1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 /* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
22 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
23 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
24 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
25 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
26 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
27 u16 words
, u16
*data
);
28 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
29 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
31 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
32 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
33 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
34 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
35 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
36 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
37 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
38 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
39 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
45 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
47 struct e1000_phy_info
*phy
= &hw
->phy
;
50 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
51 phy
->type
= e1000_phy_none
;
56 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
57 phy
->reset_delay_us
= 100;
59 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
60 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
62 switch (hw
->mac
.type
) {
65 phy
->type
= e1000_phy_igp_2
;
68 phy
->type
= e1000_phy_m88
;
72 phy
->type
= e1000_phy_bm
;
73 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
74 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
75 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
76 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
79 return -E1000_ERR_PHY
;
82 /* This can only be done after all function pointers are setup. */
83 ret_val
= e1000_get_phy_id_82571(hw
);
85 e_dbg("Error getting PHY ID\n");
90 switch (hw
->mac
.type
) {
93 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
94 ret_val
= -E1000_ERR_PHY
;
97 if (phy
->id
!= M88E1111_I_PHY_ID
)
98 ret_val
= -E1000_ERR_PHY
;
102 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
103 ret_val
= -E1000_ERR_PHY
;
106 ret_val
= -E1000_ERR_PHY
;
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
120 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
122 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
123 u32 eecd
= er32(EECD
);
126 nvm
->opcode_bits
= 8;
128 switch (nvm
->override
) {
129 case e1000_nvm_override_spi_large
:
131 nvm
->address_bits
= 16;
133 case e1000_nvm_override_spi_small
:
135 nvm
->address_bits
= 8;
138 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
139 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
143 switch (hw
->mac
.type
) {
147 if (((eecd
>> 15) & 0x3) == 0x3) {
148 nvm
->type
= e1000_nvm_flash_hw
;
149 nvm
->word_size
= 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
153 eecd
&= ~E1000_EECD_AUPDEN
;
159 nvm
->type
= e1000_nvm_eeprom_spi
;
160 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
161 E1000_EECD_SIZE_EX_SHIFT
);
162 /* Added to a constant, "size" becomes the left-shift value
163 * for setting word_size.
165 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
167 /* EEPROM access above 16k is unsupported */
170 nvm
->word_size
= BIT(size
);
174 /* Function Pointers */
175 switch (hw
->mac
.type
) {
178 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
179 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
189 * e1000_init_mac_params_82571 - Init MAC func ptrs.
190 * @hw: pointer to the HW structure
192 static s32
e1000_init_mac_params_82571(struct e1000_hw
*hw
)
194 struct e1000_mac_info
*mac
= &hw
->mac
;
197 bool force_clear_smbi
= false;
199 /* Set media type and media-dependent function pointers */
200 switch (hw
->adapter
->pdev
->device
) {
201 case E1000_DEV_ID_82571EB_FIBER
:
202 case E1000_DEV_ID_82572EI_FIBER
:
203 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
204 hw
->phy
.media_type
= e1000_media_type_fiber
;
205 mac
->ops
.setup_physical_interface
=
206 e1000_setup_fiber_serdes_link_82571
;
207 mac
->ops
.check_for_link
= e1000e_check_for_fiber_link
;
208 mac
->ops
.get_link_up_info
=
209 e1000e_get_speed_and_duplex_fiber_serdes
;
211 case E1000_DEV_ID_82571EB_SERDES
:
212 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
213 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
214 case E1000_DEV_ID_82572EI_SERDES
:
215 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
216 mac
->ops
.setup_physical_interface
=
217 e1000_setup_fiber_serdes_link_82571
;
218 mac
->ops
.check_for_link
= e1000_check_for_serdes_link_82571
;
219 mac
->ops
.get_link_up_info
=
220 e1000e_get_speed_and_duplex_fiber_serdes
;
223 hw
->phy
.media_type
= e1000_media_type_copper
;
224 mac
->ops
.setup_physical_interface
=
225 e1000_setup_copper_link_82571
;
226 mac
->ops
.check_for_link
= e1000e_check_for_copper_link
;
227 mac
->ops
.get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
231 /* Set mta register count */
232 mac
->mta_reg_count
= 128;
233 /* Set rar entry count */
234 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
235 /* Adaptive IFS supported */
236 mac
->adaptive_ifs
= true;
238 /* MAC-specific function pointers */
239 switch (hw
->mac
.type
) {
241 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
242 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
243 mac
->ops
.led_on
= e1000e_led_on_generic
;
244 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
247 mac
->has_fwsm
= true;
248 /* ARC supported; valid only if manageability features are
251 mac
->arc_subsystem_valid
= !!(er32(FWSM
) &
252 E1000_FWSM_MODE_MASK
);
256 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
257 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_82574
;
258 mac
->ops
.led_on
= e1000_led_on_82574
;
261 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
262 mac
->ops
.led_on
= e1000e_led_on_generic
;
263 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
266 mac
->has_fwsm
= true;
270 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
271 * first NVM or PHY access. This should be done for single-port
272 * devices, and for one port only on dual-port devices so that
273 * for those devices we can still use the SMBI lock to synchronize
274 * inter-port accesses to the PHY & NVM.
