1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
5 * e100.c: Intel(R) PRO/100 ethernet driver
7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
8 * original e100 driver, but better described as a munging of
9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
12 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 * Open Source Software Developers Manual,
14 * http://sourceforge.net/projects/e1000
21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 * controller family, which includes the 82557, 82558, 82559, 82550,
23 * 82551, and 82562 devices. 82558 and greater controllers
24 * integrate the Intel 82555 PHY. The controllers are used in
25 * server and client network interface cards, as well as in
26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 * configurations. 8255x supports a 32-bit linear addressing
28 * mode and operates at 33Mhz PCI clock rate.
30 * II. Driver Operation
32 * Memory-mapped mode is used exclusively to access the device's
33 * shared-memory structure, the Control/Status Registers (CSR). All
34 * setup, configuration, and control of the device, including queuing
35 * of Tx, Rx, and configuration commands is through the CSR.
36 * cmd_lock serializes accesses to the CSR command register. cb_lock
37 * protects the shared Command Block List (CBL).
39 * 8255x is highly MII-compliant and all access to the PHY go
40 * through the Management Data Interface (MDI). Consequently, the
41 * driver leverages the mii.c library shared with other MII-compliant
44 * Big- and Little-Endian byte order as well as 32- and 64-bit
45 * archs are supported. Weak-ordered memory and non-cache-coherent
46 * archs are supported.
50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
51 * together in a fixed-size ring (CBL) thus forming the flexible mode
52 * memory structure. A TCB marked with the suspend-bit indicates
53 * the end of the ring. The last TCB processed suspends the
54 * controller, and the controller can be restarted by issue a CU
55 * resume command to continue from the suspend point, or a CU start
56 * command to start at a given position in the ring.
58 * Non-Tx commands (config, multicast setup, etc) are linked
59 * into the CBL ring along with Tx commands. The common structure
60 * used for both Tx and non-Tx commands is the Command Block (CB).
62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 * is the next CB to check for completion; cb_to_send is the first
64 * CB to start on in case of a previous failure to resume. CB clean
65 * up happens in interrupt context in response to a CU interrupt.
66 * cbs_avail keeps track of number of free CB resources available.
68 * Hardware padding of short packets to minimum packet size is
69 * enabled. 82557 pads with 7Eh, while the later controllers pad
74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 * Descriptors (RFD) + data buffer, thus forming the simplified mode
76 * memory structure. Rx skbs are allocated to contain both the RFD
77 * and the data buffer, but the RFD is pulled off before the skb is
78 * indicated. The data buffer is aligned such that encapsulated
79 * protocol headers are u32-aligned. Since the RFD is part of the
80 * mapped shared memory, and completion status is contained within
81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 * view from software and hardware.
84 * In order to keep updates to the RFD link field from colliding with
85 * hardware writes to mark packets complete, we use the feature that
86 * hardware will not write to a size 0 descriptor and mark the previous
87 * packet as end-of-list (EL). After updating the link, we remove EL
88 * and only then restore the size such that hardware may use the
89 * previous-to-end RFD.
91 * Under typical operation, the receive unit (RU) is start once,
92 * and the controller happily fills RFDs as frames arrive. If
93 * replacement RFDs cannot be allocated, or the RU goes non-active,
94 * the RU must be restarted. Frame arrival generates an interrupt,
95 * and Rx indication and re-allocation happen in the same context,
96 * therefore no locking is required. A software-generated interrupt
97 * is generated from the watchdog to recover from a failed allocation
98 * scenario where all Rx resources have been indicated and none re-
103 * VLAN offloading of tagging, stripping and filtering is not
104 * supported, but driver will accommodate the extra 4-byte VLAN tag
105 * for processing by upper layers. Tx/Rx Checksum offloading is not
106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
107 * not supported (hardware limitation).
109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
111 * Thanks to JC (jchapman@katalix.com) for helping with
112 * testing/troubleshooting the development driver.
115 * o several entry points race with dev->close
116 * o check for tx-no-resources/stop Q races with tx clean/wake Q
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 * - Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
152 #define DRV_NAME "e100"
153 #define DRV_EXT "-NAPI"
154 #define DRV_VERSION "3.5.24-k2"DRV_EXT
155 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
156 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
158 #define E100_WATCHDOG_PERIOD (2 * HZ)
159 #define E100_NAPI_WEIGHT 16
161 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
162 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
163 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
165 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
166 MODULE_AUTHOR(DRV_COPYRIGHT
);
167 MODULE_LICENSE("GPL v2");
168 MODULE_VERSION(DRV_VERSION
);
169 MODULE_FIRMWARE(FIRMWARE_D101M
);
170 MODULE_FIRMWARE(FIRMWARE_D101S
);
171 MODULE_FIRMWARE(FIRMWARE_D102E
);
173 static int debug
= 3;
174 static int eeprom_bad_csum_allow
= 0;
175 static int use_io
= 0;
176 module_param(debug
, int, 0);
177 module_param(eeprom_bad_csum_allow
, int, 0);
178 module_param(use_io
, int, 0);
179 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
180 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
181 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
184 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
185 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
186 static const struct pci_device_id e100_id_table
[] = {
187 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
188 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
189 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
192 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
193 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
194 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
198 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
199 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
200 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
206 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
215 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
220 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
221 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
222 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
223 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
224 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
225 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
226 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
227 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
228 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
231 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
234 mac_82557_D100_A
= 0,
235 mac_82557_D100_B
= 1,
236 mac_82557_D100_C
= 2,
237 mac_82558_D101_A4
= 4,
238 mac_82558_D101_B0
= 5,
242 mac_82550_D102_C
= 13,
250 phy_100a
= 0x000003E0,
251 phy_100c
= 0x035002A8,
252 phy_82555_tx
= 0x015002A8,
253 phy_nsc_tx
= 0x5C002000,
254 phy_82562_et
= 0x033002A8,
255 phy_82562_em
= 0x032002A8,
256 phy_82562_ek
= 0x031002A8,
257 phy_82562_eh
= 0x017002A8,
258 phy_82552_v
= 0xd061004d,
259 phy_unknown
= 0xFFFFFFFF,
262 /* CSR (Control/Status Registers) */
288 RU_UNINITIALIZED
= -1,
292 stat_ack_not_ours
= 0x00,
293 stat_ack_sw_gen
= 0x04,
295 stat_ack_cu_idle
= 0x20,
296 stat_ack_frame_rx
= 0x40,
297 stat_ack_cu_cmd_done
= 0x80,
298 stat_ack_not_present
= 0xFF,
299 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
300 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
304 irq_mask_none
= 0x00,
312 ruc_load_base
= 0x06,
315 cuc_dump_addr
= 0x40,
316 cuc_dump_stats
= 0x50,
317 cuc_load_base
= 0x60,
318 cuc_dump_reset
= 0x70,
322 cuc_dump_complete
= 0x0000A005,
323 cuc_dump_reset_complete
= 0x0000A007,
327 software_reset
= 0x0000,
329 selective_reset
= 0x0002,
332 enum eeprom_ctrl_lo
{
340 mdi_write
= 0x04000000,
341 mdi_read
= 0x08000000,
342 mdi_ready
= 0x10000000,
352 enum eeprom_offsets
{
353 eeprom_cnfg_mdix
= 0x03,
354 eeprom_phy_iface
= 0x06,
356 eeprom_config_asf
= 0x0D,
357 eeprom_smbus_addr
= 0x90,
360 enum eeprom_cnfg_mdix
{
361 eeprom_mdix_enabled
= 0x0080,
364 enum eeprom_phy_iface
{
377 eeprom_id_wol
= 0x0020,
380 enum eeprom_config_asf
{
386 cb_complete
= 0x8000,
391 * cb_command - Command Block flags
392 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
420 struct rx
*next
, *prev
;
425 #if defined(__BIG_ENDIAN_BITFIELD)
431 /*0*/ u8
X(byte_count
:6, pad0
:2);
432 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
433 /*2*/ u8 adaptive_ifs
;
434 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
435 term_write_cache_line
:1), pad3
:4);
436 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
437 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
438 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
439 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
440 rx_save_overruns
: 1), rx_save_bad_frames
: 1);
441 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
442 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
444 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
445 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
446 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
447 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
449 /*11*/ u8
X(linear_priority
:3, pad11
:5);
450 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
451 /*13*/ u8 ip_addr_lo
;
452 /*14*/ u8 ip_addr_hi
;
453 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
454 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
455 pad15_2
:1), crs_or_cdt
:1);
456 /*16*/ u8 fc_delay_lo
;
457 /*17*/ u8 fc_delay_hi
;
458 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
459 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
460 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
461 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
462 full_duplex_force
:1), full_duplex_pin
:1);
463 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
464 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
465 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
469 #define E100_MAX_MULTICAST_ADDRS 64
472 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
475 /* Important: keep total struct u32-aligned */
476 #define UCODE_SIZE 134
483 __le32 ucode
[UCODE_SIZE
];
484 struct config config
;
497 __le32 dump_buffer_addr
;
499 struct cb
*next
, *prev
;
505 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
509 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
510 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
511 tx_multiple_collisions
, tx_total_collisions
;
512 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
513 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
514 rx_short_frame_errors
;
515 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
516 __le16 xmt_tco_frames
, rcv_tco_frames
;
536 struct param_range rfds
;
537 struct param_range cbs
;
541 /* Begin: frequently used values: keep adjacent for cache effect */
