gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
blob1d47e2503072a91bcf49d860b9d6ff874a16006c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 /* ethtool support for e1000 */
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
15 #include "e1000.h"
17 enum { NETDEV_STATS, E1000_STATS };
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
26 #define E1000_STAT(str, m) { \
27 .stat_string = str, \
28 .type = E1000_STATS, \
29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
30 .stat_offset = offsetof(struct e1000_adapter, m) }
31 #define E1000_NETDEV_STAT(str, m) { \
32 .stat_string = str, \
33 .type = NETDEV_STATS, \
34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
35 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
37 static const struct e1000_stats e1000_gstrings_stats[] = {
38 E1000_STAT("rx_packets", stats.gprc),
39 E1000_STAT("tx_packets", stats.gptc),
40 E1000_STAT("rx_bytes", stats.gorc),
41 E1000_STAT("tx_bytes", stats.gotc),
42 E1000_STAT("rx_broadcast", stats.bprc),
43 E1000_STAT("tx_broadcast", stats.bptc),
44 E1000_STAT("rx_multicast", stats.mprc),
45 E1000_STAT("tx_multicast", stats.mptc),
46 E1000_NETDEV_STAT("rx_errors", rx_errors),
47 E1000_NETDEV_STAT("tx_errors", tx_errors),
48 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
49 E1000_STAT("multicast", stats.mprc),
50 E1000_STAT("collisions", stats.colc),
51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
53 E1000_STAT("rx_crc_errors", stats.crcerrs),
54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
55 E1000_STAT("rx_no_buffer_count", stats.rnbc),
56 E1000_STAT("rx_missed_errors", stats.mpc),
57 E1000_STAT("tx_aborted_errors", stats.ecol),
58 E1000_STAT("tx_carrier_errors", stats.tncrs),
59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
61 E1000_STAT("tx_window_errors", stats.latecol),
62 E1000_STAT("tx_abort_late_coll", stats.latecol),
63 E1000_STAT("tx_deferred_ok", stats.dc),
64 E1000_STAT("tx_single_coll_ok", stats.scc),
65 E1000_STAT("tx_multi_coll_ok", stats.mcc),
66 E1000_STAT("tx_timeout_count", tx_timeout_count),
67 E1000_STAT("tx_restart_queue", restart_queue),
68 E1000_STAT("rx_long_length_errors", stats.roc),
69 E1000_STAT("rx_short_length_errors", stats.ruc),
70 E1000_STAT("rx_align_errors", stats.algnerrc),
71 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
73 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
75 E1000_STAT("tx_flow_control_xon", stats.xontxc),
76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
77 E1000_STAT("rx_csum_offload_good", hw_csum_good),
78 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
79 E1000_STAT("rx_header_split", rx_hdr_split),
80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
81 E1000_STAT("tx_smbus", stats.mgptc),
82 E1000_STAT("rx_smbus", stats.mgprc),
83 E1000_STAT("dropped_smbus", stats.mgpdc),
84 E1000_STAT("rx_dma_failed", rx_dma_failed),
85 E1000_STAT("tx_dma_failed", tx_dma_failed),
86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
87 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
88 E1000_STAT("corr_ecc_errors", corr_errors),
89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
103 static int e1000_get_link_ksettings(struct net_device *netdev,
104 struct ethtool_link_ksettings *cmd)
106 struct e1000_adapter *adapter = netdev_priv(netdev);
107 struct e1000_hw *hw = &adapter->hw;
108 u32 speed, supported, advertising;
110 if (hw->phy.media_type == e1000_media_type_copper) {
111 supported = (SUPPORTED_10baseT_Half |
112 SUPPORTED_10baseT_Full |
113 SUPPORTED_100baseT_Half |
114 SUPPORTED_100baseT_Full |
115 SUPPORTED_1000baseT_Full |
116 SUPPORTED_Autoneg |
117 SUPPORTED_TP);
118 if (hw->phy.type == e1000_phy_ife)
119 supported &= ~SUPPORTED_1000baseT_Full;
120 advertising = ADVERTISED_TP;
122 if (hw->mac.autoneg == 1) {
123 advertising |= ADVERTISED_Autoneg;
124 /* the e1000 autoneg seems to match ethtool nicely */
125 advertising |= hw->phy.autoneg_advertised;
128 cmd->base.port = PORT_TP;
129 cmd->base.phy_address = hw->phy.addr;
130 } else {
131 supported = (SUPPORTED_1000baseT_Full |
132 SUPPORTED_FIBRE |
133 SUPPORTED_Autoneg);
135 advertising = (ADVERTISED_1000baseT_Full |
136 ADVERTISED_FIBRE |
137 ADVERTISED_Autoneg);
139 cmd->base.port = PORT_FIBRE;
142 speed = SPEED_UNKNOWN;
143 cmd->base.duplex = DUPLEX_UNKNOWN;
145 if (netif_running(netdev)) {
146 if (netif_carrier_ok(netdev)) {
147 speed = adapter->link_speed;
148 cmd->base.duplex = adapter->link_duplex - 1;
150 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
151 u32 status = er32(STATUS);
153 if (status & E1000_STATUS_LU) {
154 if (status & E1000_STATUS_SPEED_1000)
155 speed = SPEED_1000;
156 else if (status & E1000_STATUS_SPEED_100)
157 speed = SPEED_100;
158 else
159 speed = SPEED_10;
161 if (status & E1000_STATUS_FD)
162 cmd->base.duplex = DUPLEX_FULL;
163 else
164 cmd->base.duplex = DUPLEX_HALF;
168 cmd->base.speed = speed;
169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172 /* MDI-X => 2; MDI =>1; Invalid =>0 */
173 if ((hw->phy.media_type == e1000_media_type_copper) &&
174 netif_carrier_ok(netdev))
175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
176 ETH_TP_MDI_X : ETH_TP_MDI;
177 else
178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
180 if (hw->phy.mdix == AUTO_ALL_MODES)
181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 else
183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
185 if (hw->phy.media_type != e1000_media_type_copper)
186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
189 supported);
190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
191 advertising);
193 return 0;
196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
198 struct e1000_mac_info *mac = &adapter->hw.mac;
200 mac->autoneg = 0;
202 /* Make sure dplx is at most 1 bit and lsb of speed is not set
203 * for the switch() below to work
205 if ((spd & 1) || (dplx & ~1))
206 goto err_inval;
208 /* Fiber NICs only allow 1000 gbps Full duplex */
209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
211 goto err_inval;
214 switch (spd + dplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
229 mac->autoneg = 1;
230 adapter->hw.phy.autoneg_advertised =
231 ADVERTISE_1000_FULL;
232 } else {
233 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
235 break;
236 case SPEED_1000 + DUPLEX_HALF: /* not supported */
237 default:
238 goto err_inval;
241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
242 adapter->hw.phy.mdix = AUTO_ALL_MODES;
244 return 0;
246 err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
251 static int e1000_set_link_ksettings(struct net_device *netdev,
252 const struct ethtool_link_ksettings *cmd)
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256 int ret_val = 0;
257 u32 advertising;
259 ethtool_convert_link_mode_to_legacy_u32(&advertising,
260 cmd->link_modes.advertising);
262 pm_runtime_get_sync(netdev->dev.parent);
264 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 * cannot be changed
267 if (hw->phy.ops.check_reset_block &&
268 hw->phy.ops.check_reset_block(hw)) {
269 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
270 ret_val = -EINVAL;
271 goto out;
274 /* MDI setting is only allowed when autoneg enabled because
275 * some hardware doesn't allow MDI setting when speed or
276 * duplex is forced.
