1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
6 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
7 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
8 u16
*data
, bool read
, bool page_set
);
9 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
10 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
11 u16
*data
, bool read
);
13 /* Cable length tables */
14 static const u16 e1000_m88_cable_length_table
[] = {
15 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
18 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
19 ARRAY_SIZE(e1000_m88_cable_length_table)
21 static const u16 e1000_igp_2_cable_length_table
[] = {
22 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
23 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
24 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
25 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
26 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
27 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
28 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
32 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
33 ARRAY_SIZE(e1000_igp_2_cable_length_table)
36 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
37 * @hw: pointer to the HW structure
39 * Read the PHY management control register and check whether a PHY reset
40 * is blocked. If a reset is not blocked return 0, otherwise
41 * return E1000_BLK_PHY_RESET (12).
43 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
49 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
53 * e1000e_get_phy_id - Retrieve the PHY ID and revision
54 * @hw: pointer to the HW structure
56 * Reads the PHY registers and stores the PHY ID and possibly the PHY
57 * revision in the hardware structure.
59 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
61 struct e1000_phy_info
*phy
= &hw
->phy
;
66 if (!phy
->ops
.read_reg
)
69 while (retry_count
< 2) {
70 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
74 phy
->id
= (u32
)(phy_id
<< 16);
76 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
80 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
81 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
83 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
93 * e1000e_phy_reset_dsp - Reset PHY DSP
94 * @hw: pointer to the HW structure
96 * Reset the digital signal processor.
98 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
102 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
106 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
110 * e1000e_read_phy_reg_mdic - Read MDI control register
111 * @hw: pointer to the HW structure
112 * @offset: register offset to be read
113 * @data: pointer to the read data
115 * Reads the MDI control register in the PHY at offset and stores the
116 * information read to data.
118 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
120 struct e1000_phy_info
*phy
= &hw
->phy
;
123 if (offset
> MAX_PHY_REG_ADDRESS
) {
124 e_dbg("PHY Address %d is out of range\n", offset
);
125 return -E1000_ERR_PARAM
;
128 /* Set up Op-code, Phy Address, and register offset in the MDI
129 * Control register. The MAC will take care of interfacing with the
130 * PHY to retrieve the desired data.
132 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
133 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
134 (E1000_MDIC_OP_READ
));
138 /* Poll the ready bit to see if the MDI read completed
139 * Increasing the time out as testing showed failures with
142 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
145 if (mdic
& E1000_MDIC_READY
)
148 if (!(mdic
& E1000_MDIC_READY
)) {
149 e_dbg("MDI Read did not complete\n");
150 return -E1000_ERR_PHY
;
152 if (mdic
& E1000_MDIC_ERROR
) {
153 e_dbg("MDI Error\n");
154 return -E1000_ERR_PHY
;
156 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
157 e_dbg("MDI Read offset error - requested %d, returned %d\n",
159 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
160 return -E1000_ERR_PHY
;
164 /* Allow some time after each MDIC transaction to avoid
165 * reading duplicate data in the next MDIC transaction.
167 if (hw
->mac
.type
== e1000_pch2lan
)
174 * e1000e_write_phy_reg_mdic - Write MDI control register
175 * @hw: pointer to the HW structure
176 * @offset: register offset to write to
177 * @data: data to write to register at offset
179 * Writes data to MDI control register in the PHY at offset.
181 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
183 struct e1000_phy_info
*phy
= &hw
->phy
;
186 if (offset
> MAX_PHY_REG_ADDRESS
) {
187 e_dbg("PHY Address %d is out of range\n", offset
);
188 return -E1000_ERR_PARAM
;
191 /* Set up Op-code, Phy Address, and register offset in the MDI
192 * Control register. The MAC will take care of interfacing with the
193 * PHY to retrieve the desired data.
195 mdic
= (((u32
)data
) |
196 (offset
<< E1000_MDIC_REG_SHIFT
) |
197 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
198 (E1000_MDIC_OP_WRITE
));
202 /* Poll the ready bit to see if the MDI read completed
203 * Increasing the time out as testing showed failures with
206 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
209 if (mdic
& E1000_MDIC_READY
)
212 if (!(mdic
& E1000_MDIC_READY
)) {
213 e_dbg("MDI Write did not complete\n");
214 return -E1000_ERR_PHY
;
216 if (mdic
& E1000_MDIC_ERROR
) {
217 e_dbg("MDI Error\n");
218 return -E1000_ERR_PHY
;
220 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
221 e_dbg("MDI Write offset error - requested %d, returned %d\n",
223 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
224 return -E1000_ERR_PHY
;
227 /* Allow some time after each MDIC transaction to avoid
228 * reading duplicate data in the next MDIC transaction.
230 if (hw
->mac
.type
== e1000_pch2lan
)
237 * e1000e_read_phy_reg_m88 - Read m88 PHY register
238 * @hw: pointer to the HW structure
239 * @offset: register offset to be read
240 * @data: pointer to the read data
242 * Acquires semaphore, if necessary, then reads the PHY register at offset
243 * and storing the retrieved information in data. Release any acquired
244 * semaphores before exiting.
246 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
250 ret_val
= hw
->phy
.ops
.acquire(hw
);
254 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
257 hw
->phy
.ops
.release(hw
);
263 * e1000e_write_phy_reg_m88 - Write m88 PHY register
264 * @hw: pointer to the HW structure
265 * @offset: register offset to write to
266 * @data: data to write at register offset
268 * Acquires semaphore, if necessary, then writes the data to PHY register
269 * at the offset. Release any acquired semaphores before exiting.
271 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
275 ret_val
= hw
->phy
.ops
.acquire(hw
);
279 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
282 hw
->phy
.ops
.release(hw
);
288 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
289 * @hw: pointer to the HW structure
290 * @page: page to set (shifted left when necessary)
292 * Sets PHY page required for PHY register access. Assumes semaphore is
293 * already acquired. Note, this function sets phy.addr to 1 so the caller
294 * must set it appropriately (if necessary) after this function returns.
296 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
298 e_dbg("Setting page 0x%x\n", page
);
302 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
306 * __e1000e_read_phy_reg_igp - Read igp PHY register
307 * @hw: pointer to the HW structure
308 * @offset: register offset to be read
309 * @data: pointer to the read data
310 * @locked: semaphore has already been acquired or not
312 * Acquires semaphore, if necessary, then reads the PHY register at offset
313 * and stores the retrieved information in data. Release any acquired
314 * semaphores before exiting.
316 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
322 if (!hw
->phy
.ops
.acquire
)
325 ret_val
= hw
->phy
.ops
.acquire(hw
);
330 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
331 ret_val
= e1000e_write_phy_reg_mdic(hw
,
332 IGP01E1000_PHY_PAGE_SELECT
,
335 ret_val
= e1000e_read_phy_reg_mdic(hw
,
336 MAX_PHY_REG_ADDRESS
& offset
,
339 hw
->phy
.ops
.release(hw
);
345 * e1000e_read_phy_reg_igp - Read igp PHY register
346 * @hw: pointer to the HW structure
347 * @offset: register offset to be read
348 * @data: pointer to the read data
350 * Acquires semaphore then reads the PHY register at offset and stores the
351 * retrieved information in data.
352 * Release the acquired semaphore before exiting.
354 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
356 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
360 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
361 * @hw: pointer to the HW structure
362 * @offset: register offset to be read
363 * @data: pointer to the read data
365 * Reads the PHY register at offset and stores the retrieved information
366 * in data. Assumes semaphore already acquired.
368 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
370 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
374 * e1000e_write_phy_reg_igp - Write igp PHY register
375 * @hw: pointer to the HW structure
376 * @offset: register offset to write to
377 * @data: data to write at register offset
378 * @locked: semaphore has already been acquired or not
380 * Acquires semaphore, if necessary, then writes the data to PHY register
381 * at the offset. Release any acquired semaphores before exiting.
