gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / faraday / ftgmac100.c
blob87236206366fdf4d334fc241df21cf1156d66e4d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Faraday FTGMAC100 Gigabit Ethernet
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <net/ip.h>
28 #include <net/ncsi.h>
30 #include "ftgmac100.h"
32 #define DRV_NAME "ftgmac100"
34 /* Arbitrary values, I am not sure the HW has limits */
35 #define MAX_RX_QUEUE_ENTRIES 1024
36 #define MAX_TX_QUEUE_ENTRIES 1024
37 #define MIN_RX_QUEUE_ENTRIES 32
38 #define MIN_TX_QUEUE_ENTRIES 32
40 /* Defaults */
41 #define DEF_RX_QUEUE_ENTRIES 128
42 #define DEF_TX_QUEUE_ENTRIES 128
44 #define MAX_PKT_SIZE 1536
45 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47 /* Min number of tx ring entries before stopping queue */
48 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50 #define FTGMAC_100MHZ 100000000
51 #define FTGMAC_25MHZ 25000000
53 struct ftgmac100 {
54 /* Registers */
55 struct resource *res;
56 void __iomem *base;
58 /* Rx ring */
59 unsigned int rx_q_entries;
60 struct ftgmac100_rxdes *rxdes;
61 dma_addr_t rxdes_dma;
62 struct sk_buff **rx_skbs;
63 unsigned int rx_pointer;
64 u32 rxdes0_edorr_mask;
66 /* Tx ring */
67 unsigned int tx_q_entries;
68 struct ftgmac100_txdes *txdes;
69 dma_addr_t txdes_dma;
70 struct sk_buff **tx_skbs;
71 unsigned int tx_clean_pointer;
72 unsigned int tx_pointer;
73 u32 txdes0_edotr_mask;
75 /* Used to signal the reset task of ring change request */
76 unsigned int new_rx_q_entries;
77 unsigned int new_tx_q_entries;
79 /* Scratch page to use when rx skb alloc fails */
80 void *rx_scratch;
81 dma_addr_t rx_scratch_dma;
83 /* Component structures */
84 struct net_device *netdev;
85 struct device *dev;
86 struct ncsi_dev *ndev;
87 struct napi_struct napi;
88 struct work_struct reset_task;
89 struct mii_bus *mii_bus;
90 struct clk *clk;
92 /* AST2500/AST2600 RMII ref clock gate */
93 struct clk *rclk;
95 /* Link management */
96 int cur_speed;
97 int cur_duplex;
98 bool use_ncsi;
100 /* Multicast filter settings */
101 u32 maht0;
102 u32 maht1;
104 /* Flow control settings */
105 bool tx_pause;
106 bool rx_pause;
107 bool aneg_pause;
109 /* Misc */
110 bool need_mac_restart;
111 bool is_aspeed;
114 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
116 struct net_device *netdev = priv->netdev;
117 int i;
119 /* NOTE: reset clears all registers */
120 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 priv->base + FTGMAC100_OFFSET_MACCR);
123 for (i = 0; i < 200; i++) {
124 unsigned int maccr;
126 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 return 0;
130 udelay(1);
133 netdev_err(netdev, "Hardware reset failed\n");
134 return -EIO;
137 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
139 u32 maccr = 0;
141 switch (priv->cur_speed) {
142 case SPEED_10:
143 case 0: /* no link */
144 break;
146 case SPEED_100:
147 maccr |= FTGMAC100_MACCR_FAST_MODE;
148 break;
150 case SPEED_1000:
151 maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 break;
153 default:
154 netdev_err(priv->netdev, "Unknown speed %d !\n",
155 priv->cur_speed);
156 break;
159 /* (Re)initialize the queue pointers */
160 priv->rx_pointer = 0;
161 priv->tx_clean_pointer = 0;
162 priv->tx_pointer = 0;
164 /* The doc says reset twice with 10us interval */
165 if (ftgmac100_reset_mac(priv, maccr))
166 return -EIO;
167 usleep_range(10, 1000);
168 return ftgmac100_reset_mac(priv, maccr);
171 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
173 unsigned int maddr = mac[0] << 8 | mac[1];
174 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
176 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
180 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
182 u8 mac[ETH_ALEN];
183 unsigned int m;
184 unsigned int l;
185 void *addr;
187 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
188 if (addr) {
189 ether_addr_copy(priv->netdev->dev_addr, mac);
190 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
191 mac);
192 return;
195 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
196 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198 mac[0] = (m >> 8) & 0xff;
199 mac[1] = m & 0xff;
200 mac[2] = (l >> 24) & 0xff;
201 mac[3] = (l >> 16) & 0xff;
202 mac[4] = (l >> 8) & 0xff;
203 mac[5] = l & 0xff;
205 if (is_valid_ether_addr(mac)) {
206 ether_addr_copy(priv->netdev->dev_addr, mac);
207 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
208 } else {
209 eth_hw_addr_random(priv->netdev);
210 dev_info(priv->dev, "Generated random MAC address %pM\n",
211 priv->netdev->dev_addr);
215 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
217 int ret;
219 ret = eth_prepare_mac_addr_change(dev, p);
220 if (ret < 0)
221 return ret;
223 eth_commit_mac_addr_change(dev, p);
224 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
226 return 0;
229 static void ftgmac100_config_pause(struct ftgmac100 *priv)
231 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
233 /* Throttle tx queue when receiving pause frames */
234 if (priv->rx_pause)
235 fcr |= FTGMAC100_FCR_FC_EN;
237 /* Enables sending pause frames when the RX queue is past a
238 * certain threshold.
240 if (priv->tx_pause)
241 fcr |= FTGMAC100_FCR_FCTHR_EN;
243 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
246 static void ftgmac100_init_hw(struct ftgmac100 *priv)
248 u32 reg, rfifo_sz, tfifo_sz;
250 /* Clear stale interrupts */
251 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
252 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
254 /* Setup RX ring buffer base */
255 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
257 /* Setup TX ring buffer base */
258 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
260 /* Configure RX buffer size */
261 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
262 priv->base + FTGMAC100_OFFSET_RBSR);
264 /* Set RX descriptor autopoll */
265 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
266 priv->base + FTGMAC100_OFFSET_APTC);
268 /* Write MAC address */
269 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
271 /* Write multicast filter */
272 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
273 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
275 /* Configure descriptor sizes and increase burst sizes according
276 * to values in Aspeed SDK. The FIFO arbitration is enabled and
277 * the thresholds set based on the recommended values in the
278 * AST2400 specification.
