDR_ERRORS_ALIGNMENT
|
3204 L2_FHDR_ERRORS_TOO_SHORT
|
3205 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3207 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3212 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3214 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3221 if (len
<= bp
->rx_copy_thresh
) {
3222 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3224 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3231 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3233 skb_reserve(skb
, 6);
3236 bnx2_reuse_rx_data(bp
, rxr
, data
,
3237 sw_ring_cons
, sw_ring_prod
);
3240 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3241 (sw_ring_cons
<< 16) | sw_ring_prod
);
3245 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3246 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3247 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), rx_hdr
->l2_fhdr_vlan_tag
);
3249 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3251 if (len
> (bp
->dev
->mtu
+ ETH_HLEN
) &&
3252 skb
->protocol
!= htons(0x8100) &&
3253 skb
->protocol
!= htons(ETH_P_8021AD
)) {
3260 skb_checksum_none_assert(skb
);
3261 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3262 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3263 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3265 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3266 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3267 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3269 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3270 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3271 L2_FHDR_STATUS_USE_RXHASH
))
3272 skb_set_hash(skb
, rx_hdr
->l2_fhdr_hash
,
3275 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3276 napi_gro_receive(&bnapi
->napi
, skb
);
3280 sw_cons
= BNX2_NEXT_RX_BD(sw_cons
);
3281 sw_prod
= BNX2_NEXT_RX_BD(sw_prod
);
3283 if (rx_pkt
== budget
)
3286 /* Refresh hw_cons to see if there is new work */
3287 if (sw_cons
== hw_cons
) {
3288 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3292 rxr
->rx_cons
= sw_cons
;
3293 rxr
->rx_prod
= sw_prod
;
3296 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3298 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3300 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3306 /* MSI ISR - The only difference between this and the INTx ISR
3307 * is that the MSI interrupt is always serviced.
3310 bnx2_msi(int irq
, void *dev_instance
)
3312 struct bnx2_napi
*bnapi
= dev_instance
;
3313 struct bnx2
*bp
= bnapi
->bp
;
3315 prefetch(bnapi
->status_blk
.msi
);
3316 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3317 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3318 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3320 /* Return here if interrupt is disabled. */
3321 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3324 napi_schedule(&bnapi
->napi
);
3330 bnx2_msi_1shot(int irq
, void *dev_instance
)
3332 struct bnx2_napi
*bnapi
= dev_instance
;
3333 struct bnx2
*bp
= bnapi
->bp
;
3335 prefetch(bnapi
->status_blk
.msi
);
3337 /* Return here if interrupt is disabled. */
3338 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3341 napi_schedule(&bnapi
->napi
);
3347 bnx2_interrupt(int irq
, void *dev_instance
)
3349 struct bnx2_napi
*bnapi
= dev_instance
;
3350 struct bnx2
*bp
= bnapi
->bp
;
3351 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3353 /* When using INTx, it is possible for the interrupt to arrive
3354 * at the CPU before the status block posted prior to the
3355 * interrupt. Reading a register will flush the status block.
3356 * When using MSI, the MSI message will always complete after
3357 * the status block write.
3359 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3360 (BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3361 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3364 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3365 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3366 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3368 /* Read back to deassert IRQ immediately to avoid too many
3369 * spurious interrupts.
3371 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3373 /* Return here if interrupt is shared and is disabled. */
3374 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3377 if (napi_schedule_prep(&bnapi
->napi
)) {
3378 bnapi
->last_status_idx
= sblk
->status_idx
;
3379 __napi_schedule(&bnapi
->napi
);
3386 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3388 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3389 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3391 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3392 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3397 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3398 STATUS_ATTN_BITS_TIMER_ABORT)
3401 bnx2_has_work(struct bnx2_napi
*bnapi
)
3403 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3405 if (bnx2_has_fast_work(bnapi
))
3409 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3413 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3414 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3421 bnx2_chk_missed_msi(struct bnx2
*bp
)
3423 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3426 if (bnx2_has_work(bnapi
)) {
3427 msi_ctrl
= BNX2_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3428 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3431 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3432 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3433 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3434 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3435 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3439 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3443 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3445 struct cnic_ops
*c_ops
;
3447 if (!bnapi
->cnic_present
)
3451 c_ops
= rcu_dereference(bp
->cnic_ops
);
3453 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3454 bnapi
->status_blk
.msi
);
3459 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3461 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3462 u32 status_attn_bits
= sblk
->status_attn_bits
;
3463 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3465 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3466 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3468 bnx2_phy_int(bp
, bnapi
);
3470 /* This is needed to take care of transient status
3471 * during link changes.
3473 BNX2_WR(bp
, BNX2_HC_COMMAND
,
3474 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3475 BNX2_RD(bp
, BNX2_HC_COMMAND
);
3479 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3480 int work_done
, int budget
)
3482 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3483 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3485 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3486 bnx2_tx_int(bp
, bnapi
, 0);
3488 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3489 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3494 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3496 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3497 struct bnx2
*bp
= bnapi
->bp
;
3499 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3502 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3503 if (unlikely(work_done
>= budget
))
3506 bnapi
->last_status_idx
= sblk
->status_idx
;
3507 /* status idx must be read before checking for more work. */
3509 if (likely(!bnx2_has_fast_work(bnapi
))) {
3511 napi_complete_done(napi
, work_done
);
3512 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3513 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3514 bnapi
->last_status_idx
);
3521 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3523 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3524 struct bnx2
*bp
= bnapi
->bp
;
3526 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3529 bnx2_poll_link(bp
, bnapi
);
3531 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3534 bnx2_poll_cnic(bp
, bnapi
);
3537 /* bnapi->last_status_idx is used below to tell the hw how
3538 * much work has been processed, so we must read it before
3539 * checking for more work.
3541 bnapi
->last_status_idx
= sblk
->status_idx
;
3543 if (unlikely(work_done
>= budget
))
3547 if (likely(!bnx2_has_work(bnapi
))) {
3548 napi_complete_done(napi
, work_done
);
3549 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3550 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3551 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3552 bnapi
->last_status_idx
);
3555 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3556 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3557 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3558 bnapi
->last_status_idx
);
3560 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3561 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3562 bnapi
->last_status_idx
);
3570 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3571 * from set_multicast.
3574 bnx2_set_rx_mode(struct net_device
*dev
)
3576 struct bnx2
*bp
= netdev_priv(dev
);
3577 u32 rx_mode
, sort_mode
;
3578 struct netdev_hw_addr
*ha
;
3581 if (!netif_running(dev
))
3584 spin_lock_bh(&bp
->phy_lock
);
3586 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3587 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3588 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3589 if (!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
3590 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3591 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3592 if (dev
->flags
& IFF_PROMISC
) {
3593 /* Promiscuous mode. */
3594 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3595 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3596 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3598 else if (dev
->flags
& IFF_ALLMULTI
) {
3599 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3600 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3603 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3606 /* Accept one or more multicast(s). */
3607 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3612 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3614 netdev_for_each_mc_addr(ha
, dev
) {
3615 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3617 regidx
= (bit
& 0xe0) >> 5;
3619 mc_filter
[regidx
] |= (1 << bit
);
3622 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3623 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3627 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3630 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3631 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3632 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3633 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3634 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3635 /* Add all entries into to the match filter list */
3637 netdev_for_each_uc_addr(ha
, dev
) {
3638 bnx2_set_mac_addr(bp
, ha
->addr
,
3639 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3641 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3647 if (rx_mode
!= bp
->rx_mode
) {
3648 bp
->rx_mode
= rx_mode
;
3649 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3652 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3653 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3654 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3656 spin_unlock_bh(&bp
->phy_lock
);
3660 check_fw_section(const struct firmware
*fw
,
3661 const struct bnx2_fw_file_section
*section
,
3662 u32 alignment
, bool non_empty
)
3664 u32 offset
= be32_to_cpu(section
->offset
);
3665 u32 len
= be32_to_cpu(section
->len
);
3667 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3669 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3670 len
& (alignment
- 1))
3676 check_mips_fw_entry(const struct firmware
*fw
,
3677 const struct bnx2_mips_fw_file_entry
*entry
)
3679 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3680 check_fw_section(fw
, &entry
->data
, 4, false) ||
3681 check_fw_section(fw
, &entry
->rodata
, 4, false))
3686 static void bnx2_release_firmware(struct bnx2
*bp
)
3688 if (bp
->rv2p_firmware
) {
3689 release_firmware(bp
->mips_firmware
);
3690 release_firmware(bp
->rv2p_firmware
);
3691 bp
->rv2p_firmware
= NULL
;
3695 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3697 const char *mips_fw_file
, *rv2p_fw_file
;
3698 const struct bnx2_mips_fw_file
*mips_fw
;
3699 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3702 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
3703 mips_fw_file
= FW_MIPS_FILE_09
;
3704 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A0
) ||
3705 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A1
))
3706 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3708 rv2p_fw_file
= FW_RV2P_FILE_09
;
3710 mips_fw_file
= FW_MIPS_FILE_06
;
3711 rv2p_fw_file
= FW_RV2P_FILE_06
;
3714 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3716 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3720 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3722 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3723 goto err_release_mips_firmware
;
3725 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3726 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3727 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3728 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3729 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3730 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3731 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3732 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3733 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3735 goto err_release_firmware
;
3737 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3738 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3739 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3740 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3742 goto err_release_firmware
;
3747 err_release_firmware
:
3748 release_firmware(bp
->rv2p_firmware
);
3749 bp
->rv2p_firmware
= NULL
;
3750 err_release_mips_firmware
:
3751 release_firmware(bp
->mips_firmware
);
3755 static int bnx2_request_firmware(struct bnx2
*bp
)
3757 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3761 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3764 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3765 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3766 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3773 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3774 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3776 u32 rv2p_code_len
, file_offset
;
3781 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3782 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3784 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3786 if (rv2p_proc
== RV2P_PROC1
) {
3787 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3788 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3790 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3791 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3794 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3795 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3797 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3800 val
= (i
/ 8) | cmd
;
3801 BNX2_WR(bp
, addr
, val
);
3804 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3805 for (i
= 0; i
< 8; i
++) {
3808 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3809 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3810 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3811 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3812 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3813 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3814 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3816 val
= (loc
/ 2) | cmd
;
3817 BNX2_WR(bp
, addr
, val
);
3821 /* Reset the processor, un-stall is done later. */
3822 if (rv2p_proc
== RV2P_PROC1
) {
3823 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3826 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3833 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3834 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3836 u32 addr
, len
, file_offset
;
3842 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3843 val
|= cpu_reg
->mode_value_halt
;
3844 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3845 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3847 /* Load the Text area. */
3848 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3849 len
= be32_to_cpu(fw_entry
->text
.len
);
3850 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3851 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3853 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3857 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3858 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3861 /* Load the Data area. */
3862 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3863 len
= be32_to_cpu(fw_entry
->data
.len
);
3864 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3865 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3867 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3871 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3872 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3875 /* Load the Read-Only area. */
3876 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3877 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3878 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3879 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3881 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3885 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3886 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3889 /* Clear the pre-fetch instruction. */
3890 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3892 val
= be32_to_cpu(fw_entry
->start_addr
);
3893 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3895 /* Start the CPU. */
3896 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3897 val
&= ~cpu_reg
->mode_value_halt
;
3898 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3899 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3905 bnx2_init_cpus(struct bnx2
*bp
)
3907 const struct bnx2_mips_fw_file
*mips_fw
=
3908 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3909 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3910 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3913 /* Initialize the RV2P processor. */
3914 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3915 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3917 /* Initialize the RX Processor. */
3918 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3922 /* Initialize the TX Processor. */
3923 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3927 /* Initialize the TX Patch-up Processor. */
3928 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3932 /* Initialize the Completion Processor. */
3933 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3937 /* Initialize the Command Processor. */
3938 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3945 bnx2_setup_wol(struct bnx2
*bp
)
3954 autoneg
= bp
->autoneg
;
3955 advertising
= bp
->advertising
;
3957 if (bp
->phy_port
== PORT_TP
) {
3958 bp
->autoneg
= AUTONEG_SPEED
;
3959 bp
->advertising
= ADVERTISED_10baseT_Half
|
3960 ADVERTISED_10baseT_Full
|
3961 ADVERTISED_100baseT_Half
|
3962 ADVERTISED_100baseT_Full
|
3966 spin_lock_bh(&bp
->phy_lock
);
3967 bnx2_setup_phy(bp
, bp
->phy_port
);
3968 spin_unlock_bh(&bp
->phy_lock
);
3970 bp
->autoneg
= autoneg
;
3971 bp
->advertising
= advertising
;
3973 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3975 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
3977 /* Enable port mode. */
3978 val
&= ~BNX2_EMAC_MODE_PORT
;
3979 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3980 BNX2_EMAC_MODE_ACPI_RCVD
|
3981 BNX2_EMAC_MODE_MPKT
;
3982 if (bp
->phy_port
== PORT_TP
) {
3983 val
|= BNX2_EMAC_MODE_PORT_MII
;
3985 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3986 if (bp
->line_speed
== SPEED_2500
)
3987 val
|= BNX2_EMAC_MODE_25G_MODE
;
3990 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
3992 /* receive all multicast */
3993 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3994 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3997 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, BNX2_EMAC_RX_MODE_SORT_MODE
);
3999 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
| BNX2_RPM_SORT_USER0_MC_EN
;
4000 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
4001 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
4002 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
| BNX2_RPM_SORT_USER0_ENA
);
4004 /* Need to enable EMAC and RPM for WOL. */
4005 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4006 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4007 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4008 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4010 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4011 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4012 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4014 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4016 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4019 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
)) {
4022 wol_msg
|= BNX2_DRV_MSG_DATA_WAIT3
;
4023 if (bp
->fw_last_msg
|| BNX2_CHIP(bp
) != BNX2_CHIP_5709
) {
4024 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4027 /* Tell firmware not to power down the PHY yet, otherwise
4028 * the chip will take a long time to respond to MMIO reads.