278 if (cmd->base.eth_tp_mdix_ctrl) {
279 if (hw->phy.media_type != e1000_media_type_copper) {
280 ret_val = -EOPNOTSUPP;
281 goto out;
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 ret_val = -EINVAL;
288 goto out;
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 usleep_range(1000, 2000);
295 if (cmd->base.autoneg == AUTONEG_ENABLE) {
296 hw->mac.autoneg = 1;
297 if (hw->phy.media_type == e1000_media_type_fiber)
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 else
301 hw->phy.autoneg_advertised = advertising |
302 ADVERTISED_TP | ADVERTISED_Autoneg;
303 advertising = hw->phy.autoneg_advertised;
304 if (adapter->fc_autoneg)
305 hw->fc.requested_mode = e1000_fc_default;
306 } else {
307 u32 speed = cmd->base.speed;
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
310 ret_val = -EINVAL;
311 goto out;
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (cmd->base.eth_tp_mdix_ctrl) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
318 * internally to auto
320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 hw->phy.mdix = AUTO_ALL_MODES;
322 else
323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
326 /* reset the link */
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter, true);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
334 out:
335 pm_runtime_put_sync(netdev->dev.parent);
336 clear_bit(__E1000_RESETTING, &adapter->state);
337 return ret_val;
340 static void e1000_get_pauseparam(struct net_device *netdev,
341 struct ethtool_pauseparam *pause)
343 struct e1000_adapter *adapter = netdev_priv(netdev);
344 struct e1000_hw *hw = &adapter->hw;
346 pause->autoneg =
347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349 if (hw->fc.current_mode == e1000_fc_rx_pause) {
350 pause->rx_pause = 1;
351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
352 pause->tx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_full) {
354 pause->rx_pause = 1;
355 pause->tx_pause = 1;
359 static int e1000_set_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364 int retval = 0;
366 adapter->fc_autoneg = pause->autoneg;
368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
369 usleep_range(1000, 2000);
371 pm_runtime_get_sync(netdev->dev.parent);
373 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 hw->fc.requested_mode = e1000_fc_default;
375 if (netif_running(adapter->netdev)) {
376 e1000e_down(adapter, true);
377 e1000e_up(adapter);
378 } else {
379 e1000e_reset(adapter);
381 } else {
382 if (pause->rx_pause && pause->tx_pause)
383 hw->fc.requested_mode = e1000_fc_full;
384 else if (pause->rx_pause && !pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_rx_pause;
386 else if (!pause->rx_pause && pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_tx_pause;
388 else if (!pause->rx_pause && !pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_none;
391 hw->fc.current_mode = hw->fc.requested_mode;
393 if (hw->phy.media_type == e1000_media_type_fiber) {
394 retval = hw->mac.ops.setup_link(hw);
395 /* implicit goto out */
396 } else {
397 retval = e1000e_force_mac_fc(hw);
398 if (retval)
399 goto out;
400 e1000e_set_fc_watermarks(hw);
404 out:
405 pm_runtime_put_sync(netdev->dev.parent);
406 clear_bit(__E1000_RESETTING, &adapter->state);
407 return retval;
410 static u32 e1000_get_msglevel(struct net_device *netdev)
412 struct e1000_adapter *adapter = netdev_priv(netdev);
413 return adapter->msg_enable;
416 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
418 struct e1000_adapter *adapter = netdev_priv(netdev);
419 adapter->msg_enable = data;
422 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
424 #define E1000_REGS_LEN 32 /* overestimate */
425 return E1000_REGS_LEN * sizeof(u32);
428 static void e1000_get_regs(struct net_device *netdev,
429 struct ethtool_regs *regs, void *p)
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 struct e1000_hw *hw = &adapter->hw;
433 u32 *regs_buff = p;
434 u16 phy_data;
436 pm_runtime_get_sync(netdev->dev.parent);
438 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
440 regs->version = (1u << 24) |
441 (adapter->pdev->revision << 16) |
442 adapter->pdev->device;
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN(0));
449 regs_buff[4] = er32(RDH(0));
450 regs_buff[5] = er32(RDT(0));
451 regs_buff[6] = er32(RDTR);
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN(0));
455 regs_buff[9] = er32(TDH(0));
456 regs_buff[10] = er32(TDT(0));
457 regs_buff[11] = er32(TIDV);
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not exist
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, MII_STAT1000, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
484 pm_runtime_put_sync(netdev->dev.parent);
487 static int e1000_get_eeprom_len(struct net_device *netdev)
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 return adapter->hw.nvm.word_size * 2;
493 static int e1000_get_eeprom(struct net_device *netdev,
494 struct ethtool_eeprom *eeprom, u8 *bytes)
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 struct e1000_hw *hw = &adapter->hw;
498 u16 *eeprom_buff;
499 int first_word;
500 int last_word;
501 int ret_val = 0;
502 u16 i;
504 if (eeprom->len == 0)
505 return -EINVAL;
507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509 first_word = eeprom->offset >> 1;
510 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
513 GFP_KERNEL);
514 if (!eeprom_buff)
515 return -ENOMEM;
517 pm_runtime_get_sync(netdev->dev.parent);
519 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 ret_val = e1000_read_nvm(hw, first_word,
521 last_word - first_word + 1,
522 eeprom_buff);
523 } else {
524 for (i = 0; i < last_word - first_word + 1; i++) {
525 ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 &eeprom_buff[i]);
527 if (ret_val)
528 break;
532 pm_runtime_put_sync(netdev->dev.parent);
534 if (ret_val) {
535 /* a read error occurred, throw away the result */
536 memset(eeprom_buff, 0xff, sizeof(u16) *
537 (last_word - first_word + 1));
538 } else {
539 /* Device's eeprom is always little-endian, word addressable */
540 for (i = 0; i < last_word - first_word + 1; i++)
541 le16_to_cpus(&eeprom_buff[i]);
544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 kfree(eeprom_buff);
547 return ret_val;
550 static int e1000_set_eeprom(struct net_device *netdev,
551 struct ethtool_eeprom *eeprom, u8 *bytes)
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 struct e1000_hw *hw = &adapter->hw;
555 u16 *eeprom_buff;
556 void *ptr;
557 int max_len;
558 int first_word;
559 int last_word;
560 int ret_val = 0;
561 u16 i;
563 if (eeprom->len == 0)
564 return -EOPNOTSUPP;
566 if (eeprom->magic !=
567 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 return -EFAULT;
570 if (adapter->flags & FLAG_READ_ONLY_NVM)
571 return -EINVAL;
573 max_len = hw->nvm.word_size * 2;
575 first_word = eeprom->offset >> 1;
576 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 if (!eeprom_buff)
579 return -ENOMEM;
581 ptr = (void *)eeprom_buff;
583 pm_runtime_get_sync(netdev->dev.parent);
585 if (eeprom->offset & 1) {
586 /* need read/modify/write of first changed EEPROM word */
587 /* only the second byte of the word is being modified */
588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 ptr++;
591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 /* need read/modify/write of last changed EEPROM word */
593 /* only the first byte of the word is being modified */
594 ret_val = e1000_read_nvm(hw, last_word, 1,
595 &eeprom_buff[last_word - first_word]);
597 if (ret_val)
598 goto out;
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
604 memcpy(ptr, bytes, eeprom->len);
606 for (i = 0; i < last_word - first_word + 1; i++)
607 cpu_to_le16s(&eeprom_buff[i]);
609 ret_val = e1000_write_nvm(hw, first_word,
610 last_word - first_word + 1, eeprom_buff);
612 if (ret_val)
613 goto out;
615 /* Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
624 out:
625 pm_runtime_put_sync(netdev->dev.parent);
626 kfree(eeprom_buff);
627 return ret_val;
630 static void e1000_get_drvinfo(struct net_device *netdev,
631 struct ethtool_drvinfo *drvinfo)
633 struct e1000_adapter *adapter = netdev_priv(netdev);
635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636 strlcpy(drvinfo->version, e1000e_driver_version,
637 sizeof(drvinfo->version));
639 /* EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
642 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
643 "%d.%d-%d",
644 (adapter->eeprom_vers & 0xF000) >> 12,
645 (adapter->eeprom_vers & 0x0FF0) >> 4,
646 (adapter->eeprom_vers & 0x000F));
648 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
649 sizeof(drvinfo->bus_info));
652 static void e1000_get_ringparam(struct net_device *netdev,
653 struct ethtool_ringparam *ring)
655 struct e1000_adapter *adapter = netdev_priv(netdev);
657 ring->rx_max_pending = E1000_MAX_RXD;
658 ring->tx_max_pending = E1000_MAX_TXD;
659 ring->rx_pending = adapter->rx_ring_count;
660 ring->tx_pending = adapter->tx_ring_count;
663 static int e1000_set_ringparam(struct net_device *netdev,
664 struct ethtool_ringparam *ring)
666 struct e1000_adapter *adapter = netdev_priv(netdev);
667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
668 int err = 0, size = sizeof(struct e1000_ring);
669 bool set_tx = false, set_rx = false;
670 u16 new_rx_count, new_tx_count;
672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 return -EINVAL;
675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
676 E1000_MAX_RXD);
677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
680 E1000_MAX_TXD);
681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
683 if ((new_tx_count == adapter->tx_ring_count) &&
684 (new_rx_count == adapter->rx_ring_count))
685 /* nothing to do */
686 return 0;
688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
689 usleep_range(1000, 2000);
691 if (!netif_running(adapter->netdev)) {
692 /* Set counts now and allocate resources during open() */
693 adapter->tx_ring->count = new_tx_count;
694 adapter->rx_ring->count = new_rx_count;
695 adapter->tx_ring_count = new_tx_count;
696 adapter->rx_ring_count = new_rx_count;
697 goto clear_reset;
700 set_tx = (new_tx_count != adapter->tx_ring_count);
701 set_rx = (new_rx_count != adapter->rx_ring_count);
703 /* Allocate temporary storage for ring updates */
704 if (set_tx) {
705 temp_tx = vmalloc(size);
706 if (!temp_tx) {
707 err = -ENOMEM;
708 goto free_temp;
711 if (set_rx) {
712 temp_rx = vmalloc(size);
713 if (!temp_rx) {
714 err = -ENOMEM;
715 goto free_temp;
719 pm_runtime_get_sync(netdev->dev.parent);
721 e1000e_down(adapter, true);
723 /* We can't just free everything and then setup again, because the
724 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
725 * structs. First, attempt to allocate new resources...
