1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
8 * fm10k_reset_hw_pf - PF hardware reset
9 * @hw: pointer to hardware structure
11 * This function should return the hardware to a state similar to the
12 * one it is in after being powered on.
14 static s32
fm10k_reset_hw_pf(struct fm10k_hw
*hw
)
20 /* Disable interrupts */
21 fm10k_write_reg(hw
, FM10K_EIMR
, FM10K_EIMR_DISABLE(ALL
));
23 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
24 fm10k_write_reg(hw
, FM10K_ITR2(0), 0);
25 fm10k_write_reg(hw
, FM10K_INT_CTRL
, 0);
27 /* We assume here Tx and Rx queue 0 are owned by the PF */
29 /* Shut off VF access to their queues forcing them to queue 0 */
30 for (i
= 0; i
< FM10K_TQMAP_TABLE_SIZE
; i
++) {
31 fm10k_write_reg(hw
, FM10K_TQMAP(i
), 0);
32 fm10k_write_reg(hw
, FM10K_RQMAP(i
), 0);
35 /* shut down all rings */
36 err
= fm10k_disable_queues_generic(hw
, FM10K_MAX_QUEUES
);
37 if (err
== FM10K_ERR_REQUESTS_PENDING
) {
38 hw
->mac
.reset_while_pending
++;
44 /* Verify that DMA is no longer active */
45 reg
= fm10k_read_reg(hw
, FM10K_DMA_CTRL
);
46 if (reg
& (FM10K_DMA_CTRL_TX_ACTIVE
| FM10K_DMA_CTRL_RX_ACTIVE
))
47 return FM10K_ERR_DMA_PENDING
;
50 /* Inititate data path reset */
51 reg
= FM10K_DMA_CTRL_DATAPATH_RESET
;
52 fm10k_write_reg(hw
, FM10K_DMA_CTRL
, reg
);
54 /* Flush write and allow 100us for reset to complete */
55 fm10k_write_flush(hw
);
56 udelay(FM10K_RESET_TIMEOUT
);
58 /* Verify we made it out of reset */
59 reg
= fm10k_read_reg(hw
, FM10K_IP
);
60 if (!(reg
& FM10K_IP_NOTINRESET
))
61 return FM10K_ERR_RESET_FAILED
;
67 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
68 * @hw: pointer to hardware structure
70 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
72 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw
*hw
)
74 u16 sriov_ctrl
= fm10k_read_pci_cfg_word(hw
, FM10K_PCIE_SRIOV_CTRL
);
76 return !!(sriov_ctrl
& FM10K_PCIE_SRIOV_CTRL_VFARI
);
80 * fm10k_init_hw_pf - PF hardware initialization
81 * @hw: pointer to hardware structure
84 static s32
fm10k_init_hw_pf(struct fm10k_hw
*hw
)
89 /* Establish default VSI as valid */
90 fm10k_write_reg(hw
, FM10K_DGLORTDEC(fm10k_dglort_default
), 0);
91 fm10k_write_reg(hw
, FM10K_DGLORTMAP(fm10k_dglort_default
),
94 /* Invalidate all other GLORT entries */
95 for (i
= 1; i
< FM10K_DGLORT_COUNT
; i
++)
96 fm10k_write_reg(hw
, FM10K_DGLORTMAP(i
), FM10K_DGLORTMAP_NONE
);
98 /* reset ITR2(0) to point to itself */
99 fm10k_write_reg(hw
, FM10K_ITR2(0), 0);
101 /* reset VF ITR2(0) to point to 0 avoid PF registers */
102 fm10k_write_reg(hw
, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF
), 0);
104 /* loop through all PF ITR2 registers pointing them to the previous */
105 for (i
= 1; i
< FM10K_ITR_REG_COUNT_PF
; i
++)
106 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- 1);
108 /* Enable interrupt moderator if not already enabled */
109 fm10k_write_reg(hw
, FM10K_INT_CTRL
, FM10K_INT_CTRL_ENABLEMODERATOR
);
111 /* compute the default txqctl configuration */
112 txqctl
= FM10K_TXQCTL_PF
| FM10K_TXQCTL_UNLIMITED_BW
|
113 (hw
->mac
.default_vid
<< FM10K_TXQCTL_VID_SHIFT
);
115 for (i
= 0; i
< FM10K_MAX_QUEUES
; i
++) {
116 /* configure rings for 256 Queue / 32 Descriptor cache mode */
117 fm10k_write_reg(hw
, FM10K_TQDLOC(i
),
118 (i
* FM10K_TQDLOC_BASE_32_DESC
) |
119 FM10K_TQDLOC_SIZE_32_DESC
);
120 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), txqctl
);
122 /* configure rings to provide TPH processing hints */
123 fm10k_write_reg(hw
, FM10K_TPH_TXCTRL(i
),
124 FM10K_TPH_TXCTRL_DESC_TPHEN
|
125 FM10K_TPH_TXCTRL_DESC_RROEN
|
126 FM10K_TPH_TXCTRL_DESC_WROEN
|
127 FM10K_TPH_TXCTRL_DATA_RROEN
);
128 fm10k_write_reg(hw
, FM10K_TPH_RXCTRL(i
),
129 FM10K_TPH_RXCTRL_DESC_TPHEN
|
130 FM10K_TPH_RXCTRL_DESC_RROEN
|
131 FM10K_TPH_RXCTRL_DATA_WROEN
|
132 FM10K_TPH_RXCTRL_HDR_WROEN
);
135 /* set max hold interval to align with 1.024 usec in all modes and
138 switch (hw
->bus
.speed
) {
139 case fm10k_bus_speed_2500
:
140 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1
;
141 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN1
;
143 case fm10k_bus_speed_5000
:
144 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2
;
145 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN2
;
147 case fm10k_bus_speed_8000
:
148 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3
;
149 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN3
;
153 /* just in case, assume Gen3 ITR scale */
154 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN3
;
158 /* Configure TSO flags */