4030 val
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
4031 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
,
4032 val
| BNX2_PORT_FEATURE_ASF_ENABLED
);
4033 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4034 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
, val
);
4040 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
4046 pci_enable_wake(bp
->pdev
, PCI_D0
, false);
4047 pci_set_power_state(bp
->pdev
, PCI_D0
);
4049 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
4050 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
4051 val
&= ~BNX2_EMAC_MODE_MPKT
;
4052 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4054 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4055 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4056 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4061 pci_wake_from_d3(bp
->pdev
, bp
->wol
);
4062 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4063 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)) {
4066 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4070 if (!bp
->fw_last_msg
&& BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4073 /* Tell firmware not to power down the PHY yet,
4074 * otherwise the other port may not respond to
4077 val
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
4078 val
&= ~BNX2_CONDITION_PM_STATE_MASK
;
4079 val
|= BNX2_CONDITION_PM_STATE_UNPREP
;
4080 bnx2_shmem_wr(bp
, BNX2_BC_STATE_CONDITION
, val
);
4082 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4084 /* No more memory access after this point until
4085 * device is brought back to D0.
4096 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4101 /* Request access to the flash interface. */
4102 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4103 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4104 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4105 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4111 if (j
>= NVRAM_TIMEOUT_COUNT
)
4118 bnx2_release_nvram_lock(struct bnx2
*bp
)
4123 /* Relinquish nvram interface. */
4124 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4126 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4127 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4128 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4134 if (j
>= NVRAM_TIMEOUT_COUNT
)
4142 bnx2_enable_nvram_write(struct bnx2
*bp
)
4146 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4147 BNX2_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4149 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4152 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4153 BNX2_WR(bp
, BNX2_NVM_COMMAND
,
4154 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4156 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4159 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4160 if (val
& BNX2_NVM_COMMAND_DONE
)
4164 if (j
>= NVRAM_TIMEOUT_COUNT
)
4171 bnx2_disable_nvram_write(struct bnx2
*bp
)
4175 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4176 BNX2_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4181 bnx2_enable_nvram_access(struct bnx2
*bp
)
4185 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4186 /* Enable both bits, even on read. */
4187 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4188 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4192 bnx2_disable_nvram_access(struct bnx2
*bp
)
4196 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4197 /* Disable both bits, even after read. */
4198 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4199 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4200 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4204 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4209 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4210 /* Buffered flash, no erase needed */
4213 /* Build an erase command */
4214 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4215 BNX2_NVM_COMMAND_DOIT
;
4217 /* Need to clear DONE bit separately. */
4218 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4220 /* Address of the NVRAM to read from. */
4221 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4223 /* Issue an erase command. */
4224 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4226 /* Wait for completion. */
4227 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4232 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4233 if (val
& BNX2_NVM_COMMAND_DONE
)
4237 if (j
>= NVRAM_TIMEOUT_COUNT
)
4244 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4249 /* Build the command word. */
4250 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4252 /* Calculate an offset of a buffered flash, not needed for 5709. */
4253 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4254 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4255 bp
->flash_info
->page_bits
) +
4256 (offset
% bp
->flash_info
->page_size
);
4259 /* Need to clear DONE bit separately. */
4260 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4262 /* Address of the NVRAM to read from. */
4263 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4265 /* Issue a read command. */
4266 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4268 /* Wait for completion. */
4269 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4274 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4275 if (val
& BNX2_NVM_COMMAND_DONE
) {
4276 __be32 v
= cpu_to_be32(BNX2_RD(bp
, BNX2_NVM_READ
));
4277 memcpy(ret_val
, &v
, 4);
4281 if (j
>= NVRAM_TIMEOUT_COUNT
)
4289 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4295 /* Build the command word. */
4296 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4298 /* Calculate an offset of a buffered flash, not needed for 5709. */
4299 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4300 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4301 bp
->flash_info
->page_bits
) +
4302 (offset
% bp
->flash_info
->page_size
);
4305 /* Need to clear DONE bit separately. */
4306 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4308 memcpy(&val32
, val
, 4);
4310 /* Write the data. */
4311 BNX2_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4313 /* Address of the NVRAM to write to. */
4314 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4316 /* Issue the write command. */
4317 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4319 /* Wait for completion. */
4320 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4323 if (BNX2_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4326 if (j
>= NVRAM_TIMEOUT_COUNT
)
4333 bnx2_init_nvram(struct bnx2
*bp
)
4336 int j
, entry_count
, rc
= 0;
4337 const struct flash_spec
*flash
;
4339 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4340 bp
->flash_info
= &flash_5709
;
4341 goto get_flash_size
;
4344 /* Determine the selected interface. */
4345 val
= BNX2_RD(bp
, BNX2_NVM_CFG1
);
4347 entry_count
= ARRAY_SIZE(flash_table
);
4349 if (val
& 0x40000000) {
4351 /* Flash interface has been reconfigured */
4352 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4354 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4355 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4356 bp
->flash_info
= flash
;
4363 /* Not yet been reconfigured */
4365 if (val
& (1 << 23))
4366 mask
= FLASH_BACKUP_STRAP_MASK
;
4368 mask
= FLASH_STRAP_MASK
;
4370 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4373 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4374 bp
->flash_info
= flash
;
4376 /* Request access to the flash interface. */
4377 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4380 /* Enable access to flash interface */
4381 bnx2_enable_nvram_access(bp
);
4383 /* Reconfigure the flash interface */
4384 BNX2_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4385 BNX2_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4386 BNX2_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4387 BNX2_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4389 /* Disable access to flash interface */
4390 bnx2_disable_nvram_access(bp
);
4391 bnx2_release_nvram_lock(bp
);
4396 } /* if (val & 0x40000000) */
4398 if (j
== entry_count
) {
4399 bp
->flash_info
= NULL
;
4400 pr_alert("Unknown flash/EEPROM type\n");
4405 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4406 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4408 bp
->flash_size
= val
;
4410 bp
->flash_size
= bp
->flash_info
->total_size
;
4416 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4420 u32 cmd_flags
, offset32
, len32
, extra
;
4425 /* Request access to the flash interface. */
4426 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4429 /* Enable access to flash interface */
4430 bnx2_enable_nvram_access(bp
);
4443 pre_len
= 4 - (offset
& 3);
4445 if (pre_len
>= len32
) {
4447 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4448 BNX2_NVM_COMMAND_LAST
;
4451 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4454 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4459 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4466 extra
= 4 - (len32
& 3);
4467 len32
= (len32
+ 4) & ~3;
4474 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4476 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4477 BNX2_NVM_COMMAND_LAST
;
4479 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4481 memcpy(ret_buf
, buf
, 4 - extra
);
4483 else if (len32
> 0) {
4486 /* Read the first word. */
4490 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4492 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4494 /* Advance to the next dword. */
4499 while (len32
> 4 && rc
== 0) {
4500 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4502 /* Advance to the next dword. */
4511 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4512 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4514 memcpy(ret_buf
, buf
, 4 - extra
);
4517 /* Disable access to flash interface */
4518 bnx2_disable_nvram_access(bp
);
4520 bnx2_release_nvram_lock(bp
);
4526 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4529 u32 written
, offset32
, len32
;
4530 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4532 int align_start
, align_end
;
4537 align_start
= align_end
= 0;
4539 if ((align_start
= (offset32
& 3))) {
4541 len32
+= align_start
;
4544 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4549 align_end
= 4 - (len32
& 3);
4551 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4555 if (align_start
|| align_end
) {
4556 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4560 memcpy(align_buf
, start
, 4);
4563 memcpy(align_buf
+ len32
- 4, end
, 4);
4565 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4569 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4570 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4571 if (!flash_buffer
) {
4573 goto nvram_write_end
;
4578 while ((written
< len32
) && (rc
== 0)) {
4579 u32 page_start
, page_end
, data_start
, data_end
;
4580 u32 addr
, cmd_flags
;
4583 /* Find the page_start addr */
4584 page_start
= offset32
+ written
;
4585 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4586 /* Find the page_end addr */
4587 page_end
= page_start
+ bp
->flash_info
->page_size
;
4588 /* Find the data_start addr */
4589 data_start
= (written
== 0) ? offset32
: page_start
;
4590 /* Find the data_end addr */
4591 data_end
= (page_end
> offset32
+ len32
) ?
4592 (offset32
+ len32
) : page_end
;
4594 /* Request access to the flash interface. */
4595 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4596 goto nvram_write_end
;
4598 /* Enable access to flash interface */
4599 bnx2_enable_nvram_access(bp
);
4601 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4602 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4605 /* Read the whole page into the buffer
4606 * (non-buffer flash only) */
4607 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4608 if (j
== (bp
->flash_info
->page_size
- 4)) {
4609 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4611 rc
= bnx2_nvram_read_dword(bp
,
4617 goto nvram_write_end
;
4623 /* Enable writes to flash interface (unlock write-protect) */
4624 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4625 goto nvram_write_end
;
4627 /* Loop to write back the buffer data from page_start to
4630 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4631 /* Erase the page */
4632 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4633 goto nvram_write_end
;
4635 /* Re-enable the write again for the actual write */
4636 bnx2_enable_nvram_write(bp
);
4638 for (addr
= page_start
; addr
< data_start
;
4639 addr
+= 4, i
+= 4) {
4641 rc
= bnx2_nvram_write_dword(bp
, addr
,
4642 &flash_buffer
[i
], cmd_flags
);
4645 goto nvram_write_end
;
4651 /* Loop to write the new data from data_start to data_end */
4652 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4653 if ((addr
== page_end
- 4) ||
4654 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4655 (addr
== data_end
- 4))) {
4657 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4659 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4663 goto nvram_write_end
;
4669 /* Loop to write back the buffer data from data_end
4671 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4672 for (addr
= data_end
; addr
< page_end
;
4673 addr
+= 4, i
+= 4) {
4675 if (addr
== page_end
-4) {
4676 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4678 rc
= bnx2_nvram_write_dword(bp
, addr
,
4679 &flash_buffer
[i
], cmd_flags
);
4682 goto nvram_write_end
;
4688 /* Disable writes to flash interface (lock write-protect) */
4689 bnx2_disable_nvram_write(bp
);
4691 /* Disable access to flash interface */
4692 bnx2_disable_nvram_access(bp
);
4693 bnx2_release_nvram_lock(bp
);
4695 /* Increment written */
4696 written
+= data_end
- data_start
;
4700 kfree(flash_buffer
);
4706 bnx2_init_fw_cap(struct bnx2
*bp
)
4710 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4711 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4713 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4714 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4716 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4717 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4720 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4721 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4722 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4725 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4726 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4729 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4731 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4732 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4733 bp
->phy_port
= PORT_FIBRE
;
4735 bp
->phy_port
= PORT_TP
;
4737 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4738 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4741 if (netif_running(bp
->dev
) && sig
)
4742 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4746 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4748 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4750 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4751 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4755 bnx2_wait_dma_complete(struct bnx2
*bp
)
4761 * Wait for the current PCI transaction to complete before
4764 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
4765 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
4766 BNX2_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4767 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4768 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4769 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4770 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4771 val
= BNX2_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4774 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4775 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4776 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4777 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4779 for (i
= 0; i
< 100; i
++) {
4781 val
= BNX2_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4782 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4792 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4798 /* Wait for the current PCI transaction to complete before
4799 * issuing a reset. */
4800 bnx2_wait_dma_complete(bp
);
4802 /* Wait for the firmware to tell us it is ok to issue a reset. */
4803 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4805 /* Deposit a driver reset signature so the firmware knows that
4806 * this is a soft reset. */
4807 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4808 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4810 /* Do a dummy read to force the chip to complete all current transaction
4811 * before we issue a reset. */
4812 val
= BNX2_RD(bp
, BNX2_MISC_ID
);
4814 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4815 BNX2_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4816 BNX2_RD(bp
, BNX2_MISC_COMMAND
);
4819 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4820 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4822 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4825 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4826 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4827 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4830 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4832 /* Reading back any register after chip reset will hang the
4833 * bus on 5706 A0 and A1. The msleep below provides plenty
4834 * of margin for write posting.