727 if (set_tx) {
728 memcpy(temp_tx, adapter->tx_ring, size);
729 temp_tx->count = new_tx_count;
730 err = e1000e_setup_tx_resources(temp_tx);
731 if (err)
732 goto err_setup;
734 if (set_rx) {
735 memcpy(temp_rx, adapter->rx_ring, size);
736 temp_rx->count = new_rx_count;
737 err = e1000e_setup_rx_resources(temp_rx);
738 if (err)
739 goto err_setup_rx;
742 /* ...then free the old resources and copy back any new ring data */
743 if (set_tx) {
744 e1000e_free_tx_resources(adapter->tx_ring);
745 memcpy(adapter->tx_ring, temp_tx, size);
746 adapter->tx_ring_count = new_tx_count;
748 if (set_rx) {
749 e1000e_free_rx_resources(adapter->rx_ring);
750 memcpy(adapter->rx_ring, temp_rx, size);
751 adapter->rx_ring_count = new_rx_count;
754 err_setup_rx:
755 if (err && set_tx)
756 e1000e_free_tx_resources(temp_tx);
757 err_setup:
758 e1000e_up(adapter);
759 pm_runtime_put_sync(netdev->dev.parent);
760 free_temp:
761 vfree(temp_tx);
762 vfree(temp_rx);
763 clear_reset:
764 clear_bit(__E1000_RESETTING, &adapter->state);
765 return err;
768 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
769 int reg, int offset, u32 mask, u32 write)
771 u32 pat, val;
772 static const u32 test[] = {
773 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
775 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
776 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
777 (test[pat] & write));
778 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
779 if (val != (test[pat] & write & mask)) {
780 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
781 reg + (offset << 2), val,
782 (test[pat] & write & mask));
783 *data = reg;
784 return true;
787 return false;
790 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
791 int reg, u32 mask, u32 write)
793 u32 val;
795 __ew32(&adapter->hw, reg, write & mask);
796 val = __er32(&adapter->hw, reg);
797 if ((write & mask) != (val & mask)) {
798 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799 reg, (val & mask), (write & mask));
800 *data = reg;
801 return true;
803 return false;
806 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
807 do { \
808 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
809 return 1; \
810 } while (0)
811 #define REG_PATTERN_TEST(reg, mask, write) \
812 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
814 #define REG_SET_AND_CHECK(reg, mask, write) \
815 do { \
816 if (reg_set_and_check(adapter, data, reg, mask, write)) \
817 return 1; \
818 } while (0)
820 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
822 struct e1000_hw *hw = &adapter->hw;
823 struct e1000_mac_info *mac = &adapter->hw.mac;
824 u32 value;
825 u32 before;
826 u32 after;
827 u32 i;
828 u32 toggle;
829 u32 mask;
830 u32 wlock_mac = 0;
832 /* The status register is Read Only, so a write should fail.
833 * Some bits that get toggled are ignored. There are several bits
834 * on newer hardware that are r/w.
836 switch (mac->type) {
837 case e1000_82571:
838 case e1000_82572:
839 case e1000_80003es2lan:
840 toggle = 0x7FFFF3FF;
841 break;
842 default:
843 toggle = 0x7FFFF033;
844 break;
847 before = er32(STATUS);
848 value = (er32(STATUS) & toggle);
849 ew32(STATUS, toggle);
850 after = er32(STATUS) & toggle;
851 if (value != after) {
852 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
853 after, value);
854 *data = 1;
855 return 1;
857 /* restore previous status */
858 ew32(STATUS, before);
860 if (!(adapter->flags & FLAG_IS_ICH)) {
861 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
863 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
868 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
870 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
871 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
873 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
874 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
875 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
878 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
880 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
881 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
882 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
884 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
886 if (!(adapter->flags & FLAG_IS_ICH))
887 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
888 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
890 mask = 0x8003FFFF;
891 switch (mac->type) {
892 case e1000_ich10lan:
893 case e1000_pchlan:
894 case e1000_pch2lan:
895 case e1000_pch_lpt:
896 case e1000_pch_spt:
897 case e1000_pch_cnp:
898 /* fall through */
899 case e1000_pch_tgp:
900 case e1000_pch_adp:
901 mask |= BIT(18);
902 break;
903 default:
904 break;
907 if (mac->type >= e1000_pch_lpt)
908 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
909 E1000_FWSM_WLOCK_MAC_SHIFT;
911 for (i = 0; i < mac->rar_entry_count; i++) {
912 if (mac->type >= e1000_pch_lpt) {
913 /* Cannot test write-protected SHRAL[n] registers */
914 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
915 continue;
917 /* SHRAH[9] different than the others */
918 if (i == 10)
919 mask |= BIT(30);
920 else
921 mask &= ~BIT(30);
923 if (mac->type == e1000_pch2lan) {
924 /* SHRAH[0,1,2] different than previous */
925 if (i == 1)
926 mask &= 0xFFF4FFFF;
927 /* SHRAH[3] different than SHRAH[0,1,2] */
928 if (i == 4)
929 mask |= BIT(30);
930 /* RAR[1-6] owned by management engine - skipping */
931 if (i > 0)
932 i += 6;
935 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
936 0xFFFFFFFF);
937 /* reset index to actual value */
938 if ((mac->type == e1000_pch2lan) && (i > 6))
939 i -= 6;
942 for (i = 0; i < mac->mta_reg_count; i++)
943 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
945 *data = 0;
947 return 0;
950 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
952 u16 temp;
953 u16 checksum = 0;
954 u16 i;
956 *data = 0;
957 /* Read and add up the contents of the EEPROM */
958 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
959 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
960 *data = 1;
961 return *data;
963 checksum += temp;
966 /* If Checksum is not Correct return error else test passed */
967 if ((checksum != (u16)NVM_SUM) && !(*data))
968 *data = 2;
970 return *data;
973 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
975 struct net_device *netdev = (struct net_device *)data;
976 struct e1000_adapter *adapter = netdev_priv(netdev);
977 struct e1000_hw *hw = &adapter->hw;
979 adapter->test_icr |= er32(ICR);
981 return IRQ_HANDLED;
984 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
986 struct net_device *netdev = adapter->netdev;
987 struct e1000_hw *hw = &adapter->hw;
988 u32 mask;
989 u32 shared_int = 1;
990 u32 irq = adapter->pdev->irq;
991 int i;
992 int ret_val = 0;
993 int int_mode = E1000E_INT_MODE_LEGACY;
995 *data = 0;
997 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
998 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
999 int_mode = adapter->int_mode;
1000 e1000e_reset_interrupt_capability(adapter);
1001 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1002 e1000e_set_interrupt_capability(adapter);
1004 /* Hook up test interrupt handler just for this test */
1005 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1006 netdev)) {
1007 shared_int = 0;
1008 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1009 netdev)) {
1010 *data = 1;
1011 ret_val = -1;
1012 goto out;
1014 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1016 /* Disable all the interrupts */
1017 ew32(IMC, 0xFFFFFFFF);
1018 e1e_flush();
1019 usleep_range(10000, 11000);
1021 /* Test each interrupt */
1022 for (i = 0; i < 10; i++) {
1023 /* Interrupt to test */
1024 mask = BIT(i);
1026 if (adapter->flags & FLAG_IS_ICH) {
1027 switch (mask) {
1028 case E1000_ICR_RXSEQ:
1029 continue;
1030 case 0x00000100:
1031 if (adapter->hw.mac.type == e1000_ich8lan ||
1032 adapter->hw.mac.type == e1000_ich9lan)
1033 continue;
1034 break;
1035 default:
1036 break;
1040 if (!shared_int) {
1041 /* Disable the interrupt to be reported in
1042 * the cause register and then force the same
1043 * interrupt and see if one gets posted. If
1044 * an interrupt was posted to the bus, the
1045 * test failed.