383 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
389 if (!hw
->phy
.ops
.acquire
)
392 ret_val
= hw
->phy
.ops
.acquire(hw
);
397 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
398 ret_val
= e1000e_write_phy_reg_mdic(hw
,
399 IGP01E1000_PHY_PAGE_SELECT
,
402 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
&
405 hw
->phy
.ops
.release(hw
);
411 * e1000e_write_phy_reg_igp - Write igp PHY register
412 * @hw: pointer to the HW structure
413 * @offset: register offset to write to
414 * @data: data to write at register offset
416 * Acquires semaphore then writes the data to PHY register
417 * at the offset. Release any acquired semaphores before exiting.
419 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
421 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
425 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
426 * @hw: pointer to the HW structure
427 * @offset: register offset to write to
428 * @data: data to write at register offset
430 * Writes the data to PHY register at the offset.
431 * Assumes semaphore already acquired.
433 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
435 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
439 * __e1000_read_kmrn_reg - Read kumeran register
440 * @hw: pointer to the HW structure
441 * @offset: register offset to be read
442 * @data: pointer to the read data
443 * @locked: semaphore has already been acquired or not
445 * Acquires semaphore, if necessary. Then reads the PHY register at offset
446 * using the kumeran interface. The information retrieved is stored in data.
447 * Release any acquired semaphores before exiting.
449 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
457 if (!hw
->phy
.ops
.acquire
)
460 ret_val
= hw
->phy
.ops
.acquire(hw
);
465 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
466 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
467 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
472 kmrnctrlsta
= er32(KMRNCTRLSTA
);
473 *data
= (u16
)kmrnctrlsta
;
476 hw
->phy
.ops
.release(hw
);
482 * e1000e_read_kmrn_reg - Read kumeran register
483 * @hw: pointer to the HW structure
484 * @offset: register offset to be read
485 * @data: pointer to the read data
487 * Acquires semaphore then reads the PHY register at offset using the
488 * kumeran interface. The information retrieved is stored in data.
489 * Release the acquired semaphore before exiting.
491 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
493 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
497 * e1000e_read_kmrn_reg_locked - Read kumeran register
498 * @hw: pointer to the HW structure
499 * @offset: register offset to be read
500 * @data: pointer to the read data
502 * Reads the PHY register at offset using the kumeran interface. The
503 * information retrieved is stored in data.
504 * Assumes semaphore already acquired.
506 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
508 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
512 * __e1000_write_kmrn_reg - Write kumeran register
513 * @hw: pointer to the HW structure
514 * @offset: register offset to write to
515 * @data: data to write at register offset
516 * @locked: semaphore has already been acquired or not
518 * Acquires semaphore, if necessary. Then write the data to PHY register
519 * at the offset using the kumeran interface. Release any acquired semaphores
522 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
530 if (!hw
->phy
.ops
.acquire
)
533 ret_val
= hw
->phy
.ops
.acquire(hw
);
538 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
539 E1000_KMRNCTRLSTA_OFFSET
) | data
;
540 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
546 hw
->phy
.ops
.release(hw
);
552 * e1000e_write_kmrn_reg - Write kumeran register
553 * @hw: pointer to the HW structure
554 * @offset: register offset to write to
555 * @data: data to write at register offset
557 * Acquires semaphore then writes the data to the PHY register at the offset
558 * using the kumeran interface. Release the acquired semaphore before exiting.
560 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
562 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
566 * e1000e_write_kmrn_reg_locked - Write kumeran register
567 * @hw: pointer to the HW structure
568 * @offset: register offset to write to
569 * @data: data to write at register offset
571 * Write the data to PHY register at the offset using the kumeran interface.
572 * Assumes semaphore already acquired.
574 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
576 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
580 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
581 * @hw: pointer to the HW structure
583 * Sets up Master/slave mode
585 static s32
e1000_set_master_slave_mode(struct e1000_hw
*hw
)
590 /* Resolve Master/Slave mode */
591 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &phy_data
);
595 /* load defaults for future use */
596 hw
->phy
.original_ms_type
= (phy_data
& CTL1000_ENABLE_MASTER
) ?
597 ((phy_data
& CTL1000_AS_MASTER
) ?
598 e1000_ms_force_master
: e1000_ms_force_slave
) : e1000_ms_auto
;
600 switch (hw
->phy
.ms_type
) {
601 case e1000_ms_force_master
:
602 phy_data
|= (CTL1000_ENABLE_MASTER
| CTL1000_AS_MASTER
);
604 case e1000_ms_force_slave
:
605 phy_data
|= CTL1000_ENABLE_MASTER
;
606 phy_data
&= ~(CTL1000_AS_MASTER
);
609 phy_data
&= ~CTL1000_ENABLE_MASTER
;
615 return e1e_wphy(hw
, MII_CTRL1000
, phy_data
);
619 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620 * @hw: pointer to the HW structure
622 * Sets up Carrier-sense on Transmit and downshift values.
624 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
629 /* Enable CRS on Tx. This must be set for half-duplex operation. */
630 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
634 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
636 /* Enable downshift */
637 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
639 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
643 /* Set MDI/MDIX mode */
644 ret_val
= e1e_rphy(hw
, I82577_PHY_CTRL_2
, &phy_data
);
647 phy_data
&= ~I82577_PHY_CTRL2_MDIX_CFG_MASK
;
653 switch (hw
->phy
.mdix
) {
657 phy_data
|= I82577_PHY_CTRL2_MANUAL_MDIX
;
661 phy_data
|= I82577_PHY_CTRL2_AUTO_MDI_MDIX
;
664 ret_val
= e1e_wphy(hw
, I82577_PHY_CTRL_2
, phy_data
);
668 return e1000_set_master_slave_mode(hw
);
672 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
673 * @hw: pointer to the HW structure
675 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
676 * and downshift values are set also.
678 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
680 struct e1000_phy_info
*phy
= &hw
->phy
;
684 /* Enable CRS on Tx. This must be set for half-duplex operation. */
685 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
689 /* For BM PHY this bit is downshift enable */
690 if (phy
->type
!= e1000_phy_bm
)
691 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
694 * MDI/MDI-X = 0 (default)
695 * 0 - Auto for all speeds
698 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
700 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
704 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
707 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
710 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
714 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
719 * disable_polarity_correction = 0 (default)
720 * Automatic Correction for Reversed Cable Polarity
724 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
725 if (phy
->disable_polarity_correction
)
726 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
728 /* Enable downshift on BM (disabled by default) */
729 if (phy
->type
== e1000_phy_bm
) {
730 /* For 82574/82583, first disable then enable downshift */
731 if (phy
->id
== BME1000_E_PHY_ID_R2
) {
732 phy_data
&= ~BME1000_PSCR_ENABLE_DOWNSHIFT
;
733 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
,
737 /* Commit the changes. */
738 ret_val
= phy
->ops
.commit(hw
);
740 e_dbg("Error committing the PHY changes\n");
745 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
748 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
752 if ((phy
->type
== e1000_phy_m88
) &&
753 (phy
->revision
< E1000_REVISION_4
) &&
754 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
755 /* Force TX_CLK in the Extended PHY Specific Control Register
758 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
762 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
764 if ((phy
->revision
== 2) && (phy
->id
== M88E1111_I_PHY_ID
)) {
765 /* 82573L PHY - set the downshift counter to 5x. */
766 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
767 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
769 /* Configure Master and Slave downshift values */
770 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
771 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
772 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
773 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
775 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
780 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
781 /* Set PHY page 0, register 29 to 0x0003 */
782 ret_val
= e1e_wphy(hw
, 29, 0x0003);
786 /* Set PHY page 0, register 30 to 0x0000 */
787 ret_val
= e1e_wphy(hw
, 30, 0x0000);
792 /* Commit the changes. */
793 if (phy
->ops
.commit
) {
794 ret_val
= phy
->ops
.commit(hw
);
796 e_dbg("Error committing the PHY changes\n");
801 if (phy
->type
== e1000_phy_82578
) {
802 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
806 /* 82578 PHY - set the downshift count to 1x. */
807 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
808 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
809 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
818 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
819 * @hw: pointer to the HW structure
821 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
824 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
826 struct e1000_phy_info
*phy
= &hw
->phy
;
830 ret_val
= e1000_phy_hw_reset(hw
);
832 e_dbg("Error resetting the PHY.\n");
836 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
837 * timeout issues when LFS is enabled.