276 switch (hw
->mac
.type
) {
281 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
282 /* Only do this for the first interface on this card */
283 ew32(SWSM2
, swsm2
| E1000_SWSM2_LOCK
);
284 force_clear_smbi
= true;
286 force_clear_smbi
= false;
290 force_clear_smbi
= true;
294 if (force_clear_smbi
) {
295 /* Make sure SWSM.SMBI is clear */
297 if (swsm
& E1000_SWSM_SMBI
) {
298 /* This bit should not be set on a first interface, and
299 * indicates that the bootagent or EFI code has
300 * improperly left this bit enabled
302 e_dbg("Please update your 82571 Bootagent\n");
304 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
307 /* Initialize device specific counter of SMBI acquisition timeouts. */
308 hw
->dev_spec
.e82571
.smb_counter
= 0;
313 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
315 struct e1000_hw
*hw
= &adapter
->hw
;
316 static int global_quad_port_a
; /* global port a indication */
317 struct pci_dev
*pdev
= adapter
->pdev
;
318 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
321 rc
= e1000_init_mac_params_82571(hw
);
325 rc
= e1000_init_nvm_params_82571(hw
);
329 rc
= e1000_init_phy_params_82571(hw
);
333 /* tag quad port adapters first, it's used below */
334 switch (pdev
->device
) {
335 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
336 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
337 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
338 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
339 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
340 /* mark the first port */
341 if (global_quad_port_a
== 0)
342 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
343 /* Reset for multiple quad port adapters */
344 global_quad_port_a
++;
345 if (global_quad_port_a
== 4)
346 global_quad_port_a
= 0;
352 switch (adapter
->hw
.mac
.type
) {
354 /* these dual ports don't have WoL on port B at all */
355 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
356 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
357 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
359 adapter
->flags
&= ~FLAG_HAS_WOL
;
360 /* quad ports only support WoL on port A */
361 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
362 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
363 adapter
->flags
&= ~FLAG_HAS_WOL
;
364 /* Does not support WoL on any port */
365 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
366 adapter
->flags
&= ~FLAG_HAS_WOL
;
369 if (pdev
->device
== E1000_DEV_ID_82573L
) {
370 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
371 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
382 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
383 * @hw: pointer to the HW structure
385 * Reads the PHY registers and stores the PHY ID and possibly the PHY
386 * revision in the hardware structure.
388 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
390 struct e1000_phy_info
*phy
= &hw
->phy
;
394 switch (hw
->mac
.type
) {
397 /* The 82571 firmware may still be configuring the PHY.
398 * In this case, we cannot access the PHY until the
399 * configuration is done. So we explicitly set the
402 phy
->id
= IGP01E1000_I_PHY_ID
;
405 return e1000e_get_phy_id(hw
);
408 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
412 phy
->id
= (u32
)(phy_id
<< 16);
413 usleep_range(20, 40);
414 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
418 phy
->id
|= (u32
)(phy_id
);
419 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
422 return -E1000_ERR_PHY
;
429 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
430 * @hw: pointer to the HW structure
432 * Acquire the HW semaphore to access the PHY or NVM
434 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
437 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
438 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
441 /* If we have timedout 3 times on trying to acquire
442 * the inter-port SMBI semaphore, there is old code
443 * operating on the other port, and it is not
444 * releasing SMBI. Modify the number of times that
445 * we try for the semaphore to interwork with this
448 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
451 /* Get the SW semaphore */
452 while (i
< sw_timeout
) {
454 if (!(swsm
& E1000_SWSM_SMBI
))
457 usleep_range(50, 100);
461 if (i
== sw_timeout
) {
462 e_dbg("Driver can't access device - SMBI bit is set.\n");
463 hw
->dev_spec
.e82571
.smb_counter
++;
465 /* Get the FW semaphore. */
466 for (i
= 0; i
< fw_timeout
; i
++) {
468 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
470 /* Semaphore acquired if bit latched */
471 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
474 usleep_range(50, 100);
477 if (i
== fw_timeout
) {
478 /* Release semaphores */
479 e1000_put_hw_semaphore_82571(hw
);
480 e_dbg("Driver can't access the NVM\n");
481 return -E1000_ERR_NVM
;
488 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
489 * @hw: pointer to the HW structure
491 * Release hardware semaphore used to access the PHY or NVM
493 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
498 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
503 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
504 * @hw: pointer to the HW structure
506 * Acquire the HW semaphore during reset.
509 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
514 extcnf_ctrl
= er32(EXTCNF_CTRL
);
516 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
517 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
518 extcnf_ctrl
= er32(EXTCNF_CTRL
);
520 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
523 usleep_range(2000, 4000);
525 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
527 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
528 /* Release semaphores */
529 e1000_put_hw_semaphore_82573(hw
);
530 e_dbg("Driver can't access the PHY\n");
531 return -E1000_ERR_PHY
;
538 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
539 * @hw: pointer to the HW structure
541 * Release hardware semaphore used during reset.
544 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
548 extcnf_ctrl
= er32(EXTCNF_CTRL
);
549 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
550 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
553 static DEFINE_MUTEX(swflag_mutex
);
556 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
557 * @hw: pointer to the HW structure
559 * Acquire the HW semaphore to access the PHY or NVM.
562 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
566 mutex_lock(&swflag_mutex
);
567 ret_val
= e1000_get_hw_semaphore_82573(hw
);
569 mutex_unlock(&swflag_mutex
);
574 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
575 * @hw: pointer to the HW structure
577 * Release hardware semaphore used to access the PHY or NVM
580 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
582 e1000_put_hw_semaphore_82573(hw
);
583 mutex_unlock(&swflag_mutex
);
587 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
588 * @hw: pointer to the HW structure
589 * @active: true to enable LPLU, false to disable
591 * Sets the LPLU D0 state according to the active flag.
592 * LPLU will not be activated unless the
593 * device autonegotiation advertisement meets standards of
594 * either 10 or 10/100 or 10/100/1000 at all duplexes.
595 * This is a function pointer entry point only called by
596 * PHY setup routines.