159 fm10k_write_reg(hw
, FM10K_DTXTCPFLGL
, FM10K_TSO_FLAGS_LOW
);
160 fm10k_write_reg(hw
, FM10K_DTXTCPFLGH
, FM10K_TSO_FLAGS_HI
);
163 * Set Rx Descriptor size to 32
164 * Set Minimum MSS to 64
165 * Set Maximum number of Rx queues to 256 / 32 Descriptor
167 dma_ctrl
|= FM10K_DMA_CTRL_TX_ENABLE
| FM10K_DMA_CTRL_RX_ENABLE
|
168 FM10K_DMA_CTRL_RX_DESC_SIZE
| FM10K_DMA_CTRL_MINMSS_64
|
169 FM10K_DMA_CTRL_32_DESC
;
171 fm10k_write_reg(hw
, FM10K_DMA_CTRL
, dma_ctrl
);
173 /* record maximum queue count, we limit ourselves to 128 */
174 hw
->mac
.max_queues
= FM10K_MAX_QUEUES_PF
;
176 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
177 hw
->iov
.total_vfs
= fm10k_is_ari_hierarchy_pf(hw
) ? 64 : 7;
183 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
184 * @hw: pointer to hardware structure
185 * @vid: VLAN ID to add to table
186 * @vsi: Index indicating VF ID or PF ID in table
187 * @set: Indicates if this is a set or clear operation
189 * This function adds or removes the corresponding VLAN ID from the VLAN
190 * filter table for the corresponding function. In addition to the
191 * standard set/clear that supports one bit a multi-bit write is
192 * supported to set 64 bits at a time.
194 static s32
fm10k_update_vlan_pf(struct fm10k_hw
*hw
, u32 vid
, u8 vsi
, bool set
)
196 u32 vlan_table
, reg
, mask
, bit
, len
;
198 /* verify the VSI index is valid */
199 if (vsi
> FM10K_VLAN_TABLE_VSI_MAX
)
200 return FM10K_ERR_PARAM
;
202 /* VLAN multi-bit write:
203 * The multi-bit write has several parts to it.
205 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
206 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
207 * | RSVD0 | Length |C|RSVD0| VLAN ID |
208 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
210 * VLAN ID: Vlan Starting value
211 * RSVD0: Reserved section, must be 0
212 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
213 * Length: Number of times to repeat the bit being set
216 vid
= (vid
<< 17) >> 17;
218 /* verify the reserved 0 fields are 0 */
219 if (len
>= FM10K_VLAN_TABLE_VID_MAX
|| vid
>= FM10K_VLAN_TABLE_VID_MAX
)
220 return FM10K_ERR_PARAM
;
222 /* Loop through the table updating all required VLANs */
223 for (reg
= FM10K_VLAN_TABLE(vsi
, vid
/ 32), bit
= vid
% 32;
224 len
< FM10K_VLAN_TABLE_VID_MAX
;
225 len
-= 32 - bit
, reg
++, bit
= 0) {
226 /* record the initial state of the register */
227 vlan_table
= fm10k_read_reg(hw
, reg
);
229 /* truncate mask if we are at the start or end of the run */
230 mask
= (~(u32
)0 >> ((len
< 31) ? 31 - len
: 0)) << bit
;
232 /* make necessary modifications to the register */
233 mask
&= set
? ~vlan_table
: vlan_table
;
235 fm10k_write_reg(hw
, reg
, vlan_table
^ mask
);
242 * fm10k_read_mac_addr_pf - Read device MAC address
243 * @hw: pointer to the HW structure
245 * Reads the device MAC address from the SM_AREA and stores the value.
247 static s32
fm10k_read_mac_addr_pf(struct fm10k_hw
*hw
)
249 u8 perm_addr
[ETH_ALEN
];
252 serial_num
= fm10k_read_reg(hw
, FM10K_SM_AREA(1));
254 /* last byte should be all 1's */
255 if ((~serial_num
) << 24)
256 return FM10K_ERR_INVALID_MAC_ADDR
;
258 perm_addr
[0] = (u8
)(serial_num
>> 24);
259 perm_addr
[1] = (u8
)(serial_num
>> 16);
260 perm_addr
[2] = (u8
)(serial_num
>> 8);
262 serial_num
= fm10k_read_reg(hw
, FM10K_SM_AREA(0));
264 /* first byte should be all 1's */
265 if ((~serial_num
) >> 24)
266 return FM10K_ERR_INVALID_MAC_ADDR
;
268 perm_addr
[3] = (u8
)(serial_num
>> 16);
269 perm_addr
[4] = (u8
)(serial_num
>> 8);
270 perm_addr
[5] = (u8
)(serial_num
);
272 ether_addr_copy(hw
->mac
.perm_addr
, perm_addr
);
273 ether_addr_copy(hw
->mac
.addr
, perm_addr
);
279 * fm10k_glort_valid_pf - Validate that the provided glort is valid
280 * @hw: pointer to the HW structure
281 * @glort: base glort to be validated
283 * This function will return an error if the provided glort is invalid
285 bool fm10k_glort_valid_pf(struct fm10k_hw
*hw
, u16 glort
)
287 glort
&= hw
->mac
.dglort_map
>> FM10K_DGLORTMAP_MASK_SHIFT
;
289 return glort
== (hw
->mac
.dglort_map
& FM10K_DGLORTMAP_NONE
);
293 * fm10k_update_xc_addr_pf - Update device addresses
294 * @hw: pointer to the HW structure
295 * @glort: base resource tag for this request
296 * @mac: MAC address to add/remove from table
297 * @vid: VLAN ID to add/remove from table
298 * @add: Indicates if this is an add or remove operation
299 * @flags: flags field to indicate add and secure
301 * This function generates a message to the Switch API requesting
302 * that the given logical port add/remove the given L2 MAC/VLAN address.