4836 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4837 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
))
4840 /* Reset takes approximate 30 usec */
4841 for (i
= 0; i
< 10; i
++) {
4842 val
= BNX2_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4843 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4844 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4849 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4850 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4851 pr_err("Chip reset did not complete\n");
4856 /* Make sure byte swapping is properly configured. */
4857 val
= BNX2_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4858 if (val
!= 0x01020304) {
4859 pr_err("Chip not in correct endian mode\n");
4863 /* Wait for the firmware to finish its initialization. */
4864 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4868 spin_lock_bh(&bp
->phy_lock
);
4869 old_port
= bp
->phy_port
;
4870 bnx2_init_fw_cap(bp
);
4871 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4872 old_port
!= bp
->phy_port
)
4873 bnx2_set_default_remote_link(bp
);
4874 spin_unlock_bh(&bp
->phy_lock
);
4876 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4877 /* Adjust the voltage regular to two steps lower. The default
4878 * of this register is 0x0000000e. */
4879 BNX2_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4881 /* Remove bad rbuf memory from the free pool. */
4882 rc
= bnx2_alloc_bad_rbuf(bp
);
4885 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4886 bnx2_setup_msix_tbl(bp
);
4887 /* Prevent MSIX table reads and write from timing out */
4888 BNX2_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4889 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4896 bnx2_init_chip(struct bnx2
*bp
)
4901 /* Make sure the interrupt is not active. */
4902 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4904 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4905 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4907 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4909 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4910 DMA_READ_CHANS
<< 12 |
4911 DMA_WRITE_CHANS
<< 16;
4913 val
|= (0x2 << 20) | (1 << 11);
4915 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4918 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) &&
4919 (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
) &&
4920 !(bp
->flags
& BNX2_FLAG_PCIX
))
4921 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4923 BNX2_WR(bp
, BNX2_DMA_CONFIG
, val
);
4925 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4926 val
= BNX2_RD(bp
, BNX2_TDMA_CONFIG
);
4927 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4928 BNX2_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4931 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4934 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4936 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4937 val16
& ~PCI_X_CMD_ERO
);
4940 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4941 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4942 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4943 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4945 /* Initialize context mapping and zero out the quick contexts. The
4946 * context block must have already been enabled. */
4947 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4948 rc
= bnx2_init_5709_context(bp
);
4952 bnx2_init_context(bp
);
4954 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4957 bnx2_init_nvram(bp
);
4959 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4961 val
= BNX2_RD(bp
, BNX2_MQ_CONFIG
);
4962 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4963 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4964 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4965 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4966 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
4967 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4970 BNX2_WR(bp
, BNX2_MQ_CONFIG
, val
);
4972 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4973 BNX2_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4974 BNX2_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4976 val
= (BNX2_PAGE_BITS
- 8) << 24;
4977 BNX2_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4979 /* Configure page size. */
4980 val
= BNX2_RD(bp
, BNX2_TBDR_CONFIG
);
4981 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4982 val
|= (BNX2_PAGE_BITS
- 8) << 24 | 0x40;
4983 BNX2_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4985 val
= bp
->mac_addr
[0] +
4986 (bp
->mac_addr
[1] << 8) +
4987 (bp
->mac_addr
[2] << 16) +
4989 (bp
->mac_addr
[4] << 8) +
4990 (bp
->mac_addr
[5] << 16);
4991 BNX2_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4993 /* Program the MTU. Also include 4 bytes for CRC32. */
4995 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4996 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ ETH_HLEN
+ 4))
4997 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4998 BNX2_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
5000 if (mtu
< ETH_DATA_LEN
)
5003 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
5004 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
5005 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
5007 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
5008 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5009 bp
->bnx2_napi
[i
].last_status_idx
= 0;
5011 bp
->idle_chk_status_idx
= 0xffff;
5013 /* Set up how to generate a link change interrupt. */
5014 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
5016 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
5017 (u64
) bp
->status_blk_mapping
& 0xffffffff);
5018 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
5020 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
5021 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
5022 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
5023 (u64
) bp
->stats_blk_mapping
>> 32);
5025 BNX2_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
5026 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
5028 BNX2_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
5029 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
5031 BNX2_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
5032 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
5034 BNX2_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5036 BNX2_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5038 BNX2_WR(bp
, BNX2_HC_COM_TICKS
,
5039 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
5041 BNX2_WR(bp
, BNX2_HC_CMD_TICKS
,
5042 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
5044 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
5045 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
5047 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
5048 BNX2_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
5050 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)
5051 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
5053 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
5054 BNX2_HC_CONFIG_COLLECT_STATS
;
5057 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
5058 BNX2_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
5059 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
5061 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5064 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5065 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5067 BNX2_WR(bp
, BNX2_HC_CONFIG
, val
);
5069 if (bp
->rx_ticks
< 25)
5070 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5072 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5074 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5075 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5076 BNX2_HC_SB_CONFIG_1
;
5079 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5080 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5081 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5083 BNX2_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5084 (bp
->tx_quick_cons_trip_int
<< 16) |
5085 bp
->tx_quick_cons_trip
);
5087 BNX2_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5088 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5090 BNX2_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5091 (bp
->rx_quick_cons_trip_int
<< 16) |
5092 bp
->rx_quick_cons_trip
);
5094 BNX2_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5095 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5098 /* Clear internal stats counters. */
5099 BNX2_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5101 BNX2_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5103 /* Initialize the receive filter. */
5104 bnx2_set_rx_mode(bp
->dev
);
5106 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5107 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5108 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5109 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5111 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5114 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5115 BNX2_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5119 bp
->hc_cmd
= BNX2_RD(bp
, BNX2_HC_COMMAND
);
5125 bnx2_clear_ring_states(struct bnx2
*bp
)
5127 struct bnx2_napi
*bnapi
;
5128 struct bnx2_tx_ring_info
*txr
;
5129 struct bnx2_rx_ring_info
*rxr
;
5132 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5133 bnapi
= &bp
->bnx2_napi
[i
];
5134 txr
= &bnapi
->tx_ring
;
5135 rxr
= &bnapi
->rx_ring
;
5138 txr
->hw_tx_cons
= 0;
5139 rxr
->rx_prod_bseq
= 0;
5142 rxr
->rx_pg_prod
= 0;
5143 rxr
->rx_pg_cons
= 0;
5148 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5150 u32 val
, offset0
, offset1
, offset2
, offset3
;
5151 u32 cid_addr
= GET_CID_ADDR(cid
);
5153 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5154 offset0
= BNX2_L2CTX_TYPE_XI
;
5155 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5156 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5157 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5159 offset0
= BNX2_L2CTX_TYPE
;
5160 offset1
= BNX2_L2CTX_CMD_TYPE
;
5161 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5162 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5164 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5165 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5167 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5168 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5170 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5171 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5173 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5174 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5178 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5180 struct bnx2_tx_bd
*txbd
;
5182 struct bnx2_napi
*bnapi
;
5183 struct bnx2_tx_ring_info
*txr
;
5185 bnapi
= &bp
->bnx2_napi
[ring_num
];
5186 txr
= &bnapi
->tx_ring
;
5191 cid
= TX_TSS_CID
+ ring_num
- 1;
5193 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5195 txbd
= &txr
->tx_desc_ring
[BNX2_MAX_TX_DESC_CNT
];
5197 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5198 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5201 txr
->tx_prod_bseq
= 0;
5203 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5204 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5206 bnx2_init_tx_context(bp
, cid
, txr
);
5210 bnx2_init_rxbd_rings(struct bnx2_rx_bd
*rx_ring
[], dma_addr_t dma
[],
5211 u32 buf_size
, int num_rings
)
5214 struct bnx2_rx_bd
*rxbd
;
5216 for (i
= 0; i
< num_rings
; i
++) {
5219 rxbd
= &rx_ring
[i
][0];
5220 for (j
= 0; j
< BNX2_MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5221 rxbd
->rx_bd_len
= buf_size
;
5222 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5224 if (i
== (num_rings
- 1))
5228 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5229 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5234 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5237 u16 prod
, ring_prod
;
5238 u32 cid
, rx_cid_addr
, val
;
5239 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5240 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5245 cid
= RX_RSS_CID
+ ring_num
- 1;
5247 rx_cid_addr
= GET_CID_ADDR(cid
);
5249 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5250 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5252 bnx2_init_rx_context(bp
, cid
);
5254 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5255 val
= BNX2_RD(bp
, BNX2_MQ_MAP_L2_5
);
5256 BNX2_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5259 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5260 if (bp
->rx_pg_ring_size
) {
5261 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5262 rxr
->rx_pg_desc_mapping
,
5263 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5264 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5265 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5266 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5267 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5269 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5270 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5272 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5273 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5275 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5276 BNX2_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5279 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5280 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5282 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5283 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5285 ring_prod
= prod
= rxr
->rx_pg_prod
;
5286 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5287 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5288 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5289 ring_num
, i
, bp
->rx_pg_ring_size
);
5292 prod
= BNX2_NEXT_RX_BD(prod
);
5293 ring_prod
= BNX2_RX_PG_RING_IDX(prod
);
5295 rxr
->rx_pg_prod
= prod
;
5297 ring_prod
= prod
= rxr
->rx_prod
;
5298 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5299 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5300 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5301 ring_num
, i
, bp
->rx_ring_size
);
5304 prod
= BNX2_NEXT_RX_BD(prod
);
5305 ring_prod
= BNX2_RX_RING_IDX(prod
);
5307 rxr
->rx_prod
= prod
;
5309 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5310 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5311 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5313 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5314 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5316 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5320 bnx2_init_all_rings(struct bnx2
*bp
)
5325 bnx2_clear_ring_states(bp
);
5327 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5328 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5329 bnx2_init_tx_ring(bp
, i
);
5331 if (bp
->num_tx_rings
> 1)
5332 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5335 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5336 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5338 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5339 bnx2_init_rx_ring(bp
, i
);
5341 if (bp
->num_rx_rings
> 1) {
5344 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5345 int shift
= (i
% 8) << 2;
5347 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5349 BNX2_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5350 BNX2_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5351 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5352 BNX2_RLUP_RSS_COMMAND_WRITE
|
5353 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5358 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5359 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5361 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5366 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5368 u32 max
, num_rings
= 1;
5370 while (ring_size
> BNX2_MAX_RX_DESC_CNT
) {
5371 ring_size
-= BNX2_MAX_RX_DESC_CNT
;
5374 /* round to next power of 2 */
5376 while ((max
& num_rings
) == 0)
5379 if (num_rings
!= max
)
5386 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5388 u32 rx_size
, rx_space
, jumbo_size
;
5390 /* 8 for CRC and VLAN */
5391 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5393 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5394 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5396 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5397 bp
->rx_pg_ring_size
= 0;
5398 bp
->rx_max_pg_ring
= 0;
5399 bp
->rx_max_pg_ring_idx
= 0;
5400 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5401 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5403 jumbo_size
= size
* pages
;
5404 if (jumbo_size
> BNX2_MAX_TOTAL_RX_PG_DESC_CNT
)
5405 jumbo_size
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
5407 bp
->rx_pg_ring_size
= jumbo_size
;
5408 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5409 BNX2_MAX_RX_PG_RINGS
);
5410 bp
->rx_max_pg_ring_idx
=
5411 (bp
->rx_max_pg_ring
* BNX2_RX_DESC_CNT
) - 1;
5412 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5413 bp
->rx_copy_thresh
= 0;
5416 bp
->rx_buf_use_size
= rx_size
;
5417 /* hw alignment + build_skb() overhead*/
5418 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5419 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5420 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5421 bp
->rx_ring_size
= size
;
5422 bp
->rx_max_ring
= bnx2_find_max_ring(size
, BNX2_MAX_RX_RINGS
);
5423 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* BNX2_RX_DESC_CNT
) - 1;
5427 bnx2_free_tx_skbs(struct bnx2
*bp
)
5431 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5432 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5433 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5436 if (!txr
->tx_buf_ring
)
5439 for (j
= 0; j
< BNX2_TX_DESC_CNT
; ) {
5440 struct bnx2_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5441 struct sk_buff
*skb
= tx_buf
->skb
;
5445 j
= BNX2_NEXT_TX_BD(j
);
5449 dma_unmap_single(&bp
->pdev
->dev
,
5450 dma_unmap_addr(tx_buf
, mapping
),
5456 last
= tx_buf
->nr_frags
;
5457 j
= BNX2_NEXT_TX_BD(j
);
5458 for (k
= 0; k
< last
; k
++, j
= BNX2_NEXT_TX_BD(j
)) {
5459 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(j
)];
5460 dma_unmap_page(&bp
->pdev
->dev
,
5461 dma_unmap_addr(tx_buf
, mapping
),
5462 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5467 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5472 bnx2_free_rx_skbs(struct bnx2
*bp
)
5476 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5477 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5478 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5481 if (!rxr
->rx_buf_ring
)
5484 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5485 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5486 u8