1047 adapter->test_icr = 0;
1048 ew32(IMC, mask);
1049 ew32(ICS, mask);
1050 e1e_flush();
1051 usleep_range(10000, 11000);
1053 if (adapter->test_icr & mask) {
1054 *data = 3;
1055 break;
1059 /* Enable the interrupt to be reported in
1060 * the cause register and then force the same
1061 * interrupt and see if one gets posted. If
1062 * an interrupt was not posted to the bus, the
1063 * test failed.
1065 adapter->test_icr = 0;
1066 ew32(IMS, mask);
1067 ew32(ICS, mask);
1068 e1e_flush();
1069 usleep_range(10000, 11000);
1071 if (!(adapter->test_icr & mask)) {
1072 *data = 4;
1073 break;
1076 if (!shared_int) {
1077 /* Disable the other interrupts to be reported in
1078 * the cause register and then force the other
1079 * interrupts and see if any get posted. If
1080 * an interrupt was posted to the bus, the
1081 * test failed.
1083 adapter->test_icr = 0;
1084 ew32(IMC, ~mask & 0x00007FFF);
1085 ew32(ICS, ~mask & 0x00007FFF);
1086 e1e_flush();
1087 usleep_range(10000, 11000);
1089 if (adapter->test_icr) {
1090 *data = 5;
1091 break;
1096 /* Disable all the interrupts */
1097 ew32(IMC, 0xFFFFFFFF);
1098 e1e_flush();
1099 usleep_range(10000, 11000);
1101 /* Unhook test interrupt handler */
1102 free_irq(irq, netdev);
1104 out:
1105 if (int_mode == E1000E_INT_MODE_MSIX) {
1106 e1000e_reset_interrupt_capability(adapter);
1107 adapter->int_mode = int_mode;
1108 e1000e_set_interrupt_capability(adapter);
1111 return ret_val;
1114 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1116 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1117 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1118 struct pci_dev *pdev = adapter->pdev;
1119 struct e1000_buffer *buffer_info;
1120 int i;
1122 if (tx_ring->desc && tx_ring->buffer_info) {
1123 for (i = 0; i < tx_ring->count; i++) {
1124 buffer_info = &tx_ring->buffer_info[i];
1126 if (buffer_info->dma)
1127 dma_unmap_single(&pdev->dev,
1128 buffer_info->dma,
1129 buffer_info->length,
1130 DMA_TO_DEVICE);
1131 dev_kfree_skb(buffer_info->skb);
1135 if (rx_ring->desc && rx_ring->buffer_info) {
1136 for (i = 0; i < rx_ring->count; i++) {
1137 buffer_info = &rx_ring->buffer_info[i];
1139 if (buffer_info->dma)
1140 dma_unmap_single(&pdev->dev,
1141 buffer_info->dma,
1142 2048, DMA_FROM_DEVICE);
1143 dev_kfree_skb(buffer_info->skb);
1147 if (tx_ring->desc) {
1148 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1149 tx_ring->dma);
1150 tx_ring->desc = NULL;
1152 if (rx_ring->desc) {
1153 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1154 rx_ring->dma);
1155 rx_ring->desc = NULL;
1158 kfree(tx_ring->buffer_info);
1159 tx_ring->buffer_info = NULL;
1160 kfree(rx_ring->buffer_info);
1161 rx_ring->buffer_info = NULL;
1164 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1166 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1167 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1168 struct pci_dev *pdev = adapter->pdev;
1169 struct e1000_hw *hw = &adapter->hw;
1170 u32 rctl;
1171 int i;
1172 int ret_val;
1174 /* Setup Tx descriptor ring and Tx buffers */
1176 if (!tx_ring->count)
1177 tx_ring->count = E1000_DEFAULT_TXD;
1179 tx_ring->buffer_info = kcalloc(tx_ring->count,
1180 sizeof(struct e1000_buffer), GFP_KERNEL);
1181 if (!tx_ring->buffer_info) {
1182 ret_val = 1;
1183 goto err_nomem;
1186 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1187 tx_ring->size = ALIGN(tx_ring->size, 4096);
1188 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1189 &tx_ring->dma, GFP_KERNEL);
1190 if (!tx_ring->desc) {
1191 ret_val = 2;
1192 goto err_nomem;
1194 tx_ring->next_to_use = 0;
1195 tx_ring->next_to_clean = 0;
1197 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1198 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1199 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1200 ew32(TDH(0), 0);
1201 ew32(TDT(0), 0);
1202 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1203 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1204 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1206 for (i = 0; i < tx_ring->count; i++) {
1207 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1208 struct sk_buff *skb;
1209 unsigned int skb_size = 1024;
1211 skb = alloc_skb(skb_size, GFP_KERNEL);
1212 if (!skb) {
1213 ret_val = 3;
1214 goto err_nomem;
1216 skb_put(skb, skb_size);
1217 tx_ring->buffer_info[i].skb = skb;
1218 tx_ring->buffer_info[i].length = skb->len;
1219 tx_ring->buffer_info[i].dma =
1220 dma_map_single(&pdev->dev, skb->data, skb->len,
1221 DMA_TO_DEVICE);
1222 if (dma_mapping_error(&pdev->dev,
1223 tx_ring->buffer_info[i].dma)) {
1224 ret_val = 4;
1225 goto err_nomem;
1227 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1228 tx_desc->lower.data = cpu_to_le32(skb->len);
1229 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1230 E1000_TXD_CMD_IFCS |
1231 E1000_TXD_CMD_RS);
1232 tx_desc->upper.data = 0;
1235 /* Setup Rx descriptor ring and Rx buffers */
1237 if (!rx_ring->count)
1238 rx_ring->count = E1000_DEFAULT_RXD;
1240 rx_ring->buffer_info = kcalloc(rx_ring->count,
1241 sizeof(struct e1000_buffer), GFP_KERNEL);
1242 if (!rx_ring->buffer_info) {
1243 ret_val = 5;
1244 goto err_nomem;
1247 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1248 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1249 &rx_ring->dma, GFP_KERNEL);
1250 if (!rx_ring->desc) {
1251 ret_val = 6;
1252 goto err_nomem;
1254 rx_ring->next_to_use = 0;
1255 rx_ring->next_to_clean = 0;
1257 rctl = er32(RCTL);
1258 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1259 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1260 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1261 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1262 ew32(RDLEN(0), rx_ring->size);
1263 ew32(RDH(0), 0);
1264 ew32(RDT(0), 0);
1265 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1266 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1267 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1268 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1269 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1270 ew32(RCTL, rctl);
1272 for (i = 0; i < rx_ring->count; i++) {
1273 union e1000_rx_desc_extended *rx_desc;
1274 struct sk_buff *skb;
1276 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1277 if (!skb) {
1278 ret_val = 7;
1279 goto err_nomem;
1281 skb_reserve(skb, NET_IP_ALIGN);
1282 rx_ring->buffer_info[i].skb = skb;
1283 rx_ring->buffer_info[i].dma =
1284 dma_map_single(&pdev->dev, skb->data, 2048,
1285 DMA_FROM_DEVICE);
1286 if (dma_mapping_error(&pdev->dev,
1287 rx_ring->buffer_info[i].dma)) {
1288 ret_val = 8;
1289 goto err_nomem;
1291 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1292 rx_desc->read.buffer_addr =