304 static s32
fm10k_update_xc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
305 const u8
*mac
, u16 vid
, bool add
, u8 flags
)
307 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
308 struct fm10k_mac_update mac_update
;
311 /* clear set bit from VLAN ID */
312 vid
&= ~FM10K_VLAN_CLEAR
;
314 /* if glort or VLAN are not valid return error */
315 if (!fm10k_glort_valid_pf(hw
, glort
) || vid
>= FM10K_VLAN_TABLE_VID_MAX
)
316 return FM10K_ERR_PARAM
;
319 mac_update
.mac_lower
= cpu_to_le32(((u32
)mac
[2] << 24) |
320 ((u32
)mac
[3] << 16) |
323 mac_update
.mac_upper
= cpu_to_le16(((u16
)mac
[0] << 8) |
325 mac_update
.vlan
= cpu_to_le16(vid
);
326 mac_update
.glort
= cpu_to_le16(glort
);
327 mac_update
.action
= add
? 0 : 1;
328 mac_update
.flags
= flags
;
330 /* populate mac_update fields */
331 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE
);
332 fm10k_tlv_attr_put_le_struct(msg
, FM10K_PF_ATTR_ID_MAC_UPDATE
,
333 &mac_update
, sizeof(mac_update
));
335 /* load onto outgoing mailbox */
336 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
340 * fm10k_update_uc_addr_pf - Update device unicast addresses
341 * @hw: pointer to the HW structure
342 * @glort: base resource tag for this request
343 * @mac: MAC address to add/remove from table
344 * @vid: VLAN ID to add/remove from table
345 * @add: Indicates if this is an add or remove operation
346 * @flags: flags field to indicate add and secure
348 * This function is used to add or remove unicast addresses for
351 static s32
fm10k_update_uc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
352 const u8
*mac
, u16 vid
, bool add
, u8 flags
)
354 /* verify MAC address is valid */
355 if (!is_valid_ether_addr(mac
))
356 return FM10K_ERR_PARAM
;
358 return fm10k_update_xc_addr_pf(hw
, glort
, mac
, vid
, add
, flags
);
362 * fm10k_update_mc_addr_pf - Update device multicast addresses
363 * @hw: pointer to the HW structure
364 * @glort: base resource tag for this request
365 * @mac: MAC address to add/remove from table
366 * @vid: VLAN ID to add/remove from table
367 * @add: Indicates if this is an add or remove operation
369 * This function is used to add or remove multicast MAC addresses for
372 static s32
fm10k_update_mc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
373 const u8
*mac
, u16 vid
, bool add
)
375 /* verify multicast address is valid */
376 if (!is_multicast_ether_addr(mac
))
377 return FM10K_ERR_PARAM
;
379 return fm10k_update_xc_addr_pf(hw
, glort
, mac
, vid
, add
, 0);
383 * fm10k_update_xcast_mode_pf - Request update of multicast mode
384 * @hw: pointer to hardware structure
385 * @glort: base resource tag for this request
386 * @mode: integer value indicating mode being requested
388 * This function will attempt to request a higher mode for the port
389 * so that it can enable either multicast, multicast promiscuous, or
390 * promiscuous mode of operation.
392 static s32
fm10k_update_xcast_mode_pf(struct fm10k_hw
*hw
, u16 glort
, u8 mode
)
394 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
395 u32 msg
[3], xcast_mode
;
397 if (mode
> FM10K_XCAST_MODE_NONE
)
398 return FM10K_ERR_PARAM
;
400 /* if glort is not valid return error */
401 if (!fm10k_glort_valid_pf(hw
, glort
))
402 return FM10K_ERR_PARAM
;
404 /* write xcast mode as a single u32 value,
405 * lower 16 bits: glort
406 * upper 16 bits: mode
408 xcast_mode
= ((u32
)mode
<< 16) | glort
;
410 /* generate message requesting to change xcast mode */
411 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_XCAST_MODES
);
412 fm10k_tlv_attr_put_u32(msg
, FM10K_PF_ATTR_ID_XCAST_MODE
, xcast_mode
);
414 /* load onto outgoing mailbox */
415 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
419 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
420 * @hw: pointer to hardware structure
422 * This function walks through the MSI-X vector table to determine the
423 * number of active interrupts and based on that information updates the
424 * interrupt moderator linked list.