542 u32 msg_enable ____cacheline_aligned
;
543 struct net_device
*netdev
;
544 struct pci_dev
*pdev
;
545 u16 (*mdio_ctrl
)(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
);
547 struct rx
*rxs ____cacheline_aligned
;
548 struct rx
*rx_to_use
;
549 struct rx
*rx_to_clean
;
550 struct rfd blank_rfd
;
551 enum ru_state ru_running
;
553 spinlock_t cb_lock ____cacheline_aligned
;
555 struct csr __iomem
*csr
;
556 enum scb_cmd_lo cuc_cmd
;
557 unsigned int cbs_avail
;
558 struct napi_struct napi
;
560 struct cb
*cb_to_use
;
561 struct cb
*cb_to_send
;
562 struct cb
*cb_to_clean
;
564 /* End: frequently used values: keep adjacent for cache effect */
568 promiscuous
= (1 << 1),
569 multicast_all
= (1 << 2),
570 wol_magic
= (1 << 3),
571 ich_10h_workaround
= (1 << 4),
572 } flags ____cacheline_aligned
;
576 struct params params
;
577 struct timer_list watchdog
;
578 struct mii_if_info mii
;
579 struct work_struct tx_timeout_task
;
580 enum loopback loopback
;
585 struct dma_pool
*cbs_pool
;
586 dma_addr_t cbs_dma_addr
;
592 u32 tx_single_collisions
;
593 u32 tx_multiple_collisions
;
598 u32 rx_fc_unsupported
;
600 u32 rx_short_frame_errors
;
601 u32 rx_over_length_errors
;
605 spinlock_t mdio_lock
;
606 const struct firmware
*fw
;
609 static inline void e100_write_flush(struct nic
*nic
)
611 /* Flush previous PCI writes through intermediate bridges
612 * by doing a benign read */
613 (void)ioread8(&nic
->csr
->scb
.status
);
616 static void e100_enable_irq(struct nic
*nic
)
620 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
621 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
622 e100_write_flush(nic
);
623 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
626 static void e100_disable_irq(struct nic
*nic
)
630 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
631 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
632 e100_write_flush(nic
);
633 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
636 static void e100_hw_reset(struct nic
*nic
)
638 /* Put CU and RU into idle with a selective reset to get
639 * device off of PCI bus */
640 iowrite32(selective_reset
, &nic
->csr
->port
);
641 e100_write_flush(nic
); udelay(20);
643 /* Now fully reset device */
644 iowrite32(software_reset
, &nic
->csr
->port
);
645 e100_write_flush(nic
); udelay(20);
647 /* Mask off our interrupt line - it's unmasked after reset */
648 e100_disable_irq(nic
);
651 static int e100_self_test(struct nic
*nic
)
653 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
655 /* Passing the self-test is a pretty good indication
656 * that the device can DMA to/from host memory */
658 nic
->mem
->selftest
.signature
= 0;
659 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
661 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
662 e100_write_flush(nic
);
663 /* Wait 10 msec for self-test to complete */
666 /* Interrupts are enabled after self-test */
667 e100_disable_irq(nic
);
669 /* Check results of self-test */
670 if (nic
->mem
->selftest
.result
!= 0) {
671 netif_err(nic
, hw
, nic
->netdev
,
672 "Self-test failed: result=0x%08X\n",
673 nic
->mem
->selftest
.result
);
676 if (nic
->mem
->selftest
.signature
== 0) {
677 netif_err(nic
, hw
, nic
->netdev
, "Self-test failed: timed out\n");
684 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
686 u32 cmd_addr_data
[3];
690 /* Three cmds: write/erase enable, write data, write/erase disable */
691 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
692 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
694 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
696 /* Bit-bang cmds to write word to eeprom */
697 for (j
= 0; j
< 3; j
++) {
700 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
701 e100_write_flush(nic
); udelay(4);
703 for (i
= 31; i
>= 0; i
--) {
704 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
706 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
707 e100_write_flush(nic
); udelay(4);
709 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
710 e100_write_flush(nic
); udelay(4);
712 /* Wait 10 msec for cmd to complete */
716 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
717 e100_write_flush(nic
); udelay(4);
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
729 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
732 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
733 e100_write_flush(nic
); udelay(4);
735 /* Bit-bang to read word from eeprom */
736 for (i
= 31; i
>= 0; i
--) {
737 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
738 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
739 e100_write_flush(nic
); udelay(4);
741 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
742 e100_write_flush(nic
); udelay(4);
744 /* Eeprom drives a dummy zero to EEDO after receiving
745 * complete address. Use this to adjust addr_len. */
746 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
747 if (!(ctrl
& eedo
) && i
> 16) {
748 *addr_len
-= (i
- 16);
752 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
756 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
757 e100_write_flush(nic
); udelay(4);
759 return cpu_to_le16(data
);
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic
*nic
)
765 u16 addr
, addr_len
= 8, checksum
= 0;
767 /* Try reading with an 8-bit addr len to discover actual addr len */
768 e100_eeprom_read(nic
, &addr_len
, 0);
769 nic
->eeprom_wc
= 1 << addr_len
;
771 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
772 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
773 if (addr
< nic
->eeprom_wc
- 1)
774 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
777 /* The checksum, stored in the last word, is calculated such that
778 * the sum of words should be 0xBABA */
779 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
780 netif_err(nic
, probe
, nic
->netdev
, "EEPROM corrupted\n");
781 if (!eeprom_bad_csum_allow
)
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
791 u16 addr
, addr_len
= 8, checksum
= 0;
793 /* Try reading with an 8-bit addr len to discover actual addr len */
794 e100_eeprom_read(nic
, &addr_len
, 0);
795 nic
->eeprom_wc
= 1 << addr_len
;
797 if (start
+ count
>= nic
->eeprom_wc
)
800 for (addr
= start
; addr
< start
+ count
; addr
++)
801 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
803 /* The checksum, stored in the last word, is calculated such that
804 * the sum of words should be 0xBABA */
805 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
806 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
807 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
808 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
809 nic
->eeprom
[nic
->eeprom_wc
- 1]);
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
816 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
822 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
824 /* Previous command is accepted when SCB clears */
825 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
826 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
829 if (unlikely(i
> E100_WAIT_SCB_FAST
))
832 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
837 if (unlikely(cmd
!= cuc_resume
))
838 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
839 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
842 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
847 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
848 int (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
854 spin_lock_irqsave(&nic
->cb_lock
, flags
);
856 if (unlikely(!nic
->cbs_avail
)) {
862 nic
->cb_to_use
= cb
->next
;
866 err
= cb_prepare(nic
, cb
, skb
);
870 if (unlikely(!nic
->cbs_avail
))
874 /* Order is important otherwise we'll be in a race with h/w:
875 * set S-bit in current first, then clear S-bit in previous. */
876 cb
->command
|= cpu_to_le16(cb_s
);
878 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
880 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
881 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
882 nic
->cb_to_send
->dma_addr
))) {
883 /* Ok, here's where things get sticky. It's
884 * possible that we can't schedule the command
885 * because the controller is too busy, so
886 * let's just queue the command and try again
887 * when another command is scheduled. */
888 if (err
== -ENOSPC
) {
890 schedule_work(&nic
->tx_timeout_task
);
894 nic
->cuc_cmd
= cuc_resume
;
895 nic
->cb_to_send
= nic
->cb_to_send
->next
;
900 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
905 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
907 struct nic
*nic
= netdev_priv(netdev
);
908 return nic
->mdio_ctrl(nic
, addr
, mdi_read
, reg
, 0);
911 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
913 struct nic
*nic
= netdev_priv(netdev
);
915 nic
->mdio_ctrl(nic
, addr
, mdi_write
, reg
, data
);
918 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
919 static u16
mdio_ctrl_hw(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
927 * Stratus87247: we shouldn't be writing the MDI control
928 * register until the Ready bit shows True. Also, since
929 * manipulation of the MDI control registers is a multi-step
930 * procedure it should be done under lock.
932 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
933 for (i
= 100; i
; --i
) {
934 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
939 netdev_err(nic
->netdev
, "e100.mdio_ctrl won't go Ready\n");
940 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
941 return 0; /* No way to indicate timeout error */
943 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
945 for (i
= 0; i
< 100; i
++) {
947 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
950 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
951 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
952 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
953 dir
== mdi_read
? "READ" : "WRITE",
954 addr
, reg
, data
, data_out
);
955 return (u16
)data_out
;
958 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
959 static u16
mdio_ctrl_phy_82552_v(struct nic
*nic
,
965 if ((reg
== MII_BMCR
) && (dir
== mdi_write
)) {
966 if (data
& (BMCR_ANRESTART
| BMCR_ANENABLE
)) {
967 u16 advert
= mdio_read(nic
->netdev
, nic
->mii
.phy_id
,
971 * Workaround Si issue where sometimes the part will not
972 * autoneg to 100Mbps even when advertised.
974 if (advert
& ADVERTISE_100FULL
)
975 data
|= BMCR_SPEED100
| BMCR_FULLDPLX
;
976 else if (advert
& ADVERTISE_100HALF
)
977 data
|= BMCR_SPEED100
;
980 return mdio_ctrl_hw(nic
, addr
, dir
, reg
, data
);
983 /* Fully software-emulated mdio_ctrl() function for cards without
984 * MII-compliant PHYs.
985 * For now, this is mainly geared towards 80c24 support; in case of further
986 * requirements for other types (i82503, ...?) either extend this mechanism
987 * or split it, whichever is cleaner.
989 static u16
mdio_ctrl_phy_mii_emulated(struct nic
*nic
,
995 /* might need to allocate a netdev_priv'ed register array eventually
996 * to be able to record state changes, but for now
997 * some fully hardcoded register handling ought to be ok I guess. */
999 if (dir
== mdi_read
) {
1002 /* Auto-negotiation, right? */
1003 return BMCR_ANENABLE
|
1006 return BMSR_LSTATUS
/* for mii_link_ok() */ |
1010 /* 80c24 is a "combo card" PHY, right? */
1011 return ADVERTISE_10HALF
|
1014 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1015 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1016 dir
== mdi_read
? "READ" : "WRITE",
1023 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1024 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1025 dir
== mdi_read
? "READ" : "WRITE",
1031 static inline int e100_phy_supports_mii(struct nic
*nic
)
1033 /* for now, just check it by comparing whether we
1034 are using MII software emulation.