841 /* disable lplu d0 during driver init */
842 if (hw
->phy
.ops
.set_d0_lplu_state
) {
843 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
845 e_dbg("Error Disabling LPLU D0\n");
849 /* Configure mdi-mdix settings */
850 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
854 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
858 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
861 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
865 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
868 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
872 /* set auto-master slave resolution settings */
873 if (hw
->mac
.autoneg
) {
874 /* when autonegotiation advertisement is only 1000Mbps then we
875 * should disable SmartSpeed and enable Auto MasterSlave
876 * resolution as hardware default.
878 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
879 /* Disable SmartSpeed */
880 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
885 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
886 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
891 /* Set auto Master/Slave resolution process */
892 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &data
);
896 data
&= ~CTL1000_ENABLE_MASTER
;
897 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, data
);
902 ret_val
= e1000_set_master_slave_mode(hw
);
909 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
910 * @hw: pointer to the HW structure
912 * Reads the MII auto-neg advertisement register and/or the 1000T control
913 * register and if the PHY is already setup for auto-negotiation, then
914 * return successful. Otherwise, setup advertisement and flow control to
915 * the appropriate values for the wanted auto-negotiation.
917 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
919 struct e1000_phy_info
*phy
= &hw
->phy
;
921 u16 mii_autoneg_adv_reg
;
922 u16 mii_1000t_ctrl_reg
= 0;
924 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
926 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
927 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_autoneg_adv_reg
);
931 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
932 /* Read the MII 1000Base-T Control Register (Address 9). */
933 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &mii_1000t_ctrl_reg
);
938 /* Need to parse both autoneg_advertised and fc and set up
939 * the appropriate PHY registers. First we will parse for
940 * autoneg_advertised software override. Since we can advertise
941 * a plethora of combinations, we need to check each bit
945 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
946 * Advertisement Register (Address 4) and the 1000 mb speed bits in
947 * the 1000Base-T Control Register (Address 9).
949 mii_autoneg_adv_reg
&= ~(ADVERTISE_100FULL
|
951 ADVERTISE_10FULL
| ADVERTISE_10HALF
);
952 mii_1000t_ctrl_reg
&= ~(ADVERTISE_1000HALF
| ADVERTISE_1000FULL
);
954 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
956 /* Do we want to advertise 10 Mb Half Duplex? */
957 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
958 e_dbg("Advertise 10mb Half duplex\n");
959 mii_autoneg_adv_reg
|= ADVERTISE_10HALF
;
962 /* Do we want to advertise 10 Mb Full Duplex? */
963 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
964 e_dbg("Advertise 10mb Full duplex\n");
965 mii_autoneg_adv_reg
|= ADVERTISE_10FULL
;
968 /* Do we want to advertise 100 Mb Half Duplex? */
969 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
970 e_dbg("Advertise 100mb Half duplex\n");
971 mii_autoneg_adv_reg
|= ADVERTISE_100HALF
;
974 /* Do we want to advertise 100 Mb Full Duplex? */
975 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
976 e_dbg("Advertise 100mb Full duplex\n");
977 mii_autoneg_adv_reg
|= ADVERTISE_100FULL
;
980 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
981 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
982 e_dbg("Advertise 1000mb Half duplex request denied!\n");
984 /* Do we want to advertise 1000 Mb Full Duplex? */
985 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
986 e_dbg("Advertise 1000mb Full duplex\n");
987 mii_1000t_ctrl_reg
|= ADVERTISE_1000FULL
;
990 /* Check for a software override of the flow control settings, and
991 * setup the PHY advertisement registers accordingly. If
992 * auto-negotiation is enabled, then software will have to set the
993 * "PAUSE" bits to the correct value in the Auto-Negotiation
994 * Advertisement Register (MII_ADVERTISE) and re-start auto-
997 * The possible values of the "fc" parameter are:
998 * 0: Flow control is completely disabled
999 * 1: Rx flow control is enabled (we can receive pause frames
1000 * but not send pause frames).
1001 * 2: Tx flow control is enabled (we can send pause frames
1002 * but we do not support receiving pause frames).
1003 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1004 * other: No software override. The flow control configuration
1005 * in the EEPROM is used.
1007 switch (hw
->fc
.current_mode
) {
1009 /* Flow control (Rx & Tx) is completely disabled by a
1010 * software over-ride.
1012 mii_autoneg_adv_reg
&=
1013 ~(ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1015 case e1000_fc_rx_pause
:
1016 /* Rx Flow control is enabled, and Tx Flow control is
1017 * disabled, by a software over-ride.
1019 * Since there really isn't a way to advertise that we are
1020 * capable of Rx Pause ONLY, we will advertise that we
1021 * support both symmetric and asymmetric Rx PAUSE. Later
1022 * (in e1000e_config_fc_after_link_up) we will disable the
1023 * hw's ability to send PAUSE frames.
1025 mii_autoneg_adv_reg
|=
1026 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1028 case e1000_fc_tx_pause
:
1029 /* Tx Flow control is enabled, and Rx Flow control is
1030 * disabled, by a software over-ride.
1032 mii_autoneg_adv_reg
|= ADVERTISE_PAUSE_ASYM
;
1033 mii_autoneg_adv_reg
&= ~ADVERTISE_PAUSE_CAP
;
1036 /* Flow control (both Rx and Tx) is enabled by a software
1039 mii_autoneg_adv_reg
|=
1040 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1043 e_dbg("Flow control param set incorrectly\n");
1044 return -E1000_ERR_CONFIG
;
1047 ret_val
= e1e_wphy(hw
, MII_ADVERTISE
, mii_autoneg_adv_reg
);
1051 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1053 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1054 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, mii_1000t_ctrl_reg
);
1060 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 * @hw: pointer to the HW structure
1063 * Performs initial bounds checking on autoneg advertisement parameter, then
1064 * configure to advertise the full capability. Setup the PHY to autoneg
1065 * and restart the negotiation process between the link partner. If
1066 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1068 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1070 struct e1000_phy_info
*phy
= &hw
->phy
;
1074 /* Perform some bounds checking on the autoneg advertisement
1077 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1079 /* If autoneg_advertised is zero, we assume it was not defaulted
1080 * by the calling code so we set to advertise full capability.
1082 if (!phy
->autoneg_advertised
)
1083 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1085 e_dbg("Reconfiguring auto-neg advertisement params\n");
1086 ret_val
= e1000_phy_setup_autoneg(hw
);
1088 e_dbg("Error Setting up Auto-Negotiation\n");
1091 e_dbg("Restarting Auto-Neg\n");
1093 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094 * the Auto Neg Restart bit in the PHY control register.
1096 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
1100 phy_ctrl
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1101 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
1105 /* Does the user want to wait for Auto-Neg to complete here, or
1106 * check at a later time (for example, callback routine).
1108 if (phy
->autoneg_wait_to_complete
) {
1109 ret_val
= e1000_wait_autoneg(hw
);
1111 e_dbg("Error while waiting for autoneg to complete\n");
1116 hw
->mac
.get_link_status
= true;
1122 * e1000e_setup_copper_link - Configure copper link settings
1123 * @hw: pointer to the HW structure
1125 * Calls the appropriate function to configure the link for auto-neg or forced
1126 * speed and duplex. Then we check for link, once link is established calls
1127 * to configure collision distance and flow control are called. If link is
1128 * not established, we return -E1000_ERR_PHY (-2).
1130 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1135 if (hw
->mac
.autoneg
) {
1136 /* Setup autoneg and flow control advertisement and perform
1139 ret_val
= e1000_copper_link_autoneg(hw
);
1143 /* PHY will be set to 10H, 10F, 100H or 100F
1144 * depending on user settings.