*data
= rx_buf
->data
;
5491 dma_unmap_single(&bp
->pdev
->dev
,
5492 dma_unmap_addr(rx_buf
, mapping
),
5493 bp
->rx_buf_use_size
,
5494 PCI_DMA_FROMDEVICE
);
5496 rx_buf
->data
= NULL
;
5500 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5501 bnx2_free_rx_page(bp
, rxr
, j
);
5506 bnx2_free_skbs(struct bnx2
*bp
)
5508 bnx2_free_tx_skbs(bp
);
5509 bnx2_free_rx_skbs(bp
);
5513 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5517 rc
= bnx2_reset_chip(bp
, reset_code
);
5522 if ((rc
= bnx2_init_chip(bp
)) != 0)
5525 bnx2_init_all_rings(bp
);
5530 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5534 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5537 spin_lock_bh(&bp
->phy_lock
);
5538 bnx2_init_phy(bp
, reset_phy
);
5540 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5541 bnx2_remote_phy_event(bp
);
5542 spin_unlock_bh(&bp
->phy_lock
);
5547 bnx2_shutdown_chip(struct bnx2
*bp
)
5551 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5552 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5554 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5556 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5558 return bnx2_reset_chip(bp
, reset_code
);
5562 bnx2_test_registers(struct bnx2
*bp
)
5566 static const struct {
5569 #define BNX2_FL_NOT_5709 1
5573 { 0x006c, 0, 0x00000000, 0x0000003f },
5574 { 0x0090, 0, 0xffffffff, 0x00000000 },
5575 { 0x0094, 0, 0x00000000, 0x00000000 },
5577 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5578 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5579 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5580 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5581 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5582 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5583 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5584 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5585 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5587 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5588 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5589 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5590 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5591 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5592 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5594 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5595 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5596 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5598 { 0x1000, 0, 0x00000000, 0x00000001 },
5599 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5601 { 0x1408, 0, 0x01c00800, 0x00000000 },
5602 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5603 { 0x14a8, 0, 0x00000000, 0x000001ff },
5604 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5605 { 0x14b0, 0, 0x00000002, 0x00000001 },
5606 { 0x14b8, 0, 0x00000000, 0x00000000 },
5607 { 0x14c0, 0, 0x00000000, 0x00000009 },
5608 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5609 { 0x14cc, 0, 0x00000000, 0x00000001 },
5610 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5612 { 0x1800, 0, 0x00000000, 0x00000001 },
5613 { 0x1804, 0, 0x00000000, 0x00000003 },
5615 { 0x2800, 0, 0x00000000, 0x00000001 },
5616 { 0x2804, 0, 0x00000000, 0x00003f01 },
5617 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5618 { 0x2810, 0, 0xffff0000, 0x00000000 },
5619 { 0x2814, 0, 0xffff0000, 0x00000000 },
5620 { 0x2818, 0, 0xffff0000, 0x00000000 },
5621 { 0x281c, 0, 0xffff0000, 0x00000000 },
5622 { 0x2834, 0, 0xffffffff, 0x00000000 },
5623 { 0x2840, 0, 0x00000000, 0xffffffff },
5624 { 0x2844, 0, 0x00000000, 0xffffffff },
5625 { 0x2848, 0, 0xffffffff, 0x00000000 },
5626 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5628 { 0x2c00, 0, 0x00000000, 0x00000011 },
5629 { 0x2c04, 0, 0x00000000, 0x00030007 },
5631 { 0x3c00, 0, 0x00000000, 0x00000001 },
5632 { 0x3c04, 0, 0x00000000, 0x00070000 },
5633 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5634 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5635 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5636 { 0x3c14, 0, 0x00000000, 0xffffffff },
5637 { 0x3c18, 0, 0x00000000, 0xffffffff },
5638 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5639 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5641 { 0x5004, 0, 0x00000000, 0x0000007f },
5642 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5644 { 0x5c00, 0, 0x00000000, 0x00000001 },
5645 { 0x5c04, 0, 0x00000000, 0x0003000f },
5646 { 0x5c08, 0, 0x00000003, 0x00000000 },
5647 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5648 { 0x5c10, 0, 0x00000000, 0xffffffff },
5649 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5650 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5651 { 0x5c88, 0, 0x00000000, 0x00077373 },
5652 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5654 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5655 { 0x680c, 0, 0xffffffff, 0x00000000 },
5656 { 0x6810, 0, 0xffffffff, 0x00000000 },
5657 { 0x6814, 0, 0xffffffff, 0x00000000 },
5658 { 0x6818, 0, 0xffffffff, 0x00000000 },
5659 { 0x681c, 0, 0xffffffff, 0x00000000 },
5660 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5661 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5662 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5663 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5664 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5665 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5666 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5667 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5668 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5669 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5670 { 0x684c, 0, 0xffffffff, 0x00000000 },
5671 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5672 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5673 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5674 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5675 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5676 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5678 { 0xffff, 0, 0x00000000, 0x00000000 },
5683 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5686 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5687 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5688 u16 flags
= reg_tbl
[i
].flags
;
5690 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5693 offset
= (u32
) reg_tbl
[i
].offset
;
5694 rw_mask
= reg_tbl
[i
].rw_mask
;
5695 ro_mask
= reg_tbl
[i
].ro_mask
;
5697 save_val
= readl(bp
->regview
+ offset
);
5699 writel(0, bp
->regview
+ offset
);
5701 val
= readl(bp
->regview
+ offset
);
5702 if ((val
& rw_mask
) != 0) {
5706 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5710 writel(0xffffffff, bp
->regview
+ offset
);
5712 val
= readl(bp
->regview
+ offset
);
5713 if ((val
& rw_mask
) != rw_mask
) {
5717 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5721 writel(save_val
, bp
->regview
+ offset
);
5725 writel(save_val
, bp
->regview
+ offset
);
5733 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5735 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5736 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5739 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5742 for (offset
= 0; offset
< size
; offset
+= 4) {
5744 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5746 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5756 bnx2_test_memory(struct bnx2
*bp
)
5760 static struct mem_entry
{
5763 } mem_tbl_5706
[] = {
5764 { 0x60000, 0x4000 },
5765 { 0xa0000, 0x3000 },
5766 { 0xe0000, 0x4000 },
5767 { 0x120000, 0x4000 },
5768 { 0x1a0000, 0x4000 },
5769 { 0x160000, 0x4000 },
5773 { 0x60000, 0x4000 },
5774 { 0xa0000, 0x3000 },
5775 { 0xe0000, 0x4000 },
5776 { 0x120000, 0x4000 },
5777 { 0x1a0000, 0x4000 },
5780 struct mem_entry
*mem_tbl
;
5782 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5783 mem_tbl
= mem_tbl_5709
;
5785 mem_tbl
= mem_tbl_5706
;
5787 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5788 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5789 mem_tbl
[i
].len
)) != 0) {
5797 #define BNX2_MAC_LOOPBACK 0
5798 #define BNX2_PHY_LOOPBACK 1
5801 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5803 unsigned int pkt_size
, num_pkts
, i
;
5804 struct sk_buff
*skb
;
5806 unsigned char *packet
;
5807 u16 rx_start_idx
, rx_idx
;
5809 struct bnx2_tx_bd
*txbd
;
5810 struct bnx2_sw_bd
*rx_buf
;
5811 struct l2_fhdr
*rx_hdr
;
5813 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5814 struct bnx2_tx_ring_info
*txr
;
5815 struct bnx2_rx_ring_info
*rxr
;
5819 txr
= &tx_napi
->tx_ring
;
5820 rxr
= &bnapi
->rx_ring
;
5821 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5822 bp
->loopback
= MAC_LOOPBACK
;
5823 bnx2_set_mac_loopback(bp
);
5825 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5826 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5829 bp
->loopback
= PHY_LOOPBACK
;
5830 bnx2_set_phy_loopback(bp
);
5835 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5836 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5839 packet
= skb_put(skb
, pkt_size
);
5840 memcpy(packet
, bp
->dev
->dev_addr
, ETH_ALEN
);
5841 memset(packet
+ ETH_ALEN
, 0x0, 8);
5842 for (i
= 14; i
< pkt_size
; i
++)
5843 packet
[i
] = (unsigned char) (i
& 0xff);
5845 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5847 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5852 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5853 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5855 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5858 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5862 txbd
= &txr
->tx_desc_ring
[BNX2_TX_RING_IDX(txr
->tx_prod
)];
5864 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5865 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5866 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5867 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5870 txr
->tx_prod
= BNX2_NEXT_TX_BD(txr
->tx_prod
);
5871 txr
->tx_prod_bseq
+= pkt_size
;
5873 BNX2_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5874 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5878 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5879 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5881 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5885 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5888 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5889 goto loopback_test_done
;
5891 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5892 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5893 goto loopback_test_done
;
5896 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5897 data
= rx_buf
->data
;
5899 rx_hdr
= get_l2_fhdr(data
);
5900 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5902 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5903 dma_unmap_addr(rx_buf
, mapping
),
5904 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5906 if (rx_hdr
->l2_fhdr_status
&
5907 (L2_FHDR_ERRORS_BAD_CRC
|
5908 L2_FHDR_ERRORS_PHY_DECODE
|
5909 L2_FHDR_ERRORS_ALIGNMENT
|
5910 L2_FHDR_ERRORS_TOO_SHORT
|
5911 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5913 goto loopback_test_done
;
5916 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5917 goto loopback_test_done
;
5920 for (i
= 14; i
< pkt_size
; i
++) {
5921 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5922 goto loopback_test_done
;
5933 #define BNX2_MAC_LOOPBACK_FAILED 1
5934 #define BNX2_PHY_LOOPBACK_FAILED 2
5935 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5936 BNX2_PHY_LOOPBACK_FAILED)
5939 bnx2_test_loopback(struct bnx2
*bp
)
5943 if (!netif_running(bp
->dev
))
5944 return BNX2_LOOPBACK_FAILED
;
5946 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5947 spin_lock_bh(&bp
->phy_lock
);
5948 bnx2_init_phy(bp
, 1);
5949 spin_unlock_bh(&bp
->phy_lock
);
5950 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5951 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5952 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5953 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5957 #define NVRAM_SIZE 0x200
5958 #define CRC32_RESIDUAL 0xdebb20e3
5961 bnx2_test_nvram(struct bnx2
*bp
)
5963 __be32 buf
[NVRAM_SIZE
/ 4];
5964 u8
*data
= (u8
*) buf
;
5968 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5969 goto test_nvram_done
;
5971 magic
= be32_to_cpu(buf
[0]);
5972 if (magic
!= 0x669955aa) {
5974 goto test_nvram_done
;
5977 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5978 goto test_nvram_done
;
5980 csum
= ether_crc_le(0x100, data
);
5981 if (csum
!= CRC32_RESIDUAL
) {
5983 goto test_nvram_done
;
5986 csum
= ether_crc_le(0x100, data
+ 0x100);
5987 if (csum
!= CRC32_RESIDUAL
) {
5996 bnx2_test_link(struct bnx2
*bp
)
6000 if (!netif_running(bp
->dev
))
6003 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6008 spin_lock_bh(&bp
->phy_lock
);
6009 bnx2_enable_bmsr1(bp
);
6010 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6011 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6012 bnx2_disable_bmsr1(bp
);
6013 spin_unlock_bh(&bp
->phy_lock
);
6015 if (bmsr
& BMSR_LSTATUS
) {
6022 bnx2_test_intr(struct bnx2
*bp
)
6027 if (!netif_running(bp
->dev
))
6030 status_idx
= BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
6032 /* This register is not touched during run-time. */
6033 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
6034 BNX2_RD(bp
, BNX2_HC_COMMAND
);
6036 for (i
= 0; i
< 10; i
++) {
6037 if ((BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
6043 msleep_interruptible(10);
6051 /* Determining link for parallel detection. */
6053 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
6055 u32 mode_ctl
, an_dbg
, exp
;
6057 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
6060 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
6061 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
6063 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6066 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6067 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6068 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6070 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6073 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6074 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6075 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6077 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6084 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6088 spin_lock(&bp
->phy_lock
);
6089 if (bp
->serdes_an_pending
) {
6090 bp
->serdes_an_pending
--;
6092 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6095 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6097 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6099 if (bmcr
& BMCR_ANENABLE
) {
6100 if (bnx2_5706_serdes_has_link(bp
)) {
6101 bmcr
&= ~BMCR_ANENABLE
;
6102 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6103 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6104 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6108 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6109 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6112 bnx2_write_phy(bp
, 0x17, 0x0f01);
6113 bnx2_read_phy(bp
, 0x15, &phy2
);
6117 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6118 bmcr
|= BMCR_ANENABLE
;
6119 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6121 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6124 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6129 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6130 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6131 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6133 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6134 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6135 bnx2_5706s_force_link_dn(bp
, 1);
6136 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6139 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6142 spin_unlock(&bp
->phy_lock
);
6146 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6148 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6151 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6152 bp
->serdes_an_pending
= 0;
6156 spin_lock(&bp
->phy_lock
);
6157 if (bp
->serdes_an_pending
)
6158 bp
->serdes_an_pending
--;
6159 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6162 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6163 if (bmcr
& BMCR_ANENABLE
) {
6164 bnx2_enable_forced_2g5(bp
);
6165 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6167 bnx2_disable_forced_2g5(bp
);
6168 bp
->serdes_an_pending
= 2;
6169 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6173 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6175 spin_unlock(&bp
->phy_lock
);
6179 bnx2_timer(struct timer_list
*t
)
6181 struct bnx2
*bp
= from_timer(bp
, t
, timer
);
6183 if (!netif_running(bp
->dev
))
6186 if (atomic_read(&bp
->intr_sem
) != 0)
6187 goto bnx2_restart_timer
;
6189 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6190 BNX2_FLAG_USING_MSI
)
6191 bnx2_chk_missed_msi(bp
);
6193 bnx2_send_heart_beat(bp
);
6195 bp
->stats_blk
->stat_FwRxDrop
=
6196 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6198 /* workaround occasional corrupted counters */
6199 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6200 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6201 BNX2_HC_COMMAND_STATS_NOW
);
6203 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6204 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
6205 bnx2_5706_serdes_timer(bp
);
6207 bnx2_5708_serdes_timer(bp
);
6211 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6215 bnx2_request_irq(struct bnx2
*bp
)
6217 unsigned long flags
;
6218 struct bnx2_irq
*irq
;
6221 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6224 flags
= IRQF_SHARED
;
6226 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6227 irq
= &bp
->irq_tbl
[i
];
6228 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6238 __bnx2_free_irq(struct bnx2
*bp
)
6240 struct bnx2_irq
*irq
;
6243 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6244 irq
= &bp
->irq_tbl
[i
];
6246 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6252 bnx2_free_irq(struct bnx2
*bp
)
6255 __bnx2_free_irq(bp
);
6256 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6257 pci_disable_msi(bp
->pdev
);
6258 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6259 pci_disable_msix(bp
->pdev
);
6261 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6265 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6268 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6269 struct net_device
*dev
= bp
->dev
;
6270 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6272 bnx2_setup_msix_tbl(bp
);