1293 cpu_to_le64(rx_ring->buffer_info[i].dma);
1294 memset(skb->data, 0x00, skb->len);
1297 return 0;
1299 err_nomem:
1300 e1000_free_desc_rings(adapter);
1301 return ret_val;
1304 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1306 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1307 e1e_wphy(&adapter->hw, 29, 0x001F);
1308 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1309 e1e_wphy(&adapter->hw, 29, 0x001A);
1310 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1313 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1315 struct e1000_hw *hw = &adapter->hw;
1316 u32 ctrl_reg = 0;
1317 u16 phy_reg = 0;
1318 s32 ret_val = 0;
1320 hw->mac.autoneg = 0;
1322 if (hw->phy.type == e1000_phy_ife) {
1323 /* force 100, set loopback */
1324 e1e_wphy(hw, MII_BMCR, 0x6100);
1326 /* Now set up the MAC to the same speed/duplex as the PHY. */
1327 ctrl_reg = er32(CTRL);
1328 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1329 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1330 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1331 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1332 E1000_CTRL_FD); /* Force Duplex to FULL */
1334 ew32(CTRL, ctrl_reg);
1335 e1e_flush();
1336 usleep_range(500, 1000);
1338 return 0;
1341 /* Specific PHY configuration for loopback */
1342 switch (hw->phy.type) {
1343 case e1000_phy_m88:
1344 /* Auto-MDI/MDIX Off */
1345 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346 /* reset to update Auto-MDI/MDIX */
1347 e1e_wphy(hw, MII_BMCR, 0x9140);
1348 /* autoneg off */
1349 e1e_wphy(hw, MII_BMCR, 0x8140);
1350 break;
1351 case e1000_phy_gg82563:
1352 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1353 break;
1354 case e1000_phy_bm:
1355 /* Set Default MAC Interface speed to 1GB */
1356 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1357 phy_reg &= ~0x0007;
1358 phy_reg |= 0x006;
1359 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1360 /* Assert SW reset for above settings to take effect */
1361 hw->phy.ops.commit(hw);
1362 usleep_range(1000, 2000);
1363 /* Force Full Duplex */
1364 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1365 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1366 /* Set Link Up (in force link) */
1367 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1368 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1369 /* Force Link */
1370 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1371 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1372 /* Set Early Link Enable */
1373 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1374 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1375 break;
1376 case e1000_phy_82577:
1377 case e1000_phy_82578:
1378 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1379 ret_val = hw->phy.ops.acquire(hw);
1380 if (ret_val) {
1381 e_err("Cannot setup 1Gbps loopback.\n");
1382 return ret_val;
1384 e1000_configure_k1_ich8lan(hw, false);
1385 hw->phy.ops.release(hw);
1386 break;
1387 case e1000_phy_82579:
1388 /* Disable PHY energy detect power down */
1389 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1391 /* Disable full chip energy detect */
1392 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1394 /* Enable loopback on the PHY */
1395 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1396 break;
1397 default:
1398 break;
1401 /* force 1000, set loopback */
1402 e1e_wphy(hw, MII_BMCR, 0x4140);
1403 msleep(250);
1405 /* Now set up the MAC to the same speed/duplex as the PHY. */
1406 ctrl_reg = er32(CTRL);
1407 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1408 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1409 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1410 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1411 E1000_CTRL_FD); /* Force Duplex to FULL */
1413 if (adapter->flags & FLAG_IS_ICH)
1414 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1416 if (hw->phy.media_type == e1000_media_type_copper &&
1417 hw->phy.type == e1000_phy_m88) {
1418 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1419 } else {
1420 /* Set the ILOS bit on the fiber Nic if half duplex link is
1421 * detected.
1423 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1424 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1427 ew32(CTRL, ctrl_reg);
1429 /* Disable the receiver on the PHY so when a cable is plugged in, the
1430 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1432 if (hw->phy.type == e1000_phy_m88)
1433 e1000_phy_disable_receiver(adapter);
1435 usleep_range(500, 1000);
1437 return 0;
1440 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1442 struct e1000_hw *hw = &adapter->hw;
1443 u32 ctrl = er32(CTRL);
1444 int link;
1446 /* special requirements for 82571/82572 fiber adapters */
1448 /* jump through hoops to make sure link is up because serdes
1449 * link is hardwired up
1451 ctrl |= E1000_CTRL_SLU;
1452 ew32(CTRL, ctrl);
1454 /* disable autoneg */
1455 ctrl = er32(TXCW);
1456 ctrl &= ~BIT(31);
1457 ew32(TXCW, ctrl);
1459 link = (er32(STATUS) & E1000_STATUS_LU);
1461 if (!link) {
1462 /* set invert loss of signal */
1463 ctrl = er32(CTRL);
1464 ctrl |= E1000_CTRL_ILOS;
1465 ew32(CTRL, ctrl);
1468 /* special write to serdes control register to enable SerDes analog
1469 * loopback
1471 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1472 e1e_flush();
1473 usleep_range(10000, 11000);
1475 return 0;
1478 /* only call this for fiber/serdes connections to es2lan */
1479 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 ctrlext = er32(CTRL_EXT);
1483 u32 ctrl = er32(CTRL);
1485 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1486 * on mac_type 80003es2lan)
1488 adapter->tx_fifo_head = ctrlext;
1490 /* clear the serdes mode bits, putting the device into mac loopback */
1491 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1492 ew32(CTRL_EXT, ctrlext);
1494 /* force speed to 1000/FD, link up */
1495 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1496 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1497 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1498 ew32(CTRL, ctrl);
1500 /* set mac loopback */
1501 ctrl = er32(RCTL);
1502 ctrl |= E1000_RCTL_LBM_MAC;
1503 ew32(RCTL, ctrl);
1505 /* set testing mode parameters (no need to reset later) */
1506 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1507 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1508 ew32(KMRNCTRLSTA,
1509 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1511 return 0;
1514 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 rctl, fext_nvm11, tarc0;
1519 if (hw->mac.type >= e1000_pch_spt) {