426 static void fm10k_update_int_moderator_pf(struct fm10k_hw
*hw
)
430 /* Disable interrupt moderator */
431 fm10k_write_reg(hw
, FM10K_INT_CTRL
, 0);
433 /* loop through PF from last to first looking enabled vectors */
434 for (i
= FM10K_ITR_REG_COUNT_PF
- 1; i
; i
--) {
435 if (!fm10k_read_reg(hw
, FM10K_MSIX_VECTOR_MASK(i
)))
439 /* always reset VFITR2[0] to point to last enabled PF vector */
440 fm10k_write_reg(hw
, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF
), i
);
442 /* reset ITR2[0] to point to last enabled PF vector */
443 if (!hw
->iov
.num_vfs
)
444 fm10k_write_reg(hw
, FM10K_ITR2(0), i
);
446 /* Enable interrupt moderator */
447 fm10k_write_reg(hw
, FM10K_INT_CTRL
, FM10K_INT_CTRL_ENABLEMODERATOR
);
451 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
452 * @hw: pointer to the HW structure
453 * @glort: base resource tag for this request
454 * @count: number of logical ports being updated
455 * @enable: boolean value indicating enable or disable
457 * This function is used to add/remove a logical port from the switch.
459 static s32
fm10k_update_lport_state_pf(struct fm10k_hw
*hw
, u16 glort
,
460 u16 count
, bool enable
)
462 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
463 u32 msg
[3], lport_msg
;
465 /* do nothing if we are being asked to create or destroy 0 ports */
469 /* if glort is not valid return error */
470 if (!fm10k_glort_valid_pf(hw
, glort
))
471 return FM10K_ERR_PARAM
;
473 /* reset multicast mode if deleting lport */
475 fm10k_update_xcast_mode_pf(hw
, glort
, FM10K_XCAST_MODE_NONE
);
477 /* construct the lport message from the 2 pieces of data we have */
478 lport_msg
= ((u32
)count
<< 16) | glort
;
480 /* generate lport create/delete message */
481 fm10k_tlv_msg_init(msg
, enable
? FM10K_PF_MSG_ID_LPORT_CREATE
:
482 FM10K_PF_MSG_ID_LPORT_DELETE
);
483 fm10k_tlv_attr_put_u32(msg
, FM10K_PF_ATTR_ID_PORT
, lport_msg
);
485 /* load onto outgoing mailbox */
486 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
490 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
491 * @hw: pointer to hardware structure
492 * @dglort: pointer to dglort configuration structure
494 * Reads the configuration structure contained in dglort_cfg and uses
495 * that information to then populate a DGLORTMAP/DEC entry and the queues
496 * to which it has been assigned.
498 static s32
fm10k_configure_dglort_map_pf(struct fm10k_hw
*hw
,
499 struct fm10k_dglort_cfg
*dglort
)
501 u16 glort
, queue_count
, vsi_count
, pc_count
;
502 u16 vsi
, queue
, pc
, q_idx
;
503 u32 txqctl
, dglortdec
, dglortmap
;
505 /* verify the dglort pointer */
507 return FM10K_ERR_PARAM
;
509 /* verify the dglort values */
510 if ((dglort
->idx
> 7) || (dglort
->rss_l
> 7) || (dglort
->pc_l
> 3) ||
511 (dglort
->vsi_l
> 6) || (dglort
->vsi_b
> 64) ||
512 (dglort
->queue_l
> 8) || (dglort
->queue_b
>= 256))
513 return FM10K_ERR_PARAM
;
515 /* determine count of VSIs and queues */
516 queue_count
= BIT(dglort
->rss_l
+ dglort
->pc_l
);
517 vsi_count
= BIT(dglort
->vsi_l
+ dglort
->queue_l
);
518 glort
= dglort
->glort
;
519 q_idx
= dglort
->queue_b
;
521 /* configure SGLORT for queues */
522 for (vsi
= 0; vsi
< vsi_count
; vsi
++, glort
++) {
523 for (queue
= 0; queue
< queue_count
; queue
++, q_idx
++) {
524 if (q_idx
>= FM10K_MAX_QUEUES
)
527 fm10k_write_reg(hw
, FM10K_TX_SGLORT(q_idx
), glort
);
528 fm10k_write_reg(hw
, FM10K_RX_SGLORT(q_idx
), glort
);
532 /* determine count of PCs and queues */
533 queue_count
= BIT(dglort
->queue_l
+ dglort
->rss_l
+ dglort
->vsi_l
);
534 pc_count
= BIT(dglort
->pc_l
);
536 /* configure PC for Tx queues */
537 for (pc
= 0; pc
< pc_count
; pc
++) {
538 q_idx
= pc
+ dglort
->queue_b
;
539 for (queue
= 0; queue
< queue_count
; queue
++) {
540 if (q_idx
>= FM10K_MAX_QUEUES
)
543 txqctl
= fm10k_read_reg(hw
, FM10K_TXQCTL(q_idx
));
544 txqctl
&= ~FM10K_TXQCTL_PC_MASK
;
545 txqctl
|= pc
<< FM10K_TXQCTL_PC_SHIFT
;
546 fm10k_write_reg(hw
, FM10K_TXQCTL(q_idx
), txqctl
);
552 /* configure DGLORTDEC */
553 dglortdec
= ((u32
)(dglort
->rss_l
) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT
) |
554 ((u32
)(dglort
->queue_b
) << FM10K_DGLORTDEC_QBASE_SHIFT
) |
555 ((u32
)(dglort
->pc_l
) << FM10K_DGLORTDEC_PCLENGTH_SHIFT
) |
556 ((u32
)(dglort
->vsi_b
) << FM10K_DGLORTDEC_VSIBASE_SHIFT
) |
557 ((u32
)(dglort
->vsi_l
) << FM10K_DGLORTDEC_VSILENGTH_SHIFT
) |
558 ((u32
)(dglort
->queue_l
));
559 if (dglort
->inner_rss
)
560 dglortdec
|= FM10K_DGLORTDEC_INNERRSS_ENABLE
;
562 /* configure DGLORTMAP */
563 dglortmap
= (dglort
->idx
== fm10k_dglort_default
) ?