1036 return (nic
->mdio_ctrl
!= mdio_ctrl_phy_mii_emulated
);
1039 static void e100_get_defaults(struct nic
*nic
)
1041 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
1042 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
1044 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1045 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
1046 if (nic
->mac
== mac_unknown
)
1047 nic
->mac
= mac_82557_D100_A
;
1049 nic
->params
.rfds
= rfds
;
1050 nic
->params
.cbs
= cbs
;
1052 /* Quadwords to DMA into FIFO before starting frame transmit */
1053 nic
->tx_threshold
= 0xE0;
1055 /* no interrupt for every tx completion, delay = 256us if not 557 */
1056 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
1057 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
1059 /* Template for a freshly allocated RFD */
1060 nic
->blank_rfd
.command
= 0;
1061 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
1062 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
);
1065 nic
->mii
.phy_id_mask
= 0x1F;
1066 nic
->mii
.reg_num_mask
= 0x1F;
1067 nic
->mii
.dev
= nic
->netdev
;
1068 nic
->mii
.mdio_read
= mdio_read
;
1069 nic
->mii
.mdio_write
= mdio_write
;
1072 static int e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1074 struct config
*config
= &cb
->u
.config
;
1075 u8
*c
= (u8
*)config
;
1076 struct net_device
*netdev
= nic
->netdev
;
1078 cb
->command
= cpu_to_le16(cb_config
);
1080 memset(config
, 0, sizeof(struct config
));
1082 config
->byte_count
= 0x16; /* bytes in this struct */
1083 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
1084 config
->direct_rx_dma
= 0x1; /* reserved */
1085 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
1086 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
1087 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
1088 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
1089 if (e100_phy_supports_mii(nic
))
1090 config
->mii_mode
= 1; /* 1=MII mode, 0=i82503 mode */
1091 config
->pad10
= 0x6;
1092 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1093 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1094 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1095 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1096 config
->pad15_1
= 0x1;
1097 config
->pad15_2
= 0x1;
1098 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1099 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1100 config
->tx_padding
= 0x1; /* 1=pad short frames */
1101 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1102 config
->pad18
= 0x1;
1103 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1104 config
->pad20_1
= 0x1F;
1105 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1106 config
->pad21_1
= 0x5;
1108 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1109 config
->loopback
= nic
->loopback
;
1111 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1112 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1114 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1115 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1116 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1117 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1120 if (unlikely(netdev
->features
& NETIF_F_RXFCS
))
1121 config
->rx_crc_transfer
= 0x1; /* 1=save, 0=discard */
1123 if (nic
->flags
& multicast_all
)
1124 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1126 /* disable WoL when up */
1127 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1128 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1130 if (nic
->mac
>= mac_82558_D101_A4
) {
1131 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1132 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1133 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1134 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1135 if (nic
->mac
>= mac_82559_D101M
) {
1136 config
->tno_intr
= 0x1; /* TCO stats enable */
1137 /* Enable TCO in extended config */
1138 if (nic
->mac
>= mac_82551_10
) {
1139 config
->byte_count
= 0x20; /* extended bytes */
1140 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1143 config
->standard_stat_counter
= 0x0;
1147 if (netdev
->features
& NETIF_F_RXALL
) {
1148 config
->rx_save_overruns
= 0x1; /* 1=save, 0=discard */
1149 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1150 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1153 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[00-07]=%8ph\n",
1155 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[08-15]=%8ph\n",
1157 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[16-23]=%8ph\n",
1162 /*************************************************************************
1163 * CPUSaver parameters
1165 * All CPUSaver parameters are 16-bit literals that are part of a
1166 * "move immediate value" instruction. By changing the value of
1167 * the literal in the instruction before the code is loaded, the
1168 * driver can change the algorithm.
1170 * INTDELAY - This loads the dead-man timer with its initial value.
1171 * When this timer expires the interrupt is asserted, and the
1172 * timer is reset each time a new packet is received. (see
1173 * BUNDLEMAX below to set the limit on number of chained packets)
1174 * The current default is 0x600 or 1536. Experiments show that
1175 * the value should probably stay within the 0x200 - 0x1000.
1178 * This sets the maximum number of frames that will be bundled. In
1179 * some situations, such as the TCP windowing algorithm, it may be
1180 * better to limit the growth of the bundle size than let it go as
1181 * high as it can, because that could cause too much added latency.
1182 * The default is six, because this is the number of packets in the
1183 * default TCP window size. A value of 1 would make CPUSaver indicate
1184 * an interrupt for every frame received. If you do not want to put
1185 * a limit on the bundle size, set this value to xFFFF.
1188 * This contains a bit-mask describing the minimum size frame that
1189 * will be bundled. The default masks the lower 7 bits, which means
1190 * that any frame less than 128 bytes in length will not be bundled,
1191 * but will instead immediately generate an interrupt. This does
1192 * not affect the current bundle in any way. Any frame that is 128
1193 * bytes or large will be bundled normally. This feature is meant
1194 * to provide immediate indication of ACK frames in a TCP environment.
1195 * Customers were seeing poor performance when a machine with CPUSaver
1196 * enabled was sending but not receiving. The delay introduced when
1197 * the ACKs were received was enough to reduce total throughput, because
1198 * the sender would sit idle until the ACK was finally seen.
1200 * The current default is 0xFF80, which masks out the lower 7 bits.
1201 * This means that any frame which is x7F (127) bytes or smaller
1202 * will cause an immediate interrupt. Because this value must be a
1203 * bit mask, there are only a few valid values that can be used. To
1204 * turn this feature off, the driver can write the value xFFFF to the
1205 * lower word of this instruction (in the same way that the other
1206 * parameters are used). Likewise, a value of 0xF800 (2047) would
1207 * cause an interrupt to be generated for every frame, because all
1208 * standard Ethernet frames are <= 2047 bytes in length.
1209 *************************************************************************/
1211 /* if you wish to disable the ucode functionality, while maintaining the
1212 * workarounds it provides, set the following defines to:
1217 #define BUNDLESMALL 1
1218 #define BUNDLEMAX (u16)6
1219 #define INTDELAY (u16)1536 /* 0x600 */
1221 /* Initialize firmware */
1222 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1224 const char *fw_name
;
1225 const struct firmware
*fw
= nic
->fw
;
1226 u8 timer
, bundle
, min_size
;
1228 bool required
= false;
1230 /* do not load u-code for ICH devices */
1231 if (nic
->flags
& ich
)
1234 /* Search for ucode match against h/w revision
1236 * Based on comments in the source code for the FreeBSD fxp
1237 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1239 * "fixes for bugs in the B-step hardware (specifically, bugs
1240 * with Inline Receive)."
1242 * So we must fail if it cannot be loaded.
1244 * The other microcode files are only required for the optional
1245 * CPUSaver feature. Nice to have, but no reason to fail.
1247 if (nic
->mac
== mac_82559_D101M
) {
1248 fw_name
= FIRMWARE_D101M
;
1249 } else if (nic
->mac
== mac_82559_D101S
) {
1250 fw_name
= FIRMWARE_D101S
;
1251 } else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
) {
1252 fw_name
= FIRMWARE_D102E
;
1254 } else { /* No ucode on other devices */
1258 /* If the firmware has not previously been loaded, request a pointer
1259 * to it. If it was previously loaded, we are reinitializing the
1260 * adapter, possibly in a resume from hibernate, in which case
1261 * request_firmware() cannot be used.
1264 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1268 netif_err(nic
, probe
, nic
->netdev
,
1269 "Failed to load firmware \"%s\": %d\n",
1271 return ERR_PTR(err
);
1273 netif_info(nic
, probe
, nic
->netdev
,
1274 "CPUSaver disabled. Needs \"%s\": %d\n",
1280 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1281 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1282 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1283 netif_err(nic
, probe
, nic
->netdev
,
1284 "Firmware \"%s\" has wrong size %zu\n",
1286 release_firmware(fw
);
1287 return ERR_PTR(-EINVAL
);
1290 /* Read timer, bundle and min_size from end of firmware blob */
1291 timer
= fw
->data
[UCODE_SIZE
* 4];
1292 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1293 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1295 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1296 min_size
>= UCODE_SIZE
) {
1297 netif_err(nic
, probe
, nic
->netdev
,
1298 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1299 fw_name
, timer
, bundle
, min_size
);
1300 release_firmware(fw
);
1301 return ERR_PTR(-EINVAL
);
1304 /* OK, firmware is validated and ready to use. Save a pointer
1305 * to it in the nic */
1310 static int e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1311 struct sk_buff
*skb
)
1313 const struct firmware
*fw
= (void *)skb
;
1314 u8 timer
, bundle
, min_size
;
1316 /* It's not a real skb; we just abused the fact that e100_exec_cb
1317 will pass it through to here... */
1320 /* firmware is stored as little endian already */
1321 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1323 /* Read timer, bundle and min_size from end of firmware blob */
1324 timer
= fw
->data
[UCODE_SIZE
* 4];
1325 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1326 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1328 /* Insert user-tunable settings in cb->u.ucode */
1329 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1330 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1331 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1332 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1333 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1334 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1336 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1340 static inline int e100_load_ucode_wait(struct nic
*nic
)
1342 const struct firmware
*fw
;
1343 int err
= 0, counter
= 50;
1344 struct cb
*cb
= nic
->cb_to_clean
;
1346 fw
= e100_request_firmware(nic
);
1347 /* If it's NULL, then no ucode is required */
1348 if (IS_ERR_OR_NULL(fw
))
1349 return PTR_ERR_OR_ZERO(fw
);
1351 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1352 netif_err(nic
, probe
, nic
->netdev
,
1353 "ucode cmd failed with error %d\n", err
);
1355 /* must restart cuc */
1356 nic
->cuc_cmd
= cuc_start
;
1358 /* wait for completion */
1359 e100_write_flush(nic
);
1362 /* wait for possibly (ouch) 500ms */
1363 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1365 if (!--counter
) break;
1368 /* ack any interrupts, something could have been set */
1369 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1371 /* if the command failed, or is not OK, notify and return */
1372 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1373 netif_err(nic
, probe
, nic
->netdev
, "ucode load failed\n");
1380 static int e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1381 struct sk_buff
*skb
)
1383 cb
->command
= cpu_to_le16(cb_iaaddr
);
1384 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1388 static int e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1390 cb
->command
= cpu_to_le16(cb_dump
);
1391 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1392 offsetof(struct mem
, dump_buf
));
1396 static int e100_phy_check_without_mii(struct nic
*nic
)
1401 phy_type
= (nic
->eeprom
[eeprom_phy_iface
] >> 8) & 0x0f;
1404 case NoSuchPhy
: /* Non-MII PHY; UNTESTED! */
1405 case I82503
: /* Non-MII PHY; UNTESTED! */
1406 case S80C24
: /* Non-MII PHY; tested and working */
1407 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1408 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1409 * doesn't have a programming interface of any sort. The
1410 * media is sensed automatically based on how the link partner
1411 * is configured. This is, in essence, manual configuration.