598 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
600 u32 data
= er32(POEMB
);
603 data
|= E1000_PHY_CTRL_D0A_LPLU
;
605 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
612 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
613 * @hw: pointer to the HW structure
614 * @active: boolean used to enable/disable lplu
616 * The low power link up (lplu) state is set to the power management level D3
617 * when active is true, else clear lplu for D3. LPLU
618 * is used during Dx states where the power conservation is most important.
619 * During driver activity, SmartSpeed should be enabled so performance is
622 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
624 u32 data
= er32(POEMB
);
627 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
628 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
629 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
630 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
631 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
639 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
640 * @hw: pointer to the HW structure
642 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
643 * Then for non-82573 hardware, set the EEPROM access request bit and wait
644 * for EEPROM access grant bit. If the access grant bit is not set, release
645 * hardware semaphore.
647 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
651 ret_val
= e1000_get_hw_semaphore_82571(hw
);
655 switch (hw
->mac
.type
) {
659 ret_val
= e1000e_acquire_nvm(hw
);
664 e1000_put_hw_semaphore_82571(hw
);
670 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
671 * @hw: pointer to the HW structure
673 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
675 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
677 e1000e_release_nvm(hw
);
678 e1000_put_hw_semaphore_82571(hw
);
682 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
683 * @hw: pointer to the HW structure
684 * @offset: offset within the EEPROM to be written to
685 * @words: number of words to write
686 * @data: 16 bit word(s) to be written to the EEPROM
688 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
690 * If e1000e_update_nvm_checksum is not called after this function, the
691 * EEPROM will most likely contain an invalid checksum.
693 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
698 switch (hw
->mac
.type
) {
702 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
706 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
709 ret_val
= -E1000_ERR_NVM
;
717 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
718 * @hw: pointer to the HW structure
720 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
721 * up to the checksum. Then calculates the EEPROM checksum and writes the
722 * value to the EEPROM.
724 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
730 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
734 /* If our nvm is an EEPROM, then we're done
735 * otherwise, commit the checksum to the flash NVM.
737 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
740 /* Check for pending operations. */
741 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
742 usleep_range(1000, 2000);
743 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
747 if (i
== E1000_FLASH_UPDATES
)
748 return -E1000_ERR_NVM
;
750 /* Reset the firmware if using STM opcode. */
751 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
752 /* The enabling of and the actual reset must be done
753 * in two write cycles.
755 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
757 ew32(HICR
, E1000_HICR_FW_RESET
);
760 /* Commit the write to flash */
761 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
764 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
765 usleep_range(1000, 2000);
766 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
770 if (i
== E1000_FLASH_UPDATES
)
771 return -E1000_ERR_NVM
;
777 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
778 * @hw: pointer to the HW structure
780 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
781 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
783 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
785 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
786 e1000_fix_nvm_checksum_82571(hw
);
788 return e1000e_validate_nvm_checksum_generic(hw
);
792 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
793 * @hw: pointer to the HW structure
794 * @offset: offset within the EEPROM to be written to
795 * @words: number of words to write
796 * @data: 16 bit word(s) to be written to the EEPROM
798 * After checking for invalid values, poll the EEPROM to ensure the previous
799 * command has completed before trying to write the next word. After write
800 * poll for completion.
802 * If e1000e_update_nvm_checksum is not called after this function, the
803 * EEPROM will most likely contain an invalid checksum.
805 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
806 u16 words
, u16
*data
)
808 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
812 /* A check for invalid values: offset too large, too many words,
813 * and not enough words.
815 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
817 e_dbg("nvm parameter(s) out of bounds\n");
818 return -E1000_ERR_NVM
;
821 for (i
= 0; i
< words
; i
++) {
822 eewr
= ((data
[i
] << E1000_NVM_RW_REG_DATA
) |
823 ((offset
+ i
) << E1000_NVM_RW_ADDR_SHIFT
) |
824 E1000_NVM_RW_REG_START
);
826 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
832 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
841 * e1000_get_cfg_done_82571 - Poll for configuration done
842 * @hw: pointer to the HW structure
844 * Reads the management control register for the config done bit to be set.
846 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
848 s32 timeout
= PHY_CFG_TIMEOUT
;
851 if (er32(EEMNGCTL
) & E1000_NVM_CFG_DONE_PORT_0
)
853 usleep_range(1000, 2000);
857 e_dbg("MNG configuration cycle has not completed.\n");
858 return -E1000_ERR_RESET
;
865 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
866 * @hw: pointer to the HW structure
867 * @active: true to enable LPLU, false to disable
869 * Sets the LPLU D0 state according to the active flag. When activating LPLU
870 * this function also disables smart speed and vice versa. LPLU will not be
871 * activated unless the device autonegotiation advertisement meets standards
872 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
873 * pointer entry point only called by PHY setup routines.
875 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
877 struct e1000_phy_info
*phy
= &hw
->phy
;
881 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
886 data
|= IGP02E1000_PM_D0_LPLU
;
887 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
891 /* When LPLU is enabled, we should disable SmartSpeed */
892 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
895 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
896 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
900 data
&= ~IGP02E1000_PM_D0_LPLU
;
901 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
902 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
903 * during Dx states where the power conservation is most
904 * important. During driver activity we should enable
905 * SmartSpeed, so performance is maintained.
907 if (phy
->smart_speed
== e1000_smart_speed_on
) {
908 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
913 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
914 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
918 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
919 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
924 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
925 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
936 * e1000_reset_hw_82571 - Reset hardware
937 * @hw: pointer to the HW structure
939 * This resets the hardware into a known state.