280 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
281 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
282 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
283 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
284 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
285 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
286 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
287 priv->base + FTGMAC100_OFFSET_DBLAC);
289 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
290 * mitigation doesn't seem to provide any benefit with NAPI so leave
291 * it at that.
293 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
294 FTGMAC100_ITC_TXINT_THR(1),
295 priv->base + FTGMAC100_OFFSET_ITC);
297 /* Configure FIFO sizes in the TPAFCR register */
298 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
299 rfifo_sz = reg & 0x00000007;
300 tfifo_sz = (reg >> 3) & 0x00000007;
301 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
302 reg &= ~0x3f000000;
303 reg |= (tfifo_sz << 27);
304 reg |= (rfifo_sz << 24);
305 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
308 static void ftgmac100_start_hw(struct ftgmac100 *priv)
310 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
312 /* Keep the original GMAC and FAST bits */
313 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
315 /* Add all the main enable bits */
316 maccr |= FTGMAC100_MACCR_TXDMA_EN |
317 FTGMAC100_MACCR_RXDMA_EN |
318 FTGMAC100_MACCR_TXMAC_EN |
319 FTGMAC100_MACCR_RXMAC_EN |
320 FTGMAC100_MACCR_CRC_APD |
321 FTGMAC100_MACCR_PHY_LINK_LEVEL |
322 FTGMAC100_MACCR_RX_RUNT |
323 FTGMAC100_MACCR_RX_BROADPKT;
325 /* Add other bits as needed */
326 if (priv->cur_duplex == DUPLEX_FULL)
327 maccr |= FTGMAC100_MACCR_FULLDUP;
328 if (priv->netdev->flags & IFF_PROMISC)
329 maccr |= FTGMAC100_MACCR_RX_ALL;
330 if (priv->netdev->flags & IFF_ALLMULTI)
331 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
332 else if (netdev_mc_count(priv->netdev))
333 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
335 /* Vlan filtering enabled */
336 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
337 maccr |= FTGMAC100_MACCR_RM_VLAN;
339 /* Hit the HW */
340 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
343 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
345 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
348 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
350 struct netdev_hw_addr *ha;
352 priv->maht1 = 0;
353 priv->maht0 = 0;
354 netdev_for_each_mc_addr(ha, priv->netdev) {
355 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
357 crc_val = (~(crc_val >> 2)) & 0x3f;
358 if (crc_val >= 32)
359 priv->maht1 |= 1ul << (crc_val - 32);
360 else
361 priv->maht0 |= 1ul << (crc_val);
365 static void ftgmac100_set_rx_mode(struct net_device *netdev)
367 struct ftgmac100 *priv = netdev_priv(netdev);
369 /* Setup the hash filter */
370 ftgmac100_calc_mc_hash(priv);
372 /* Interface down ? that's all there is to do */
373 if (!netif_running(netdev))
374 return;
376 /* Update the HW */
377 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
378 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
380 /* Reconfigure MACCR */
381 ftgmac100_start_hw(priv);
384 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
385 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
387 struct net_device *netdev = priv->netdev;
388 struct sk_buff *skb;
389 dma_addr_t map;
390 int err = 0;
392 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
393 if (unlikely(!skb)) {
394 if (net_ratelimit())
395 netdev_warn(netdev, "failed to allocate rx skb\n");
396 err = -ENOMEM;
397 map = priv->rx_scratch_dma;
398 } else {
399 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
400 DMA_FROM_DEVICE);
401 if (unlikely(dma_mapping_error(priv->dev, map))) {
402 if (net_ratelimit())
403 netdev_err(netdev, "failed to map rx page\n");
404 dev_kfree_skb_any(skb);
405 map = priv->rx_scratch_dma;
406 skb = NULL;
407 err = -ENOMEM;
411 /* Store skb */
412 priv->rx_skbs[entry] = skb;
414 /* Store DMA address into RX desc */
415 rxdes->rxdes3 = cpu_to_le32(map);
417 /* Ensure the above is ordered vs clearing the OWN bit */
418 dma_wmb();
420 /* Clean status (which resets own bit) */
421 if (entry == (priv->rx_q_entries - 1))
422 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
423 else
424 rxdes->rxdes0 = 0;
426 return err;
429 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
430 unsigned int pointer)
432 return (pointer + 1) & (priv->rx_q_entries - 1);
435 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
437 struct net_device *netdev = priv->netdev;
439 if (status & FTGMAC100_RXDES0_RX_ERR)
440 netdev->stats.rx_errors++;
442 if (status & FTGMAC100_RXDES0_CRC_ERR)
443 netdev->stats.rx_crc_errors++;
445 if (status & (FTGMAC100_RXDES0_FTL |
446 FTGMAC100_RXDES0_RUNT |
447 FTGMAC100_RXDES0_RX_ODD_NB))
448 netdev->stats.rx_length_errors++;
451 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
453 struct net_device *netdev = priv->netdev;
454 struct ftgmac100_rxdes *rxdes;
455 struct sk_buff *skb;
456 unsigned int pointer, size;
457 u32 status, csum_vlan;
458 dma_addr_t map;
460 /* Grab next RX descriptor */
461 pointer = priv->rx_pointer;
462 rxdes = &priv->rxdes[pointer];
464 /* Grab descriptor status */
465 status = le32_to_cpu(rxdes->rxdes0);
467 /* Do we have a packet ? */
468 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
469 return false;
471 /* Order subsequent reads with the test for the ready bit */
472 dma_rmb();
474 /* We don't cope with fragmented RX packets */
475 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
476 !(status & FTGMAC100_RXDES0_LRS)))
477 goto drop;
479 /* Grab received size and csum vlan field in the descriptor */
480 size = status & FTGMAC100_RXDES0_VDBC;
481 csum_vlan = le32_to_cpu(rxdes->rxdes1);
483 /* Any error (other than csum offload) flagged ? */
484 if (unlikely(status & RXDES0_ANY_ERROR)) {
485 /* Correct for incorrect flagging of runt packets
486 * with vlan tags... Just accept a runt packet that
487 * has been flagged as vlan and whose size is at
488 * least 60 bytes.
490 if ((status & FTGMAC100_RXDES0_RUNT) &&
491 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
492 (size >= 60))
493 status &= ~FTGMAC100_RXDES0_RUNT;
495 /* Any error still in there ? */
496 if (status & RXDES0_ANY_ERROR) {
497 ftgmac100_rx_packet_error(priv, status);
498 goto drop;
502 /* If the packet had no skb (failed to allocate earlier)
503 * then try to allocate one and skip
505 skb = priv->rx_skbs[pointer];
506 if (!unlikely(skb)) {
507 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
508 goto drop;
511 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
512 netdev->stats.multicast++;
514 /* If the HW found checksum errors, bounce it to software.