1413 netif_info(nic
, probe
, nic
->netdev
,
1414 "found MII-less i82503 or 80c24 or other PHY\n");
1416 nic
->mdio_ctrl
= mdio_ctrl_phy_mii_emulated
;
1417 nic
->mii
.phy_id
= 0; /* is this ok for an MII-less PHY? */
1419 /* these might be needed for certain MII-less cards...
1420 * nic->flags |= ich;
1421 * nic->flags |= ich_10h_workaround; */
1432 #define NCONFIG_AUTO_SWITCH 0x0080
1433 #define MII_NSC_CONG MII_RESV1
1434 #define NSC_CONG_ENABLE 0x0100
1435 #define NSC_CONG_TXREADY 0x0400
1436 #define ADVERTISE_FC_SUPPORTED 0x0400
1437 static int e100_phy_init(struct nic
*nic
)
1439 struct net_device
*netdev
= nic
->netdev
;
1441 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1443 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1444 for (addr
= 0; addr
< 32; addr
++) {
1445 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1446 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1447 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1448 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1449 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1453 /* uhoh, no PHY detected: check whether we seem to be some
1454 * weird, rare variant which is *known* to not have any MII.
1455 * But do this AFTER MII checking only, since this does
1456 * lookup of EEPROM values which may easily be unreliable. */
1457 if (e100_phy_check_without_mii(nic
))
1458 return 0; /* simply return and hope for the best */
1460 /* for unknown cases log a fatal error */
1461 netif_err(nic
, hw
, nic
->netdev
,
1462 "Failed to locate any known PHY, aborting\n");
1466 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1467 "phy_addr = %d\n", nic
->mii
.phy_id
);
1470 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1471 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1472 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1473 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1474 "phy ID = 0x%08X\n", nic
->phy
);
1476 /* Select the phy and isolate the rest */
1477 for (addr
= 0; addr
< 32; addr
++) {
1478 if (addr
!= nic
->mii
.phy_id
) {
1479 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1480 } else if (nic
->phy
!= phy_82552_v
) {
1481 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1482 mdio_write(netdev
, addr
, MII_BMCR
,
1483 bmcr
& ~BMCR_ISOLATE
);
1487 * Workaround for 82552:
1488 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1489 * other phy_id's) using bmcr value from addr discovery loop above.
1491 if (nic
->phy
== phy_82552_v
)
1492 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
,
1493 bmcr
& ~BMCR_ISOLATE
);
1495 /* Handle National tx phys */
1496 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1497 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1498 /* Disable congestion control */
1499 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1500 cong
|= NSC_CONG_TXREADY
;
1501 cong
&= ~NSC_CONG_ENABLE
;
1502 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1505 if (nic
->phy
== phy_82552_v
) {
1506 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
1508 /* assign special tweaked mdio_ctrl() function */
1509 nic
->mdio_ctrl
= mdio_ctrl_phy_82552_v
;
1511 /* Workaround Si not advertising flow-control during autoneg */
1512 advert
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1513 mdio_write(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
, advert
);
1515 /* Reset for the above changes to take effect */
1516 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1518 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1519 } else if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1520 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1521 (nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1522 /* enable/disable MDI/MDI-X auto-switching. */
1523 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1524 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1530 static int e100_hw_init(struct nic
*nic
)
1536 netif_err(nic
, hw
, nic
->netdev
, "e100_hw_init\n");
1537 if (!in_interrupt() && (err
= e100_self_test(nic
)))
1540 if ((err
= e100_phy_init(nic
)))
1542 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1544 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1546 if ((err
= e100_load_ucode_wait(nic
)))
1548 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1550 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1552 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1553 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1555 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1558 e100_disable_irq(nic
);
1563 static int e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1565 struct net_device
*netdev
= nic
->netdev
;
1566 struct netdev_hw_addr
*ha
;
1567 u16 i
, count
= min(netdev_mc_count(netdev
), E100_MAX_MULTICAST_ADDRS
);
1569 cb
->command
= cpu_to_le16(cb_multi
);
1570 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1572 netdev_for_each_mc_addr(ha
, netdev
) {
1575 memcpy(&cb
->u
.multi
.addr
[i
++ * ETH_ALEN
], &ha
->addr
,
1581 static void e100_set_multicast_list(struct net_device
*netdev
)
1583 struct nic
*nic
= netdev_priv(netdev
);
1585 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1586 "mc_count=%d, flags=0x%04X\n",
1587 netdev_mc_count(netdev
), netdev
->flags
);
1589 if (netdev
->flags
& IFF_PROMISC
)
1590 nic
->flags
|= promiscuous
;
1592 nic
->flags
&= ~promiscuous
;
1594 if (netdev
->flags
& IFF_ALLMULTI
||
1595 netdev_mc_count(netdev
) > E100_MAX_MULTICAST_ADDRS
)
1596 nic
->flags
|= multicast_all
;
1598 nic
->flags
&= ~multicast_all
;
1600 e100_exec_cb(nic
, NULL
, e100_configure
);
1601 e100_exec_cb(nic
, NULL
, e100_multi
);
1604 static void e100_update_stats(struct nic
*nic
)
1606 struct net_device
*dev
= nic
->netdev
;
1607 struct net_device_stats
*ns
= &dev
->stats
;
1608 struct stats
*s
= &nic
->mem
->stats
;
1609 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1610 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1613 /* Device's stats reporting may take several microseconds to
1614 * complete, so we're always waiting for results of the
1615 * previous command. */
1617 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1619 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1620 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1621 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1622 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1623 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1624 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1625 ns
->collisions
+= nic
->tx_collisions
;
1626 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1627 le32_to_cpu(s
->tx_lost_crs
);
1628 nic
->rx_short_frame_errors
+=
1629 le32_to_cpu(s
->rx_short_frame_errors
);
1630 ns
->rx_length_errors
= nic
->rx_short_frame_errors
+
1631 nic
->rx_over_length_errors
;
1632 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1633 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1634 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1635 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1636 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1637 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1638 le32_to_cpu(s
->rx_alignment_errors
) +
1639 le32_to_cpu(s
->rx_short_frame_errors
) +
1640 le32_to_cpu(s
->rx_cdt_errors
);
1641 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1642 nic
->tx_single_collisions
+=
1643 le32_to_cpu(s
->tx_single_collisions
);
1644 nic
->tx_multiple_collisions
+=
1645 le32_to_cpu(s
->tx_multiple_collisions
);
1646 if (nic
->mac
>= mac_82558_D101_A4
) {
1647 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1648 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1649 nic
->rx_fc_unsupported
+=
1650 le32_to_cpu(s
->fc_rcv_unsupported
);
1651 if (nic
->mac
>= mac_82559_D101M
) {
1652 nic
->tx_tco_frames
+=
1653 le16_to_cpu(s
->xmt_tco_frames
);
1654 nic
->rx_tco_frames
+=
1655 le16_to_cpu(s
->rcv_tco_frames
);
1661 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1662 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1663 "exec cuc_dump_reset failed\n");
1666 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1668 /* Adjust inter-frame-spacing (IFS) between two transmits if
1669 * we're getting collisions on a half-duplex connection. */
1671 if (duplex
== DUPLEX_HALF
) {
1672 u32 prev
= nic
->adaptive_ifs
;
1673 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1675 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1676 (nic
->tx_frames
> min_frames
)) {
1677 if (nic
->adaptive_ifs
< 60)
1678 nic
->adaptive_ifs
+= 5;
1679 } else if (nic
->tx_frames
< min_frames
) {
1680 if (nic
->adaptive_ifs
>= 5)
1681 nic
->adaptive_ifs
-= 5;
1683 if (nic
->adaptive_ifs
!= prev
)
1684 e100_exec_cb(nic
, NULL
, e100_configure
);
1688 static void e100_watchdog(struct timer_list
*t
)
1690 struct nic
*nic
= from_timer(nic
, t
, watchdog
);
1691 struct ethtool_cmd cmd
= { .cmd
= ETHTOOL_GSET
};
1694 netif_printk(nic
, timer
, KERN_DEBUG
, nic
->netdev
,
1695 "right now = %ld\n", jiffies
);
1697 /* mii library handles link maintenance tasks */
1699 mii_ethtool_gset(&nic
->mii
, &cmd
);
1700 speed
= ethtool_cmd_speed(&cmd
);
1702 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1703 netdev_info(nic
->netdev
, "NIC Link is Up %u Mbps %s Duplex\n",
1704 speed
== SPEED_100
? 100 : 10,
1705 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1706 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1707 netdev_info(nic
->netdev
, "NIC Link is Down\n");
1710 mii_check_link(&nic
->mii
);
1712 /* Software generated interrupt to recover from (rare) Rx
1713 * allocation failure.