564 FM10K_DGLORTMAP_ANY
: FM10K_DGLORTMAP_ZERO
;
565 dglortmap
<<= dglort
->vsi_l
+ dglort
->queue_l
+ dglort
->shared_l
;
566 dglortmap
|= dglort
->glort
;
568 /* write values to hardware */
569 fm10k_write_reg(hw
, FM10K_DGLORTDEC(dglort
->idx
), dglortdec
);
570 fm10k_write_reg(hw
, FM10K_DGLORTMAP(dglort
->idx
), dglortmap
);
575 u16
fm10k_queues_per_pool(struct fm10k_hw
*hw
)
577 u16 num_pools
= hw
->iov
.num_pools
;
579 return (num_pools
> 32) ? 2 : (num_pools
> 16) ? 4 : (num_pools
> 8) ?
580 8 : FM10K_MAX_QUEUES_POOL
;
583 u16
fm10k_vf_queue_index(struct fm10k_hw
*hw
, u16 vf_idx
)
585 u16 num_vfs
= hw
->iov
.num_vfs
;
586 u16 vf_q_idx
= FM10K_MAX_QUEUES
;
588 vf_q_idx
-= fm10k_queues_per_pool(hw
) * (num_vfs
- vf_idx
);
593 static u16
fm10k_vectors_per_pool(struct fm10k_hw
*hw
)
595 u16 num_pools
= hw
->iov
.num_pools
;
597 return (num_pools
> 32) ? 8 : (num_pools
> 16) ? 16 :
598 FM10K_MAX_VECTORS_POOL
;
601 static u16
fm10k_vf_vector_index(struct fm10k_hw
*hw
, u16 vf_idx
)
603 u16 vf_v_idx
= FM10K_MAX_VECTORS_PF
;
605 vf_v_idx
+= fm10k_vectors_per_pool(hw
) * vf_idx
;
611 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
612 * @hw: pointer to the HW structure
613 * @num_vfs: number of VFs to be allocated
614 * @num_pools: number of virtualization pools to be allocated
616 * Allocates queues and traffic classes to virtualization entities to prepare
617 * the PF for SR-IOV and VMDq
619 static s32
fm10k_iov_assign_resources_pf(struct fm10k_hw
*hw
, u16 num_vfs
,
622 u16 qmap_stride
, qpp
, vpp
, vf_q_idx
, vf_q_idx0
, qmap_idx
;
623 u32 vid
= hw
->mac
.default_vid
<< FM10K_TXQCTL_VID_SHIFT
;
626 /* hardware only supports up to 64 pools */
628 return FM10K_ERR_PARAM
;
630 /* the number of VFs cannot exceed the number of pools */
631 if ((num_vfs
> num_pools
) || (num_vfs
> hw
->iov
.total_vfs
))
632 return FM10K_ERR_PARAM
;
634 /* record number of virtualization entities */
635 hw
->iov
.num_vfs
= num_vfs
;
636 hw
->iov
.num_pools
= num_pools
;
638 /* determine qmap offsets and counts */
639 qmap_stride
= (num_vfs
> 8) ? 32 : 256;
640 qpp
= fm10k_queues_per_pool(hw
);
641 vpp
= fm10k_vectors_per_pool(hw
);
643 /* calculate starting index for queues */
644 vf_q_idx
= fm10k_vf_queue_index(hw
, 0);
647 /* establish TCs with -1 credits and no quanta to prevent transmit */
648 for (i
= 0; i
< num_vfs
; i
++) {
649 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(i
), 0);
650 fm10k_write_reg(hw
, FM10K_TC_RATE(i
), 0);
651 fm10k_write_reg(hw
, FM10K_TC_CREDIT(i
),
652 FM10K_TC_CREDIT_CREDIT_MASK
);
655 /* zero out all mbmem registers */
656 for (i
= FM10K_VFMBMEM_LEN
* num_vfs
; i
--;)
657 fm10k_write_reg(hw
, FM10K_MBMEM(i
), 0);
659 /* clear event notification of VF FLR */
660 fm10k_write_reg(hw
, FM10K_PFVFLREC(0), ~0);
661 fm10k_write_reg(hw
, FM10K_PFVFLREC(1), ~0);
663 /* loop through unallocated rings assigning them back to PF */
664 for (i
= FM10K_MAX_QUEUES_PF
; i
< vf_q_idx
; i
++) {
665 fm10k_write_reg(hw
, FM10K_TXDCTL(i
), 0);
666 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), FM10K_TXQCTL_PF
|
667 FM10K_TXQCTL_UNLIMITED_BW
| vid
);
668 fm10k_write_reg(hw
, FM10K_RXQCTL(i
), FM10K_RXQCTL_PF
);
671 /* PF should have already updated VFITR2[0] */
673 /* update all ITR registers to flow to VFITR2[0] */
674 for (i
= FM10K_ITR_REG_COUNT_PF
+ 1; i
< FM10K_ITR_REG_COUNT
; i
++) {
675 if (!(i
& (vpp
- 1)))
676 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- vpp
);
678 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- 1);
681 /* update PF ITR2[0] to reference the last vector */
682 fm10k_write_reg(hw
, FM10K_ITR2(0),
683 fm10k_vf_vector_index(hw
, num_vfs
- 1));
685 /* loop through rings populating rings and TCs */
686 for (i
= 0; i
< num_vfs
; i
++) {
687 /* record index for VF queue 0 for use in end of loop */
688 vf_q_idx0
= vf_q_idx
;
690 for (j
= 0; j
< qpp
; j
++, qmap_idx
++, vf_q_idx
++) {
691 /* assign VF and locked TC to queues */
692 fm10k_write_reg(hw
, FM10K_TXDCTL(vf_q_idx
), 0);
693 fm10k_write_reg(hw
, FM10K_TXQCTL(vf_q_idx
),
694 (i
<< FM10K_TXQCTL_TC_SHIFT
) | i
|
695 FM10K_TXQCTL_VF
| vid
);
696 fm10k_write_reg(hw
, FM10K_RXDCTL(vf_q_idx
),
697 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY
|
698 FM10K_RXDCTL_DROP_ON_EMPTY
);
699 fm10k_write_reg(hw
, FM10K_RXQCTL(vf_q_idx
),
700 (i
<< FM10K_RXQCTL_VF_SHIFT
) |
703 /* map queue pair to VF */
704 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx
);
705 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), vf_q_idx