516 * If we didn't, we need to see if the packet was recognized
517 * by HW as one of the supported checksummed protocols before
518 * we accept the HW test results.
520 if (netdev->features & NETIF_F_RXCSUM) {
521 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
522 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
523 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
524 if ((csum_vlan & err_bits) ||
525 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
526 skb->ip_summed = CHECKSUM_NONE;
527 else
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
531 /* Transfer received size to skb */
532 skb_put(skb, size);
534 /* Extract vlan tag */
535 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
536 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
537 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
538 csum_vlan & 0xffff);
540 /* Tear down DMA mapping, do necessary cache management */
541 map = le32_to_cpu(rxdes->rxdes3);
543 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
544 /* When we don't have an iommu, we can save cycles by not
545 * invalidating the cache for the part of the packet that
546 * wasn't received.
548 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
549 #else
550 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
551 #endif
554 /* Resplenish rx ring */
555 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
556 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
558 skb->protocol = eth_type_trans(skb, netdev);
560 netdev->stats.rx_packets++;
561 netdev->stats.rx_bytes += size;
563 /* push packet to protocol stack */
564 if (skb->ip_summed == CHECKSUM_NONE)
565 netif_receive_skb(skb);
566 else
567 napi_gro_receive(&priv->napi, skb);
569 (*processed)++;
570 return true;
572 drop:
573 /* Clean rxdes0 (which resets own bit) */
574 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
575 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
576 netdev->stats.rx_dropped++;
577 return true;
580 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
581 unsigned int index)
583 if (index == (priv->tx_q_entries - 1))
584 return priv->txdes0_edotr_mask;
585 else
586 return 0;
589 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
590 unsigned int pointer)
592 return (pointer + 1) & (priv->tx_q_entries - 1);
595 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
597 /* Returns the number of available slots in the TX queue
599 * This always leaves one free slot so we don't have to
600 * worry about empty vs. full, and this simplifies the
601 * test for ftgmac100_tx_buf_cleanable() below
603 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
604 (priv->tx_q_entries - 1);
607 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
609 return priv->tx_pointer != priv->tx_clean_pointer;
612 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
613 unsigned int pointer,
614 struct sk_buff *skb,
615 struct ftgmac100_txdes *txdes,
616 u32 ctl_stat)
618 dma_addr_t map = le32_to_cpu(txdes->txdes3);
619 size_t len;
621 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
622 len = skb_headlen(skb);
623 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
624 } else {
625 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
626 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
629 /* Free SKB on last segment */
630 if (ctl_stat & FTGMAC100_TXDES0_LTS)
631 dev_kfree_skb(skb);
632 priv->tx_skbs[pointer] = NULL;
635 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
637 struct net_device *netdev = priv->netdev;
638 struct ftgmac100_txdes *txdes;
639 struct sk_buff *skb;
640 unsigned int pointer;
641 u32 ctl_stat;
643 pointer = priv->tx_clean_pointer;
644 txdes = &priv->txdes[pointer];
646 ctl_stat = le32_to_cpu(txdes->txdes0);
647 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
648 return false;
650 skb = priv->tx_skbs[pointer];
651 netdev->stats.tx_packets++;
652 netdev->stats.tx_bytes += skb->len;
653 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
654 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
656 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
658 return true;
661 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
663 struct net_device *netdev = priv->netdev;
665 /* Process all completed packets */
666 while (ftgmac100_tx_buf_cleanable(priv) &&
667 ftgmac100_tx_complete_packet(priv))
670 /* Restart queue if needed */
671 smp_mb();
672 if (unlikely(netif_queue_stopped(netdev) &&
673 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
674 struct netdev_queue *txq;
676 txq = netdev_get_tx_queue(netdev, 0);
677 __netif_tx_lock(txq, smp_processor_id());
678 if (netif_queue_stopped(netdev) &&
679 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
680 netif_wake_queue(netdev);
681 __netif_tx_unlock(txq);
685 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
687 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
688 u8 ip_proto = ip_hdr(skb)->protocol;
690 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
691 switch(ip_proto) {
692 case IPPROTO_TCP:
693 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
694 return true;
695 case IPPROTO_UDP:
696 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
697 return true;
698 case IPPROTO_IP:
699 return true;
702 return skb_checksum_help(skb) == 0;
705 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
706 struct net_device *netdev)
708 struct ftgmac100 *priv = netdev_priv(netdev);
709 struct ftgmac100_txdes *txdes, *first;
710 unsigned int pointer, nfrags, len, i, j;
711 u32 f_ctl_stat, ctl_stat, csum_vlan;
712 dma_addr_t map;
714 /* The HW doesn't pad small frames */
715 if (eth_skb_pad(skb)) {
716 netdev->stats.tx_dropped++;
717 return NETDEV_TX_OK;
720 /* Reject oversize packets */
721 if (unlikely(skb->len > MAX_PKT_SIZE)) {
722 if (net_ratelimit())
723 netdev_dbg(netdev, "tx packet too big\n");
724 goto drop;
727 /* Do we have a limit on #fragments ? I yet have to get a reply
728 * from Aspeed. If there's one I haven't hit it.
730 nfrags = skb_shinfo(skb)->nr_frags;
732 /* Setup HW checksumming */
733 csum_vlan = 0;
734 if (skb->ip_summed == CHECKSUM_PARTIAL &&
735 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
736 goto drop;
738 /* Add VLAN tag */
739 if (skb_vlan_tag_present(skb)) {
740 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
741 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
744 /* Get header len */
745 len = skb_headlen(skb);
747 /* Map the packet head */
748 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
749 if (dma_mapping_error(priv->dev, map)) {
750 if (net_ratelimit())
751 netdev_err(netdev, "map tx packet head failed\n");
752 goto drop;
755 /* Grab the next free tx descriptor */
756 pointer = priv->tx_pointer;
757 txdes = first = &priv->txdes[pointer];
759 /* Setup it up with the packet head. Don't write the head to the
760 * ring just yet
762 priv->tx_skbs[pointer] = skb;
763 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
764 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
765 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
766 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
767 if (nfrags == 0)
768 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
769 txdes->txdes3 = cpu_to_le32(map);
770 txdes->txdes1 = cpu_to_le32(csum_vlan);
772 /* Next descriptor */
773 pointer = ftgmac100_next_tx_pointer(priv, pointer);
775 /* Add the fragments */
776 for (i = 0; i < nfrags; i++) {
777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 len = skb_frag_size(frag);
781 /* Map it */
782 map = skb_frag_dma_map(priv->dev, frag, 0, len,
783 DMA_TO_DEVICE);
784 if (dma_mapping_error(priv->dev, map))
785 goto dma_err;
787 /* Setup descriptor */
788 priv->tx_skbs[pointer] = skb;
789 txdes = &priv->txdes[pointer];
790 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
791 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
792 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
793 if (i == (nfrags - 1))
794 ctl_stat |= FTGMAC100_TXDES0_LTS;
795 txdes->txdes0 = cpu_to_le32(ctl_stat);
796 txdes->txdes1 = 0;
797 txdes->txdes3 = cpu_to_le32(map);
799 /* Next one */
800 pointer = ftgmac100_next_tx_pointer(priv, pointer);
803 /* Order the previous packet and descriptor udpates
804 * before setting the OWN bit on the first descriptor.