941 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
943 u32 ctrl
, ctrl_ext
, eecd
, tctl
;
946 /* Prevent the PCI-E bus from sticking if there is no TLP connection
947 * on the last TLP read/write transaction when MAC is reset.
949 ret_val
= e1000e_disable_pcie_master(hw
);
951 e_dbg("PCI-E Master disable polling has failed.\n");
953 e_dbg("Masking off all interrupts\n");
954 ew32(IMC
, 0xffffffff);
958 tctl
&= ~E1000_TCTL_EN
;
962 usleep_range(10000, 11000);
964 /* Must acquire the MDIO ownership before MAC reset.
965 * Ownership defaults to firmware after a reset.
967 switch (hw
->mac
.type
) {
969 ret_val
= e1000_get_hw_semaphore_82573(hw
);
973 ret_val
= e1000_get_hw_semaphore_82574(hw
);
981 e_dbg("Issuing a global reset to MAC\n");
982 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
984 /* Must release MDIO ownership and mutex after MAC reset. */
985 switch (hw
->mac
.type
) {
987 /* Release mutex only if the hw semaphore is acquired */
989 e1000_put_hw_semaphore_82573(hw
);
993 /* Release mutex only if the hw semaphore is acquired */
995 e1000_put_hw_semaphore_82574(hw
);
1001 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1002 usleep_range(10, 20);
1003 ctrl_ext
= er32(CTRL_EXT
);
1004 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1005 ew32(CTRL_EXT
, ctrl_ext
);
1009 ret_val
= e1000e_get_auto_rd_done(hw
);
1011 /* We don't want to continue accessing MAC registers. */
1014 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1015 * Need to wait for Phy configuration completion before accessing
1019 switch (hw
->mac
.type
) {
1022 /* REQ and GNT bits need to be cleared when using AUTO_RD
1023 * to access the EEPROM.
1026 eecd
&= ~(E1000_EECD_REQ
| E1000_EECD_GNT
);
1038 /* Clear any pending interrupt events. */
1039 ew32(IMC
, 0xffffffff);
1042 if (hw
->mac
.type
== e1000_82571
) {
1043 /* Install any alternate MAC address into RAR0 */
1044 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1048 e1000e_set_laa_state_82571(hw
, true);
1051 /* Reinitialize the 82571 serdes link state machine */
1052 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1053 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1059 * e1000_init_hw_82571 - Initialize hardware
1060 * @hw: pointer to the HW structure
1062 * This inits the hardware readying it for operation.
1064 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1066 struct e1000_mac_info
*mac
= &hw
->mac
;
1069 u16 i
, rar_count
= mac
->rar_entry_count
;
1071 e1000_initialize_hw_bits_82571(hw
);
1073 /* Initialize identification LED */
1074 ret_val
= mac
->ops
.id_led_init(hw
);
1075 /* An error is not fatal and we should not stop init due to this */
1077 e_dbg("Error initializing identification LED\n");
1079 /* Disabling VLAN filtering */
1080 e_dbg("Initializing the IEEE VLAN\n");
1081 mac
->ops
.clear_vfta(hw
);
1083 /* Setup the receive address.
1084 * If, however, a locally administered address was assigned to the
1085 * 82571, we must reserve a RAR for it to work around an issue where
1086 * resetting one port will reload the MAC on the other port.
1088 if (e1000e_get_laa_state_82571(hw
))
1090 e1000e_init_rx_addrs(hw
, rar_count
);
1092 /* Zero out the Multicast HASH table */
1093 e_dbg("Zeroing the MTA\n");
1094 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1095 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1097 /* Setup link and flow control */
1098 ret_val
= mac
->ops
.setup_link(hw
);
1100 /* Set the transmit descriptor write-back policy */
1101 reg_data
= er32(TXDCTL(0));
1102 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1103 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
);
1104 ew32(TXDCTL(0), reg_data
);
1106 /* ...for both queues. */
1107 switch (mac
->type
) {
1109 e1000e_enable_tx_pkt_filtering(hw
);
1113 reg_data
= er32(GCR
);
1114 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1115 ew32(GCR
, reg_data
);
1118 reg_data
= er32(TXDCTL(1));
1119 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1120 E1000_TXDCTL_FULL_TX_DESC_WB
|
1121 E1000_TXDCTL_COUNT_DESC
);
1122 ew32(TXDCTL(1), reg_data
);
1126 /* Clear all of the statistics registers (clear on read). It is
1127 * important that we do this after we have tried to establish link
1128 * because the symbol error count will increment wildly if there
1131 e1000_clear_hw_cntrs_82571(hw
);
1137 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1138 * @hw: pointer to the HW structure
1140 * Initializes required hardware-dependent bits needed for normal operation.
1142 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1146 /* Transmit Descriptor Control 0 */
1147 reg
= er32(TXDCTL(0));
1149 ew32(TXDCTL(0), reg
);
1151 /* Transmit Descriptor Control 1 */
1152 reg
= er32(TXDCTL(1));
1154 ew32(TXDCTL(1), reg
);
1156 /* Transmit Arbitration Control 0 */
1157 reg
= er32(TARC(0));
1158 reg
&= ~(0xF << 27); /* 30:27 */
1159 switch (hw
->mac
.type
) {
1162 reg
|= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1173 /* Transmit Arbitration Control 1 */
1174 reg
= er32(TARC(1));
1175 switch (hw
->mac
.type
) {
1178 reg
&= ~(BIT(29) | BIT(30));
1179 reg
|= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1180 if (er32(TCTL
) & E1000_TCTL_MULR
)
1190 /* Device Control */
1191 switch (hw
->mac
.type
) {
1203 /* Extended Device Control */
1204 switch (hw
->mac
.type
) {
1208 reg
= er32(CTRL_EXT
);
1211 ew32(CTRL_EXT
, reg
);
1217 if (hw
->mac
.type
== e1000_82571
) {
1218 reg
= er32(PBA_ECC
);
1219 reg
|= E1000_PBA_ECC_CORR_EN
;
1223 /* Workaround for hardware errata.