1146 e_dbg("Forcing Speed and Duplex\n");
1147 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1149 e_dbg("Error Forcing Speed and Duplex\n");
1154 /* Check link status. Wait up to 100 microseconds for link to become
1157 ret_val
= e1000e_phy_has_link_generic(hw
, COPPER_LINK_UP_LIMIT
, 10,
1163 e_dbg("Valid link established!!!\n");
1164 hw
->mac
.ops
.config_collision_dist(hw
);
1165 ret_val
= e1000e_config_fc_after_link_up(hw
);
1167 e_dbg("Unable to establish link!!!\n");
1174 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 * @hw: pointer to the HW structure
1177 * Calls the PHY setup function to force speed and duplex. Clears the
1178 * auto-crossover to force MDI manually. Waits for link and returns
1179 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1181 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1183 struct e1000_phy_info
*phy
= &hw
->phy
;
1188 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1192 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1194 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1198 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1199 * forced whenever speed and duplex are forced.
1201 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1205 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1206 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1208 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1212 e_dbg("IGP PSCR: %X\n", phy_data
);
1216 if (phy
->autoneg_wait_to_complete
) {
1217 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1219 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1225 e_dbg("Link taking longer than expected.\n");
1228 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1236 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 * @hw: pointer to the HW structure
1239 * Calls the PHY setup function to force speed and duplex. Clears the
1240 * auto-crossover to force MDI manually. Resets the PHY to commit the
1241 * changes. If time expires while waiting for link up, we reset the DSP.
1242 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1243 * successful completion, else return corresponding error code.
1245 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1247 struct e1000_phy_info
*phy
= &hw
->phy
;
1252 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1253 * forced whenever speed and duplex are forced.
1255 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1259 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1260 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1264 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1266 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1270 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1272 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1276 /* Reset the phy to commit changes. */
1277 if (hw
->phy
.ops
.commit
) {
1278 ret_val
= hw
->phy
.ops
.commit(hw
);
1283 if (phy
->autoneg_wait_to_complete
) {
1284 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1286 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1292 if (hw
->phy
.type
!= e1000_phy_m88
) {
1293 e_dbg("Link taking longer than expected.\n");
1295 /* We didn't get link.
1296 * Reset the DSP and cross our fingers.
1298 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1302 ret_val
= e1000e_phy_reset_dsp(hw
);
1309 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1315 if (hw
->phy
.type
!= e1000_phy_m88
)
1318 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1322 /* Resetting the phy means we need to re-force TX_CLK in the
1323 * Extended PHY Specific Control Register to 25MHz clock from
1324 * the reset value of 2.5MHz.
1326 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1327 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1331 /* In addition, we must re-enable CRS on Tx for both half and full
1334 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1338 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1339 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1345 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 * @hw: pointer to the HW structure
1348 * Forces the speed and duplex settings of the PHY.
1349 * This is a function pointer entry point only called by
1350 * PHY setup routines.
1352 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1354 struct e1000_phy_info
*phy
= &hw
->phy
;
1359 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
1363 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1365 ret_val
= e1e_wphy(hw
, MII_BMCR
, data
);
1369 /* Disable MDI-X support for 10/100 */
1370 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1374 data
&= ~IFE_PMC_AUTO_MDIX
;
1375 data
&= ~IFE_PMC_FORCE_MDIX
;
1377 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1381 e_dbg("IFE PMC: %X\n", data
);
1385 if (phy
->autoneg_wait_to_complete
) {
1386 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1388 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1394 e_dbg("Link taking longer than expected.\n");
1397 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1407 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 * @hw: pointer to the HW structure
1409 * @phy_ctrl: pointer to current value of MII_BMCR
1411 * Forces speed and duplex on the PHY by doing the following: disable flow
1412 * control, force speed/duplex on the MAC, disable auto speed detection,
1413 * disable auto-negotiation, configure duplex, configure speed, configure
1414 * the collision distance, write configuration to CTRL register. The
1415 * caller must write to the MII_BMCR register for these settings to
1418 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1420 struct e1000_mac_info
*mac
= &hw
->mac
;
1423 /* Turn off flow control when forcing speed/duplex */
1424 hw
->fc
.current_mode
= e1000_fc_none
;
1426 /* Force speed/duplex on the mac */
1428 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1429 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1431 /* Disable Auto Speed Detection */
1432 ctrl
&= ~E1000_CTRL_ASDE
;
1434 /* Disable autoneg on the phy */
1435 *phy_ctrl
&= ~BMCR_ANENABLE
;
1437 /* Forcing Full or Half Duplex? */
1438 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1439 ctrl
&= ~E1000_CTRL_FD
;
1440 *phy_ctrl
&= ~BMCR_FULLDPLX
;
1441 e_dbg("Half Duplex\n");
1443 ctrl
|= E1000_CTRL_FD
;
1444 *phy_ctrl
|= BMCR_FULLDPLX
;
1445 e_dbg("Full Duplex\n");
1448 /* Forcing 10mb or 100mb? */
1449 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1450 ctrl
|= E1000_CTRL_SPD_100
;
1451 *phy_ctrl
|= BMCR_SPEED100
;
1452 *phy_ctrl
&= ~BMCR_SPEED1000
;
1453 e_dbg("Forcing 100mb\n");
1455 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1456 *phy_ctrl
&= ~(BMCR_SPEED1000
| BMCR_SPEED100
);
1457 e_dbg("Forcing 10mb\n");
1460 hw
->mac
.ops
.config_collision_dist(hw
);
1466 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 * @hw: pointer to the HW structure
1468 * @active: boolean used to enable/disable lplu
1470 * Success returns 0, Failure returns 1
1472 * The low power link up (lplu) state is set to the power management level D3
1473 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1475 * is used during Dx states where the power conservation is most important.
1476 * During driver activity, SmartSpeed should be enabled so performance is
1479 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1481 struct e1000_phy_info
*phy
= &hw
->phy
;
1485 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1490 data
&= ~IGP02E1000_PM_D3_LPLU
;
1491 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1494 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1495 * during Dx states where the power conservation is most
1496 * important. During driver activity we should enable
1497 * SmartSpeed, so performance is maintained.
1499 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1500 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1505 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1506 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1510 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1511 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1516 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1517 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1522 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1523 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1524 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1525 data
|= IGP02E1000_PM_D3_LPLU
;
1526 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1530 /* When LPLU is enabled, we should disable SmartSpeed */
1531 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1535 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1536 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1543 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 * @hw: pointer to the HW structure
1546 * Success returns 0, Failure returns 1
1548 * A downshift is detected by querying the PHY link health.
1550 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1552 struct e1000_phy_info
*phy
= &hw
->phy
;
1554 u16 phy_data
, offset
, mask
;
1556 switch (phy
->type
) {
1558 case e1000_phy_gg82563
:
1560 case e1000_phy_82578
:
1561 offset
= M88E1000_PHY_SPEC_STATUS
;
1562 mask
= M88E1000_PSSR_DOWNSHIFT
;
1564 case e1000_phy_igp_2
:
1565 case e1000_phy_igp_3
:
1566 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1567 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1570 /* speed downshift not supported */
1571 phy
->speed_downgraded
= false;
1575 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1578 phy
->speed_downgraded
= !!(phy_data
& mask
);
1584 * e1000_check_polarity_m88 - Checks the polarity.
1585 * @hw: pointer to the HW structure
1587 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1589 * Polarity is determined based on the PHY specific status register.
1591 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1593 struct e1000_phy_info
*phy
= &hw
->phy
;
1597 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1600 phy
->cable_polarity
= ((data
& M88E1000_PSSR_REV_POLARITY
)
1601 ? e1000_rev_polarity_reversed
1602 : e1000_rev_polarity_normal
);
1608 * e1000_check_polarity_igp - Checks the polarity.
1609 * @hw: pointer to the HW structure
1611 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1613 * Polarity is determined based on the PHY port status register, and the
1614 * current speed (since there is no polarity at 100Mbps).
1616 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1618 struct e1000_phy_info
*phy
= &hw
->phy
;
1620 u16 data
, offset
, mask
;
1622 /* Polarity is determined based on the speed of
1625 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1629 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1630 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1631 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1632 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1634 /* This really only applies to 10Mbps since
1635 * there is no polarity for 100Mbps (always 0).