806 dma_wmb();
807 first->txdes0 = cpu_to_le32(f_ctl_stat);
809 /* Update next TX pointer */
810 priv->tx_pointer = pointer;
812 /* If there isn't enough room for all the fragments of a new packet
813 * in the TX ring, stop the queue. The sequence below is race free
814 * vs. a concurrent restart in ftgmac100_poll()
816 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
817 netif_stop_queue(netdev);
818 /* Order the queue stop with the test below */
819 smp_mb();
820 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
821 netif_wake_queue(netdev);
824 /* Poke transmitter to read the updated TX descriptors */
825 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
827 return NETDEV_TX_OK;
829 dma_err:
830 if (net_ratelimit())
831 netdev_err(netdev, "map tx fragment failed\n");
833 /* Free head */
834 pointer = priv->tx_pointer;
835 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
836 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
838 /* Then all fragments */
839 for (j = 0; j < i; j++) {
840 pointer = ftgmac100_next_tx_pointer(priv, pointer);
841 txdes = &priv->txdes[pointer];
842 ctl_stat = le32_to_cpu(txdes->txdes0);
843 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
844 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
847 /* This cannot be reached if we successfully mapped the
848 * last fragment, so we know ftgmac100_free_tx_packet()
849 * hasn't freed the skb yet.
851 drop:
852 /* Drop the packet */
853 dev_kfree_skb_any(skb);
854 netdev->stats.tx_dropped++;
856 return NETDEV_TX_OK;
859 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
861 int i;
863 /* Free all RX buffers */
864 for (i = 0; i < priv->rx_q_entries; i++) {
865 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
866 struct sk_buff *skb = priv->rx_skbs[i];
867 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
869 if (!skb)
870 continue;
872 priv->rx_skbs[i] = NULL;
873 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
874 dev_kfree_skb_any(skb);
877 /* Free all TX buffers */
878 for (i = 0; i < priv->tx_q_entries; i++) {
879 struct ftgmac100_txdes *txdes = &priv->txdes[i];
880 struct sk_buff *skb = priv->tx_skbs[i];
882 if (!skb)
883 continue;
884 ftgmac100_free_tx_packet(priv, i, skb, txdes,
885 le32_to_cpu(txdes->txdes0));
889 static void ftgmac100_free_rings(struct ftgmac100 *priv)
891 /* Free skb arrays */
892 kfree(priv->rx_skbs);
893 kfree(priv->tx_skbs);
895 /* Free descriptors */
896 if (priv->rxdes)
897 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
898 sizeof(struct ftgmac100_rxdes),
899 priv->rxdes, priv->rxdes_dma);
900 priv->rxdes = NULL;
902 if (priv->txdes)
903 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
904 sizeof(struct ftgmac100_txdes),
905 priv->txdes, priv->txdes_dma);
906 priv->txdes = NULL;
908 /* Free scratch packet buffer */
909 if (priv->rx_scratch)
910 dma_free_coherent(priv->dev, RX_BUF_SIZE,
911 priv->rx_scratch, priv->rx_scratch_dma);
914 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
916 /* Allocate skb arrays */
917 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
918 GFP_KERNEL);
919 if (!priv->rx_skbs)
920 return -ENOMEM;
921 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
922 GFP_KERNEL);
923 if (!priv->tx_skbs)
924 return -ENOMEM;
926 /* Allocate descriptors */
927 priv->rxdes = dma_alloc_coherent(priv->dev,
928 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
929 &priv->rxdes_dma, GFP_KERNEL);
930 if (!priv->rxdes)
931 return -ENOMEM;
932 priv->txdes = dma_alloc_coherent(priv->dev,
933 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
934 &priv->txdes_dma, GFP_KERNEL);
935 if (!priv->txdes)
936 return -ENOMEM;
938 /* Allocate scratch packet buffer */
939 priv->rx_scratch = dma_alloc_coherent(priv->dev,
940 RX_BUF_SIZE,
941 &priv->rx_scratch_dma,
942 GFP_KERNEL);
943 if (!priv->rx_scratch)
944 return -ENOMEM;
946 return 0;
949 static void ftgmac100_init_rings(struct ftgmac100 *priv)
951 struct ftgmac100_rxdes *rxdes = NULL;
952 struct ftgmac100_txdes *txdes = NULL;
953 int i;
955 /* Update entries counts */
956 priv->rx_q_entries = priv->new_rx_q_entries;
957 priv->tx_q_entries = priv->new_tx_q_entries;
959 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
960 return;
962 /* Initialize RX ring */
963 for (i = 0; i < priv->rx_q_entries; i++) {
964 rxdes = &priv->rxdes[i];
965 rxdes->rxdes0 = 0;
966 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
968 /* Mark the end of the ring */
969 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
971 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
972 return;
974 /* Initialize TX ring */
975 for (i = 0; i < priv->tx_q_entries; i++) {
976 txdes = &priv->txdes[i];
977 txdes->txdes0 = 0;
979 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
982 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
984 int i;
986 for (i = 0; i < priv->rx_q_entries; i++) {
987 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
989 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
990 return -ENOMEM;
992 return 0;
995 static void ftgmac100_adjust_link(struct net_device *netdev)
997 struct ftgmac100 *priv = netdev_priv(netdev);
998 struct phy_device *phydev = netdev->phydev;
999 bool tx_pause, rx_pause;
1000 int new_speed;
1002 /* We store "no link" as speed 0 */
1003 if (!phydev->link)
1004 new_speed = 0;
1005 else
1006 new_speed = phydev->speed;
1008 /* Grab pause settings from PHY if configured to do so */
1009 if (priv->aneg_pause) {
1010 rx_pause = tx_pause = phydev->pause;
1011 if (phydev->asym_pause)
1012 tx_pause = !rx_pause;
1013 } else {
1014 rx_pause = priv->rx_pause;
1015 tx_pause = priv->tx_pause;
1018 /* Link hasn't changed, do nothing */
1019 if (phydev->speed == priv->cur_speed &&
1020 phydev->duplex == priv->cur_duplex &&
1021 rx_pause == priv->rx_pause &&
1022 tx_pause == priv->tx_pause)
1023 return;
1025 /* Print status if we have a link or we had one and just lost it,
1026 * don't print otherwise.