1224 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 if ((hw
->mac
.type
== e1000_82571
) || (hw
->mac
.type
== e1000_82572
)) {
1227 reg
= er32(CTRL_EXT
);
1228 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1229 ew32(CTRL_EXT
, reg
);
1232 /* Disable IPv6 extension header parsing because some malformed
1233 * IPv6 headers can hang the Rx.
1235 if (hw
->mac
.type
<= e1000_82573
) {
1237 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1241 /* PCI-Ex Control Registers */
1242 switch (hw
->mac
.type
) {
1249 /* Workaround for hardware errata.
1250 * apply workaround for hardware errata documented in errata
1251 * docs Fixes issue where some error prone or unreliable PCIe
1252 * completions are occurring, particularly with ASPM enabled.
1253 * Without fix, issue can cause Tx timeouts.
1265 * e1000_clear_vfta_82571 - Clear VLAN filter table
1266 * @hw: pointer to the HW structure
1268 * Clears the register array which contains the VLAN filter table by
1269 * setting all the values to 0.
1271 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1275 u32 vfta_offset
= 0;
1276 u32 vfta_bit_in_reg
= 0;
1278 switch (hw
->mac
.type
) {
1282 if (hw
->mng_cookie
.vlan_id
!= 0) {
1283 /* The VFTA is a 4096b bit-field, each identifying
1284 * a single VLAN ID. The following operations
1285 * determine which 32b entry (i.e. offset) into the
1286 * array we want to set the VLAN ID (i.e. bit) of
1287 * the manageability unit.
1289 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1290 E1000_VFTA_ENTRY_SHIFT
) &
1291 E1000_VFTA_ENTRY_MASK
;
1293 BIT(hw
->mng_cookie
.vlan_id
&
1294 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1300 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1301 /* If the offset we want to clear is the same offset of the
1302 * manageability VLAN ID, then clear all bits except that of
1303 * the manageability unit.
1305 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1306 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1312 * e1000_check_mng_mode_82574 - Check manageability is enabled
1313 * @hw: pointer to the HW structure
1315 * Reads the NVM Initialization Control Word 2 and returns true
1316 * (>0) if any manageability is enabled, else false (0).
1318 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1322 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1323 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1327 * e1000_led_on_82574 - Turn LED on
1328 * @hw: pointer to the HW structure
1332 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1337 ctrl
= hw
->mac
.ledctl_mode2
;
1338 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1339 /* If no link, then turn LED on by setting the invert bit
1340 * for each LED that's "on" (0x0E) in ledctl_mode2.
1342 for (i
= 0; i
< 4; i
++)
1343 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1344 E1000_LEDCTL_MODE_LED_ON
)
1345 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1353 * e1000_check_phy_82574 - check 82574 phy hung state
1354 * @hw: pointer to the HW structure
1356 * Returns whether phy is hung or not
1358 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1360 u16 status_1kbt
= 0;
1361 u16 receive_errors
= 0;
1364 /* Read PHY Receive Error counter first, if its is max - all F's then
1365 * read the Base1000T status register If both are max then PHY is hung.
1367 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1370 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1371 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1374 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1375 E1000_IDLE_ERROR_COUNT_MASK
)
1383 * e1000_setup_link_82571 - Setup flow control and link settings
1384 * @hw: pointer to the HW structure
1386 * Determines which flow control settings to use, then configures flow
1387 * control. Calls the appropriate media-specific link configuration
1388 * function. Assuming the adapter has a valid link partner, a valid link
1389 * should be established. Assumes the hardware has previously been reset
1390 * and the transmitter and receiver are not enabled.
1392 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1394 /* 82573 does not have a word in the NVM to determine
1395 * the default flow control setting, so we explicitly
1398 switch (hw
->mac
.type
) {
1402 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1403 hw
->fc
.requested_mode
= e1000_fc_full
;
1409 return e1000e_setup_link_generic(hw
);
1413 * e1000_setup_copper_link_82571 - Configure copper link settings
1414 * @hw: pointer to the HW structure
1416 * Configures the link for auto-neg or forced speed and duplex. Then we check
1417 * for link, once link is established calls to configure collision distance
1418 * and flow control are called.
1420 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1426 ctrl
|= E1000_CTRL_SLU
;
1427 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1430 switch (hw
->phy
.type
) {
1433 ret_val
= e1000e_copper_link_setup_m88(hw
);
1435 case e1000_phy_igp_2
:
1436 ret_val
= e1000e_copper_link_setup_igp(hw
);
1439 return -E1000_ERR_PHY
;
1445 return e1000e_setup_copper_link(hw
);
1449 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1450 * @hw: pointer to the HW structure
1452 * Configures collision distance and flow control for fiber and serdes links.
1453 * Upon successful setup, poll for link.
1455 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1457 switch (hw
->mac
.type
) {
1460 /* If SerDes loopback mode is entered, there is no form
1461 * of reset to take the adapter out of that mode. So we
1462 * have to explicitly take the adapter out of loopback
1463 * mode. This prevents drivers from twiddling their thumbs
1464 * if another tool failed to take it out of loopback mode.
1466 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1472 return e1000e_setup_fiber_serdes_link(hw
);
1476 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1477 * @hw: pointer to the HW structure
1479 * Reports the link state as up or down.