1637 offset
= IGP01E1000_PHY_PORT_STATUS
;
1638 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1641 ret_val
= e1e_rphy(hw
, offset
, &data
);
1644 phy
->cable_polarity
= ((data
& mask
)
1645 ? e1000_rev_polarity_reversed
1646 : e1000_rev_polarity_normal
);
1652 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 * @hw: pointer to the HW structure
1655 * Polarity is determined on the polarity reversal feature being enabled.
1657 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1659 struct e1000_phy_info
*phy
= &hw
->phy
;
1661 u16 phy_data
, offset
, mask
;
1663 /* Polarity is determined based on the reversal feature being enabled.
1665 if (phy
->polarity_correction
) {
1666 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1667 mask
= IFE_PESC_POLARITY_REVERSED
;
1669 offset
= IFE_PHY_SPECIAL_CONTROL
;
1670 mask
= IFE_PSC_FORCE_POLARITY
;
1673 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1676 phy
->cable_polarity
= ((phy_data
& mask
)
1677 ? e1000_rev_polarity_reversed
1678 : e1000_rev_polarity_normal
);
1684 * e1000_wait_autoneg - Wait for auto-neg completion
1685 * @hw: pointer to the HW structure
1687 * Waits for auto-negotiation to complete or for the auto-negotiation time
1688 * limit to expire, which ever happens first.
1690 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1695 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1697 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1700 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1703 if (phy_status
& BMSR_ANEGCOMPLETE
)
1708 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1715 * e1000e_phy_has_link_generic - Polls PHY for link
1716 * @hw: pointer to the HW structure
1717 * @iterations: number of times to poll for link
1718 * @usec_interval: delay between polling attempts
1719 * @success: pointer to whether polling was successful or not
1721 * Polls the PHY status register for link, 'iterations' number of times.
1723 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1724 u32 usec_interval
, bool *success
)
1730 for (i
= 0; i
< iterations
; i
++) {
1731 /* Some PHYs require the MII_BMSR register to be read
1732 * twice due to the link bit being sticky. No harm doing
1733 * it across the board.
1735 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1737 /* If the first read fails, another entity may have
1738 * ownership of the resources, wait and try again to
1739 * see if they have relinquished the resources yet.
1741 if (usec_interval
>= 1000)
1742 msleep(usec_interval
/ 1000);
1744 udelay(usec_interval
);
1746 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1749 if (phy_status
& BMSR_LSTATUS
) {
1753 if (usec_interval
>= 1000)
1754 msleep(usec_interval
/ 1000);
1756 udelay(usec_interval
);
1763 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 * @hw: pointer to the HW structure
1766 * Reads the PHY specific status register to retrieve the cable length
1767 * information. The cable length is determined by averaging the minimum and
1768 * maximum values to get the "average" cable length. The m88 PHY has four
1769 * possible cable length values, which are:
1770 * Register Value Cable Length
1774 * 3 110 - 140 meters
1777 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1779 struct e1000_phy_info
*phy
= &hw
->phy
;
1781 u16 phy_data
, index
;
1783 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1787 index
= ((phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1788 M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
1790 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1)
1791 return -E1000_ERR_PHY
;
1793 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1794 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1796 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1802 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 * @hw: pointer to the HW structure
1805 * The automatic gain control (agc) normalizes the amplitude of the
1806 * received signal, adjusting for the attenuation produced by the
1807 * cable. By reading the AGC registers, which represent the
1808 * combination of coarse and fine gain value, the value can be put
1809 * into a lookup table to obtain the approximate cable length
1812 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1814 struct e1000_phy_info
*phy
= &hw
->phy
;
1816 u16 phy_data
, i
, agc_value
= 0;
1817 u16 cur_agc_index
, max_agc_index
= 0;
1818 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1819 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1820 IGP02E1000_PHY_AGC_A
,
1821 IGP02E1000_PHY_AGC_B
,
1822 IGP02E1000_PHY_AGC_C
,
1823 IGP02E1000_PHY_AGC_D
1826 /* Read the AGC registers for all channels */
1827 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1828 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1832 /* Getting bits 15:9, which represent the combination of
1833 * coarse and fine gain values. The result is a number
1834 * that can be put into the lookup table to obtain the
1835 * approximate cable length.
1837 cur_agc_index
= ((phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1838 IGP02E1000_AGC_LENGTH_MASK
);
1840 /* Array index bound check. */
1841 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1842 (cur_agc_index
== 0))
1843 return -E1000_ERR_PHY
;
1845 /* Remove min & max AGC values from calculation. */
1846 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1847 e1000_igp_2_cable_length_table
[cur_agc_index
])
1848 min_agc_index
= cur_agc_index
;
1849 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1850 e1000_igp_2_cable_length_table
[cur_agc_index
])
1851 max_agc_index
= cur_agc_index
;
1853 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1856 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1857 e1000_igp_2_cable_length_table
[max_agc_index
]);
1858 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1860 /* Calculate cable length with the error range of +/- 10 meters. */
1861 phy
->min_cable_length
= (((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1862 (agc_value
- IGP02E1000_AGC_RANGE
) : 0);
1863 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1865 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1871 * e1000e_get_phy_info_m88 - Retrieve PHY information
1872 * @hw: pointer to the HW structure
1874 * Valid for only copper links. Read the PHY status register (sticky read)
1875 * to verify that link is up. Read the PHY special control register to
1876 * determine the polarity and 10base-T extended distance. Read the PHY
1877 * special status register to determine MDI/MDIx and current speed. If
1878 * speed is 1000, then determine cable length, local and remote receiver.
1880 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1882 struct e1000_phy_info
*phy
= &hw
->phy
;
1887 if (phy
->media_type
!= e1000_media_type_copper
) {
1888 e_dbg("Phy info is only valid for copper media\n");
1889 return -E1000_ERR_CONFIG
;
1892 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1897 e_dbg("Phy info is only valid if link is up\n");
1898 return -E1000_ERR_CONFIG
;
1901 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1905 phy
->polarity_correction
= !!(phy_data
&
1906 M88E1000_PSCR_POLARITY_REVERSAL
);
1908 ret_val
= e1000_check_polarity_m88(hw
);
1912 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1916 phy
->is_mdix
= !!(phy_data
& M88E1000_PSSR_MDIX
);
1918 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1919 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1923 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
1927 phy
->local_rx
= (phy_data
& LPA_1000LOCALRXOK
)
1928 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1930 phy
->remote_rx
= (phy_data
& LPA_1000REMRXOK
)
1931 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1933 /* Set values to "undefined" */
1934 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1935 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1936 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1943 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 * @hw: pointer to the HW structure
1946 * Read PHY status to determine if link is up. If link is up, then
1947 * set/determine 10base-T extended distance and polarity correction. Read
1948 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1949 * determine on the cable length, local and remote receiver.
1951 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1953 struct e1000_phy_info
*phy
= &hw
->phy
;
1958 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1963 e_dbg("Phy info is only valid if link is up\n");
1964 return -E1000_ERR_CONFIG
;
1967 phy
->polarity_correction
= true;
1969 ret_val
= e1000_check_polarity_igp(hw
);
1973 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1977 phy
->is_mdix
= !!(data
& IGP01E1000_PSSR_MDIX
);
1979 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1980 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1981 ret_val
= phy
->ops
.get_cable_length(hw
);
1985 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
1989 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
1990 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1992 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
1993 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1995 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1996 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1997 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2004 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 * @hw: pointer to the HW structure
2007 * Populates "phy" structure with various feature states.
2009 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2011 struct e1000_phy_info
*phy
= &hw
->phy
;
2016 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2021 e_dbg("Phy info is only valid if link is up\n");
2022 return -E1000_ERR_CONFIG
;
2025 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2028 phy
->polarity_correction
= !(data
& IFE_PSC_AUTO_POLARITY_DISABLE
);
2030 if (phy
->polarity_correction
) {
2031 ret_val
= e1000_check_polarity_ife(hw
);
2035 /* Polarity is forced */
2036 phy
->cable_polarity
= ((data
& IFE_PSC_FORCE_POLARITY
)
2037 ? e1000_rev_polarity_reversed
2038 : e1000_rev_polarity_normal
);
2041 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2045 phy
->is_mdix
= !!(data
& IFE_PMC_MDIX_STATUS
);
2047 /* The following parameters are undefined for 10/100 operation. */
2048 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2049 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2050 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2056 * e1000e_phy_sw_reset - PHY software reset
2057 * @hw: pointer to the HW structure
2059 * Does a software reset of the PHY by reading the PHY control register and
2060 * setting/write the control register reset bit to the PHY.