);
708 /* repeat the first ring for all of the remaining VF rings */
709 for (; j
< qmap_stride
; j
++, qmap_idx
++) {
710 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx0
);
711 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), vf_q_idx0
);
715 /* loop through remaining indexes assigning all to queue 0 */
716 while (qmap_idx
< FM10K_TQMAP_TABLE_SIZE
) {
717 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), 0);
718 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), 0);
726 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
727 * @hw: pointer to the HW structure
728 * @vf_idx: index of VF receiving GLORT
729 * @rate: Rate indicated in Mb/s
731 * Configured the TC for a given VF to allow only up to a given number
732 * of Mb/s of outgoing Tx throughput.
734 static s32
fm10k_iov_configure_tc_pf(struct fm10k_hw
*hw
, u16 vf_idx
, int rate
)
736 /* configure defaults */
737 u32 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN3
;
738 u32 tc_rate
= FM10K_TC_RATE_QUANTA_MASK
;
740 /* verify vf is in range */
741 if (vf_idx
>= hw
->iov
.num_vfs
)
742 return FM10K_ERR_PARAM
;
744 /* set interval to align with 4.096 usec in all modes */
745 switch (hw
->bus
.speed
) {
746 case fm10k_bus_speed_2500
:
747 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN1
;
749 case fm10k_bus_speed_5000
:
750 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN2
;
757 if (rate
> FM10K_VF_TC_MAX
|| rate
< FM10K_VF_TC_MIN
)
758 return FM10K_ERR_PARAM
;
760 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
761 * The rate is provided in Mbits per second
762 * To tralslate from rate to quanta we need to multiply the
763 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
764 * dealing with floating point we can round the values up
765 * to the nearest whole number ratio which gives us 128 / 125.
767 tc_rate
= (rate
* 128) / 125;
769 /* try to keep the rate limiting accurate by increasing
770 * the number of credits and interval for rates less than 4Gb/s
778 /* update rate limiter with new values */
779 fm10k_write_reg(hw
, FM10K_TC_RATE(vf_idx
), tc_rate
| interval
);
780 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(vf_idx
), FM10K_TC_MAXCREDIT_64K
);
781 fm10k_write_reg(hw
, FM10K_TC_CREDIT(vf_idx
), FM10K_TC_MAXCREDIT_64K
);
787 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
788 * @hw: pointer to the HW structure
789 * @vf_idx: index of VF receiving GLORT
791 * Update the interrupt moderator linked list to include any MSI-X
792 * interrupts which the VF has enabled in the MSI-X vector table.
794 static s32
fm10k_iov_assign_int_moderator_pf(struct fm10k_hw
*hw
, u16 vf_idx
)
796 u16 vf_v_idx
, vf_v_limit
, i
;
798 /* verify vf is in range */
799 if (vf_idx
>= hw
->iov
.num_vfs
)
800 return FM10K_ERR_PARAM
;
802 /* determine vector offset and count */
803 vf_v_idx
= fm10k_vf_vector_index(hw
, vf_idx
);
804 vf_v_limit
= vf_v_idx
+ fm10k_vectors_per_pool(hw
);
806 /* search for first vector that is not masked */
807 for (i
= vf_v_limit
- 1; i
> vf_v_idx
; i
--) {
808 if (!fm10k_read_reg(hw
, FM10K_MSIX_VECTOR_MASK(i
)))
812 /* reset linked list so it now includes our active vectors */
813 if (vf_idx
== (hw
->iov
.num_vfs
- 1))
814 fm10k_write_reg(hw
, FM10K_ITR2(0), i
);
816 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_limit
), i
);
822 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
823 * @hw: pointer to the HW structure
824 * @vf_info: pointer to VF information structure
826 * Assign a MAC address and default VLAN to a VF and notify it of the update
828 static s32
fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw
*hw
,
829 struct fm10k_vf_info
*vf_info
)
831 u16 qmap_stride
, queues_per_pool
, vf_q_idx
, timeout
, qmap_idx
, i
;
832 u32 msg
[4], txdctl
, txqctl
, tdbal
= 0, tdbah
= 0;
836 /* verify vf is in range */
837 if (!vf_info
|| vf_info
->vf_idx
>= hw
->iov
.num_vfs
)
838 return FM10K_ERR_PARAM
;
840 /* determine qmap offsets and counts */
841 qmap_stride
= (hw
->iov
.num_vfs
> 8) ? 32 : 256;
842 queues_per_pool
= fm10k_queues_per_pool(hw
);
844 /* calculate starting index for queues */
845 vf_idx
= vf_info
->vf_idx
;
846 vf_q_idx
= fm10k_vf_queue_index(hw
, vf_idx
);
847 qmap_idx
= qmap_stride
* vf_idx
;
849 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
850 * used here to indicate to the VF that it will not have privilege to
851 * write VLAN_TABLE. All policy is enforced on the PF but this allows
852 * the VF to correctly report errors to userspace requests.