1481 * If autonegotiation is supported by the link partner, the link state is
1482 * determined by the result of autonegotiation. This is the most likely case.
1483 * If autonegotiation is not supported by the link partner, and the link
1484 * has a valid signal, force the link up.
1486 * The link state is represented internally here by 4 states:
1489 * 2) autoneg_progress
1490 * 3) autoneg_complete (the link successfully autonegotiated)
1491 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1494 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1496 struct e1000_mac_info
*mac
= &hw
->mac
;
1505 status
= er32(STATUS
);
1507 /* SYNCH bit and IV bit are sticky */
1508 usleep_range(10, 20);
1511 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1512 /* Receiver is synchronized with no invalid bits. */
1513 switch (mac
->serdes_link_state
) {
1514 case e1000_serdes_link_autoneg_complete
:
1515 if (!(status
& E1000_STATUS_LU
)) {
1516 /* We have lost link, retry autoneg before
1517 * reporting link failure
1519 mac
->serdes_link_state
=
1520 e1000_serdes_link_autoneg_progress
;
1521 mac
->serdes_has_link
= false;
1522 e_dbg("AN_UP -> AN_PROG\n");
1524 mac
->serdes_has_link
= true;
1528 case e1000_serdes_link_forced_up
:
1529 /* If we are receiving /C/ ordered sets, re-enable
1530 * auto-negotiation in the TXCW register and disable
1531 * forced link in the Device Control register in an
1532 * attempt to auto-negotiate with our link partner.
1534 if (rxcw
& E1000_RXCW_C
) {
1535 /* Enable autoneg, and unforce link up */
1536 ew32(TXCW
, mac
->txcw
);
1537 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1538 mac
->serdes_link_state
=
1539 e1000_serdes_link_autoneg_progress
;
1540 mac
->serdes_has_link
= false;
1541 e_dbg("FORCED_UP -> AN_PROG\n");
1543 mac
->serdes_has_link
= true;
1547 case e1000_serdes_link_autoneg_progress
:
1548 if (rxcw
& E1000_RXCW_C
) {
1549 /* We received /C/ ordered sets, meaning the
1550 * link partner has autonegotiated, and we can
1551 * trust the Link Up (LU) status bit.
1553 if (status
& E1000_STATUS_LU
) {
1554 mac
->serdes_link_state
=
1555 e1000_serdes_link_autoneg_complete
;
1556 e_dbg("AN_PROG -> AN_UP\n");
1557 mac
->serdes_has_link
= true;
1559 /* Autoneg completed, but failed. */
1560 mac
->serdes_link_state
=
1561 e1000_serdes_link_down
;
1562 e_dbg("AN_PROG -> DOWN\n");
1565 /* The link partner did not autoneg.
1566 * Force link up and full duplex, and change
1569 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1570 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1573 /* Configure Flow Control after link up. */
1574 ret_val
= e1000e_config_fc_after_link_up(hw
);
1576 e_dbg("Error config flow control\n");
1579 mac
->serdes_link_state
=
1580 e1000_serdes_link_forced_up
;
1581 mac
->serdes_has_link
= true;
1582 e_dbg("AN_PROG -> FORCED_UP\n");
1586 case e1000_serdes_link_down
:
1588 /* The link was down but the receiver has now gained
1589 * valid sync, so lets see if we can bring the link
1592 ew32(TXCW
, mac
->txcw
);
1593 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1594 mac
->serdes_link_state
=
1595 e1000_serdes_link_autoneg_progress
;
1596 mac
->serdes_has_link
= false;
1597 e_dbg("DOWN -> AN_PROG\n");
1601 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1602 mac
->serdes_has_link
= false;
1603 mac
->serdes_link_state
= e1000_serdes_link_down
;
1604 e_dbg("ANYSTATE -> DOWN\n");
1606 /* Check several times, if SYNCH bit and CONFIG
1607 * bit both are consistently 1 then simply ignore
1608 * the IV bit and restart Autoneg
1610 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1611 usleep_range(10, 20);
1613 if ((rxcw
& E1000_RXCW_SYNCH
) &&
1614 (rxcw
& E1000_RXCW_C
))
1617 if (rxcw
& E1000_RXCW_IV
) {
1618 mac
->serdes_has_link
= false;
1619 mac
->serdes_link_state
=
1620 e1000_serdes_link_down
;
1621 e_dbg("ANYSTATE -> DOWN\n");
1626 if (i
== AN_RETRY_COUNT
) {
1628 txcw
|= E1000_TXCW_ANE
;
1630 mac
->serdes_link_state
=
1631 e1000_serdes_link_autoneg_progress
;
1632 mac
->serdes_has_link
= false;
1633 e_dbg("ANYSTATE -> AN_PROG\n");
1642 * e1000_valid_led_default_82571 - Verify a valid default LED config
1643 * @hw: pointer to the HW structure
1644 * @data: pointer to the NVM (EEPROM)
1646 * Read the EEPROM for the current default LED configuration. If the
1647 * LED configuration is not valid, set to a valid LED configuration.
1649 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1653 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1655 e_dbg("NVM Read Error\n");
1659 switch (hw
->mac
.type
) {
1663 if (*data
== ID_LED_RESERVED_F746
)
1664 *data
= ID_LED_DEFAULT_82573
;
1667 if (*data
== ID_LED_RESERVED_0000
||
1668 *data
== ID_LED_RESERVED_FFFF
)
1669 *data
= ID_LED_DEFAULT
;
1677 * e1000e_get_laa_state_82571 - Get locally administered address state
1678 * @hw: pointer to the HW structure
1680 * Retrieve and return the current locally administered address state.