2062 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2067 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
2071 phy_ctrl
|= BMCR_RESET
;
2072 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
2082 * e1000e_phy_hw_reset_generic - PHY hardware reset
2083 * @hw: pointer to the HW structure
2085 * Verify the reset block is not blocking us from resetting. Acquire
2086 * semaphore (if necessary) and read/set/write the device control reset
2087 * bit in the PHY. Wait the appropriate delay time for the device to
2088 * reset and release the semaphore (if necessary).
2090 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2092 struct e1000_phy_info
*phy
= &hw
->phy
;
2096 if (phy
->ops
.check_reset_block
) {
2097 ret_val
= phy
->ops
.check_reset_block(hw
);
2102 ret_val
= phy
->ops
.acquire(hw
);
2107 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2110 udelay(phy
->reset_delay_us
);
2115 usleep_range(150, 300);
2117 phy
->ops
.release(hw
);
2119 return phy
->ops
.get_cfg_done(hw
);
2123 * e1000e_get_cfg_done_generic - Generic configuration done
2124 * @hw: pointer to the HW structure
2126 * Generic function to wait 10 milli-seconds for configuration to complete
2127 * and return success.
2129 s32
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused
*hw
)
2137 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 * @hw: pointer to the HW structure
2140 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2142 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2144 e_dbg("Running IGP 3 PHY init script\n");
2146 /* PHY init IGP 3 */
2147 /* Enable rise/fall, 10-mode work in class-A */
2148 e1e_wphy(hw
, 0x2F5B, 0x9018);
2149 /* Remove all caps from Replica path filter */
2150 e1e_wphy(hw
, 0x2F52, 0x0000);
2151 /* Bias trimming for ADC, AFE and Driver (Default) */
2152 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2153 /* Increase Hybrid poly bias */
2154 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2155 /* Add 4% to Tx amplitude in Gig mode */
2156 e1e_wphy(hw
, 0x2010, 0x10B0);
2157 /* Disable trimming (TTT) */
2158 e1e_wphy(hw
, 0x2011, 0x0000);
2159 /* Poly DC correction to 94.6% + 2% for all channels */
2160 e1e_wphy(hw
, 0x20DD, 0x249A);
2161 /* ABS DC correction to 95.9% */
2162 e1e_wphy(hw
, 0x20DE, 0x00D3);
2163 /* BG temp curve trim */
2164 e1e_wphy(hw
, 0x28B4, 0x04CE);
2165 /* Increasing ADC OPAMP stage 1 currents to max */
2166 e1e_wphy(hw
, 0x2F70, 0x29E4);
2167 /* Force 1000 ( required for enabling PHY regs configuration) */
2168 e1e_wphy(hw
, 0x0000, 0x0140);
2169 /* Set upd_freq to 6 */
2170 e1e_wphy(hw
, 0x1F30, 0x1606);
2172 e1e_wphy(hw
, 0x1F31, 0xB814);
2173 /* Disable adaptive fixed FFE (Default) */
2174 e1e_wphy(hw
, 0x1F35, 0x002A);
2175 /* Enable FFE hysteresis */
2176 e1e_wphy(hw
, 0x1F3E, 0x0067);
2177 /* Fixed FFE for short cable lengths */
2178 e1e_wphy(hw
, 0x1F54, 0x0065);
2179 /* Fixed FFE for medium cable lengths */
2180 e1e_wphy(hw
, 0x1F55, 0x002A);
2181 /* Fixed FFE for long cable lengths */
2182 e1e_wphy(hw
, 0x1F56, 0x002A);
2183 /* Enable Adaptive Clip Threshold */
2184 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2185 /* AHT reset limit to 1 */
2186 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2187 /* Set AHT master delay to 127 msec */
2188 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2189 /* Set scan bits for AHT */
2190 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2191 /* Set AHT Preset bits */
2192 e1e_wphy(hw
, 0x1F79, 0x0210);
2193 /* Change integ_factor of channel A to 3 */
2194 e1e_wphy(hw
, 0x1895, 0x0003);
2195 /* Change prop_factor of channels BCD to 8 */
2196 e1e_wphy(hw
, 0x1796, 0x0008);
2197 /* Change cg_icount + enable integbp for channels BCD */
2198 e1e_wphy(hw
, 0x1798, 0xD008);
2199 /* Change cg_icount + enable integbp + change prop_factor_master
2200 * to 8 for channel A
2202 e1e_wphy(hw
, 0x1898, 0xD918);
2203 /* Disable AHT in Slave mode on channel A */
2204 e1e_wphy(hw
, 0x187A, 0x0800);
2205 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2208 e1e_wphy(hw
, 0x0019, 0x008D);
2209 /* Enable restart AN on an1000_dis change */
2210 e1e_wphy(hw
, 0x001B, 0x2080);
2211 /* Enable wh_fifo read clock in 10/100 modes */
2212 e1e_wphy(hw
, 0x0014, 0x0045);
2213 /* Restart AN, Speed selection is 1000 */
2214 e1e_wphy(hw
, 0x0000, 0x1340);
2220 * e1000e_get_phy_type_from_id - Get PHY type from id
2221 * @phy_id: phy_id read from the phy
2223 * Returns the phy type from the id.
2225 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2227 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2230 case M88E1000_I_PHY_ID
:
2231 case M88E1000_E_PHY_ID
:
2232 case M88E1111_I_PHY_ID
:
2233 case M88E1011_I_PHY_ID
:
2234 phy_type
= e1000_phy_m88
;
2236 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2237 phy_type
= e1000_phy_igp_2
;
2239 case GG82563_E_PHY_ID
:
2240 phy_type
= e1000_phy_gg82563
;
2242 case IGP03E1000_E_PHY_ID
:
2243 phy_type
= e1000_phy_igp_3
;
2246 case IFE_PLUS_E_PHY_ID
:
2247 case IFE_C_E_PHY_ID
:
2248 phy_type
= e1000_phy_ife
;
2250 case BME1000_E_PHY_ID
:
2251 case BME1000_E_PHY_ID_R2
:
2252 phy_type
= e1000_phy_bm
;
2254 case I82578_E_PHY_ID
:
2255 phy_type
= e1000_phy_82578
;
2257 case I82577_E_PHY_ID
:
2258 phy_type
= e1000_phy_82577
;
2260 case I82579_E_PHY_ID
:
2261 phy_type
= e1000_phy_82579
;
2264 phy_type
= e1000_phy_i217
;
2267 phy_type
= e1000_phy_unknown
;
2274 * e1000e_determine_phy_address - Determines PHY address.
2275 * @hw: pointer to the HW structure
2277 * This uses a trial and error method to loop through possible PHY
2278 * addresses. It tests each by reading the PHY ID registers and
2279 * checking for a match.
2281 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2285 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2287 hw
->phy
.id
= phy_type
;
2289 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2290 hw
->phy
.addr
= phy_addr
;
2294 e1000e_get_phy_id(hw
);
2295 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2297 /* If phy_type is valid, break - we found our
2300 if (phy_type
!= e1000_phy_unknown
)
2303 usleep_range(1000, 2000);
2308 return -E1000_ERR_PHY_TYPE
;
2312 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 * @page: page to access
2315 * Returns the phy address for the page requested.
2317 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2321 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2328 * e1000e_write_phy_reg_bm - Write BM PHY register
2329 * @hw: pointer to the HW structure
2330 * @offset: register offset to write to
2331 * @data: data to write at register offset
2333 * Acquires semaphore, if necessary, then writes the data to PHY register
2334 * at the offset. Release any acquired semaphores before exiting.