1028 if (new_speed || priv->cur_speed)
1029 phy_print_status(phydev);
1031 priv->cur_speed = new_speed;
1032 priv->cur_duplex = phydev->duplex;
1033 priv->rx_pause = rx_pause;
1034 priv->tx_pause = tx_pause;
1036 /* Link is down, do nothing else */
1037 if (!new_speed)
1038 return;
1040 /* Disable all interrupts */
1041 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1043 /* Reset the adapter asynchronously */
1044 schedule_work(&priv->reset_task);
1047 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1049 struct net_device *netdev = priv->netdev;
1050 struct phy_device *phydev;
1052 phydev = phy_find_first(priv->mii_bus);
1053 if (!phydev) {
1054 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1055 return -ENODEV;
1058 phydev = phy_connect(netdev, phydev_name(phydev),
1059 &ftgmac100_adjust_link, intf);
1061 if (IS_ERR(phydev)) {
1062 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1063 return PTR_ERR(phydev);
1066 /* Indicate that we support PAUSE frames (see comment in
1067 * Documentation/networking/phy.rst)
1069 phy_support_asym_pause(phydev);
1071 /* Display what we found */
1072 phy_attached_info(phydev);
1074 return 0;
1077 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1079 struct net_device *netdev = bus->priv;
1080 struct ftgmac100 *priv = netdev_priv(netdev);
1081 unsigned int phycr;
1082 int i;
1084 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1086 /* preserve MDC cycle threshold */
1087 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1089 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1090 FTGMAC100_PHYCR_REGAD(regnum) |
1091 FTGMAC100_PHYCR_MIIRD;
1093 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1095 for (i = 0; i < 10; i++) {
1096 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1098 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1099 int data;
1101 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1102 return FTGMAC100_PHYDATA_MIIRDATA(data);
1105 udelay(100);
1108 netdev_err(netdev, "mdio read timed out\n");
1109 return -EIO;
1112 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1113 int regnum, u16 value)
1115 struct net_device *netdev = bus->priv;
1116 struct ftgmac100 *priv = netdev_priv(netdev);
1117 unsigned int phycr;
1118 int data;
1119 int i;
1121 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1123 /* preserve MDC cycle threshold */
1124 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1126 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1127 FTGMAC100_PHYCR_REGAD(regnum) |
1128 FTGMAC100_PHYCR_MIIWR;
1130 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1132 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1133 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1135 for (i = 0; i < 10; i++) {
1136 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1138 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1139 return 0;
1141 udelay(100);
1144 netdev_err(netdev, "mdio write timed out\n");
1145 return -EIO;
1148 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1149 struct ethtool_drvinfo *info)
1151 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1152 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1155 static void ftgmac100_get_ringparam(struct net_device *netdev,
1156 struct ethtool_ringparam *ering)
1158 struct ftgmac100 *priv = netdev_priv(netdev);
1160 memset(ering, 0, sizeof(*ering));
1161 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1162 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1163 ering->rx_pending = priv->rx_q_entries;
1164 ering->tx_pending = priv->tx_q_entries;
1167 static int ftgmac100_set_ringparam(struct net_device *netdev,
1168 struct ethtool_ringparam *ering)
1170 struct ftgmac100 *priv = netdev_priv(netdev);
1172 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1173 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1174 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1175 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1176 !is_power_of_2(ering->rx_pending) ||
1177 !is_power_of_2(ering->tx_pending))
1178 return -EINVAL;
1180 priv->new_rx_q_entries = ering->rx_pending;
1181 priv->new_tx_q_entries = ering->tx_pending;
1182 if (netif_running(netdev))
1183 schedule_work(&priv->reset_task);
1185 return 0;
1188 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1189 struct ethtool_pauseparam *pause)
1191 struct ftgmac100 *priv = netdev_priv(netdev);
1193 pause->autoneg = priv->aneg_pause;
1194 pause->tx_pause = priv->tx_pause;
1195 pause->rx_pause = priv->rx_pause;
1198 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1199 struct ethtool_pauseparam *pause)
1201 struct ftgmac100 *priv = netdev_priv(netdev);
1202 struct phy_device *phydev = netdev->phydev;
1204 priv->aneg_pause = pause->autoneg;
1205 priv->tx_pause = pause->tx_pause;
1206 priv->rx_pause = pause->rx_pause;
1208 if (phydev)
1209 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1211 if (netif_running(netdev)) {
1212 if (!(phydev && priv->aneg_pause))
1213 ftgmac100_config_pause(priv);
1216 return 0;
1219 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1220 .get_drvinfo = ftgmac100_get_drvinfo,
1221 .get_link = ethtool_op_get_link,
1222 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1223 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1224 .nway_reset = phy_ethtool_nway_reset,
1225 .get_ringparam = ftgmac100_get_ringparam,
1226 .set_ringparam = ftgmac100_set_ringparam,
1227 .get_pauseparam = ftgmac100_get_pauseparam,
1228 .set_pauseparam = ftgmac100_set_pauseparam,
1231 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1233 struct net_device *netdev = dev_id;
1234 struct ftgmac100 *priv = netdev_priv(netdev);
1235 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1237 /* Fetch and clear interrupt bits, process abnormal ones */
1238 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1239 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1240 if (unlikely(status & FTGMAC100_INT_BAD)) {
1242 /* RX buffer unavailable */
1243 if (status & FTGMAC100_INT_NO_RXBUF)
1244 netdev->stats.rx_over_errors++;
1246 /* received packet lost due to RX FIFO full */
1247 if (status & FTGMAC100_INT_RPKT_LOST)
1248 netdev->stats.rx_fifo_errors++;
1250 /* sent packet lost due to excessive TX collision */
1251 if (status & FTGMAC100_INT_XPKT_LOST)
1252 netdev->stats.tx_fifo_errors++;
1254 /* AHB error -> Reset the chip */
1255 if (status & FTGMAC100_INT_AHB_ERR) {
1256 if (net_ratelimit())
1257 netdev_warn(netdev,
1258 "AHB bus error ! Resetting chip.\n");
1259 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1260 schedule_work(&priv->reset_task);
1261 return IRQ_HANDLED;
1264 /* We may need to restart the MAC after such errors, delay
1265 * this until after we have freed some Rx buffers though
1267 priv->need_mac_restart = true;
1269 /* Disable those errors until we restart */
1270 new_mask &= ~status;
1273 /* Only enable "bad" interrupts while NAPI is on */
1274 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1276 /* Schedule NAPI bh */
1277 napi_schedule_irqoff(&priv->napi);
1279 return IRQ_HANDLED;
1282 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1284 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1286 /* Do we have a packet ? */
1287 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1290 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1292 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1293 int work_done = 0;
1294 bool more;
1296 /* Handle TX completions */
1297 if (ftgmac100_tx_buf_cleanable(priv))
1298 ftgmac100_tx_complete(priv);
1300 /* Handle RX packets */
1301 do {
1302 more = ftgmac100_rx_packet(priv, &work_done);
1303 } while (more && work_done < budget);
1306 /* The interrupt is telling us to kick the MAC back to life
1307 * after an RX overflow
1309 if (unlikely(priv->need_mac_restart)) {
1310 ftgmac100_start_hw(priv);
1312 /* Re-enable "bad" interrupts */
1313 iowrite32(FTGMAC100_INT_BAD,
1314 priv->base + FTGMAC100_OFFSET_IER);
1317 /* As long as we are waiting for transmit packets to be
1318 * completed we keep NAPI going
1320 if (ftgmac100_tx_buf_cleanable(priv))
1321 work_done = budget;
1323 if (work_done < budget) {
1324 /* We are about to re-enable all interrupts. However
1325 * the HW has been latching RX/TX packet interrupts while
1326 * they were masked. So we clear them first, then we need
1327 * to re-check if there's something to process
1329 iowrite32(FTGMAC100_INT_RXTX,
1330 priv->base + FTGMAC100_OFFSET_ISR);
1332 /* Push the above (and provides a barrier vs. subsequent
1333 * reads of the descriptor).