1682 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1684 if (hw
->mac
.type
!= e1000_82571
)
1687 return hw
->dev_spec
.e82571
.laa_is_present
;
1691 * e1000e_set_laa_state_82571 - Set locally administered address state
1692 * @hw: pointer to the HW structure
1693 * @state: enable/disable locally administered address
1695 * Enable/Disable the current locally administered address state.
1697 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1699 if (hw
->mac
.type
!= e1000_82571
)
1702 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1704 /* If workaround is activated... */
1706 /* Hold a copy of the LAA in RAR[14] This is done so that
1707 * between the time RAR[0] gets clobbered and the time it
1708 * gets fixed, the actual LAA is in one of the RARs and no
1709 * incoming packets directed to this port are dropped.
1710 * Eventually the LAA will be in RAR[0] and RAR[14].
1712 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
,
1713 hw
->mac
.rar_entry_count
- 1);
1717 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1718 * @hw: pointer to the HW structure
1720 * Verifies that the EEPROM has completed the update. After updating the
1721 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1722 * the checksum fix is not implemented, we need to set the bit and update
1723 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1724 * we need to return bad checksum.
1726 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1728 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1732 if (nvm
->type
!= e1000_nvm_flash_hw
)
1735 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1736 * 10h-12h. Checksum may need to be fixed.
1738 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1742 if (!(data
& 0x10)) {
1743 /* Read 0x23 and check bit 15. This bit is a 1
1744 * when the checksum has already been fixed. If
1745 * the checksum is still wrong and this bit is a
1746 * 1, we need to return bad checksum. Otherwise,
1747 * we need to set this bit to a 1 and update the
1750 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1754 if (!(data
& 0x8000)) {
1756 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1759 ret_val
= e1000e_update_nvm_checksum(hw
);
1769 * e1000_read_mac_addr_82571 - Read device MAC address
1770 * @hw: pointer to the HW structure
1772 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1774 if (hw
->mac
.type
== e1000_82571
) {
1777 /* If there's an alternate MAC address place it in RAR0
1778 * so that it will override the Si installed default perm
1781 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1786 return e1000_read_mac_addr_generic(hw
);
1790 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1791 * @hw: pointer to the HW structure
1793 * In the case of a PHY power down to save power, or to turn off link during a
1794 * driver unload, or wake on lan is not enabled, remove the link.
1796 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1798 struct e1000_phy_info
*phy
= &hw
->phy
;
1799 struct e1000_mac_info
*mac
= &hw
->mac
;
1801 if (!phy
->ops
.check_reset_block
)
1804 /* If the management interface is not enabled, then power down */
1805 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1806 e1000_power_down_phy_copper(hw
);
1810 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1811 * @hw: pointer to the HW structure
1813 * Clears the hardware counters by reading the counter registers.
1815 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1817 e1000e_clear_hw_cntrs_base(hw
);
1855 static const struct e1000_mac_operations e82571_mac_ops
= {
1856 /* .check_mng_mode: mac type dependent */
1857 /* .check_for_link: media type dependent */
1858 .id_led_init
= e1000e_id_led_init_generic
,
1859 .cleanup_led
= e1000e_cleanup_led_generic
,
1860 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1861 .get_bus_info
= e1000e_get_bus_info_pcie
,
1862 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1863 /* .get_link_up_info: media type dependent */
1864 /* .led_on: mac type dependent */
1865 .led_off
= e1000e_led_off_generic
,
1866 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1867 .write_vfta
= e1000_write_vfta_generic
,
1868 .clear_vfta
= e1000_clear_vfta_82571
,
1869 .reset_hw
= e1000_reset_hw_82571
,
1870 .init_hw
= e1000_init_hw_82571
,
1871 .setup_link
= e1000_setup_link_82571
,
1872 /* .setup_physical_interface: media type dependent */
1873 .setup_led
= e1000e_setup_led_generic
,
1874 .config_collision_dist
= e1000e_config_collision_dist_generic
,
1875 .read_mac_addr
= e1000_read_mac_addr_82571
,
1876 .rar_set
= e1000e_rar_set_generic
,
1877 .rar_get_count
= e1000e_rar_get_count_generic
,
1880 static const struct e1000_phy_operations e82_phy_ops_igp
= {
1881 .acquire
= e1000_get_hw_semaphore_82571
,
1882 .check_polarity
= e1000_check_polarity_igp
,
1883 .check_reset_block
= e1000e_check_reset_block_generic
,
1885 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1886 .get_cfg_done
= e1000_get_cfg_done_82571
,
1887 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1888 .get_info
= e1000e_get_phy_info_igp
,
1889 .read_reg
= e1000e_read_phy_reg_igp