6273 BNX2_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6274 BNX2_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6275 BNX2_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6277 /* Need to flush the previous three writes to ensure MSI-X
6278 * is setup properly */
6279 BNX2_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6281 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6282 msix_ent
[i
].entry
= i
;
6283 msix_ent
[i
].vector
= 0;
6286 total_vecs
= msix_vecs
;
6290 total_vecs
= pci_enable_msix_range(bp
->pdev
, msix_ent
,
6291 BNX2_MIN_MSIX_VEC
, total_vecs
);
6295 msix_vecs
= total_vecs
;
6299 bp
->irq_nvecs
= msix_vecs
;
6300 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6301 for (i
= 0; i
< total_vecs
; i
++) {
6302 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6303 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6304 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6309 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6311 int cpus
= netif_get_num_default_rss_queues();
6314 if (!bp
->num_req_rx_rings
)
6315 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6316 else if (!bp
->num_req_tx_rings
)
6317 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6319 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6321 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6323 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6324 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6326 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6328 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6329 bnx2_enable_msix(bp
, msix_vecs
);
6331 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6332 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6333 if (pci_enable_msi(bp
->pdev
) == 0) {
6334 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6335 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
6336 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6337 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6339 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6341 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6345 if (!bp
->num_req_tx_rings
)
6346 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6348 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6350 if (!bp
->num_req_rx_rings
)
6351 bp
->num_rx_rings
= bp
->irq_nvecs
;
6353 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6355 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6357 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6360 /* Called with rtnl_lock */
6362 bnx2_open(struct net_device
*dev
)
6364 struct bnx2
*bp
= netdev_priv(dev
);
6367 rc
= bnx2_request_firmware(bp
);
6371 netif_carrier_off(dev
);
6373 bnx2_disable_int(bp
);
6375 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6379 bnx2_napi_enable(bp
);
6380 rc
= bnx2_alloc_mem(bp
);
6384 rc
= bnx2_request_irq(bp
);
6388 rc
= bnx2_init_nic(bp
, 1);
6392 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6394 atomic_set(&bp
->intr_sem
, 0);
6396 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6398 bnx2_enable_int(bp
);
6400 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6401 /* Test MSI to make sure it is working
6402 * If MSI test fails, go back to INTx mode
6404 if (bnx2_test_intr(bp
) != 0) {
6405 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6407 bnx2_disable_int(bp
);
6410 bnx2_setup_int_mode(bp
, 1);
6412 rc
= bnx2_init_nic(bp
, 0);
6415 rc
= bnx2_request_irq(bp
);
6418 del_timer_sync(&bp
->timer
);
6421 bnx2_enable_int(bp
);
6424 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6425 netdev_info(dev
, "using MSI\n");
6426 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6427 netdev_info(dev
, "using MSIX\n");
6429 netif_tx_start_all_queues(dev
);
6434 bnx2_napi_disable(bp
);
6439 bnx2_release_firmware(bp
);
6444 bnx2_reset_task(struct work_struct
*work
)
6446 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6451 if (!netif_running(bp
->dev
)) {
6456 bnx2_netif_stop(bp
, true);
6458 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6459 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6460 /* in case PCI block has reset */
6461 pci_restore_state(bp
->pdev
);
6462 pci_save_state(bp
->pdev
);
6464 rc
= bnx2_init_nic(bp
, 1);
6466 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6467 bnx2_napi_enable(bp
);
6473 atomic_set(&bp
->intr_sem
, 1);
6474 bnx2_netif_start(bp
, true);
6478 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6481 bnx2_dump_ftq(struct bnx2
*bp
)
6484 u32 reg
, bdidx
, cid
, valid
;
6485 struct net_device
*dev
= bp
->dev
;
6486 static const struct ftq_reg
{
6490 BNX2_FTQ_ENTRY(RV2P_P
),
6491 BNX2_FTQ_ENTRY(RV2P_T
),
6492 BNX2_FTQ_ENTRY(RV2P_M
),
6493 BNX2_FTQ_ENTRY(TBDR_
),
6494 BNX2_FTQ_ENTRY(TDMA_
),
6495 BNX2_FTQ_ENTRY(TXP_
),
6496 BNX2_FTQ_ENTRY(TXP_
),
6497 BNX2_FTQ_ENTRY(TPAT_
),
6498 BNX2_FTQ_ENTRY(RXP_C
),
6499 BNX2_FTQ_ENTRY(RXP_
),
6500 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6501 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6502 BNX2_FTQ_ENTRY(COM_COMQ_
),
6503 BNX2_FTQ_ENTRY(CP_CPQ_
),
6506 netdev_err(dev
, "<--- start FTQ dump --->\n");
6507 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6508 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6509 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6511 netdev_err(dev
, "CPU states:\n");
6512 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6513 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6514 reg
, bnx2_reg_rd_ind(bp
, reg
),
6515 bnx2_reg_rd_ind(bp
, reg
+ 4),
6516 bnx2_reg_rd_ind(bp
, reg
+ 8),
6517 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6518 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6519 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6521 netdev_err(dev
, "<--- end FTQ dump --->\n");
6522 netdev_err(dev
, "<--- start TBDC dump --->\n");
6523 netdev_err(dev
, "TBDC free cnt: %ld\n",
6524 BNX2_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6525 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6526 for (i
= 0; i
< 0x20; i
++) {
6529 BNX2_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6530 BNX2_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6531 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6532 BNX2_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6533 while ((BNX2_RD(bp
, BNX2_TBDC_COMMAND
) &
6534 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6537 cid
= BNX2_RD(bp
, BNX2_TBDC_CID
);
6538 bdidx
= BNX2_RD(bp
, BNX2_TBDC_BIDX
);
6539 valid
= BNX2_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6540 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6541 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6542 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6544 netdev_err(dev
, "<--- end TBDC dump --->\n");
6548 bnx2_dump_state(struct bnx2
*bp
)
6550 struct net_device
*dev
= bp
->dev
;
6553 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6554 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6555 atomic_read(&bp
->intr_sem
), val1
);
6556 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6557 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6558 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6559 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6560 BNX2_RD(bp
, BNX2_EMAC_TX_STATUS
),
6561 BNX2_RD(bp
, BNX2_EMAC_RX_STATUS
));
6562 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6563 BNX2_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6564 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6565 BNX2_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6566 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6567 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6568 BNX2_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6572 bnx2_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
6574 struct bnx2
*bp
= netdev_priv(dev
);
6577 bnx2_dump_state(bp
);
6578 bnx2_dump_mcp_state(bp
);
6580 /* This allows the netif to be shutdown gracefully before resetting */
6581 schedule_work(&bp
->reset_task
);
6584 /* Called with netif_tx_lock.
6585 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6586 * netif_wake_queue().
6589 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6591 struct bnx2
*bp
= netdev_priv(dev
);
6593 struct bnx2_tx_bd
*txbd
;
6594 struct bnx2_sw_tx_bd
*tx_buf
;
6595 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6596 u16 prod
, ring_prod
;
6598 struct bnx2_napi
*bnapi
;
6599 struct bnx2_tx_ring_info
*txr
;
6600 struct netdev_queue
*txq
;
6602 /* Determine which tx ring we will be placed on */
6603 i
= skb_get_queue_mapping(skb
);
6604 bnapi
= &bp
->bnx2_napi
[i
];
6605 txr
= &bnapi
->tx_ring
;
6606 txq
= netdev_get_tx_queue(dev
, i
);
6608 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6609 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6610 netif_tx_stop_queue(txq
);
6611 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6613 return NETDEV_TX_BUSY
;
6615 len
= skb_headlen(skb
);
6616 prod
= txr
->tx_prod
;
6617 ring_prod
= BNX2_TX_RING_IDX(prod
);
6620 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6621 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6624 if (skb_vlan_tag_present(skb
)) {
6626 (TX_BD_FLAGS_VLAN_TAG
| (skb_vlan_tag_get(skb
) << 16));
6629 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6633 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6635 tcp_opt_len
= tcp_optlen(skb
);
6637 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6638 u32 tcp_off
= skb_transport_offset(skb
) -
6639 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6641 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6642 TX_BD_FLAGS_SW_FLAGS
;
6643 if (likely(tcp_off
== 0))
6644 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6647 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6648 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6649 ((tcp_off
& 0x10) <<
6650 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6651 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6655 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6656 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6657 (tcp_opt_len
>> 2)) << 8;
6663 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6664 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6665 dev_kfree_skb_any(skb
);
6666 return NETDEV_TX_OK
;
6669 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6671 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6673 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6675 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6676 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6677 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6678 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6680 last_frag
= skb_shinfo(skb
)->nr_frags
;
6681 tx_buf
->nr_frags
= last_frag
;
6682 tx_buf
->is_gso
= skb_is_gso(skb
);
6684 for (i
= 0; i
< last_frag
; i
++) {
6685 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6687 prod
= BNX2_NEXT_TX_BD(prod
);
6688 ring_prod
= BNX2_TX_RING_IDX(prod
);
6689 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6691 len
= skb_frag_size(frag
);
6692 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6694 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6696 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6699 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6700 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6701 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6702 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6705 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6707 /* Sync BD data before updating TX mailbox */
6710 netdev_tx_sent_queue(txq
, skb
->len
);
6712 prod
= BNX2_NEXT_TX_BD(prod
);
6713 txr
->tx_prod_bseq
+= skb
->len
;
6715 BNX2_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6716 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6718 txr
->tx_prod
= prod
;
6720 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6721 netif_tx_stop_queue(txq
);
6723 /* netif_tx_stop_queue() must be done before checking
6724 * tx index in bnx2_tx_avail() below, because in
6725 * bnx2_tx_int(), we update tx index before checking for
6726 * netif_tx_queue_stopped().
6729 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6730 netif_tx_wake_queue(txq
);
6733 return NETDEV_TX_OK
;
6735 /* save value of frag that failed */
6738 /* start back at beginning and unmap skb */
6739 prod
= txr
->tx_prod
;
6740 ring_prod
= BNX2_TX_RING_IDX(prod
);
6741 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6743 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6744 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6746 /* unmap remaining mapped pages */
6747 for (i
= 0; i
< last_frag
; i
++) {
6748 prod
= BNX2_NEXT_TX_BD(prod
);
6749 ring_prod
= BNX2_TX_RING_IDX(prod
);
6750 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6751 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6752 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6756 dev_kfree_skb_any(skb
);
6757 return NETDEV_TX_OK
;
6760 /* Called with rtnl_lock */
6762 bnx2_close(struct net_device
*dev
)
6764 struct bnx2
*bp
= netdev_priv(dev
);
6766 bnx2_disable_int_sync(bp
);
6767 bnx2_napi_disable(bp
);
6768 netif_tx_disable(dev
);
6769 del_timer_sync(&bp
->timer
);
6770 bnx2_shutdown_chip(bp
);
6776 netif_carrier_off(bp
->dev
);
6781 bnx2_save_stats(struct bnx2
*bp
)
6783 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6784 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6787 /* The 1st 10 counters are 64-bit counters */
6788 for (i
= 0; i
< 20; i
+= 2) {
6792 hi
= temp_stats
[i
] + hw_stats
[i
];
6793 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6794 if (lo
> 0xffffffff)
6797 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6800 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6801 temp_stats
[i
] += hw_stats
[i
];
6804 #define GET_64BIT_NET_STATS64(ctr) \
6805 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6807 #define GET_64BIT_NET_STATS(ctr) \
6808 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6809 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6811 #define GET_32BIT_NET_STATS(ctr) \
6812 (unsigned long) (bp->stats_blk->ctr + \
6813 bp->temp_stats_blk->ctr)
6816 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6818 struct bnx2
*bp
= netdev_priv(dev
);
6823 net_stats
->rx_packets
=
6824 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6825 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6826 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6828 net_stats
->tx_packets
=
6829 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6830 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6831 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6833 net_stats
->rx_bytes
=
6834 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6836 net_stats
->tx_bytes
=
6837 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6839 net_stats
->multicast
=
6840 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6842 net_stats
->collisions
=
6843 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6845 net_stats
->rx_length_errors
=
6846 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6847 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6849 net_stats
->rx_over_errors
=
6850 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6851 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6853 net_stats
->rx_frame_errors
=
6854 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6856 net_stats
->rx_crc_errors
=
6857 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6859 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6860 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6861 net_stats
->rx_crc_errors
;
6863 net_stats
->tx_aborted_errors
=
6864 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6865 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6867 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
6868 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
6869 net_stats
->tx_carrier_errors
= 0;
6871 net_stats
->tx_carrier_errors
=
6872 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6875 net_stats
->tx_errors
=
6876 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6877 net_stats
->tx_aborted_errors
+
6878 net_stats
->tx_carrier_errors
;
6880 net_stats
->rx_missed_errors
=
6881 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6882 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6883 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6887 /* All ethtool functions called with rtnl_lock */
6890 bnx2_get_link_ksettings(struct net_device
*dev
,
6891 struct ethtool_link_ksettings
*cmd
)
6893 struct bnx2
*bp
= netdev_priv(dev
);
6894 int support_serdes
= 0, support_copper
= 0;
6895 u32 supported
, advertising
;
6897 supported
= SUPPORTED_Autoneg
;
6898 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6901 } else if (bp
->phy_port
== PORT_FIBRE
)
6906 if (support_serdes
) {
6907 supported
|= SUPPORTED_1000baseT_Full
|
6909 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6910 supported
|= SUPPORTED_2500baseX_Full
;
6912 if (support_copper
) {
6913 supported
|= SUPPORTED_10baseT_Half
|
6914 SUPPORTED_10baseT_Full
|
6915 SUPPORTED_100baseT_Half
|
6916 SUPPORTED_100baseT_Full
|
6917 SUPPORTED_1000baseT_Full
|
6921 spin_lock_bh(&bp
->phy_lock
);
6922 cmd
->base
.port
= bp
->phy_port
;
6923 advertising
= bp
->advertising
;
6925 if (bp
->autoneg
& AUTONEG_SPEED
) {
6926 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
6928 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
6931 if (netif_carrier_ok(dev
)) {
6932 cmd
->base
.speed
= bp
->line_speed
;
6933 cmd
->base
.duplex
= bp
->duplex
;
6934 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
)) {
6935 if (bp
->phy_flags
& BNX2_PHY_FLAG_MDIX
)
6936 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_X
;
6938 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI
;
6942 cmd
->base
.speed
= SPEED_UNKNOWN
;
6943 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
6945 spin_unlock_bh(&bp
->phy_lock
);
6947 cmd
->base
.phy_address
= bp
->phy_addr
;
6949 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
6951 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
6958 bnx2_set_link_ksettings(struct net_device
*dev
,
6959 const struct ethtool_link_ksettings
*cmd
)
6961 struct bnx2
*bp
= netdev_priv(dev
);
6962 u8 autoneg
= bp
->autoneg
;
6963 u8 req_duplex
= bp
->req_duplex
;
6964 u16 req_line_speed
= bp
->req_line_speed
;
6965 u32 advertising
= bp
->advertising
;
6968 spin_lock_bh(&bp
->phy_lock
);
6970 if (cmd
->base
.port
!= PORT_TP
&& cmd
->base
.port
!= PORT_FIBRE
)
6971 goto err_out_unlock
;
6973 if (cmd
->base
.port
!= bp
->phy_port
&&
6974 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6975 goto err_out_unlock
;
6977 /* If device is down, we can store the settings only if the user
6978 * is setting the currently active port.