1335 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1337 /* Check RX and TX descriptors for more work to do */
1338 if (ftgmac100_check_rx(priv) ||
1339 ftgmac100_tx_buf_cleanable(priv))
1340 return budget;
1342 /* deschedule NAPI */
1343 napi_complete(napi);
1345 /* enable all interrupts */
1346 iowrite32(FTGMAC100_INT_ALL,
1347 priv->base + FTGMAC100_OFFSET_IER);
1350 return work_done;
1353 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1355 int err = 0;
1357 /* Re-init descriptors (adjust queue sizes) */
1358 ftgmac100_init_rings(priv);
1360 /* Realloc rx descriptors */
1361 err = ftgmac100_alloc_rx_buffers(priv);
1362 if (err && !ignore_alloc_err)
1363 return err;
1365 /* Reinit and restart HW */
1366 ftgmac100_init_hw(priv);
1367 ftgmac100_config_pause(priv);
1368 ftgmac100_start_hw(priv);
1370 /* Re-enable the device */
1371 napi_enable(&priv->napi);
1372 netif_start_queue(priv->netdev);
1374 /* Enable all interrupts */
1375 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1377 return err;
1380 static void ftgmac100_reset_task(struct work_struct *work)
1382 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1383 reset_task);
1384 struct net_device *netdev = priv->netdev;
1385 int err;
1387 netdev_dbg(netdev, "Resetting NIC...\n");
1389 /* Lock the world */
1390 rtnl_lock();
1391 if (netdev->phydev)
1392 mutex_lock(&netdev->phydev->lock);
1393 if (priv->mii_bus)
1394 mutex_lock(&priv->mii_bus->mdio_lock);
1397 /* Check if the interface is still up */
1398 if (!netif_running(netdev))
1399 goto bail;
1401 /* Stop the network stack */
1402 netif_trans_update(netdev);
1403 napi_disable(&priv->napi);
1404 netif_tx_disable(netdev);
1406 /* Stop and reset the MAC */
1407 ftgmac100_stop_hw(priv);
1408 err = ftgmac100_reset_and_config_mac(priv);
1409 if (err) {
1410 /* Not much we can do ... it might come back... */
1411 netdev_err(netdev, "attempting to continue...\n");
1414 /* Free all rx and tx buffers */
1415 ftgmac100_free_buffers(priv);
1417 /* Setup everything again and restart chip */
1418 ftgmac100_init_all(priv, true);
1420 netdev_dbg(netdev, "Reset done !\n");
1421 bail:
1422 if (priv->mii_bus)
1423 mutex_unlock(&priv->mii_bus->mdio_lock);
1424 if (netdev->phydev)
1425 mutex_unlock(&netdev->phydev->lock);
1426 rtnl_unlock();
1429 static int ftgmac100_open(struct net_device *netdev)
1431 struct ftgmac100 *priv = netdev_priv(netdev);
1432 int err;
1434 /* Allocate ring buffers */
1435 err = ftgmac100_alloc_rings(priv);
1436 if (err) {
1437 netdev_err(netdev, "Failed to allocate descriptors\n");
1438 return err;
1441 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1443 * Otherwise we leave it set to 0 (no link), the link
1444 * message from the PHY layer will handle setting it up to
1445 * something else if needed.
1447 if (priv->use_ncsi) {
1448 priv->cur_duplex = DUPLEX_FULL;
1449 priv->cur_speed = SPEED_100;
1450 } else {
1451 priv->cur_duplex = 0;
1452 priv->cur_speed = 0;
1455 /* Reset the hardware */
1456 err = ftgmac100_reset_and_config_mac(priv);
1457 if (err)
1458 goto err_hw;
1460 /* Initialize NAPI */
1461 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1463 /* Grab our interrupt */
1464 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1465 if (err) {
1466 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1467 goto err_irq;
1470 /* Start things up */
1471 err = ftgmac100_init_all(priv, false);
1472 if (err) {
1473 netdev_err(netdev, "Failed to allocate packet buffers\n");
1474 goto err_alloc;
1477 if (netdev->phydev) {
1478 /* If we have a PHY, start polling */
1479 phy_start(netdev->phydev);
1480 } else if (priv->use_ncsi) {
1481 /* If using NC-SI, set our carrier on and start the stack */
1482 netif_carrier_on(netdev);
1484 /* Start the NCSI device */
1485 err = ncsi_start_dev(priv->ndev);
1486 if (err)
1487 goto err_ncsi;
1490 return 0;
1492 err_ncsi:
1493 napi_disable(&priv->napi);
1494 netif_stop_queue(netdev);
1495 err_alloc:
1496 ftgmac100_free_buffers(priv);
1497 free_irq(netdev->irq, netdev);
1498 err_irq:
1499 netif_napi_del(&priv->napi);
1500 err_hw:
1501 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1502 ftgmac100_free_rings(priv);
1503 return err;
1506 static int ftgmac100_stop(struct net_device *netdev)
1508 struct ftgmac100 *priv = netdev_priv(netdev);
1510 /* Note about the reset task: We are called with the rtnl lock
1511 * held, so we are synchronized against the core of the reset
1512 * task. We must not try to synchronously cancel it otherwise
1513 * we can deadlock. But since it will test for netif_running()
1514 * which has already been cleared by the net core, we don't
1515 * anything special to do.