2336 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2339 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2341 ret_val
= hw
->phy
.ops
.acquire(hw
);
2345 /* Page 800 works differently than the rest so it has its own func */
2346 if (page
== BM_WUC_PAGE
) {
2347 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2352 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2354 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2355 u32 page_shift
, page_select
;
2357 /* Page select is register 31 for phy address 1 and 22 for
2358 * phy address 2 and 3. Page select is shifted only for
2361 if (hw
->phy
.addr
== 1) {
2362 page_shift
= IGP_PAGE_SHIFT
;
2363 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2366 page_select
= BM_PHY_PAGE_SELECT
;
2369 /* Page is shifted left, PHY expects (page x 32) */
2370 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2371 (page
<< page_shift
));
2376 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2380 hw
->phy
.ops
.release(hw
);
2385 * e1000e_read_phy_reg_bm - Read BM PHY register
2386 * @hw: pointer to the HW structure
2387 * @offset: register offset to be read
2388 * @data: pointer to the read data
2390 * Acquires semaphore, if necessary, then reads the PHY register at offset
2391 * and storing the retrieved information in data. Release any acquired
2392 * semaphores before exiting.
2394 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2397 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2399 ret_val
= hw
->phy
.ops
.acquire(hw
);
2403 /* Page 800 works differently than the rest so it has its own func */
2404 if (page
== BM_WUC_PAGE
) {
2405 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2410 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2412 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2413 u32 page_shift
, page_select
;
2415 /* Page select is register 31 for phy address 1 and 22 for
2416 * phy address 2 and 3. Page select is shifted only for
2419 if (hw
->phy
.addr
== 1) {
2420 page_shift
= IGP_PAGE_SHIFT
;
2421 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2424 page_select
= BM_PHY_PAGE_SELECT
;
2427 /* Page is shifted left, PHY expects (page x 32) */
2428 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2429 (page
<< page_shift
));
2434 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2437 hw
->phy
.ops
.release(hw
);
2442 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2443 * @hw: pointer to the HW structure
2444 * @offset: register offset to be read
2445 * @data: pointer to the read data
2447 * Acquires semaphore, if necessary, then reads the PHY register at offset
2448 * and storing the retrieved information in data. Release any acquired
2449 * semaphores before exiting.
2451 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2454 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2456 ret_val
= hw
->phy
.ops
.acquire(hw
);
2460 /* Page 800 works differently than the rest so it has its own func */
2461 if (page
== BM_WUC_PAGE
) {
2462 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2469 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2470 /* Page is shifted left, PHY expects (page x 32) */
2471 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2478 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2481 hw
->phy
.ops
.release(hw
);
2486 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2487 * @hw: pointer to the HW structure
2488 * @offset: register offset to write to
2489 * @data: data to write at register offset
2491 * Acquires semaphore, if necessary, then writes the data to PHY register
2492 * at the offset. Release any acquired semaphores before exiting.
2494 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2497 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2499 ret_val
= hw
->phy
.ops
.acquire(hw
);
2503 /* Page 800 works differently than the rest so it has its own func */
2504 if (page
== BM_WUC_PAGE
) {
2505 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2512 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2513 /* Page is shifted left, PHY expects (page x 32) */
2514 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2521 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2525 hw
->phy
.ops
.release(hw
);
2530 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2531 * @hw: pointer to the HW structure
2532 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2534 * Assumes semaphore already acquired and phy_reg points to a valid memory
2535 * address to store contents of the BM_WUC_ENABLE_REG register.
2537 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2542 /* All page select, port ctrl and wakeup registers use phy address 1 */
2545 /* Select Port Control Registers page */
2546 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2548 e_dbg("Could not set Port Control page\n");
2552 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2554 e_dbg("Could not read PHY register %d.%d\n",
2555 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2559 /* Enable both PHY wakeup mode and Wakeup register page writes.
2560 * Prevent a power state change by disabling ME and Host PHY wakeup.
2563 temp
|= BM_WUC_ENABLE_BIT
;
2564 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2566 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2568 e_dbg("Could not write PHY register %d.%d\n",
2569 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2573 /* Select Host Wakeup Registers page - caller now able to write
2574 * registers on the Wakeup registers page
2576 return e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2580 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2581 * @hw: pointer to the HW structure
2582 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2584 * Restore BM_WUC_ENABLE_REG to its original value.
2586 * Assumes semaphore already acquired and *phy_reg is the contents of the
2587 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2590 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2594 /* Select Port Control Registers page */
2595 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2597 e_dbg("Could not set Port Control page\n");
2601 /* Restore 769.17 to its original value */
2602 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2604 e_dbg("Could not restore PHY register %d.%d\n",
2605 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2611 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2612 * @hw: pointer to the HW structure
2613 * @offset: register offset to be read or written
2614 * @data: pointer to the data to read or write
2615 * @read: determines if operation is read or write
2616 * @page_set: BM_WUC_PAGE already set and access enabled
2618 * Read the PHY register at offset and store the retrieved information in
2619 * data, or write data to PHY register at offset. Note the procedure to
2620 * access the PHY wakeup registers is different than reading the other PHY
2621 * registers. It works as such:
2622 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2623 * 2) Set page to 800 for host (801 if we were manageability)
2624 * 3) Write the address using the address opcode (0x11)
2625 * 4) Read or write the data using the data opcode (0x12)
2626 * 5) Restore 769.17.2 to its original value
2628 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2629 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2631 * Assumes semaphore is already acquired. When page_set==true, assumes
2632 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2633 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2635 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2636 u16
*data
, bool read
, bool page_set
)
2639 u16 reg
= BM_PHY_REG_NUM(offset
);
2640 u16 page
= BM_PHY_REG_PAGE(offset
);
2643 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2644 if ((hw
->mac
.type
== e1000_pchlan
) &&
2645 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2646 e_dbg("Attempting to access page %d while gig enabled.\n",
2650 /* Enable access to PHY wakeup registers */
2651 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2653 e_dbg("Could not enable PHY wakeup reg access\n");
2658 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2660 /* Write the Wakeup register page offset value using opcode 0x11 */
2661 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2663 e_dbg("Could not write address opcode to page %d\n", page
);
2668 /* Read the Wakeup register page value using opcode 0x12 */
2669 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2672 /* Write the Wakeup register page value using opcode 0x12 */
2673 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2678 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2683 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2689 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2690 * @hw: pointer to the HW structure
2692 * In the case of a PHY power down to save power, or to turn off link during a
2693 * driver unload, or wake on lan is not enabled, restore the link to previous
2696 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2700 /* The PHY will retain its settings across a power down/up cycle */
2701 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2702 mii_reg
&= ~BMCR_PDOWN
;
2703 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2707 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2708 * @hw: pointer to the HW structure
2710 * In the case of a PHY power down to save power, or to turn off link during a
2711 * driver unload, or wake on lan is not enabled, restore the link to previous
2714 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2718 /* The PHY will retain its settings across a power down/up cycle */
2719 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2720 mii_reg
|= BMCR_PDOWN
;
2721 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2722 usleep_range(1000, 2000);
2726 * __e1000_read_phy_reg_hv - Read HV PHY register
2727 * @hw: pointer to the HW structure
2728 * @offset: register offset to be read
2729 * @data: pointer to the read data
2730 * @locked: semaphore has already been acquired or not
2732 * Acquires semaphore, if necessary, then reads the PHY register at offset
2733 * and stores the retrieved information in data. Release any acquired
2734 * semaphore before exiting.
2736 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2737 bool locked
, bool page_set
)
2740 u16 page
= BM_PHY_REG_PAGE(offset
);
2741 u16 reg
= BM_PHY_REG_NUM(offset
);
2742 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2745 ret_val
= hw
->phy
.ops
.acquire(hw
);
2750 /* Page 800 works differently than the rest so it has its own func */
2751 if (page
== BM_WUC_PAGE
) {
2752 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2757 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2758 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2764 if (page
== HV_INTC_FC_PAGE_START
)
2767 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2768 /* Page is shifted left, PHY expects (page x 32) */
2769 ret_val
= e1000_set_page_igp(hw
,
2770 (page
<< IGP_PAGE_SHIFT
));
2772 hw
->phy
.addr
= phy_addr
;
2779 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2780 page
<< IGP_PAGE_SHIFT
, reg
);
2782 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
, data
);
2785 hw
->phy
.ops
.release(hw
);
2791 * e1000_read_phy_reg_hv - Read HV PHY register
2792 * @hw: pointer to the HW structure
2793 * @offset: register offset to be read
2794 * @data: pointer to the read data
2796 * Acquires semaphore then reads the PHY register at offset and stores
2797 * the retrieved information in data. Release the acquired semaphore
2800 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2802 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2806 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2807 * @hw: pointer to the HW structure
2808 * @offset: register offset to be read
2809 * @data: pointer to the read data
2811 * Reads the PHY register at offset and stores the retrieved information
2812 * in data. Assumes semaphore already acquired.