6980 if (!netif_running(dev
) && cmd
->base
.port
!= bp
->phy_port
)
6981 goto err_out_unlock
;
6983 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
6984 autoneg
|= AUTONEG_SPEED
;
6986 ethtool_convert_link_mode_to_legacy_u32(
6987 &advertising
, cmd
->link_modes
.advertising
);
6989 if (cmd
->base
.port
== PORT_TP
) {
6990 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6992 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6994 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6996 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6998 advertising
|= ADVERTISED_Autoneg
;
7001 u32 speed
= cmd
->base
.speed
;
7003 if (cmd
->base
.port
== PORT_FIBRE
) {
7004 if ((speed
!= SPEED_1000
&&
7005 speed
!= SPEED_2500
) ||
7006 (cmd
->base
.duplex
!= DUPLEX_FULL
))
7007 goto err_out_unlock
;
7009 if (speed
== SPEED_2500
&&
7010 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
7011 goto err_out_unlock
;
7012 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
7013 goto err_out_unlock
;
7015 autoneg
&= ~AUTONEG_SPEED
;
7016 req_line_speed
= speed
;
7017 req_duplex
= cmd
->base
.duplex
;
7021 bp
->autoneg
= autoneg
;
7022 bp
->advertising
= advertising
;
7023 bp
->req_line_speed
= req_line_speed
;
7024 bp
->req_duplex
= req_duplex
;
7027 /* If device is down, the new settings will be picked up when it is
7030 if (netif_running(dev
))
7031 err
= bnx2_setup_phy(bp
, cmd
->base
.port
);
7034 spin_unlock_bh(&bp
->phy_lock
);
7040 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
7042 struct bnx2
*bp
= netdev_priv(dev
);
7044 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
7045 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
7046 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
7049 #define BNX2_REGDUMP_LEN (32 * 1024)
7052 bnx2_get_regs_len(struct net_device
*dev
)
7054 return BNX2_REGDUMP_LEN
;
7058 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
7060 u32
*p
= _p
, i
, offset
;
7062 struct bnx2
*bp
= netdev_priv(dev
);
7063 static const u32 reg_boundaries
[] = {
7064 0x0000, 0x0098, 0x0400, 0x045c,
7065 0x0800, 0x0880, 0x0c00, 0x0c10,
7066 0x0c30, 0x0d08, 0x1000, 0x101c,
7067 0x1040, 0x1048, 0x1080, 0x10a4,
7068 0x1400, 0x1490, 0x1498, 0x14f0,
7069 0x1500, 0x155c, 0x1580, 0x15dc,
7070 0x1600, 0x1658, 0x1680, 0x16d8,
7071 0x1800, 0x1820, 0x1840, 0x1854,
7072 0x1880, 0x1894, 0x1900, 0x1984,
7073 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7074 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7075 0x2000, 0x2030, 0x23c0, 0x2400,
7076 0x2800, 0x2820, 0x2830, 0x2850,
7077 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7078 0x3c00, 0x3c94, 0x4000, 0x4010,
7079 0x4080, 0x4090, 0x43c0, 0x4458,
7080 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7081 0x4fc0, 0x5010, 0x53c0, 0x5444,
7082 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7083 0x5fc0, 0x6000, 0x6400, 0x6428,
7084 0x6800, 0x6848, 0x684c, 0x6860,
7085 0x6888, 0x6910, 0x8000
7090 memset(p
, 0, BNX2_REGDUMP_LEN
);
7092 if (!netif_running(bp
->dev
))
7096 offset
= reg_boundaries
[0];
7098 while (offset
< BNX2_REGDUMP_LEN
) {
7099 *p
++ = BNX2_RD(bp
, offset
);
7101 if (offset
== reg_boundaries
[i
+ 1]) {
7102 offset
= reg_boundaries
[i
+ 2];
7103 p
= (u32
*) (orig_p
+ offset
);
7110 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7112 struct bnx2
*bp
= netdev_priv(dev
);
7114 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7119 wol
->supported
= WAKE_MAGIC
;
7121 wol
->wolopts
= WAKE_MAGIC
;
7125 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7129 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7131 struct bnx2
*bp
= netdev_priv(dev
);
7133 if (wol
->wolopts
& ~WAKE_MAGIC
)
7136 if (wol
->wolopts
& WAKE_MAGIC
) {
7137 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7146 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
7152 bnx2_nway_reset(struct net_device
*dev
)
7154 struct bnx2
*bp
= netdev_priv(dev
);
7157 if (!netif_running(dev
))
7160 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7164 spin_lock_bh(&bp
->phy_lock
);
7166 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7169 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7170 spin_unlock_bh(&bp
->phy_lock
);
7174 /* Force a link down visible on the other side */
7175 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7176 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7177 spin_unlock_bh(&bp
->phy_lock
);
7181 spin_lock_bh(&bp
->phy_lock
);
7183 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7184 bp
->serdes_an_pending
= 1;
7185 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7188 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7189 bmcr
&= ~BMCR_LOOPBACK
;
7190 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7192 spin_unlock_bh(&bp
->phy_lock
);
7198 bnx2_get_link(struct net_device
*dev
)
7200 struct bnx2
*bp
= netdev_priv(dev
);
7206 bnx2_get_eeprom_len(struct net_device
*dev
)
7208 struct bnx2
*bp
= netdev_priv(dev
);
7210 if (!bp
->flash_info
)
7213 return (int) bp
->flash_size
;
7217 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7220 struct bnx2
*bp
= netdev_priv(dev
);
7223 /* parameters already validated in ethtool_get_eeprom */
7225 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7231 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7234 struct bnx2
*bp
= netdev_priv(dev
);
7237 /* parameters already validated in ethtool_set_eeprom */
7239 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7245 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7247 struct bnx2
*bp
= netdev_priv(dev
);
7249 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7251 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7252 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7253 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7254 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7256 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7257 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7258 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7259 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7261 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7267 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7269 struct bnx2
*bp
= netdev_priv(dev
);
7271 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7272 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7274 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7275 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7277 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7278 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7280 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7281 if (bp
->rx_quick_cons_trip_int
> 0xff)
7282 bp
->rx_quick_cons_trip_int
= 0xff;
7284 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7285 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7287 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7288 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7290 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7291 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7293 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7294 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7297 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7298 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7299 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7300 bp
->stats_ticks
= USEC_PER_SEC
;
7302 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7303 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7304 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7306 if (netif_running(bp
->dev
)) {
7307 bnx2_netif_stop(bp
, true);
7308 bnx2_init_nic(bp
, 0);
7309 bnx2_netif_start(bp
, true);
7316 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7318 struct bnx2
*bp
= netdev_priv(dev
);
7320 ering
->rx_max_pending
= BNX2_MAX_TOTAL_RX_DESC_CNT
;
7321 ering
->rx_jumbo_max_pending
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
7323 ering
->rx_pending
= bp
->rx_ring_size
;
7324 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7326 ering
->tx_max_pending
= BNX2_MAX_TX_DESC_CNT
;
7327 ering
->tx_pending
= bp
->tx_ring_size
;
7331 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7333 if (netif_running(bp
->dev
)) {
7334 /* Reset will erase chipset stats; save them */
7335 bnx2_save_stats(bp
);
7337 bnx2_netif_stop(bp
, true);
7338 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7343 __bnx2_free_irq(bp
);
7349 bnx2_set_rx_ring_size(bp
, rx
);
7350 bp
->tx_ring_size
= tx
;
7352 if (netif_running(bp
->dev
)) {
7356 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7361 rc
= bnx2_alloc_mem(bp
);
7364 rc
= bnx2_request_irq(bp
);
7367 rc
= bnx2_init_nic(bp
, 0);
7370 bnx2_napi_enable(bp
);
7375 mutex_lock(&bp
->cnic_lock
);
7376 /* Let cnic know about the new status block. */
7377 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7378 bnx2_setup_cnic_irq_info(bp
);
7379 mutex_unlock(&bp
->cnic_lock
);
7381 bnx2_netif_start(bp
, true);
7387 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7389 struct bnx2
*bp
= netdev_priv(dev
);
7392 if ((ering
->rx_pending
> BNX2_MAX_TOTAL_RX_DESC_CNT
) ||
7393 (ering
->tx_pending
> BNX2_MAX_TX_DESC_CNT
) ||
7394 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7398 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7404 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7406 struct bnx2
*bp
= netdev_priv(dev
);
7408 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7409 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7410 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7414 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7416 struct bnx2
*bp
= netdev_priv(dev
);
7418 bp
->req_flow_ctrl
= 0;
7419 if (epause
->rx_pause
)
7420 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7421 if (epause
->tx_pause
)
7422 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7424 if (epause
->autoneg
) {
7425 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7428 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7431 if (netif_running(dev
)) {
7432 spin_lock_bh(&bp
->phy_lock
);
7433 bnx2_setup_phy(bp
, bp
->phy_port
);
7434 spin_unlock_bh(&bp
->phy_lock
);
7441 char string
[ETH_GSTRING_LEN
];
7442 } bnx2_stats_str_arr
[] = {
7444 { "rx_error_bytes" },
7446 { "tx_error_bytes" },
7447 { "rx_ucast_packets" },
7448 { "rx_mcast_packets" },
7449 { "rx_bcast_packets" },
7450 { "tx_ucast_packets" },
7451 { "tx_mcast_packets" },
7452 { "tx_bcast_packets" },
7453 { "tx_mac_errors" },
7454 { "tx_carrier_errors" },
7455 { "rx_crc_errors" },
7456 { "rx_align_errors" },
7457 { "tx_single_collisions" },
7458 { "tx_multi_collisions" },
7460 { "tx_excess_collisions" },
7461 { "tx_late_collisions" },
7462 { "tx_total_collisions" },
7465 { "rx_undersize_packets" },
7466 { "rx_oversize_packets" },
7467 { "rx_64_byte_packets" },
7468 { "rx_65_to_127_byte_packets" },
7469 { "rx_128_to_255_byte_packets" },
7470 { "rx_256_to_511_byte_packets" },
7471 { "rx_512_to_1023_byte_packets" },
7472 { "rx_1024_to_1522_byte_packets" },
7473 { "rx_1523_to_9022_byte_packets" },
7474 { "tx_64_byte_packets" },
7475 { "tx_65_to_127_byte_packets" },
7476 { "tx_128_to_255_byte_packets" },
7477 { "tx_256_to_511_byte_packets" },
7478 { "tx_512_to_1023_byte_packets" },
7479 { "tx_1024_to_1522_byte_packets" },
7480 { "tx_1523_to_9022_byte_packets" },
7481 { "rx_xon_frames" },
7482 { "rx_xoff_frames" },
7483 { "tx_xon_frames" },
7484 { "tx_xoff_frames" },
7485 { "rx_mac_ctrl_frames" },
7486 { "rx_filtered_packets" },
7487 { "rx_ftq_discards" },
7489 { "rx_fw_discards" },
7492 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7494 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7496 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7497 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7498 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7499 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7500 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7501 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7502 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7503 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7504 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7505 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7506 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7507 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7508 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7509 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7510 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7511 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7512 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7513 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7514 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7515 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7516 STATS_OFFSET32(stat_EtherStatsCollisions
),
7517 STATS_OFFSET32(stat_EtherStatsFragments
),
7518 STATS_OFFSET32(stat_EtherStatsJabbers
),
7519 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7520 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7521 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7522 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7523 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7524 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7525 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7526 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7527 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7528 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7529 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7530 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7531 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7532 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7533 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7534 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7535 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7536 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7537 STATS_OFFSET32(stat_OutXonSent
),
7538 STATS_OFFSET32(stat_OutXoffSent
),
7539 STATS_OFFSET32(stat_MacControlFramesReceived
),
7540 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7541 STATS_OFFSET32(stat_IfInFTQDiscards
),
7542 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7543 STATS_OFFSET32(stat_FwRxDrop
),
7546 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7547 * skipped because of errata.