1520 fext_nvm11 = er32(FEXTNVM11);
1521 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1522 ew32(FEXTNVM11, fext_nvm11);
1523 tarc0 = er32(TARC(0));
1524 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1525 tarc0 &= 0xcfffffff;
1526 /* set bit 29 (value of MULR requests is now 2) */
1527 tarc0 |= 0x20000000;
1528 ew32(TARC(0), tarc0);
1530 if (hw->phy.media_type == e1000_media_type_fiber ||
1531 hw->phy.media_type == e1000_media_type_internal_serdes) {
1532 switch (hw->mac.type) {
1533 case e1000_80003es2lan:
1534 return e1000_set_es2lan_mac_loopback(adapter);
1535 case e1000_82571:
1536 case e1000_82572:
1537 return e1000_set_82571_fiber_loopback(adapter);
1538 default:
1539 rctl = er32(RCTL);
1540 rctl |= E1000_RCTL_LBM_TCVR;
1541 ew32(RCTL, rctl);
1542 return 0;
1544 } else if (hw->phy.media_type == e1000_media_type_copper) {
1545 return e1000_integrated_phy_loopback(adapter);
1548 return 7;
1551 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1553 struct e1000_hw *hw = &adapter->hw;
1554 u32 rctl, fext_nvm11, tarc0;
1555 u16 phy_reg;
1557 rctl = er32(RCTL);
1558 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1559 ew32(RCTL, rctl);
1561 switch (hw->mac.type) {
1562 case e1000_pch_spt:
1563 case e1000_pch_cnp:
1564 case e1000_pch_tgp:
1565 case e1000_pch_adp:
1566 fext_nvm11 = er32(FEXTNVM11);
1567 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1568 ew32(FEXTNVM11, fext_nvm11);
1569 tarc0 = er32(TARC(0));
1570 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1571 /* set bit 29 (value of MULR requests is now 0) */
1572 tarc0 &= 0xcfffffff;
1573 ew32(TARC(0), tarc0);
1574 /* fall through */
1575 case e1000_80003es2lan:
1576 if (hw->phy.media_type == e1000_media_type_fiber ||
1577 hw->phy.media_type == e1000_media_type_internal_serdes) {
1578 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1579 ew32(CTRL_EXT, adapter->tx_fifo_head);
1580 adapter->tx_fifo_head = 0;
1582 /* fall through */
1583 case e1000_82571:
1584 case e1000_82572:
1585 if (hw->phy.media_type == e1000_media_type_fiber ||
1586 hw->phy.media_type == e1000_media_type_internal_serdes) {
1587 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1588 e1e_flush();
1589 usleep_range(10000, 11000);
1590 break;
1592 /* Fall Through */
1593 default:
1594 hw->mac.autoneg = 1;
1595 if (hw->phy.type == e1000_phy_gg82563)
1596 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1597 e1e_rphy(hw, MII_BMCR, &phy_reg);
1598 if (phy_reg & BMCR_LOOPBACK) {
1599 phy_reg &= ~BMCR_LOOPBACK;
1600 e1e_wphy(hw, MII_BMCR, phy_reg);
1601 if (hw->phy.ops.commit)
1602 hw->phy.ops.commit(hw);
1604 break;
1608 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1609 unsigned int frame_size)
1611 memset(skb->data, 0xFF, frame_size);
1612 frame_size &= ~1;
1613 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1614 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1615 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1618 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1619 unsigned int frame_size)
1621 frame_size &= ~1;
1622 if (*(skb->data + 3) == 0xFF)
1623 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1624 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1625 return 0;
1626 return 13;
1629 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1631 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1632 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1633 struct pci_dev *pdev = adapter->pdev;
1634 struct e1000_hw *hw = &adapter->hw;
1635 struct e1000_buffer *buffer_info;
1636 int i, j, k, l;
1637 int lc;
1638 int good_cnt;
1639 int ret_val = 0;
1640 unsigned long time;
1642 ew32(RDT(0), rx_ring->count - 1);
1644 /* Calculate the loop count based on the largest descriptor ring
1645 * The idea is to wrap the largest ring a number of times using 64
1646 * send/receive pairs during each loop
1649 if (rx_ring->count <= tx_ring->count)
1650 lc = ((tx_ring->count / 64) * 2) + 1;
1651 else
1652 lc = ((rx_ring->count / 64) * 2) + 1;
1654 k = 0;
1655 l = 0;
1656 /* loop count loop */
1657 for (j = 0; j <= lc; j++) {
1658 /* send the packets */
1659 for (i = 0; i < 64; i++) {
1660 buffer_info = &tx_ring->buffer_info[k];
1662 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1663 dma_sync_single_for_device(&pdev->dev,
1664 buffer_info->dma,
1665 buffer_info->length,
1666 DMA_TO_DEVICE);
1667 k++;
1668 if (k == tx_ring->count)
1669 k = 0;
1671 ew32(TDT(0), k);
1672 e1e_flush();
1673 msleep(200);
1674 time = jiffies; /* set the start time for the receive */
1675 good_cnt = 0;
1676 /* receive the sent packets */
1677 do {
1678 buffer_info = &rx_ring->buffer_info[l];
1680 dma_sync_single_for_cpu(&pdev->dev,
1681 buffer_info->dma, 2048,
1682 DMA_FROM_DEVICE);
1684 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1685 1024);
1686 if (!ret_val)
1687 good_cnt++;
1688 l++;
1689 if (l == rx_ring->count)
1690 l = 0;
1691 /* time + 20 msecs (200 msecs on 2.4) is more than
1692 * enough time to complete the receives, if it's
1693 * exceeded, break and error off
1695 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1696 if (good_cnt != 64) {
1697 ret_val = 13; /* ret_val is the same as mis-compare */
1698 break;
1700 if (time_after(jiffies, time + 20)) {
1701 ret_val = 14; /* error code for time out error */
1702 break;
1705 return ret_val;
1708 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1710 struct e1000_hw *hw = &adapter->hw;
1712 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1713 if (hw->phy.ops.check_reset_block &&
1714 hw->phy.ops.check_reset_block(hw)) {
1715 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1716 *data = 0;
1717 goto out;
1720 *data = e1000_setup_desc_rings(adapter);
1721 if (*data)
1722 goto out;
1724 *data = e1000_setup_loopback_test(adapter);
1725 if (*data)
1726 goto err_loopback;
1728 *data = e1000_run_loopback_test(adapter);
1729 e1000_loopback_cleanup(adapter);
1731 err_loopback:
1732 e1000_free_desc_rings(adapter);
1733 out:
1734 return *data;
1737 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1739 struct e1000_hw *hw = &adapter->hw;
1741 *data = 0;
1742 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1743 int i = 0;
1745 hw->mac.serdes_has_link = false;
1747 /* On some blade server designs, link establishment
1748 * could take as long as 2-3 minutes
1750 do {
1751 hw->mac.ops.check_for_link(hw);
1752 if (hw->mac.serdes_has_link)
1753 return *data;
1754 msleep(20);
1755 } while (i++ < 3750);
1757 *data = 1;
1758 } else {
1759 hw->mac.ops.check_for_link(hw);
1760 if (hw->mac.autoneg)
1761 /* On some Phy/switch combinations, link establishment
1762 * can take a few seconds more than expected.