2814 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2816 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2820 * e1000_read_phy_reg_page_hv - Read HV PHY register
2821 * @hw: pointer to the HW structure
2822 * @offset: register offset to write to
2823 * @data: data to write at register offset
2825 * Reads the PHY register at offset and stores the retrieved information
2826 * in data. Assumes semaphore already acquired and page already set.
2828 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2830 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2834 * __e1000_write_phy_reg_hv - Write HV PHY register
2835 * @hw: pointer to the HW structure
2836 * @offset: register offset to write to
2837 * @data: data to write at register offset
2838 * @locked: semaphore has already been acquired or not
2840 * Acquires semaphore, if necessary, then writes the data to PHY register
2841 * at the offset. Release any acquired semaphores before exiting.
2843 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2844 bool locked
, bool page_set
)
2847 u16 page
= BM_PHY_REG_PAGE(offset
);
2848 u16 reg
= BM_PHY_REG_NUM(offset
);
2849 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2852 ret_val
= hw
->phy
.ops
.acquire(hw
);
2857 /* Page 800 works differently than the rest so it has its own func */
2858 if (page
== BM_WUC_PAGE
) {
2859 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2864 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2865 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2871 if (page
== HV_INTC_FC_PAGE_START
)
2874 /* Workaround MDIO accesses being disabled after entering IEEE
2875 * Power Down (when bit 11 of the PHY Control register is set)
2877 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2878 (hw
->phy
.revision
>= 1) &&
2879 (hw
->phy
.addr
== 2) &&
2880 !(MAX_PHY_REG_ADDRESS
& reg
) && (data
& BIT(11))) {
2883 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
2890 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2891 /* Page is shifted left, PHY expects (page x 32) */
2892 ret_val
= e1000_set_page_igp(hw
,
2893 (page
<< IGP_PAGE_SHIFT
));
2895 hw
->phy
.addr
= phy_addr
;
2902 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2903 page
<< IGP_PAGE_SHIFT
, reg
);
2905 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2910 hw
->phy
.ops
.release(hw
);
2916 * e1000_write_phy_reg_hv - Write HV PHY register
2917 * @hw: pointer to the HW structure
2918 * @offset: register offset to write to
2919 * @data: data to write at register offset
2921 * Acquires semaphore then writes the data to PHY register at the offset.
2922 * Release the acquired semaphores before exiting.
2924 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2926 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
2930 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2931 * @hw: pointer to the HW structure
2932 * @offset: register offset to write to
2933 * @data: data to write at register offset
2935 * Writes the data to PHY register at the offset. Assumes semaphore
2938 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2940 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
2944 * e1000_write_phy_reg_page_hv - Write HV PHY register
2945 * @hw: pointer to the HW structure
2946 * @offset: register offset to write to
2947 * @data: data to write at register offset
2949 * Writes the data to PHY register at the offset. Assumes semaphore
2950 * already acquired and page already set.
2952 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2954 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
2958 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2959 * @page: page to be accessed
2961 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
2965 if (page
>= HV_INTC_FC_PAGE_START
)
2972 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2973 * @hw: pointer to the HW structure
2974 * @offset: register offset to be read or written
2975 * @data: pointer to the data to be read or written
2976 * @read: determines if operation is read or write
2978 * Reads the PHY register at offset and stores the retreived information
2979 * in data. Assumes semaphore already acquired. Note that the procedure
2980 * to access these regs uses the address port and data port to read/write.
2981 * These accesses done with PHY address 2 and without using pages.
2983 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
2984 u16
*data
, bool read
)
2990 /* This takes care of the difference with desktop vs mobile phy */
2991 addr_reg
= ((hw
->phy
.type
== e1000_phy_82578
) ?
2992 I82578_ADDR_REG
: I82577_ADDR_REG
);
2993 data_reg
= addr_reg
+ 1;
2995 /* All operations in this function are phy address 2 */
2998 /* masking with 0x3F to remove the page from offset */
2999 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3001 e_dbg("Could not write the Address Offset port register\n");
3005 /* Read or write the data value next */
3007 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3009 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3012 e_dbg("Could not access the Data port register\n");
3018 * e1000_link_stall_workaround_hv - Si workaround
3019 * @hw: pointer to the HW structure
3021 * This function works around a Si bug where the link partner can get
3022 * a link up indication before the PHY does. If small packets are sent
3023 * by the link partner they can be placed in the packet buffer without
3024 * being properly accounted for by the PHY and will stall preventing
3025 * further packets from being received. The workaround is to clear the
3026 * packet buffer after the PHY detects link up.
3028 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3033 if (hw
->phy
.type
!= e1000_phy_82578
)
3036 /* Do not apply workaround if in PHY loopback bit 14 set */
3037 e1e_rphy(hw
, MII_BMCR
, &data
);
3038 if (data
& BMCR_LOOPBACK
)
3041 /* check if link is up and at 1Gbps */
3042 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3046 data
&= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3047 BM_CS_STATUS_SPEED_MASK
);
3049 if (data
!= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3050 BM_CS_STATUS_SPEED_1000
))
3055 /* flush the packets in the fifo buffer */
3056 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
,
3057 (HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3058 HV_MUX_DATA_CTRL_FORCE_SPEED
));
3062 return e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3066 * e1000_check_polarity_82577 - Checks the polarity.
3067 * @hw: pointer to the HW structure
3069 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3071 * Polarity is determined based on the PHY specific status register.
3073 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3075 struct e1000_phy_info
*phy
= &hw
->phy
;
3079 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3082 phy
->cable_polarity
= ((data
& I82577_PHY_STATUS2_REV_POLARITY
)
3083 ? e1000_rev_polarity_reversed
3084 : e1000_rev_polarity_normal
);
3090 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3091 * @hw: pointer to the HW structure
3093 * Calls the PHY setup function to force speed and duplex.
3095 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3097 struct e1000_phy_info
*phy
= &hw
->phy
;
3102 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
3106 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3108 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
3114 if (phy
->autoneg_wait_to_complete
) {
3115 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3117 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3123 e_dbg("Link taking longer than expected.\n");
3126 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3134 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3135 * @hw: pointer to the HW structure
3137 * Read PHY status to determine if link is up. If link is up, then
3138 * set/determine 10base-T extended distance and polarity correction. Read
3139 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3140 * determine on the cable length, local and remote receiver.
3142 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3144 struct e1000_phy_info
*phy
= &hw
->phy
;
3149 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3154 e_dbg("Phy info is only valid if link is up\n");
3155 return -E1000_ERR_CONFIG
;
3158 phy
->polarity_correction
= true;
3160 ret_val
= e1000_check_polarity_82577(hw
);
3164 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3168 phy
->is_mdix
= !!(data
& I82577_PHY_STATUS2_MDIX
);
3170 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3171 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3172 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3176 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
3180 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
3181 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3183 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
3184 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3186 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3187 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3188 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3195 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3196 * @hw: pointer to the HW structure
3198 * Reads the diagnostic status register and verifies result is valid before
3199 * placing it in the phy_cable_length field.
3201 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3203 struct e1000_phy_info
*phy
= &hw
->phy
;
3205 u16 phy_data
, length
;
3207 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3211 length
= ((phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3212 I82577_DSTATUS_CABLE_LENGTH_SHIFT
);
3214 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3215 return -E1000_ERR_PHY
;
3217 phy
->cable_length
= length
;