,
1890 .release
= e1000_put_hw_semaphore_82571
,
1891 .reset
= e1000e_phy_hw_reset_generic
,
1892 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1893 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1894 .write_reg
= e1000e_write_phy_reg_igp
,
1895 .cfg_on_link_up
= NULL
,
1898 static const struct e1000_phy_operations e82_phy_ops_m88
= {
1899 .acquire
= e1000_get_hw_semaphore_82571
,
1900 .check_polarity
= e1000_check_polarity_m88
,
1901 .check_reset_block
= e1000e_check_reset_block_generic
,
1902 .commit
= e1000e_phy_sw_reset
,
1903 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1904 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1905 .get_cable_length
= e1000e_get_cable_length_m88
,
1906 .get_info
= e1000e_get_phy_info_m88
,
1907 .read_reg
= e1000e_read_phy_reg_m88
,
1908 .release
= e1000_put_hw_semaphore_82571
,
1909 .reset
= e1000e_phy_hw_reset_generic
,
1910 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1911 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1912 .write_reg
= e1000e_write_phy_reg_m88
,
1913 .cfg_on_link_up
= NULL
,
1916 static const struct e1000_phy_operations e82_phy_ops_bm
= {
1917 .acquire
= e1000_get_hw_semaphore_82571
,
1918 .check_polarity
= e1000_check_polarity_m88
,
1919 .check_reset_block
= e1000e_check_reset_block_generic
,
1920 .commit
= e1000e_phy_sw_reset
,
1921 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1922 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1923 .get_cable_length
= e1000e_get_cable_length_m88
,
1924 .get_info
= e1000e_get_phy_info_m88
,
1925 .read_reg
= e1000e_read_phy_reg_bm2
,
1926 .release
= e1000_put_hw_semaphore_82571
,
1927 .reset
= e1000e_phy_hw_reset_generic
,
1928 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1929 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1930 .write_reg
= e1000e_write_phy_reg_bm2
,
1931 .cfg_on_link_up
= NULL
,
1934 static const struct e1000_nvm_operations e82571_nvm_ops
= {
1935 .acquire
= e1000_acquire_nvm_82571
,
1936 .read
= e1000e_read_nvm_eerd
,
1937 .release
= e1000_release_nvm_82571
,
1938 .reload
= e1000e_reload_nvm_generic
,
1939 .update
= e1000_update_nvm_checksum_82571
,
1940 .valid_led_default
= e1000_valid_led_default_82571
,
1941 .validate
= e1000_validate_nvm_checksum_82571
,
1942 .write
= e1000_write_nvm_82571
,
1945 const struct e1000_info e1000_82571_info
= {
1947 .flags
= FLAG_HAS_HW_VLAN_FILTER
1948 | FLAG_HAS_JUMBO_FRAMES
1950 | FLAG_APME_IN_CTRL3
1951 | FLAG_HAS_CTRLEXT_ON_LOAD
1952 | FLAG_HAS_SMART_POWER_DOWN
1953 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1954 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1955 | FLAG_APME_CHECK_PORT_B
,
1956 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
1959 .max_hw_frame_size
= DEFAULT_JUMBO
,
1960 .get_variants
= e1000_get_variants_82571
,
1961 .mac_ops
= &e82571_mac_ops
,
1962 .phy_ops
= &e82_phy_ops_igp
,
1963 .nvm_ops
= &e82571_nvm_ops
,
1966 const struct e1000_info e1000_82572_info
= {
1968 .flags
= FLAG_HAS_HW_VLAN_FILTER
1969 | FLAG_HAS_JUMBO_FRAMES
1971 | FLAG_APME_IN_CTRL3
1972 | FLAG_HAS_CTRLEXT_ON_LOAD
1973 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1974 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
1977 .max_hw_frame_size
= DEFAULT_JUMBO
,
1978 .get_variants
= e1000_get_variants_82571
,
1979 .mac_ops
= &e82571_mac_ops
,
1980 .phy_ops
= &e82_phy_ops_igp
,
1981 .nvm_ops
= &e82571_nvm_ops
,
1984 const struct e1000_info e1000_82573_info
= {
1986 .flags
= FLAG_HAS_HW_VLAN_FILTER
1988 | FLAG_APME_IN_CTRL3
1989 | FLAG_HAS_SMART_POWER_DOWN
1991 | FLAG_HAS_SWSM_ON_LOAD
,
1992 .flags2
= FLAG2_DISABLE_ASPM_L1
1993 | FLAG2_DISABLE_ASPM_L0S
,
1995 .max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1996 .get_variants
= e1000_get_variants_82571
,
1997 .mac_ops
= &e82571_mac_ops
,
1998 .phy_ops
= &e82_phy_ops_m88
,
1999 .nvm_ops
= &e82571_nvm_ops
,
2002 const struct e1000_info e1000_82574_info
= {
2004 .flags
= FLAG_HAS_HW_VLAN_FILTER
2006 | FLAG_HAS_JUMBO_FRAMES
2008 | FLAG_HAS_HW_TIMESTAMP
2009 | FLAG_APME_IN_CTRL3
2010 | FLAG_HAS_SMART_POWER_DOWN
2012 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2013 .flags2
= FLAG2_CHECK_PHY_HANG
2014 | FLAG2_DISABLE_ASPM_L0S
2015 | FLAG2_DISABLE_ASPM_L1
2016 | FLAG2_NO_DISABLE_RX
2018 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
2020 .max_hw_frame_size
= DEFAULT_JUMBO
,
2021 .get_variants
= e1000_get_variants_82571
,
2022 .mac_ops
= &e82571_mac_ops
,
2023 .phy_ops
= &e82_phy_ops_bm
,
2024 .nvm_ops
= &e82571_nvm_ops
,
2027 const struct e1000_info e1000_82583_info
= {
2029 .flags
= FLAG_HAS_HW_VLAN_FILTER
2031 | FLAG_HAS_HW_TIMESTAMP
2032 | FLAG_APME_IN_CTRL3
2033 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_JUMBO_FRAMES
2036 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2037 .flags2
= FLAG2_DISABLE_ASPM_L0S
2038 | FLAG2_DISABLE_ASPM_L1
2039 | FLAG2_NO_DISABLE_RX
2040 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
2042 .max_hw_frame_size
= DEFAULT_JUMBO
,
2043 .get_variants
= e1000_get_variants_82571
,
2044 .mac_ops
= &e82571_mac_ops
,
2045 .phy_ops
= &e82_phy_ops_bm
,
2046 .nvm_ops
= &e82571_nvm_ops
,