7549 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7550 8,0,8,8,8,8,8,8,8,8,
7551 4,0,4,4,4,4,4,4,4,4,
7552 4,4,4,4,4,4,4,4,4,4,
7553 4,4,4,4,4,4,4,4,4,4,
7557 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7558 8,0,8,8,8,8,8,8,8,8,
7559 4,4,4,4,4,4,4,4,4,4,
7560 4,4,4,4,4,4,4,4,4,4,
7561 4,4,4,4,4,4,4,4,4,4,
7565 #define BNX2_NUM_TESTS 6
7568 char string
[ETH_GSTRING_LEN
];
7569 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7570 { "register_test (offline)" },
7571 { "memory_test (offline)" },
7572 { "loopback_test (offline)" },
7573 { "nvram_test (online)" },
7574 { "interrupt_test (online)" },
7575 { "link_test (online)" },
7579 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7583 return BNX2_NUM_TESTS
;
7585 return BNX2_NUM_STATS
;
7592 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7594 struct bnx2
*bp
= netdev_priv(dev
);
7596 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7597 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7600 bnx2_netif_stop(bp
, true);
7601 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7604 if (bnx2_test_registers(bp
) != 0) {
7606 etest
->flags
|= ETH_TEST_FL_FAILED
;
7608 if (bnx2_test_memory(bp
) != 0) {
7610 etest
->flags
|= ETH_TEST_FL_FAILED
;
7612 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7613 etest
->flags
|= ETH_TEST_FL_FAILED
;
7615 if (!netif_running(bp
->dev
))
7616 bnx2_shutdown_chip(bp
);
7618 bnx2_init_nic(bp
, 1);
7619 bnx2_netif_start(bp
, true);
7622 /* wait for link up */
7623 for (i
= 0; i
< 7; i
++) {
7626 msleep_interruptible(1000);
7630 if (bnx2_test_nvram(bp
) != 0) {
7632 etest
->flags
|= ETH_TEST_FL_FAILED
;
7634 if (bnx2_test_intr(bp
) != 0) {
7636 etest
->flags
|= ETH_TEST_FL_FAILED
;
7639 if (bnx2_test_link(bp
) != 0) {
7641 etest
->flags
|= ETH_TEST_FL_FAILED
;
7647 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7649 switch (stringset
) {
7651 memcpy(buf
, bnx2_stats_str_arr
,
7652 sizeof(bnx2_stats_str_arr
));
7655 memcpy(buf
, bnx2_tests_str_arr
,
7656 sizeof(bnx2_tests_str_arr
));
7662 bnx2_get_ethtool_stats(struct net_device
*dev
,
7663 struct ethtool_stats
*stats
, u64
*buf
)
7665 struct bnx2
*bp
= netdev_priv(dev
);
7667 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7668 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7669 u8
*stats_len_arr
= NULL
;
7672 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7676 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
7677 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) ||
7678 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A2
) ||
7679 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
7680 stats_len_arr
= bnx2_5706_stats_len_arr
;
7682 stats_len_arr
= bnx2_5708_stats_len_arr
;
7684 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7685 unsigned long offset
;
7687 if (stats_len_arr
[i
] == 0) {
7688 /* skip this counter */
7693 offset
= bnx2_stats_offset_arr
[i
];
7694 if (stats_len_arr
[i
] == 4) {
7695 /* 4-byte counter */
7696 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7697 *(temp_stats
+ offset
);
7700 /* 8-byte counter */
7701 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7702 *(hw_stats
+ offset
+ 1) +
7703 (((u64
) *(temp_stats
+ offset
)) << 32) +
7704 *(temp_stats
+ offset
+ 1);
7709 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7711 struct bnx2
*bp
= netdev_priv(dev
);
7714 case ETHTOOL_ID_ACTIVE
:
7715 bp
->leds_save
= BNX2_RD(bp
, BNX2_MISC_CFG
);
7716 BNX2_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7717 return 1; /* cycle on/off once per second */
7720 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7721 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7722 BNX2_EMAC_LED_100MB_OVERRIDE
|
7723 BNX2_EMAC_LED_10MB_OVERRIDE
|
7724 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7725 BNX2_EMAC_LED_TRAFFIC
);
7728 case ETHTOOL_ID_OFF
:
7729 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7732 case ETHTOOL_ID_INACTIVE
:
7733 BNX2_WR(bp
, BNX2_EMAC_LED
, 0);
7734 BNX2_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7742 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7744 struct bnx2
*bp
= netdev_priv(dev
);
7746 /* TSO with VLAN tag won't work with current firmware */
7747 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
7748 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7750 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7752 if ((!!(features
& NETIF_F_HW_VLAN_CTAG_RX
) !=
7753 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7754 netif_running(dev
)) {
7755 bnx2_netif_stop(bp
, false);
7756 dev
->features
= features
;
7757 bnx2_set_rx_mode(dev
);
7758 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7759 bnx2_netif_start(bp
, false);
7766 static void bnx2_get_channels(struct net_device
*dev
,
7767 struct ethtool_channels
*channels
)
7769 struct bnx2
*bp
= netdev_priv(dev
);
7770 u32 max_rx_rings
= 1;
7771 u32 max_tx_rings
= 1;
7773 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7774 max_rx_rings
= RX_MAX_RINGS
;
7775 max_tx_rings
= TX_MAX_RINGS
;
7778 channels
->max_rx
= max_rx_rings
;
7779 channels
->max_tx
= max_tx_rings
;
7780 channels
->max_other
= 0;
7781 channels
->max_combined
= 0;
7782 channels
->rx_count
= bp
->num_rx_rings
;
7783 channels
->tx_count
= bp
->num_tx_rings
;
7784 channels
->other_count
= 0;
7785 channels
->combined_count
= 0;
7788 static int bnx2_set_channels(struct net_device
*dev
,
7789 struct ethtool_channels
*channels
)
7791 struct bnx2
*bp
= netdev_priv(dev
);
7792 u32 max_rx_rings
= 1;
7793 u32 max_tx_rings
= 1;
7796 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7797 max_rx_rings
= RX_MAX_RINGS
;
7798 max_tx_rings
= TX_MAX_RINGS
;
7800 if (channels
->rx_count
> max_rx_rings
||
7801 channels
->tx_count
> max_tx_rings
)
7804 bp
->num_req_rx_rings
= channels
->rx_count
;
7805 bp
->num_req_tx_rings
= channels
->tx_count
;
7807 if (netif_running(dev
))
7808 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7809 bp
->tx_ring_size
, true);
7814 static const struct ethtool_ops bnx2_ethtool_ops
= {
7815 .supported_coalesce_params
= ETHTOOL_COALESCE_USECS
|
7816 ETHTOOL_COALESCE_MAX_FRAMES
|
7817 ETHTOOL_COALESCE_USECS_IRQ
|
7818 ETHTOOL_COALESCE_MAX_FRAMES_IRQ
|
7819 ETHTOOL_COALESCE_STATS_BLOCK_USECS
,
7820 .get_drvinfo
= bnx2_get_drvinfo
,
7821 .get_regs_len
= bnx2_get_regs_len
,
7822 .get_regs
= bnx2_get_regs
,
7823 .get_wol
= bnx2_get_wol
,
7824 .set_wol
= bnx2_set_wol
,
7825 .nway_reset
= bnx2_nway_reset
,
7826 .get_link
= bnx2_get_link
,
7827 .get_eeprom_len
= bnx2_get_eeprom_len
,
7828 .get_eeprom
= bnx2_get_eeprom
,
7829 .set_eeprom
= bnx2_set_eeprom
,
7830 .get_coalesce
= bnx2_get_coalesce
,
7831 .set_coalesce
= bnx2_set_coalesce
,
7832 .get_ringparam
= bnx2_get_ringparam
,
7833 .set_ringparam
= bnx2_set_ringparam
,
7834 .get_pauseparam
= bnx2_get_pauseparam
,
7835 .set_pauseparam
= bnx2_set_pauseparam
,
7836 .self_test
= bnx2_self_test
,
7837 .get_strings
= bnx2_get_strings
,
7838 .set_phys_id
= bnx2_set_phys_id
,
7839 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7840 .get_sset_count
= bnx2_get_sset_count
,
7841 .get_channels
= bnx2_get_channels
,
7842 .set_channels
= bnx2_set_channels
,
7843 .get_link_ksettings
= bnx2_get_link_ksettings
,
7844 .set_link_ksettings
= bnx2_set_link_ksettings
,
7847 /* Called with rtnl_lock */
7849 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7851 struct mii_ioctl_data
*data
= if_mii(ifr
);
7852 struct bnx2
*bp
= netdev_priv(dev
);
7857 data
->phy_id
= bp
->phy_addr
;
7863 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7866 if (!netif_running(dev
))
7869 spin_lock_bh(&bp
->phy_lock
);
7870 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7871 spin_unlock_bh(&bp
->phy_lock
);
7873 data
->val_out
= mii_regval
;
7879 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7882 if (!netif_running(dev
))
7885 spin_lock_bh(&bp
->phy_lock
);
7886 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7887 spin_unlock_bh(&bp
->phy_lock
);
7898 /* Called with rtnl_lock */
7900 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7902 struct sockaddr
*addr
= p
;
7903 struct bnx2
*bp
= netdev_priv(dev
);
7905 if (!is_valid_ether_addr(addr
->sa_data
))
7906 return -EADDRNOTAVAIL
;
7908 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7909 if (netif_running(dev
))
7910 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7915 /* Called with rtnl_lock */
7917 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7919 struct bnx2
*bp
= netdev_priv(dev
);
7922 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7926 #ifdef CONFIG_NET_POLL_CONTROLLER
7928 poll_bnx2(struct net_device
*dev
)
7930 struct bnx2
*bp
= netdev_priv(dev
);
7933 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7934 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7936 disable_irq(irq
->vector
);
7937 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7938 enable_irq(irq
->vector
);
7944 bnx2_get_5709_media(struct bnx2
*bp
)
7946 u32 val
= BNX2_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7947 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7950 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7952 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7953 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7957 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7958 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7960 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7962 if (bp
->func
== 0) {
7967 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7975 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7982 bnx2_get_pci_speed(struct bnx2
*bp
)
7986 reg
= BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7987 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7990 bp
->flags
|= BNX2_FLAG_PCIX
;
7992 clkreg
= BNX2_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7994 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7996 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7997 bp
->bus_speed_mhz
= 133;
8000 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
8001 bp
->bus_speed_mhz
= 100;
8004 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
8005 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
8006 bp
->bus_speed_mhz
= 66;
8009 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
8010 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
8011 bp
->bus_speed_mhz
= 50;
8014 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
8015 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
8016 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
8017 bp
->bus_speed_mhz
= 33;
8022 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
8023 bp
->bus_speed_mhz
= 66;
8025 bp
->bus_speed_mhz
= 33;
8028 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
8029 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
8034 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
8038 unsigned int block_end
, rosize
, len
;
8040 #define BNX2_VPD_NVRAM_OFFSET 0x300
8041 #define BNX2_VPD_LEN 128
8042 #define BNX2_MAX_VER_SLEN 30
8044 data
= kmalloc(256, GFP_KERNEL
);
8048 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8053 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8054 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8055 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8056 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8057 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8060 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8064 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8065 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8066 block_end
= i
+ rosize
;
8068 if (block_end
> BNX2_VPD_LEN
)
8071 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8072 PCI_VPD_RO_KEYWORD_MFR_ID
);
8076 len
= pci_vpd_info_field_size(&data
[j
]);
8078 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8079 if (j
+ len
> block_end
|| len
!= 4 ||
8080 memcmp(&data
[j
], "1028", 4))
8083 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8084 PCI_VPD_RO_KEYWORD_VENDOR0
);
8088 len
= pci_vpd_info_field_size(&data
[j
]);
8090 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8091 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8094 memcpy(bp
->fw_version
, &data
[j
], len
);
8095 bp
->fw_version
[len
] = ' ';
8102 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8107 u64 dma_mask
, persist_dma_mask
;
8110 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8111 bp
= netdev_priv(dev
);
8116 bp
->temp_stats_blk
=
8117 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8119 if (!bp
->temp_stats_blk
) {
8124 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8125 rc
= pci_enable_device(pdev
);
8127 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8131 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8133 "Cannot find PCI device base address, aborting\n");
8135 goto err_out_disable
;
8138 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8140 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8141 goto err_out_disable
;
8144 pci_set_master(pdev
);
8146 bp
->pm_cap
= pdev
->pm_cap
;
8147 if (bp
->pm_cap
== 0) {
8149 "Cannot find power management capability, aborting\n");
8151 goto err_out_release
;
8157 spin_lock_init(&bp
->phy_lock
);
8158 spin_lock_init(&bp
->indirect_lock
);
8160 mutex_init(&bp
->cnic_lock
);
8162 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8164 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8165 TX_MAX_TSS_RINGS
+ 1));
8167 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8169 goto err_out_release
;
8172 /* Configure byte swap and enable write to the reg_window registers.
8173 * Rely on CPU to do target byte swapping on big endian systems
8174 * The chip's target access swapping will not swap all accesses
8176 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8177 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8178 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8180 bp
->chip_id
= BNX2_RD(bp
, BNX2_MISC_ID
);
8182 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
8183 if (!pci_is_pcie(pdev
)) {
8184 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8188 bp
->flags
|= BNX2_FLAG_PCIE
;
8189 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
8190 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8192 /* AER (Advanced Error Reporting) hooks */
8193 err
= pci_enable_pcie_error_reporting(pdev
);
8195 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8198 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8199 if (bp
->pcix_cap
== 0) {
8201 "Cannot find PCIX capability, aborting\n");
8205 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8208 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8209 BNX2_CHIP_REV(bp
) != BNX2_CHIP_REV_Ax
) {
8211 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8214 if (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
&&
8215 BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A1
) {
8217 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8220 /* 5708 cannot support DMA addresses > 40-bit. */
8221 if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8222 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8224 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8226 /* Configure DMA attributes. */
8227 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8228 dev
->features
|= NETIF_F_HIGHDMA
;
8229 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8232 "pci_set_consistent_dma_mask failed, aborting\n");
8235 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8236 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8240 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8241 bnx2_get_pci_speed(bp
);
8243 /* 5706A0 may falsely detect SERR and PERR. */
8244 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8245 reg
= BNX2_RD(bp
, PCI_COMMAND
);
8246 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8247 BNX2_WR(bp
, PCI_COMMAND
, reg
);
8248 } else if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) &&
8249 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8252 "5706 A1 can only be used in a PCIX bus, aborting\n");
8256 bnx2_init_nvram(bp
);
8258 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8260 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8263 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8264 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8265 u32 off
= bp
->func
<< 2;
8267 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8269 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8271 /* Get the permanent MAC address. First we need to make sure the
8272 * firmware is actually running.