1764 msleep_interruptible(5000);
1766 if (!(er32(STATUS) & E1000_STATUS_LU))
1767 *data = 1;
1769 return *data;
1772 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1773 int sset)
1775 switch (sset) {
1776 case ETH_SS_TEST:
1777 return E1000_TEST_LEN;
1778 case ETH_SS_STATS:
1779 return E1000_STATS_LEN;
1780 default:
1781 return -EOPNOTSUPP;
1785 static void e1000_diag_test(struct net_device *netdev,
1786 struct ethtool_test *eth_test, u64 *data)
1788 struct e1000_adapter *adapter = netdev_priv(netdev);
1789 u16 autoneg_advertised;
1790 u8 forced_speed_duplex;
1791 u8 autoneg;
1792 bool if_running = netif_running(netdev);
1794 pm_runtime_get_sync(netdev->dev.parent);
1796 set_bit(__E1000_TESTING, &adapter->state);
1798 if (!if_running) {
1799 /* Get control of and reset hardware */
1800 if (adapter->flags & FLAG_HAS_AMT)
1801 e1000e_get_hw_control(adapter);
1803 e1000e_power_up_phy(adapter);
1805 adapter->hw.phy.autoneg_wait_to_complete = 1;
1806 e1000e_reset(adapter);
1807 adapter->hw.phy.autoneg_wait_to_complete = 0;
1810 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1811 /* Offline tests */
1813 /* save speed, duplex, autoneg settings */
1814 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1815 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1816 autoneg = adapter->hw.mac.autoneg;
1818 e_info("offline testing starting\n");
1820 if (if_running)
1821 /* indicate we're in test mode */
1822 e1000e_close(netdev);
1824 if (e1000_reg_test(adapter, &data[0]))
1825 eth_test->flags |= ETH_TEST_FL_FAILED;
1827 e1000e_reset(adapter);
1828 if (e1000_eeprom_test(adapter, &data[1]))
1829 eth_test->flags |= ETH_TEST_FL_FAILED;
1831 e1000e_reset(adapter);
1832 if (e1000_intr_test(adapter, &data[2]))
1833 eth_test->flags |= ETH_TEST_FL_FAILED;
1835 e1000e_reset(adapter);
1836 if (e1000_loopback_test(adapter, &data[3]))
1837 eth_test->flags |= ETH_TEST_FL_FAILED;
1839 /* force this routine to wait until autoneg complete/timeout */
1840 adapter->hw.phy.autoneg_wait_to_complete = 1;
1841 e1000e_reset(adapter);
1842 adapter->hw.phy.autoneg_wait_to_complete = 0;
1844 if (e1000_link_test(adapter, &data[4]))
1845 eth_test->flags |= ETH_TEST_FL_FAILED;
1847 /* restore speed, duplex, autoneg settings */
1848 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1849 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1850 adapter->hw.mac.autoneg = autoneg;
1851 e1000e_reset(adapter);
1853 clear_bit(__E1000_TESTING, &adapter->state);
1854 if (if_running)
1855 e1000e_open(netdev);
1856 } else {
1857 /* Online tests */
1859 e_info("online testing starting\n");
1861 /* register, eeprom, intr and loopback tests not run online */
1862 data[0] = 0;
1863 data[1] = 0;
1864 data[2] = 0;
1865 data[3] = 0;
1867 if (e1000_link_test(adapter, &data[4]))
1868 eth_test->flags |= ETH_TEST_FL_FAILED;
1870 clear_bit(__E1000_TESTING, &adapter->state);
1873 if (!if_running) {
1874 e1000e_reset(adapter);
1876 if (adapter->flags & FLAG_HAS_AMT)
1877 e1000e_release_hw_control(adapter);
1880 msleep_interruptible(4 * 1000);
1882 pm_runtime_put_sync(netdev->dev.parent);
1885 static void e1000_get_wol(struct net_device *netdev,
1886 struct ethtool_wolinfo *wol)
1888 struct e1000_adapter *adapter = netdev_priv(netdev);
1890 wol->supported = 0;
1891 wol->wolopts = 0;
1893 if (!(adapter->flags & FLAG_HAS_WOL) ||
1894 !device_can_wakeup(&adapter->pdev->dev))
1895 return;
1897 wol->supported = WAKE_UCAST | WAKE_MCAST |
1898 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1900 /* apply any specific unsupported masks here */
1901 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1902 wol->supported &= ~WAKE_UCAST;
1904 if (adapter->wol & E1000_WUFC_EX)
1905 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1908 if (adapter->wol & E1000_WUFC_EX)
1909 wol->wolopts |= WAKE_UCAST;
1910 if (adapter->wol & E1000_WUFC_MC)
1911 wol->wolopts |= WAKE_MCAST;
1912 if (adapter->wol & E1000_WUFC_BC)
1913 wol->wolopts |= WAKE_BCAST;
1914 if (adapter->wol & E1000_WUFC_MAG)
1915 wol->wolopts |= WAKE_MAGIC;
1916 if (adapter->wol & E1000_WUFC_LNKC)
1917 wol->wolopts |= WAKE_PHY;
1920 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1922 struct e1000_adapter *adapter = netdev_priv(netdev);
1924 if (!(adapter->flags & FLAG_HAS_WOL) ||
1925 !device_can_wakeup(&adapter->pdev->dev) ||
1926 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1927 WAKE_MAGIC | WAKE_PHY)))
1928 return -EOPNOTSUPP;
1930 /* these settings will always override what we currently have */
1931 adapter->wol = 0;
1933 if (wol->wolopts & WAKE_UCAST)
1934 adapter->wol |= E1000_WUFC_EX;
1935 if (wol->wolopts & WAKE_MCAST)
1936 adapter->wol |= E1000_WUFC_MC;
1937 if (wol->wolopts & WAKE_BCAST)
1938 adapter->wol |= E1000_WUFC_BC;
1939 if (wol->wolopts & WAKE_MAGIC)
1940 adapter->wol |= E1000_WUFC_MAG;
1941 if (wol->wolopts & WAKE_PHY)
1942 adapter->wol |= E1000_WUFC_LNKC;
1944 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1946 return 0;
1949 static int e1000_set_phys_id(struct net_device *netdev,
1950 enum ethtool_phys_id_state state)
1952 struct e1000_adapter *adapter = netdev_priv(netdev);
1953 struct e1000_hw *hw = &adapter->hw;
1955 switch (state) {
1956 case ETHTOOL_ID_ACTIVE:
1957 pm_runtime_get_sync(netdev->dev.parent);
1959 if (!hw->mac.ops.blink_led)
1960 return 2; /* cycle on/off twice per second */
1962 hw->mac.ops.blink_led(hw);
1963 break;
1965 case ETHTOOL_ID_INACTIVE:
1966 if (hw->phy.type == e1000_phy_ife)
1967 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1968 hw->mac.ops.led_off(hw);
1969 hw->mac.ops.cleanup_led(hw);
1970 pm_runtime_put_sync(netdev->dev.parent);
1971 break;
1973 case ETHTOOL_ID_ON:
1974 hw->mac.ops.led_on(hw);
1975 break;
1977 case ETHTOOL_ID_OFF:
1978 hw->mac.ops.led_off(hw);
1979 break;
1982 return 0;
1985 static int e1000_get_coalesce(struct net_device *netdev,
1986 struct ethtool_coalesce *ec)
1988 struct e1000_adapter *adapter = netdev_priv(netdev);
1990 if (adapter->itr_setting <= 4)
1991 ec->rx_coalesce_usecs = adapter->itr_setting;
1992 else
1993 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1995 return 0;
1998 static int e1000_set_coalesce(struct net_device *netdev,
1999 struct ethtool_coalesce *ec)
2001 struct e1000_adapter *adapter = netdev_priv(netdev);
2003 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2004 ((ec->rx_coalesce_usecs > 4) &&
2005 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2006 (ec->rx_coalesce_usecs == 2))
2007 return -EINVAL;
2009 if (ec->rx_coalesce_usecs == 4) {
2010 adapter->itr_setting = 4;
2011 adapter->itr = adapter->itr_setting;
2012 } else if (ec->rx_coalesce_usecs <= 3) {
2013 adapter->itr = 20000;
2014 adapter->itr_setting = ec->rx_coalesce_usecs;
2015 } else {
2016 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2017 adapter->itr_setting = adapter->itr & ~3;
2020 pm_runtime_get_sync(netdev->dev.parent);
2022 if (adapter->itr_setting != 0)
2023 e1000e_write_itr(adapter, adapter->itr);
2024 else
2025 e1000e_write_itr(adapter, 0);
2027 pm_runtime_put_sync(netdev->dev.parent);
2029 return 0;
2032 static int e1000_nway_reset(struct net_device *netdev)
2034 struct e1000_adapter *adapter = netdev_priv(netdev);
2036 if (!netif_running(netdev))
2037 return -EAGAIN;
2039 if (!adapter->hw.mac.autoneg)
2040 return -EINVAL;
2042 pm_runtime_get_sync(netdev->dev.parent);
2043 e1000e_reinit_locked(adapter);
2044 pm_runtime_put_sync(netdev->dev.parent);
2046 return 0;
2049 static void e1000_get_ethtool_stats(struct net_device *netdev,
2050 struct ethtool_stats __always_unused *stats,
2051 u64 *data)
2053 struct e1000_adapter *adapter = netdev_priv(netdev);
2054 struct rtnl_link_stats64 net_stats;
2055 int i;
2056 char *p = NULL;
2058 pm_runtime_get_sync(netdev->dev.parent);
2060 dev_get_stats(netdev, &net_stats);
2062 pm_runtime_put_sync(netdev->dev.parent);
2064 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2065 switch (e1000_gstrings_stats[i].type) {