1714 * Unfortunately have to use a spinlock to not re-enable interrupts
1715 * accidentally, due to hardware that shares a register between the
1716 * interrupt mask bit and the SW Interrupt generation bit */
1717 spin_lock_irq(&nic
->cmd_lock
);
1718 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1719 e100_write_flush(nic
);
1720 spin_unlock_irq(&nic
->cmd_lock
);
1722 e100_update_stats(nic
);
1723 e100_adjust_adaptive_ifs(nic
, speed
, cmd
.duplex
);
1725 if (nic
->mac
<= mac_82557_D100_C
)
1726 /* Issue a multicast command to workaround a 557 lock up */
1727 e100_set_multicast_list(nic
->netdev
);
1729 if (nic
->flags
& ich
&& speed
== SPEED_10
&& cmd
.duplex
== DUPLEX_HALF
)
1730 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1731 nic
->flags
|= ich_10h_workaround
;
1733 nic
->flags
&= ~ich_10h_workaround
;
1735 mod_timer(&nic
->watchdog
,
1736 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1739 static int e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1740 struct sk_buff
*skb
)
1742 dma_addr_t dma_addr
;
1743 cb
->command
= nic
->tx_command
;
1745 dma_addr
= pci_map_single(nic
->pdev
,
1746 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
);
1747 /* If we can't map the skb, have the upper layer try later */
1748 if (pci_dma_mapping_error(nic
->pdev
, dma_addr
)) {
1749 dev_kfree_skb_any(skb
);
1755 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1756 * testing, ie sending frames with bad CRC.
1758 if (unlikely(skb
->no_fcs
))
1759 cb
->command
|= cpu_to_le16(cb_tx_nc
);
1761 cb
->command
&= ~cpu_to_le16(cb_tx_nc
);
1763 /* interrupt every 16 packets regardless of delay */
1764 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1765 cb
->command
|= cpu_to_le16(cb_i
);
1766 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1767 cb
->u
.tcb
.tcb_byte_count
= 0;
1768 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1769 cb
->u
.tcb
.tbd_count
= 1;
1770 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(dma_addr
);
1771 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1772 skb_tx_timestamp(skb
);
1776 static netdev_tx_t
e100_xmit_frame(struct sk_buff
*skb
,
1777 struct net_device
*netdev
)
1779 struct nic
*nic
= netdev_priv(netdev
);
1782 if (nic
->flags
& ich_10h_workaround
) {
1783 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1784 Issue a NOP command followed by a 1us delay before
1785 issuing the Tx command. */
1786 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1787 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1788 "exec cuc_nop failed\n");
1792 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1796 /* We queued the skb, but now we're out of space. */
1797 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1798 "No space for CB\n");
1799 netif_stop_queue(netdev
);
1802 /* This is a hard error - log it. */
1803 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1804 "Out of Tx resources, returning skb\n");
1805 netif_stop_queue(netdev
);
1806 return NETDEV_TX_BUSY
;
1809 return NETDEV_TX_OK
;
1812 static int e100_tx_clean(struct nic
*nic
)
1814 struct net_device
*dev
= nic
->netdev
;
1818 spin_lock(&nic
->cb_lock
);
1820 /* Clean CBs marked complete */
1821 for (cb
= nic
->cb_to_clean
;
1822 cb
->status
& cpu_to_le16(cb_complete
);
1823 cb
= nic
->cb_to_clean
= cb
->next
) {
1824 dma_rmb(); /* read skb after status */
1825 netif_printk(nic
, tx_done
, KERN_DEBUG
, nic
->netdev
,
1826 "cb[%d]->status = 0x%04X\n",
1827 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1830 if (likely(cb
->skb
!= NULL
)) {
1831 dev
->stats
.tx_packets
++;
1832 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1834 pci_unmap_single(nic
->pdev
,
1835 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1836 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1838 dev_kfree_skb_any(cb
->skb
);
1846 spin_unlock(&nic
->cb_lock
);
1848 /* Recover from running out of Tx resources in xmit_frame */
1849 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1850 netif_wake_queue(nic
->netdev
);
1855 static void e100_clean_cbs(struct nic
*nic
)
1858 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1859 struct cb
*cb
= nic
->cb_to_clean
;
1861 pci_unmap_single(nic
->pdev
,
1862 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1863 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1865 dev_kfree_skb(cb
->skb
);
1867 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1870 dma_pool_free(nic
->cbs_pool
, nic
->cbs
, nic
->cbs_dma_addr
);
1874 nic
->cuc_cmd
= cuc_start
;
1875 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1879 static int e100_alloc_cbs(struct nic
*nic
)
1882 unsigned int i
, count
= nic
->params
.cbs
.count
;
1884 nic
->cuc_cmd
= cuc_start
;
1885 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1888 nic
->cbs
= dma_pool_zalloc(nic
->cbs_pool
, GFP_KERNEL
,
1889 &nic
->cbs_dma_addr
);
1893 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1894 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1895 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1897 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1898 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1899 ((i
+1) % count
) * sizeof(struct cb
));
1902 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1903 nic
->cbs_avail
= count
;
1908 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1910 if (!nic
->rxs
) return;
1911 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1913 /* handle init time starts */
1914 if (!rx
) rx
= nic
->rxs
;
1916 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1918 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1919 nic
->ru_running
= RU_RUNNING
;
1923 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1924 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1926 if (!(rx
->skb
= netdev_alloc_skb_ip_align(nic
->netdev
, RFD_BUF_LEN
)))
1929 /* Init, and map the RFD. */
1930 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1931 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1932 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1934 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1935 dev_kfree_skb_any(rx
->skb
);
1941 /* Link the RFD to end of RFA by linking previous RFD to
1942 * this one. We are safe to touch the previous RFD because
1943 * it is protected by the before last buffer's el bit being set */
1944 if (rx
->prev
->skb
) {
1945 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1946 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1947 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1948 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1954 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1955 unsigned int *work_done
, unsigned int work_to_do
)
1957 struct net_device
*dev
= nic
->netdev
;
1958 struct sk_buff
*skb
= rx
->skb
;
1959 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1960 u16 rfd_status
, actual_size
;
1963 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1966 /* Need to sync before taking a peek at cb_complete bit */
1967 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1968 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1969 rfd_status
= le16_to_cpu(rfd
->status
);
1971 netif_printk(nic
, rx_status
, KERN_DEBUG
, nic
->netdev
,
1972 "status=0x%04X\n", rfd_status
);
1973 dma_rmb(); /* read size after status bit */
1975 /* If data isn't ready, nothing to indicate */
1976 if (unlikely(!(rfd_status
& cb_complete
))) {
1977 /* If the next buffer has the el bit, but we think the receiver
1978 * is still running, check to see if it really stopped while
1979 * we had interrupts off.
1980 * This allows for a fast restart without re-enabling
1982 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1983 (RU_RUNNING
== nic
->ru_running
))
1985 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1986 nic
->ru_running
= RU_SUSPENDED
;
1987 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
1989 PCI_DMA_FROMDEVICE
);
1993 /* Get actual data size */
1994 if (unlikely(dev
->features
& NETIF_F_RXFCS
))
1996 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1997 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1998 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
2001 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
2002 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2004 /* If this buffer has the el bit, but we think the receiver
2005 * is still running, check to see if it really stopped while
2006 * we had interrupts off.
2007 * This allows for a fast restart without re-enabling interrupts.
2008 * This can happen when the RU sees the size change but also sees
2009 * the el bit set. */
2010 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
2011 (RU_RUNNING
== nic
->ru_running
)) {
2013 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
2014 nic
->ru_running
= RU_SUSPENDED
;
2017 /* Pull off the RFD and put the actual data (minus eth hdr) */
2018 skb_reserve(skb
, sizeof(struct rfd
));
2019 skb_put(skb
, actual_size
);
2020 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
2022 /* If we are receiving all frames, then don't bother
2023 * checking for errors.
2025 if (unlikely(dev
->features
& NETIF_F_RXALL
)) {
2026 if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
)
2027 /* Received oversized frame, but keep it. */
2028 nic
->rx_over_length_errors
++;
2032 if (unlikely(!(rfd_status
& cb_ok
))) {
2033 /* Don't indicate if hardware indicates errors */
2034 dev_kfree_skb_any(skb
);
2035 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
) {
2036 /* Don't indicate oversized frames */
2037 nic
->rx_over_length_errors
++;
2038 dev_kfree_skb_any(skb
);
2041 dev
->stats
.rx_packets
++;
2042 dev
->stats
.rx_bytes
+= (actual_size
- fcs_pad
);
2043 netif_receive_skb(skb
);
2053 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
2054 unsigned int work_to_do
)
2057 int restart_required
= 0, err
= 0;
2058 struct rx
*old_before_last_rx
, *new_before_last_rx
;
2059 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
2061 /* Indicate newly arrived packets */
2062 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
2063 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
2064 /* Hit quota or no more to clean */
2065 if (-EAGAIN
== err
|| -ENODATA
== err
)
2070 /* On EAGAIN, hit quota so have more work to do, restart once
2071 * cleanup is complete.
2072 * Else, are we already rnr? then pay attention!!! this ensures that
2073 * the state machine progression never allows a start with a
2074 * partially cleaned list, avoiding a race between hardware
2075 * and rx_to_clean when in NAPI mode */
2076 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
2077 restart_required
= 1;
2079 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2080 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
2082 /* Alloc new skbs to refill list */
2083 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
2084 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
2085 break; /* Better luck next time (see watchdog) */
2088 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2089 if (new_before_last_rx
!= old_before_last_rx
) {
2090 /* Set the el-bit on the buffer that is before the last buffer.