1518 /* disable all interrupts */
1519 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1521 netif_stop_queue(netdev);
1522 napi_disable(&priv->napi);
1523 netif_napi_del(&priv->napi);
1524 if (netdev->phydev)
1525 phy_stop(netdev->phydev);
1526 else if (priv->use_ncsi)
1527 ncsi_stop_dev(priv->ndev);
1529 ftgmac100_stop_hw(priv);
1530 free_irq(netdev->irq, netdev);
1531 ftgmac100_free_buffers(priv);
1532 ftgmac100_free_rings(priv);
1534 return 0;
1537 static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1539 struct ftgmac100 *priv = netdev_priv(netdev);
1541 /* Disable all interrupts */
1542 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1544 /* Do the reset outside of interrupt context */
1545 schedule_work(&priv->reset_task);
1548 static int ftgmac100_set_features(struct net_device *netdev,
1549 netdev_features_t features)
1551 struct ftgmac100 *priv = netdev_priv(netdev);
1552 netdev_features_t changed = netdev->features ^ features;
1554 if (!netif_running(netdev))
1555 return 0;
1557 /* Update the vlan filtering bit */
1558 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1559 u32 maccr;
1561 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1562 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1563 maccr |= FTGMAC100_MACCR_RM_VLAN;
1564 else
1565 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1566 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1569 return 0;
1572 #ifdef CONFIG_NET_POLL_CONTROLLER
1573 static void ftgmac100_poll_controller(struct net_device *netdev)
1575 unsigned long flags;
1577 local_irq_save(flags);
1578 ftgmac100_interrupt(netdev->irq, netdev);
1579 local_irq_restore(flags);
1581 #endif
1583 static const struct net_device_ops ftgmac100_netdev_ops = {
1584 .ndo_open = ftgmac100_open,
1585 .ndo_stop = ftgmac100_stop,
1586 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1587 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1588 .ndo_validate_addr = eth_validate_addr,
1589 .ndo_do_ioctl = phy_do_ioctl,
1590 .ndo_tx_timeout = ftgmac100_tx_timeout,
1591 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1592 .ndo_set_features = ftgmac100_set_features,
1593 #ifdef CONFIG_NET_POLL_CONTROLLER
1594 .ndo_poll_controller = ftgmac100_poll_controller,
1595 #endif
1596 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1597 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1600 static int ftgmac100_setup_mdio(struct net_device *netdev)
1602 struct ftgmac100 *priv = netdev_priv(netdev);
1603 struct platform_device *pdev = to_platform_device(priv->dev);
1604 phy_interface_t phy_intf = PHY_INTERFACE_MODE_RGMII;
1605 struct device_node *np = pdev->dev.of_node;
1606 int i, err = 0;
1607 u32 reg;
1609 /* initialize mdio bus */
1610 priv->mii_bus = mdiobus_alloc();
1611 if (!priv->mii_bus)
1612 return -EIO;
1614 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1615 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1616 /* The AST2600 has a separate MDIO controller */
1618 /* For the AST2400 and AST2500 this driver only supports the
1619 * old MDIO interface
1621 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1622 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1623 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1626 /* Get PHY mode from device-tree */
1627 if (np) {
1628 /* Default to RGMII. It's a gigabit part after all */
1629 err = of_get_phy_mode(np, &phy_intf);
1630 if (err)
1631 phy_intf = PHY_INTERFACE_MODE_RGMII;
1633 /* Aspeed only supports these. I don't know about other IP
1634 * block vendors so I'm going to just let them through for
1635 * now. Note that this is only a warning if for some obscure
1636 * reason the DT really means to lie about it or it's a newer
1637 * part we don't know about.
1639 * On the Aspeed SoC there are additionally straps and SCU
1640 * control bits that could tell us what the interface is
1641 * (or allow us to configure it while the IP block is held
1642 * in reset). For now I chose to keep this driver away from
1643 * those SoC specific bits and assume the device-tree is
1644 * right and the SCU has been configured properly by pinmux
1645 * or the firmware.
1647 if (priv->is_aspeed &&
1648 phy_intf != PHY_INTERFACE_MODE_RMII &&
1649 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1650 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1651 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1652 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1653 netdev_warn(netdev,
1654 "Unsupported PHY mode %s !\n",
1655 phy_modes(phy_intf));
1659 priv->mii_bus->name = "ftgmac100_mdio";
1660 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1661 pdev->name, pdev->id);
1662 priv->mii_bus->parent = priv->dev;
1663 priv->mii_bus->priv = priv->netdev;
1664 priv->mii_bus->read = ftgmac100_mdiobus_read;
1665 priv->mii_bus->write = ftgmac100_mdiobus_write;
1667 for (i = 0; i < PHY_MAX_ADDR; i++)
1668 priv->mii_bus->irq[i] = PHY_POLL;
1670 err = mdiobus_register(priv->mii_bus);
1671 if (err) {
1672 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1673 goto err_register_mdiobus;
1676 err = ftgmac100_mii_probe(priv, phy_intf);
1677 if (err) {
1678 dev_err(priv->dev, "MII Probe failed!\n");
1679 goto err_mii_probe;
1682 return 0;
1684 err_mii_probe:
1685 mdiobus_unregister(priv->mii_bus);
1686 err_register_mdiobus:
1687 mdiobus_free(priv->mii_bus);
1688 return err;
1691 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1693 struct ftgmac100 *priv = netdev_priv(netdev);
1695 if (!netdev->phydev)
1696 return;
1698 phy_disconnect(netdev->phydev);
1699 mdiobus_unregister(priv->mii_bus);
1700 mdiobus_free(priv->mii_bus);
1703 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1705 if (unlikely(nd->state != ncsi_dev_state_functional))
1706 return;
1708 netdev_dbg(nd->dev, "NCSI interface %s\n",
1709 nd->link_up ? "up" : "down");
1712 static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1714 struct clk *clk;
1715 int rc;
1717 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1718 if (IS_ERR(clk))
1719 return PTR_ERR(clk);
1720 priv->clk = clk;
1721 rc = clk_prepare_enable(priv->clk);
1722 if (rc)
1723 return rc;
1725 /* Aspeed specifies a 100MHz clock is required for up to
1726 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1727 * is sufficient
1729 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1730 FTGMAC_100MHZ);
1731 if (rc)
1732 goto cleanup_clk;
1734 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1735 * necessary if it's the AST2400 MAC, or the MAC is configured for
1736 * RGMII, or the controller is not an ASPEED-based controller.