2066 case NETDEV_STATS:
2067 p = (char *)&net_stats +
2068 e1000_gstrings_stats[i].stat_offset;
2069 break;
2070 case E1000_STATS:
2071 p = (char *)adapter +
2072 e1000_gstrings_stats[i].stat_offset;
2073 break;
2074 default:
2075 data[i] = 0;
2076 continue;
2079 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2080 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2084 static void e1000_get_strings(struct net_device __always_unused *netdev,
2085 u32 stringset, u8 *data)
2087 u8 *p = data;
2088 int i;
2090 switch (stringset) {
2091 case ETH_SS_TEST:
2092 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2093 break;
2094 case ETH_SS_STATS:
2095 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2096 memcpy(p, e1000_gstrings_stats[i].stat_string,
2097 ETH_GSTRING_LEN);
2098 p += ETH_GSTRING_LEN;
2100 break;
2104 static int e1000_get_rxnfc(struct net_device *netdev,
2105 struct ethtool_rxnfc *info,
2106 u32 __always_unused *rule_locs)
2108 info->data = 0;
2110 switch (info->cmd) {
2111 case ETHTOOL_GRXFH: {
2112 struct e1000_adapter *adapter = netdev_priv(netdev);
2113 struct e1000_hw *hw = &adapter->hw;
2114 u32 mrqc;
2116 pm_runtime_get_sync(netdev->dev.parent);
2117 mrqc = er32(MRQC);
2118 pm_runtime_put_sync(netdev->dev.parent);
2120 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2121 return 0;
2123 switch (info->flow_type) {
2124 case TCP_V4_FLOW:
2125 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2126 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2127 /* fall through */
2128 case UDP_V4_FLOW:
2129 case SCTP_V4_FLOW:
2130 case AH_ESP_V4_FLOW:
2131 case IPV4_FLOW:
2132 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2133 info->data |= RXH_IP_SRC | RXH_IP_DST;
2134 break;
2135 case TCP_V6_FLOW:
2136 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2137 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2138 /* fall through */
2139 case UDP_V6_FLOW:
2140 case SCTP_V6_FLOW:
2141 case AH_ESP_V6_FLOW:
2142 case IPV6_FLOW:
2143 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2144 info->data |= RXH_IP_SRC | RXH_IP_DST;
2145 break;
2146 default:
2147 break;
2149 return 0;
2151 default:
2152 return -EOPNOTSUPP;
2156 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2158 struct e1000_adapter *adapter = netdev_priv(netdev);
2159 struct e1000_hw *hw = &adapter->hw;
2160 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2161 u32 ret_val;
2163 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2164 return -EOPNOTSUPP;
2166 switch (hw->phy.type) {
2167 case e1000_phy_82579:
2168 cap_addr = I82579_EEE_CAPABILITY;
2169 lpa_addr = I82579_EEE_LP_ABILITY;
2170 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2171 break;
2172 case e1000_phy_i217:
2173 cap_addr = I217_EEE_CAPABILITY;
2174 lpa_addr = I217_EEE_LP_ABILITY;
2175 pcs_stat_addr = I217_EEE_PCS_STATUS;
2176 break;
2177 default:
2178 return -EOPNOTSUPP;
2181 pm_runtime_get_sync(netdev->dev.parent);
2183 ret_val = hw->phy.ops.acquire(hw);
2184 if (ret_val) {
2185 pm_runtime_put_sync(netdev->dev.parent);
2186 return -EBUSY;
2189 /* EEE Capability */
2190 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2191 if (ret_val)
2192 goto release;
2193 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2195 /* EEE Advertised */
2196 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2198 /* EEE Link Partner Advertised */
2199 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2200 if (ret_val)
2201 goto release;
2202 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2204 /* EEE PCS Status */
2205 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2206 if (ret_val)
2207 goto release;
2208 if (hw->phy.type == e1000_phy_82579)
2209 phy_data <<= 8;
2211 /* Result of the EEE auto negotiation - there is no register that
2212 * has the status of the EEE negotiation so do a best-guess based
2213 * on whether Tx or Rx LPI indications have been received.
2215 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2216 edata->eee_active = true;
2218 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2219 edata->tx_lpi_enabled = true;
2220 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2222 release:
2223 hw->phy.ops.release(hw);
2224 if (ret_val)
2225 ret_val = -ENODATA;
2227 pm_runtime_put_sync(netdev->dev.parent);
2229 return ret_val;
2232 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2234 struct e1000_adapter *adapter = netdev_priv(netdev);
2235 struct e1000_hw *hw = &adapter->hw;
2236 struct ethtool_eee eee_curr;
2237 s32 ret_val;
2239 ret_val = e1000e_get_eee(netdev, &eee_curr);
2240 if (ret_val)
2241 return ret_val;
2243 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2244 e_err("Setting EEE tx-lpi is not supported\n");
2245 return -EINVAL;
2248 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2249 e_err("Setting EEE Tx LPI timer is not supported\n");
2250 return -EINVAL;
2253 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2254 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2255 return -EINVAL;
2258 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2260 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2262 pm_runtime_get_sync(netdev->dev.parent);
2264 /* reset the link */
2265 if (netif_running(netdev))
2266 e1000e_reinit_locked(adapter);
2267 else
2268 e1000e_reset(adapter);
2270 pm_runtime_put_sync(netdev->dev.parent);
2272 return 0;
2275 static int e1000e_get_ts_info(struct net_device *netdev,
2276 struct ethtool_ts_info *info)
2278 struct e1000_adapter *adapter = netdev_priv(netdev);
2280 ethtool_op_get_ts_info(netdev, info);
2282 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2283 return 0;
2285 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2286 SOF_TIMESTAMPING_RX_HARDWARE |
2287 SOF_TIMESTAMPING_RAW_HARDWARE);
2289 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2291 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2292 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2293 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2294 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2295 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2296 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2297 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2298 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2299 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2300 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2301 BIT(HWTSTAMP_FILTER_ALL));
2303 if (adapter->ptp_clock)
2304 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2306 return 0;
2309 static const struct ethtool_ops e1000_ethtool_ops = {
2310 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2311 .get_drvinfo = e1000_get_drvinfo,
2312 .get_regs_len = e1000_get_regs_len,
2313 .get_regs = e1000_get_regs,
2314 .get_wol = e1000_get_wol,
2315 .set_wol = e1000_set_wol,
2316 .get_msglevel = e1000_get_msglevel,
2317 .set_msglevel = e1000_set_msglevel,
2318 .nway_reset = e1000_nway_reset,
2319 .get_link = ethtool_op_get_link,
2320 .get_eeprom_len = e1000_get_eeprom_len,
2321 .get_eeprom = e1000_get_eeprom,
2322 .set_eeprom = e1000_set_eeprom,
2323 .get_ringparam = e1000_get_ringparam,
2324 .set_ringparam = e1000_set_ringparam,
2325 .get_pauseparam = e1000_get_pauseparam,
2326 .set_pauseparam = e1000_set_pauseparam,
2327 .self_test = e1000_diag_test,
2328 .get_strings = e1000_get_strings,
2329 .set_phys_id = e1000_set_phys_id,
2330 .get_ethtool_stats = e1000_get_ethtool_stats,
2331 .get_sset_count = e1000e_get_sset_count,
2332 .get_coalesce = e1000_get_coalesce,
2333 .set_coalesce = e1000_set_coalesce,
2334 .get_rxnfc = e1000_get_rxnfc,
2335 .get_ts_info = e1000e_get_ts_info,
2336 .get_eee = e1000e_get_eee,
2337 .set_eee = e1000e_set_eee,
2338 .get_link_ksettings = e1000_get_link_ksettings,
2339 .set_link_ksettings = e1000_set_link_ksettings,
2342 void e1000e_set_ethtool_ops(struct net_device *netdev)
2344 netdev->ethtool_ops = &e1000_ethtool_ops;