2091 * This lets us update the next pointer on the last buffer
2092 * without worrying about hardware touching it.
2093 * We set the size to 0 to prevent hardware from touching this
2095 * When the hardware hits the before last buffer with el-bit
2096 * and size of 0, it will RNR interrupt, the RUS will go into
2097 * the No Resources state. It will not complete nor write to
2099 new_before_last_rfd
=
2100 (struct rfd
*)new_before_last_rx
->skb
->data
;
2101 new_before_last_rfd
->size
= 0;
2102 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
2103 pci_dma_sync_single_for_device(nic
->pdev
,
2104 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2105 PCI_DMA_BIDIRECTIONAL
);
2107 /* Now that we have a new stopping point, we can clear the old
2108 * stopping point. We must sync twice to get the proper
2109 * ordering on the hardware side of things. */
2110 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
2111 pci_dma_sync_single_for_device(nic
->pdev
,
2112 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2113 PCI_DMA_BIDIRECTIONAL
);
2114 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
2116 pci_dma_sync_single_for_device(nic
->pdev
,
2117 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2118 PCI_DMA_BIDIRECTIONAL
);
2121 if (restart_required
) {
2123 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
2124 e100_start_receiver(nic
, nic
->rx_to_clean
);
2130 static void e100_rx_clean_list(struct nic
*nic
)
2133 unsigned int i
, count
= nic
->params
.rfds
.count
;
2135 nic
->ru_running
= RU_UNINITIALIZED
;
2138 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2140 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
2141 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2142 dev_kfree_skb(rx
->skb
);
2149 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2152 static int e100_rx_alloc_list(struct nic
*nic
)
2155 unsigned int i
, count
= nic
->params
.rfds
.count
;
2156 struct rfd
*before_last
;
2158 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2159 nic
->ru_running
= RU_UNINITIALIZED
;
2161 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
2164 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2165 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
2166 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
2167 if (e100_rx_alloc_skb(nic
, rx
)) {
2168 e100_rx_clean_list(nic
);
2172 /* Set the el-bit on the buffer that is before the last buffer.
2173 * This lets us update the next pointer on the last buffer without
2174 * worrying about hardware touching it.
2175 * We set the size to 0 to prevent hardware from touching this buffer.
2176 * When the hardware hits the before last buffer with el-bit and size
2177 * of 0, it will RNR interrupt, the RU will go into the No Resources
2178 * state. It will not complete nor write to this buffer. */
2179 rx
= nic
->rxs
->prev
->prev
;
2180 before_last
= (struct rfd
*)rx
->skb
->data
;
2181 before_last
->command
|= cpu_to_le16(cb_el
);
2182 before_last
->size
= 0;
2183 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
2184 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
2186 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
2187 nic
->ru_running
= RU_SUSPENDED
;
2192 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
2194 struct net_device
*netdev
= dev_id
;
2195 struct nic
*nic
= netdev_priv(netdev
);
2196 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
2198 netif_printk(nic
, intr
, KERN_DEBUG
, nic
->netdev
,
2199 "stat_ack = 0x%02X\n", stat_ack
);
2201 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
2202 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
2205 /* Ack interrupt(s) */
2206 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
2208 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2209 if (stat_ack
& stat_ack_rnr
)
2210 nic
->ru_running
= RU_SUSPENDED
;
2212 if (likely(napi_schedule_prep(&nic
->napi
))) {
2213 e100_disable_irq(nic
);
2214 __napi_schedule(&nic
->napi
);
2220 static int e100_poll(struct napi_struct
*napi
, int budget
)
2222 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
2223 unsigned int work_done
= 0;
2225 e100_rx_clean(nic
, &work_done
, budget
);
2228 /* If budget fully consumed, continue polling */
2229 if (work_done
== budget
)
2232 /* only re-enable interrupt if stack agrees polling is really done */
2233 if (likely(napi_complete_done(napi
, work_done
)))
2234 e100_enable_irq(nic
);
2239 #ifdef CONFIG_NET_POLL_CONTROLLER
2240 static void e100_netpoll(struct net_device
*netdev
)
2242 struct nic
*nic
= netdev_priv(netdev
);
2244 e100_disable_irq(nic
);
2245 e100_intr(nic
->pdev
->irq
, netdev
);
2247 e100_enable_irq(nic
);
2251 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2253 struct nic
*nic
= netdev_priv(netdev
);
2254 struct sockaddr
*addr
= p
;
2256 if (!is_valid_ether_addr(addr
->sa_data
))
2257 return -EADDRNOTAVAIL
;
2259 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2260 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2265 static int e100_asf(struct nic
*nic
)
2267 /* ASF can be enabled from eeprom */
2268 return (nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2269 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2270 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2271 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE);
2274 static int e100_up(struct nic
*nic
)
2278 if ((err
= e100_rx_alloc_list(nic
)))
2280 if ((err
= e100_alloc_cbs(nic
)))
2281 goto err_rx_clean_list
;
2282 if ((err
= e100_hw_init(nic
)))
2284 e100_set_multicast_list(nic
->netdev
);
2285 e100_start_receiver(nic
, NULL
);
2286 mod_timer(&nic
->watchdog
, jiffies
);
2287 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2288 nic
->netdev
->name
, nic
->netdev
)))
2290 netif_wake_queue(nic
->netdev
);
2291 napi_enable(&nic
->napi
);
2292 /* enable ints _after_ enabling poll, preventing a race between
2293 * disable ints+schedule */
2294 e100_enable_irq(nic
);
2298 del_timer_sync(&nic
->watchdog
);
2300 e100_clean_cbs(nic
);
2302 e100_rx_clean_list(nic
);
2306 static void e100_down(struct nic
*nic
)
2308 /* wait here for poll to complete */
2309 napi_disable(&nic
->napi
);
2310 netif_stop_queue(nic
->netdev
);
2312 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2313 del_timer_sync(&nic
->watchdog
);
2314 netif_carrier_off(nic
->netdev
);
2315 e100_clean_cbs(nic
);
2316 e100_rx_clean_list(nic
);
2319 static void e100_tx_timeout(struct net_device
*netdev
, unsigned int txqueue
)
2321 struct nic
*nic
= netdev_priv(netdev
);
2323 /* Reset outside of interrupt context, to avoid request_irq
2324 * in interrupt context */
2325 schedule_work(&nic
->tx_timeout_task
);
2328 static void e100_tx_timeout_task(struct work_struct
*work
)
2330 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2331 struct net_device
*netdev
= nic
->netdev
;
2333 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
2334 "scb.status=0x%02X\n", ioread8(&nic
->csr
->scb
.status
));
2337 if (netif_running(netdev
)) {
2338 e100_down(netdev_priv(netdev
));
2339 e100_up(netdev_priv(netdev
));
2344 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2347 struct sk_buff
*skb
;
2349 /* Use driver resources to perform internal MAC or PHY
2350 * loopback test. A single packet is prepared and transmitted
2351 * in loopback mode, and the test passes if the received
2352 * packet compares byte-for-byte to the transmitted packet. */
2354 if ((err
= e100_rx_alloc_list(nic
)))
2356 if ((err
= e100_alloc_cbs(nic
)))
2359 /* ICH PHY loopback is broken so do MAC loopback instead */
2360 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2361 loopback_mode
= lb_mac
;
2363 nic
->loopback
= loopback_mode
;
2364 if ((err
= e100_hw_init(nic
)))
2365 goto err_loopback_none
;
2367 if (loopback_mode
== lb_phy
)
2368 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2371 e100_start_receiver(nic
, NULL
);
2373 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2375 goto err_loopback_none
;
2377 skb_put(skb
, ETH_DATA_LEN
);
2378 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2379 e100_xmit_frame(skb
, nic
->netdev
);
2383 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2384 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2386 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2387 skb
->data
, ETH_DATA_LEN
))
2391 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2392 nic
->loopback
= lb_none
;
2393 e100_clean_cbs(nic
);
2396 e100_rx_clean_list(nic
);
2400 #define MII_LED_CONTROL 0x1B
2401 #define E100_82552_LED_OVERRIDE 0x19
2402 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2403 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2405 static int e100_get_link_ksettings(struct net_device
*netdev
,
2406 struct ethtool_link_ksettings
*cmd
)
2408 struct nic
*nic
= netdev_priv(netdev
);
2410 mii_ethtool_get_link_ksettings(&nic
->mii
, cmd
);
2415 static int e100_set_link_ksettings(struct net_device
*netdev
,
2416 const struct ethtool_link_ksettings
*cmd
)
2418 struct nic
*nic
= netdev_priv(netdev
);
2421 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2422 err
= mii_ethtool_set_link_ksettings(&nic
->mii
, cmd
);
2423 e100_exec_cb(nic
, NULL
, e100_configure
);
2428 static void e100_get_drvinfo(struct net_device
*netdev
,
2429 struct ethtool_drvinfo
*info
)
2431 struct nic
*nic
= netdev_priv(netdev
);
2432 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2433 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2434 strlcpy(info
->bus_info
, pci_name(nic
->pdev
),
2435 sizeof(info
->bus_info
));
2438 #define E100_PHY_REGS 0x1C
2439 static int e100_get_regs_len(struct net_device
*netdev
)
2441 struct nic
*nic