1738 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1739 rc = clk_prepare_enable(priv->rclk);
1740 if (!rc)
1741 return 0;
1743 cleanup_clk:
1744 clk_disable_unprepare(priv->clk);
1746 return rc;
1749 static int ftgmac100_probe(struct platform_device *pdev)
1751 struct resource *res;
1752 int irq;
1753 struct net_device *netdev;
1754 struct ftgmac100 *priv;
1755 struct device_node *np;
1756 int err = 0;
1758 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1759 if (!res)
1760 return -ENXIO;
1762 irq = platform_get_irq(pdev, 0);
1763 if (irq < 0)
1764 return irq;
1766 /* setup net_device */
1767 netdev = alloc_etherdev(sizeof(*priv));
1768 if (!netdev) {
1769 err = -ENOMEM;
1770 goto err_alloc_etherdev;
1773 SET_NETDEV_DEV(netdev, &pdev->dev);
1775 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1776 netdev->netdev_ops = &ftgmac100_netdev_ops;
1777 netdev->watchdog_timeo = 5 * HZ;
1779 platform_set_drvdata(pdev, netdev);
1781 /* setup private data */
1782 priv = netdev_priv(netdev);
1783 priv->netdev = netdev;
1784 priv->dev = &pdev->dev;
1785 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1787 /* map io memory */
1788 priv->res = request_mem_region(res->start, resource_size(res),
1789 dev_name(&pdev->dev));
1790 if (!priv->res) {
1791 dev_err(&pdev->dev, "Could not reserve memory region\n");
1792 err = -ENOMEM;
1793 goto err_req_mem;
1796 priv->base = ioremap(res->start, resource_size(res));
1797 if (!priv->base) {
1798 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1799 err = -EIO;
1800 goto err_ioremap;
1803 netdev->irq = irq;
1805 /* Enable pause */
1806 priv->tx_pause = true;
1807 priv->rx_pause = true;
1808 priv->aneg_pause = true;
1810 /* MAC address from chip or random one */
1811 ftgmac100_initial_mac(priv);
1813 np = pdev->dev.of_node;
1814 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1815 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1816 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1817 priv->rxdes0_edorr_mask = BIT(30);
1818 priv->txdes0_edotr_mask = BIT(30);
1819 priv->is_aspeed = true;
1820 } else {
1821 priv->rxdes0_edorr_mask = BIT(15);
1822 priv->txdes0_edotr_mask = BIT(15);
1825 if (np && of_get_property(np, "use-ncsi", NULL)) {
1826 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1827 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1828 goto err_ncsi_dev;
1831 dev_info(&pdev->dev, "Using NCSI interface\n");
1832 priv->use_ncsi = true;
1833 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1834 if (!priv->ndev)
1835 goto err_ncsi_dev;
1836 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1837 struct phy_device *phy;
1839 phy = of_phy_get_and_connect(priv->netdev, np,
1840 &ftgmac100_adjust_link);
1841 if (!phy) {
1842 dev_err(&pdev->dev, "Failed to connect to phy\n");
1843 goto err_setup_mdio;
1846 /* Indicate that we support PAUSE frames (see comment in
1847 * Documentation/networking/phy.rst)
1849 phy_support_asym_pause(phy);
1851 /* Display what we found */
1852 phy_attached_info(phy);
1853 } else if (np && !of_get_child_by_name(np, "mdio")) {
1854 /* Support legacy ASPEED devicetree descriptions that decribe a
1855 * MAC with an embedded MDIO controller but have no "mdio"
1856 * child node. Automatically scan the MDIO bus for available
1857 * PHYs.
1859 priv->use_ncsi = false;
1860 err = ftgmac100_setup_mdio(netdev);
1861 if (err)
1862 goto err_setup_mdio;
1865 if (priv->is_aspeed) {
1866 err = ftgmac100_setup_clk(priv);
1867 if (err)
1868 goto err_ncsi_dev;
1871 /* Default ring sizes */
1872 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1873 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1875 /* Base feature set */
1876 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1877 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1878 NETIF_F_HW_VLAN_CTAG_TX;
1880 if (priv->use_ncsi)
1881 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1883 /* AST2400 doesn't have working HW checksum generation */
1884 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1885 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1886 if (np && of_get_property(np, "no-hw-checksum", NULL))
1887 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1888 netdev->features |= netdev->hw_features;
1890 /* register network device */
1891 err = register_netdev(netdev);
1892 if (err) {
1893 dev_err(&pdev->dev, "Failed to register netdev\n");
1894 goto err_register_netdev;
1897 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1899 return 0;
1901 err_register_netdev:
1902 clk_disable_unprepare(priv->rclk);
1903 clk_disable_unprepare(priv->clk);
1904 err_ncsi_dev:
1905 ftgmac100_destroy_mdio(netdev);
1906 err_setup_mdio:
1907 iounmap(priv->base);
1908 err_ioremap:
1909 release_resource(priv->res);
1910 err_req_mem:
1911 free_netdev(netdev);
1912 err_alloc_etherdev:
1913 return err;
1916 static int ftgmac100_remove(struct platform_device *pdev)
1918 struct net_device *netdev;
1919 struct ftgmac100 *priv;
1921 netdev = platform_get_drvdata(pdev);
1922 priv = netdev_priv(netdev);
1924 unregister_netdev(netdev);
1926 clk_disable_unprepare(priv->rclk);
1927 clk_disable_unprepare(priv->clk);
1929 /* There's a small chance the reset task will have been re-queued,
1930 * during stop, make sure it's gone before we free the structure.
1932 cancel_work_sync(&priv->reset_task);
1934 ftgmac100_destroy_mdio(netdev);
1936 iounmap(priv->base);
1937 release_resource(priv->res);
1939 netif_napi_del(&priv->napi);
1940 free_netdev(netdev);
1941 return 0;
1944 static const struct of_device_id ftgmac100_of_match[] = {
1945 { .compatible = "faraday,ftgmac100" },
1948 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1950 static struct platform_driver ftgmac100_driver = {
1951 .probe = ftgmac100_probe,
1952 .remove = ftgmac100_remove,
1953 .driver = {
1954 .name = DRV_NAME,
1955 .of_match_table = ftgmac100_of_match,
1958 module_platform_driver(ftgmac100_driver);
1960 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1961 MODULE_DESCRIPTION("FTGMAC100 driver");
1962 MODULE_LICENSE("GPL");