855 vf_vid
= vf_info
->pf_vid
| FM10K_VLAN_OVERRIDE
;
857 vf_vid
= vf_info
->sw_vid
;
859 /* generate MAC_ADDR request */
860 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_MAC_VLAN
);
861 fm10k_tlv_attr_put_mac_vlan(msg
, FM10K_MAC_VLAN_MSG_DEFAULT_MAC
,
862 vf_info
->mac
, vf_vid
);
864 /* Configure Queue control register with new VLAN ID. The TXQCTL
865 * register is RO from the VF, so the PF must do this even in the
866 * case of notifying the VF of a new VID via the mailbox.
868 txqctl
= ((u32
)vf_vid
<< FM10K_TXQCTL_VID_SHIFT
) &
869 FM10K_TXQCTL_VID_MASK
;
870 txqctl
|= (vf_idx
<< FM10K_TXQCTL_TC_SHIFT
) |
871 FM10K_TXQCTL_VF
| vf_idx
;
873 for (i
= 0; i
< queues_per_pool
; i
++)
874 fm10k_write_reg(hw
, FM10K_TXQCTL(vf_q_idx
+ i
), txqctl
);
876 /* try loading a message onto outgoing mailbox first */
877 if (vf_info
->mbx
.ops
.enqueue_tx
) {
878 err
= vf_info
->mbx
.ops
.enqueue_tx(hw
, &vf_info
->mbx
, msg
);
879 if (err
!= FM10K_MBX_ERR_NO_MBX
)
884 /* If we aren't connected to a mailbox, this is most likely because
885 * the VF driver is not running. It should thus be safe to re-map
886 * queues and use the registers to pass the MAC address so that the VF
887 * driver gets correct information during its initialization.
890 /* MAP Tx queue back to 0 temporarily, and disable it */
891 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), 0);
892 fm10k_write_reg(hw
, FM10K_TXDCTL(vf_q_idx
), 0);
894 /* verify ring has disabled before modifying base address registers */
895 txdctl
= fm10k_read_reg(hw
, FM10K_TXDCTL(vf_q_idx
));
896 for (timeout
= 0; txdctl
& FM10K_TXDCTL_ENABLE
; timeout
++) {
897 /* limit ourselves to a 1ms timeout */
899 err
= FM10K_ERR_DMA_PENDING
;
903 usleep_range(100, 200);
904 txdctl
= fm10k_read_reg(hw
, FM10K_TXDCTL(vf_q_idx
));
907 /* Update base address registers to contain MAC address */
908 if (is_valid_ether_addr(vf_info
->mac
)) {
909 tdbal
= (((u32
)vf_info
->mac
[3]) << 24) |
910 (((u32
)vf_info
->mac
[4]) << 16) |
911 (((u32
)vf_info
->mac
[5]) << 8);
913 tdbah
= (((u32
)0xFF) << 24) |
914 (((u32
)vf_info
->mac
[0]) << 16) |
915 (((u32
)vf_info
->mac
[1]) << 8) |
916 ((u32
)vf_info
->mac
[2]);
919 /* Record the base address into queue 0 */
920 fm10k_write_reg(hw
, FM10K_TDBAL(vf_q_idx
), tdbal
);
921 fm10k_write_reg(hw
, FM10K_TDBAH(vf_q_idx
), tdbah
);
923 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
924 * to pass the information during VF initialization. See definition of
925 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
927 fm10k_write_reg(hw
, FM10K_TDLEN(vf_q_idx
), hw
->mac
.itr_scale
<<
928 FM10K_TDLEN_ITR_SCALE_SHIFT
);
931 /* restore the queue back to VF ownership */
932 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx
);
937 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
938 * @hw: pointer to the HW structure
939 * @vf_info: pointer to VF information structure
941 * Reassign the interrupts and queues to a VF following an FLR
943 static s32
fm10k_iov_reset_resources_pf(struct fm10k_hw
*hw
,
944 struct fm10k_vf_info
*vf_info
)
946 u16 qmap_stride
, queues_per_pool
, vf_q_idx
, qmap_idx
;
947 u32 tdbal
= 0, tdbah
= 0, txqctl
, rxqctl
;
948 u16 vf_v_idx
, vf_v_limit
, vf_vid
;
949 u8 vf_idx
= vf_info
->vf_idx
;
952 /* verify vf is in range */
953 if (vf_idx
>= hw
->iov
.num_vfs
)
954 return FM10K_ERR_PARAM
;
956 /* clear event notification of VF FLR */
957 fm10k_write_reg(hw
, FM10K_PFVFLREC(vf_idx
/ 32), BIT(vf_idx
% 32));
959 /* force timeout and then disconnect the mailbox */
960 vf_info
->mbx