= netdev_priv(netdev
);
2442 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2445 static void e100_get_regs(struct net_device
*netdev
,
2446 struct ethtool_regs
*regs
, void *p
)
2448 struct nic
*nic
= netdev_priv(netdev
);
2452 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2453 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2454 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2455 ioread16(&nic
->csr
->scb
.status
);
2456 for (i
= E100_PHY_REGS
; i
>= 0; i
--)
2457 buff
[1 + E100_PHY_REGS
- i
] =
2458 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2459 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2460 e100_exec_cb(nic
, NULL
, e100_dump
);
2462 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2463 sizeof(nic
->mem
->dump_buf
));
2466 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2468 struct nic
*nic
= netdev_priv(netdev
);
2469 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2470 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2473 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2475 struct nic
*nic
= netdev_priv(netdev
);
2477 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2478 !device_can_wakeup(&nic
->pdev
->dev
))
2482 nic
->flags
|= wol_magic
;
2484 nic
->flags
&= ~wol_magic
;
2486 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2488 e100_exec_cb(nic
, NULL
, e100_configure
);
2493 static u32
e100_get_msglevel(struct net_device
*netdev
)
2495 struct nic
*nic
= netdev_priv(netdev
);
2496 return nic
->msg_enable
;
2499 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2501 struct nic
*nic
= netdev_priv(netdev
);
2502 nic
->msg_enable
= value
;
2505 static int e100_nway_reset(struct net_device
*netdev
)
2507 struct nic
*nic
= netdev_priv(netdev
);
2508 return mii_nway_restart(&nic
->mii
);
2511 static u32
e100_get_link(struct net_device
*netdev
)
2513 struct nic
*nic
= netdev_priv(netdev
);
2514 return mii_link_ok(&nic
->mii
);
2517 static int e100_get_eeprom_len(struct net_device
*netdev
)
2519 struct nic
*nic
= netdev_priv(netdev
);
2520 return nic
->eeprom_wc
<< 1;
2523 #define E100_EEPROM_MAGIC 0x1234
2524 static int e100_get_eeprom(struct net_device
*netdev
,
2525 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2527 struct nic
*nic
= netdev_priv(netdev
);
2529 eeprom
->magic
= E100_EEPROM_MAGIC
;
2530 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2535 static int e100_set_eeprom(struct net_device
*netdev
,
2536 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2538 struct nic
*nic
= netdev_priv(netdev
);
2540 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2543 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2545 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2546 (eeprom
->len
>> 1) + 1);
2549 static void e100_get_ringparam(struct net_device
*netdev
,
2550 struct ethtool_ringparam
*ring
)
2552 struct nic
*nic
= netdev_priv(netdev
);
2553 struct param_range
*rfds
= &nic
->params
.rfds
;
2554 struct param_range
*cbs
= &nic
->params
.cbs
;
2556 ring
->rx_max_pending
= rfds
->max
;
2557 ring
->tx_max_pending
= cbs
->max
;
2558 ring
->rx_pending
= rfds
->count
;
2559 ring
->tx_pending
= cbs
->count
;
2562 static int e100_set_ringparam(struct net_device
*netdev
,
2563 struct ethtool_ringparam
*ring
)
2565 struct nic
*nic
= netdev_priv(netdev
);
2566 struct param_range
*rfds
= &nic
->params
.rfds
;
2567 struct param_range
*cbs
= &nic
->params
.cbs
;
2569 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2572 if (netif_running(netdev
))
2574 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2575 rfds
->count
= min(rfds
->count
, rfds
->max
);
2576 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2577 cbs
->count
= min(cbs
->count
, cbs
->max
);
2578 netif_info(nic
, drv
, nic
->netdev
, "Ring Param settings: rx: %d, tx %d\n",
2579 rfds
->count
, cbs
->count
);
2580 if (netif_running(netdev
))
2586 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2587 "Link test (on/offline)",
2588 "Eeprom test (on/offline)",
2589 "Self test (offline)",
2590 "Mac loopback (offline)",
2591 "Phy loopback (offline)",
2593 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2595 static void e100_diag_test(struct net_device
*netdev
,
2596 struct ethtool_test
*test
, u64
*data
)
2598 struct ethtool_cmd cmd
;
2599 struct nic
*nic
= netdev_priv(netdev
);
2602 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2603 data
[0] = !mii_link_ok(&nic
->mii
);
2604 data
[1] = e100_eeprom_load(nic
);
2605 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2607 /* save speed, duplex & autoneg settings */
2608 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2610 if (netif_running(netdev
))
2612 data
[2] = e100_self_test(nic
);
2613 data
[3] = e100_loopback_test(nic
, lb_mac
);
2614 data
[4] = e100_loopback_test(nic
, lb_phy
);
2616 /* restore speed, duplex & autoneg settings */
2617 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2619 if (netif_running(netdev
))
2622 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2623 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2625 msleep_interruptible(4 * 1000);
2628 static int e100_set_phys_id(struct net_device
*netdev
,
2629 enum ethtool_phys_id_state state
)
2631 struct nic
*nic
= netdev_priv(netdev
);
2638 u16 led_reg
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OVERRIDE
:
2643 case ETHTOOL_ID_ACTIVE
:
2647 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_ON
:
2648 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2651 case ETHTOOL_ID_OFF
:
2652 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OFF
: led_off
;
2655 case ETHTOOL_ID_INACTIVE
:
2659 mdio_write(netdev
, nic
->mii
.phy_id
, led_reg
, leds
);
2663 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2664 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2665 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2666 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2667 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2668 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2669 "tx_heartbeat_errors", "tx_window_errors",
2670 /* device-specific stats */
2671 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2672 "tx_flow_control_pause", "rx_flow_control_pause",
2673 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2674 "rx_short_frame_errors", "rx_over_length_errors",
2676 #define E100_NET_STATS_LEN 21
2677 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2679 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2683 return E100_TEST_LEN
;
2685 return E100_STATS_LEN
;
2691 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2692 struct ethtool_stats
*stats
, u64
*data
)
2694 struct nic
*nic
= netdev_priv(netdev
);
2697 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2698 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2700 data
[i
++] = nic
->tx_deferred
;
2701 data
[i
++] = nic
->tx_single_collisions
;
2702 data
[i
++] = nic
->tx_multiple_collisions
;
2703 data
[i
++] = nic
->tx_fc_pause
;
2704 data
[i
++] = nic
->rx_fc_pause
;
2705 data
[i
++] = nic
->rx_fc_unsupported
;
2706 data
[i
++] = nic
->tx_tco_frames
;
2707 data
[i
++] = nic
->rx_tco_frames
;
2708 data
[i
++] = nic
->rx_short_frame_errors
;
2709 data
[i
++] = nic
->rx_over_length_errors
;
2712 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2714 switch (stringset
) {
2716 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2719 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2724 static const struct ethtool_ops e100_ethtool_ops
= {
2725 .get_drvinfo
= e100_get_drvinfo
,
2726 .get_regs_len
= e100_get_regs_len
,
2727 .get_regs
= e100_get_regs
,
2728 .get_wol
= e100_get_wol
,
2729 .set_wol
= e100_set_wol
,
2730 .get_msglevel
= e100_get_msglevel
,
2731 .set_msglevel
= e100_set_msglevel
,
2732 .nway_reset
= e100_nway_reset
,
2733 .get_link
= e100_get_link
,
2734 .get_eeprom_len
= e100_get_eeprom_len
,
2735 .get_eeprom
= e100_get_eeprom
,
2736 .set_eeprom
= e100_set_eeprom
,
2737 .get_ringparam
= e100_get_ringparam
,
2738 .set_ringparam
= e100_set_ringparam
,
2739 .self_test
= e100_diag_test
,
2740 .get_strings
= e100_get_strings
,
2741 .set_phys_id
= e100_set_phys_id
,
2742 .get_ethtool_stats
= e100_get_ethtool_stats
,
2743 .get_sset_count
= e100_get_sset_count
,
2744 .get_ts_info
= ethtool_op_get_ts_info
,
2745 .get_link_ksettings
= e100_get_link_ksettings
,
2746 .set_link_ksettings
= e100_set_link_ksettings
,
2749 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2751 struct nic
*nic
= netdev_priv(netdev
);
2753 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2756 static int e100_alloc(struct nic
*nic
)
2758 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2760 return nic
->mem
? 0 : -ENOMEM
;
2763 static void e100_free(struct nic
*nic
)
2766 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2767 nic
->mem
, nic
->dma_addr
);
2772 static int e100_open(struct net_device
*netdev
)
2774 struct nic
*nic
= netdev_priv(netdev
);
2777 netif_carrier_off(netdev
);
2778 if ((err
= e100_up(nic
)))
2779 netif_err(nic
, ifup
, nic
->netdev
, "Cannot open interface, aborting\n");
2783 static int e100_close(struct net_device
*netdev
)
2785 e100_down(netdev_priv(netdev
));
2789 static int e100_set_features(struct net_device
*netdev
,
2790 netdev_features_t features
)
2792 struct nic
*nic
= netdev_priv(netdev
);
2793 netdev_features_t changed
= features
^ netdev
->features
;
2795 if (!(changed
& (NETIF_F_RXFCS
| NETIF_F_RXALL
)))
2798 netdev
->features
= features
;
2799 e100_exec_cb(nic
, NULL
, e100_configure
);
2803 static const struct net_device_ops e100_netdev_ops
= {
2804 .ndo_open
= e100_open
,
2805 .ndo_stop
= e100_close
,
2806 .ndo_start_xmit