8274 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8276 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8277 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8278 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8283 bnx2_read_vpd_fw_ver(bp
);
8285 j
= strlen(bp
->fw_version
);
8286 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8287 for (i
= 0; i
< 3 && j
< 24; i
++) {
8291 bp
->fw_version
[j
++] = 'b';
8292 bp
->fw_version
[j
++] = 'c';
8293 bp
->fw_version
[j
++] = ' ';
8295 num
= (u8
) (reg
>> (24 - (i
* 8)));
8296 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8297 if (num
>= k
|| !skip0
|| k
== 1) {
8298 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8303 bp
->fw_version
[j
++] = '.';
8305 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8306 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8309 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8310 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8312 for (i
= 0; i
< 30; i
++) {
8313 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8314 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8319 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8320 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8321 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8322 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8323 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8326 bp
->fw_version
[j
++] = ' ';
8327 for (i
= 0; i
< 3 && j
< 28; i
++) {
8328 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8329 reg
= be32_to_cpu(reg
);
8330 memcpy(&bp
->fw_version
[j
], ®
, 4);
8335 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8336 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8337 bp
->mac_addr
[1] = (u8
) reg
;
8339 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8340 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8341 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8342 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8343 bp
->mac_addr
[5] = (u8
) reg
;
8345 bp
->tx_ring_size
= BNX2_MAX_TX_DESC_CNT
;
8346 bnx2_set_rx_ring_size(bp
, 255);
8348 bp
->tx_quick_cons_trip_int
= 2;
8349 bp
->tx_quick_cons_trip
= 20;
8350 bp
->tx_ticks_int
= 18;
8353 bp
->rx_quick_cons_trip_int
= 2;
8354 bp
->rx_quick_cons_trip
= 12;
8355 bp
->rx_ticks_int
= 18;
8358 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8360 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8364 /* allocate stats_blk */
8365 rc
= bnx2_alloc_stats_blk(dev
);
8369 /* Disable WOL support if we are running on a SERDES chip. */
8370 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8371 bnx2_get_5709_media(bp
);
8372 else if (BNX2_CHIP_BOND(bp
) & BNX2_CHIP_BOND_SERDES_BIT
)
8373 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8375 bp
->phy_port
= PORT_TP
;
8376 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8377 bp
->phy_port
= PORT_FIBRE
;
8378 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8379 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8380 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8383 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
) {
8384 /* Don't do parallel detect on this board because of
8385 * some board problems. The link will not go down
8386 * if we do parallel detect.
8388 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8389 pdev
->subsystem_device
== 0x310c)
8390 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8393 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8394 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8396 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
||
8397 BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8398 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8399 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8400 (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
||
8401 BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Bx
))
8402 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8404 bnx2_init_fw_cap(bp
);
8406 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
8407 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
8408 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
) ||
8409 !(BNX2_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8410 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8414 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
8415 device_set_wakeup_capable(&bp
->pdev
->dev
, false);
8417 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
8419 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8420 bp
->tx_quick_cons_trip_int
=
8421 bp
->tx_quick_cons_trip
;
8422 bp
->tx_ticks_int
= bp
->tx_ticks
;
8423 bp
->rx_quick_cons_trip_int
=
8424 bp
->rx_quick_cons_trip
;
8425 bp
->rx_ticks_int
= bp
->rx_ticks
;
8426 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8427 bp
->com_ticks_int
= bp
->com_ticks
;
8428 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8431 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8433 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8434 * with byte enables disabled on the unused 32-bit word. This is legal
8435 * but causes problems on the AMD 8132 which will eventually stop
8436 * responding after a while.
8438 * AMD believes this incompatibility is unique to the 5706, and
8439 * prefers to locally disable MSI rather than globally disabling it.
8441 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
&& disable_msi
== 0) {
8442 struct pci_dev
*amd_8132
= NULL
;
8444 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8445 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8448 if (amd_8132
->revision
>= 0x10 &&
8449 amd_8132
->revision
<= 0x13) {
8451 pci_dev_put(amd_8132
);
8457 bnx2_set_default_link(bp
);
8458 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8460 timer_setup(&bp
->timer
, bnx2_timer
, 0);
8461 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8464 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8465 bp
->cnic_eth_dev
.max_iscsi_conn
=
8466 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8467 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8468 bp
->cnic_probe
= bnx2_cnic_probe
;
8470 pci_save_state(pdev
);
8475 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8476 pci_disable_pcie_error_reporting(pdev
);
8477 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8480 pci_iounmap(pdev
, bp
->regview
);
8484 pci_release_regions(pdev
);
8487 pci_disable_device(pdev
);
8490 kfree(bp
->temp_stats_blk
);
8496 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8500 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8501 s
+= sprintf(s
, "PCI Express");
8503 s
+= sprintf(s
, "PCI");
8504 if (bp
->flags
& BNX2_FLAG_PCIX
)
8505 s
+= sprintf(s
, "-X");
8506 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8507 s
+= sprintf(s
, " 32-bit");
8509 s
+= sprintf(s
, " 64-bit");
8510 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8516 bnx2_del_napi(struct bnx2
*bp
)
8520 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8521 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8525 bnx2_init_napi(struct bnx2
*bp
)
8529 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8530 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8531 int (*poll
)(struct napi_struct
*, int);
8536 poll
= bnx2_poll_msix
;
8538 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8543 static const struct net_device_ops bnx2_netdev_ops
= {
8544 .ndo_open
= bnx2_open
,
8545 .ndo_start_xmit
= bnx2_start_xmit
,
8546 .ndo_stop
= bnx2_close
,
8547 .ndo_get_stats64
= bnx2_get_stats64
,
8548 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8549 .ndo_do_ioctl
= bnx2_ioctl
,
8550 .ndo_validate_addr
= eth_validate_addr
,
8551 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8552 .ndo_change_mtu
= bnx2_change_mtu
,
8553 .ndo_set_features
= bnx2_set_features
,
8554 .ndo_tx_timeout
= bnx2_tx_timeout
,
8555 #ifdef CONFIG_NET_POLL_CONTROLLER
8556 .ndo_poll_controller
= poll_bnx2
,
8561 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8563 struct net_device
*dev
;
8568 /* dev zeroed in init_etherdev */
8569 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8573 rc
= bnx2_init_board(pdev
, dev
);
8577 dev
->netdev_ops
= &bnx2_netdev_ops
;
8578 dev
->watchdog_timeo
= TX_TIMEOUT
;
8579 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8581 bp
= netdev_priv(dev
);
8583 pci_set_drvdata(pdev
, dev
);
8586 * In-flight DMA from 1st kernel could continue going in kdump kernel.
8587 * New io-page table has been created before bnx2 does reset at open stage.
8588 * We have to wait for the in-flight DMA to complete to avoid it look up
8589 * into the newly created io-page table.
8591 if (is_kdump_kernel())
8592 bnx2_wait_dma_complete(bp
);
8594 memcpy(dev
->dev_addr
, bp
->mac_addr
, ETH_ALEN
);
8596 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8597 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8598 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8600 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8601 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8603 dev
->vlan_features
= dev
->hw_features
;
8604 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
8605 dev
->features
|= dev
->hw_features
;
8606 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8607 dev
->min_mtu
= MIN_ETHERNET_PACKET_SIZE
;
8608 dev
->max_mtu
= MAX_ETHERNET_JUMBO_PACKET_SIZE
;
8610 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
8611 dev
->hw_features
&= ~NETIF_F_HW_VLAN_CTAG_RX
;
8613 if ((rc
= register_netdev(dev
))) {
8614 dev_err(&pdev
->dev
, "Cannot register net device\n");
8618 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8619 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8620 ((BNX2_CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8621 ((BNX2_CHIP_ID(bp
) & 0x0ff0) >> 4),
8622 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8623 pdev
->irq
, dev
->dev_addr
);
8628 pci_iounmap(pdev
, bp
->regview
);
8629 pci_release_regions(pdev
);
8630 pci_disable_device(pdev
);
8632 bnx2_free_stats_blk(dev
);
8638 bnx2_remove_one(struct pci_dev
*pdev
)
8640 struct net_device
*dev
= pci_get_drvdata(pdev
);
8641 struct bnx2
*bp
= netdev_priv(dev
);
8643 unregister_netdev(dev
);
8645 del_timer_sync(&bp
->timer
);
8646 cancel_work_sync(&bp
->reset_task
);
8648 pci_iounmap(bp
->pdev
, bp
->regview
);
8650 bnx2_free_stats_blk(dev
);
8651 kfree(bp
->temp_stats_blk
);
8653 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8654 pci_disable_pcie_error_reporting(pdev
);
8655 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8658 bnx2_release_firmware(bp
);
8662 pci_release_regions(pdev
);
8663 pci_disable_device(pdev
);
8666 #ifdef CONFIG_PM_SLEEP
8668 bnx2_suspend(struct device
*device
)
8670 struct net_device
*dev
= dev_get_drvdata(device
);
8671 struct bnx2
*bp
= netdev_priv(dev
);
8673 if (netif_running(dev
)) {
8674 cancel_work_sync(&bp
->reset_task
);
8675 bnx2_netif_stop(bp
, true);
8676 netif_device_detach(dev
);
8677 del_timer_sync(&bp
->timer
);
8678 bnx2_shutdown_chip(bp
);
8679 __bnx2_free_irq(bp
);
8687 bnx2_resume(struct device
*device
)
8689 struct net_device
*dev
= dev_get_drvdata(device
);
8690 struct bnx2
*bp
= netdev_priv(dev
);
8692 if (!netif_running(dev
))
8695 bnx2_set_power_state(bp
, PCI_D0
);
8696 netif_device_attach(dev
);
8697 bnx2_request_irq(bp
);
8698 bnx2_init_nic(bp
, 1);
8699 bnx2_netif_start(bp
, true);
8703 static SIMPLE_DEV_PM_OPS(bnx2_pm_ops
, bnx2_suspend
, bnx2_resume
);
8704 #define BNX2_PM_OPS (&bnx2_pm_ops)
8708 #define BNX2_PM_OPS NULL
8710 #endif /* CONFIG_PM_SLEEP */
8712 * bnx2_io_error_detected - called when PCI error is detected
8713 * @pdev: Pointer to PCI device
8714 * @state: The current pci connection state
8716 * This function is called after a PCI bus error affecting
8717 * this device has been detected.
8719 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8720 pci_channel_state_t state
)
8722 struct net_device
*dev
= pci_get_drvdata(pdev
);
8723 struct bnx2
*bp
= netdev_priv(dev
);
8726 netif_device_detach(dev
);
8728 if (state
== pci_channel_io_perm_failure
) {
8730 return PCI_ERS_RESULT_DISCONNECT
;
8733 if (netif_running(dev
)) {
8734 bnx2_netif_stop(bp
, true);
8735 del_timer_sync(&bp
->timer
);
8736 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8739 pci_disable_device(pdev
);
8742 /* Request a slot slot reset. */
8743 return PCI_ERS_RESULT_NEED_RESET
;
8747 * bnx2_io_slot_reset - called after the pci bus has been reset.
8748 * @pdev: Pointer to PCI device
8750 * Restart the card from scratch, as if from a cold-boot.
8752 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8754 struct net_device
*dev
= pci_get_drvdata(pdev
);
8755 struct bnx2
*bp
= netdev_priv(dev
);
8756 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
8760 if (pci_enable_device(pdev
)) {
8762 "Cannot re-enable PCI device after reset\n");
8764 pci_set_master(pdev
);
8765 pci_restore_state(pdev
);
8766 pci_save_state(pdev
);
8768 if (netif_running(dev
))
8769 err
= bnx2_init_nic(bp
, 1);
8772 result
= PCI_ERS_RESULT_RECOVERED
;
8775 if (result
!= PCI_ERS_RESULT_RECOVERED
&& netif_running(dev
)) {
8776 bnx2_napi_enable(bp
);
8781 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8788 * bnx2_io_resume - called when traffic can start flowing again.
8789 * @pdev: Pointer to PCI device
8791 * This callback is called when the error recovery driver tells us that
8792 * its OK to resume normal operation.
8794 static void bnx2_io_resume(struct pci_dev
*pdev
)
8796 struct net_device
*dev
= pci_get_drvdata(pdev
);
8797 struct bnx2
*bp
= netdev_priv(dev
);
8800 if (netif_running(dev
))
8801 bnx2_netif_start(bp
, true);
8803 netif_device_attach(dev
);
8807 static void bnx2_shutdown(struct pci_dev
*pdev
)
8809 struct net_device
*dev
= pci_get_drvdata(pdev
);
8815 bp
= netdev_priv(dev
);
8820 if (netif_running(dev
))
8823 if (system_state
== SYSTEM_POWER_OFF
)
8824 bnx2_set_power_state(bp
, PCI_D3hot
);
8829 static const struct pci_error_handlers bnx2_err_handler
= {
8830 .error_detected
= bnx2_io_error_detected
,
8831 .slot_reset
= bnx2_io_slot_reset
,
8832 .resume
= bnx2_io_resume
,
8835 static struct pci_driver bnx2_pci_driver
= {
8836 .name
= DRV_MODULE_NAME
,
8837 .id_table
= bnx2_pci_tbl
,
8838 .probe
= bnx2_init_one
,
8839 .remove
= bnx2_remove_one
,
8840 .driver
.pm
= BNX2_PM_OPS
,
8841 .err_handler
= &bnx2_err_handler
,
8842 .shutdown
= bnx2_shutdown
,
8845 module_pci_driver(bnx2_pci_driver
);