= e100_xmit_frame
,
2807 .ndo_validate_addr
= eth_validate_addr
,
2808 .ndo_set_rx_mode
= e100_set_multicast_list
,
2809 .ndo_set_mac_address
= e100_set_mac_address
,
2810 .ndo_do_ioctl
= e100_do_ioctl
,
2811 .ndo_tx_timeout
= e100_tx_timeout
,
2812 #ifdef CONFIG_NET_POLL_CONTROLLER
2813 .ndo_poll_controller
= e100_netpoll
,
2815 .ndo_set_features
= e100_set_features
,
2818 static int e100_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2820 struct net_device
*netdev
;
2824 if (!(netdev
= alloc_etherdev(sizeof(struct nic
))))
2827 netdev
->hw_features
|= NETIF_F_RXFCS
;
2828 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
2829 netdev
->hw_features
|= NETIF_F_RXALL
;
2831 netdev
->netdev_ops
= &e100_netdev_ops
;
2832 netdev
->ethtool_ops
= &e100_ethtool_ops
;
2833 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2834 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2836 nic
= netdev_priv(netdev
);
2837 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2838 nic
->netdev
= netdev
;
2840 nic
->msg_enable
= (1 << debug
) - 1;
2841 nic
->mdio_ctrl
= mdio_ctrl_hw
;
2842 pci_set_drvdata(pdev
, netdev
);
2844 if ((err
= pci_enable_device(pdev
))) {
2845 netif_err(nic
, probe
, nic
->netdev
, "Cannot enable PCI device, aborting\n");
2846 goto err_out_free_dev
;
2849 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2850 netif_err(nic
, probe
, nic
->netdev
, "Cannot find proper PCI device base address, aborting\n");
2852 goto err_out_disable_pdev
;
2855 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2856 netif_err(nic
, probe
, nic
->netdev
, "Cannot obtain PCI resources, aborting\n");
2857 goto err_out_disable_pdev
;
2860 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
2861 netif_err(nic
, probe
, nic
->netdev
, "No usable DMA configuration, aborting\n");
2862 goto err_out_free_res
;
2865 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2868 netif_info(nic
, probe
, nic
->netdev
, "using i/o access mode\n");
2870 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2872 netif_err(nic
, probe
, nic
->netdev
, "Cannot map device registers, aborting\n");
2874 goto err_out_free_res
;
2877 if (ent
->driver_data
)
2882 e100_get_defaults(nic
);
2884 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2885 if (nic
->mac
< mac_82558_D101_A4
)
2886 netdev
->features
|= NETIF_F_VLAN_CHALLENGED
;
2888 /* locks must be initialized before calling hw_reset */
2889 spin_lock_init(&nic
->cb_lock
);
2890 spin_lock_init(&nic
->cmd_lock
);
2891 spin_lock_init(&nic
->mdio_lock
);
2893 /* Reset the device before pci_set_master() in case device is in some
2894 * funky state and has an interrupt pending - hint: we don't have the
2895 * interrupt handler registered yet. */
2898 pci_set_master(pdev
);
2900 timer_setup(&nic
->watchdog
, e100_watchdog
, 0);
2902 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2904 if ((err
= e100_alloc(nic
))) {
2905 netif_err(nic
, probe
, nic
->netdev
, "Cannot alloc driver memory, aborting\n");
2906 goto err_out_iounmap
;
2909 if ((err
= e100_eeprom_load(nic
)))
2914 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2915 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2916 if (!eeprom_bad_csum_allow
) {
2917 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, aborting\n");
2921 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2925 /* Wol magic packet can be enabled from eeprom */
2926 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2927 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
)) {
2928 nic
->flags
|= wol_magic
;
2929 device_set_wakeup_enable(&pdev
->dev
, true);
2932 /* ack any pending wake events, disable PME */
2933 pci_pme_active(pdev
, false);
2935 strcpy(netdev
->name
, "eth%d");
2936 if ((err
= register_netdev(netdev
))) {
2937 netif_err(nic
, probe
, nic
->netdev
, "Cannot register net device, aborting\n");
2940 nic
->cbs_pool
= dma_pool_create(netdev
->name
,
2942 nic
->params
.cbs
.max
* sizeof(struct cb
),
2945 if (!nic
->cbs_pool
) {
2946 netif_err(nic
, probe
, nic
->netdev
, "Cannot create DMA pool, aborting\n");
2950 netif_info(nic
, probe
, nic
->netdev
,
2951 "addr 0x%llx, irq %d, MAC addr %pM\n",
2952 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2953 pdev
->irq
, netdev
->dev_addr
);
2958 unregister_netdev(netdev
);
2962 pci_iounmap(pdev
, nic
->csr
);
2964 pci_release_regions(pdev
);
2965 err_out_disable_pdev
:
2966 pci_disable_device(pdev
);
2968 free_netdev(netdev
);
2972 static void e100_remove(struct pci_dev
*pdev
)
2974 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2977 struct nic
*nic
= netdev_priv(netdev
);
2978 unregister_netdev(netdev
);
2980 pci_iounmap(pdev
, nic
->csr
);
2981 dma_pool_destroy(nic
->cbs_pool
);
2982 free_netdev(netdev
);
2983 pci_release_regions(pdev
);
2984 pci_disable_device(pdev
);
2988 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2989 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2990 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2991 static void __e100_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
2993 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2994 struct nic
*nic
= netdev_priv(netdev
);
2996 if (netif_running(netdev
))
2998 netif_device_detach(netdev
);
3000 pci_save_state(pdev
);
3002 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
3003 /* enable reverse auto-negotiation */
3004 if (nic
->phy
== phy_82552_v
) {
3005 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3006 E100_82552_SMARTSPEED
);
3008 mdio_write(netdev
, nic
->mii
.phy_id
,
3009 E100_82552_SMARTSPEED
, smartspeed
|
3010 E100_82552_REV_ANEG
| E100_82552_ANEG_NOW
);
3012 *enable_wake
= true;
3014 *enable_wake
= false;
3017 pci_clear_master(pdev
);
3020 static int __e100_power_off(struct pci_dev
*pdev
, bool wake
)
3023 return pci_prepare_to_sleep(pdev
);
3025 pci_wake_from_d3(pdev
, false);
3026 pci_set_power_state(pdev
, PCI_D3hot
);
3032 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3035 __e100_shutdown(pdev
, &wake
);
3036 return __e100_power_off(pdev
, wake
);
3039 static int e100_resume(struct pci_dev
*pdev
)
3041 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3042 struct nic
*nic
= netdev_priv(netdev
);
3044 pci_set_power_state(pdev
, PCI_D0
);
3045 pci_restore_state(pdev
);
3046 /* ack any pending wake events, disable PME */
3047 pci_enable_wake(pdev
, PCI_D0
, 0);
3049 /* disable reverse auto-negotiation */
3050 if (nic
->phy
== phy_82552_v
) {
3051 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3052 E100_82552_SMARTSPEED
);
3054 mdio_write(netdev
, nic
->mii
.phy_id
,
3055 E100_82552_SMARTSPEED
,
3056 smartspeed
& ~(E100_82552_REV_ANEG
));
3059 netif_device_attach(netdev
);
3060 if (netif_running(netdev
))
3065 #endif /* CONFIG_PM */
3067 static void e100_shutdown(struct pci_dev
*pdev
)
3070 __e100_shutdown(pdev
, &wake
);
3071 if (system_state
== SYSTEM_POWER_OFF
)
3072 __e100_power_off(pdev
, wake
);
3075 /* ------------------ PCI Error Recovery infrastructure -------------- */
3077 * e100_io_error_detected - called when PCI error is detected.
3078 * @pdev: Pointer to PCI device
3079 * @state: The current pci connection state
3081 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
3083 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3084 struct nic
*nic
= netdev_priv(netdev
);
3086 netif_device_detach(netdev
);
3088 if (state
== pci_channel_io_perm_failure
)
3089 return PCI_ERS_RESULT_DISCONNECT
;
3091 if (netif_running(netdev
))
3093 pci_disable_device(pdev
);
3095 /* Request a slot reset. */
3096 return PCI_ERS_RESULT_NEED_RESET
;
3100 * e100_io_slot_reset - called after the pci bus has been reset.
3101 * @pdev: Pointer to PCI device
3103 * Restart the card from scratch.
3105 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
3107 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3108 struct nic
*nic
= netdev_priv(netdev
);
3110 if (pci_enable_device(pdev
)) {
3111 pr_err("Cannot re-enable PCI device after reset\n");
3112 return PCI_ERS_RESULT_DISCONNECT
;
3114 pci_set_master(pdev
);
3116 /* Only one device per card can do a reset */
3117 if (0 != PCI_FUNC(pdev
->devfn
))
3118 return PCI_ERS_RESULT_RECOVERED
;
3122 return PCI_ERS_RESULT_RECOVERED
;
3126 * e100_io_resume - resume normal operations
3127 * @pdev: Pointer to PCI device
3129 * Resume normal operations after an error recovery
3130 * sequence has been completed.
3132 static void e100_io_resume(struct pci_dev
*pdev
)
3134 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3135 struct nic
*nic
= netdev_priv(netdev
);
3137 /* ack any pending wake events, disable PME */
3138 pci_enable_wake(pdev
, PCI_D0
, 0);
3140 netif_device_attach(netdev
);
3141 if (netif_running(netdev
)) {
3143 mod_timer(&nic
->watchdog
, jiffies
);
3147 static const struct pci_error_handlers e100_err_handler
= {
3148 .error_detected
= e100_io_error_detected
,
3149 .slot_reset
= e100_io_slot_reset
,
3150 .resume
= e100_io_resume
,
3153 static struct pci_driver e100_driver
= {
3155 .id_table
= e100_id_table
,
3156 .probe
= e100_probe
,
3157 .remove
= e100_remove
,
3159 /* Power Management hooks */
3160 .suspend
= e100_suspend
,
3161 .resume
= e100_resume
,
3163 .shutdown
= e100_shutdown
,
3164 .err_handler
= &e100_err_handler
,
3167 static int __init
e100_init_module(void)
3169 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
3170 pr_info("%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
3171 pr_info("%s\n", DRV_COPYRIGHT
);
3173 return pci_register_driver(&e100_driver
);
3176 static void __exit
e100_cleanup_module(void)
3178 pci_unregister_driver(&e100_driver
);
3181 module_init(e100_init_module
);
3182 module_exit(e100_cleanup_module
);