.timeout
= 0;
961 if (vf_info
->mbx
.ops
.disconnect
)
962 vf_info
->mbx
.ops
.disconnect(hw
, &vf_info
->mbx
);
964 /* determine vector offset and count */
965 vf_v_idx
= fm10k_vf_vector_index(hw
, vf_idx
);
966 vf_v_limit
= vf_v_idx
+ fm10k_vectors_per_pool(hw
);
968 /* determine qmap offsets and counts */
969 qmap_stride
= (hw
->iov
.num_vfs
> 8) ? 32 : 256;
970 queues_per_pool
= fm10k_queues_per_pool(hw
);
971 qmap_idx
= qmap_stride
* vf_idx
;
973 /* make all the queues inaccessible to the VF */
974 for (i
= qmap_idx
; i
< (qmap_idx
+ qmap_stride
); i
++) {
975 fm10k_write_reg(hw
, FM10K_TQMAP(i
), 0);
976 fm10k_write_reg(hw
, FM10K_RQMAP(i
), 0);
979 /* calculate starting index for queues */
980 vf_q_idx
= fm10k_vf_queue_index(hw
, vf_idx
);
982 /* determine correct default VLAN ID */
984 vf_vid
= vf_info
->pf_vid
;
986 vf_vid
= vf_info
->sw_vid
;
988 /* configure Queue control register */
989 txqctl
= ((u32
)vf_vid
<< FM10K_TXQCTL_VID_SHIFT
) |
990 (vf_idx
<< FM10K_TXQCTL_TC_SHIFT
) |
991 FM10K_TXQCTL_VF
| vf_idx
;
992 rxqctl
= (vf_idx
<< FM10K_RXQCTL_VF_SHIFT
) | FM10K_RXQCTL_VF
;
994 /* stop further DMA and reset queue ownership back to VF */
995 for (i
= vf_q_idx
; i
< (queues_per_pool
+ vf_q_idx
); i
++) {
996 fm10k_write_reg(hw
, FM10K_TXDCTL(i
), 0);
997 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), txqctl
);
998 fm10k_write_reg(hw
, FM10K_RXDCTL(i
),
999 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY
|
1000 FM10K_RXDCTL_DROP_ON_EMPTY
);
1001 fm10k_write_reg(hw
, FM10K_RXQCTL(i
), rxqctl
);
1004 /* reset TC with -1 credits and no quanta to prevent transmit */
1005 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(vf_idx
), 0);
1006 fm10k_write_reg(hw
, FM10K_TC_RATE(vf_idx
), 0);
1007 fm10k_write_reg(hw
, FM10K_TC_CREDIT(vf_idx
),
1008 FM10K_TC_CREDIT_CREDIT_MASK
);
1010 /* update our first entry in the table based on previous VF */
1012 hw
->mac
.ops
.update_int_moderator(hw
);
1014 hw
->iov
.ops
.assign_int_moderator(hw
, vf_idx
- 1);
1016 /* reset linked list so it now includes our active vectors */
1017 if (vf_idx
== (hw
->iov
.num_vfs
- 1))
1018 fm10k_write_reg(hw
, FM10K_ITR2(0), vf_v_idx
);
1020 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_limit
), vf_v_idx
);
1022 /* link remaining vectors so that next points to previous */
1023 for (vf_v_idx
++; vf_v_idx
< vf_v_limit
; vf_v_idx
++)
1024 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_idx
), vf_v_idx
- 1);
1026 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1027 for (i
= FM10K_VFMBMEM_LEN
; i
--;)
1028 fm10k_write_reg(hw
, FM10K_MBMEM_VF(vf_idx
, i
), 0);
1029 for (i
= FM10K_VLAN_TABLE_SIZE
; i
--;)
1030 fm10k_write_reg(hw
, FM10K_VLAN_TABLE(vf_info
->vsi
, i
), 0);
1031 for (i
= FM10K_RETA_SIZE
; i
--;)
1032 fm10k_write_reg(hw
, FM10K_RETA(vf_info
->vsi
, i
), 0);
1033 for (i
= FM10K_RSSRK_SIZE
; i
--;)
1034 fm10k_write_reg(hw
, FM10K_RSSRK(vf_info
->vsi
, i
), 0);
1035 fm10k_write_reg(hw
, FM10K_MRQC(vf_info
->vsi
), 0);
1037 /* Update base address registers to contain MAC address */
1038 if (is_valid_ether_addr(vf_info
->mac
)) {
1039 tdbal
= (((u32
)vf_info
->mac
[3]) << 24) |
1040 (((u32
)vf_info
->mac
[4]) << 16) |
1041 (((u32
)vf_info
->mac
[5]) << 8);
1042 tdbah
= (((u32
)0xFF) << 24) |
1043 (((u32
)vf_info
->mac
[0]) << 16) |
1044 (((u32
)vf_info
->mac
[1]) << 8) |
1045 ((u32
)vf_info
->mac
[2]);
1048 /* map queue pairs back to VF from last to first */
1049 for (i
= queues_per_pool
; i
--;) {
1050 fm10k_write_reg(hw
, FM10K_TDBAL(vf_q_idx
+ i
), tdbal
);
1051 fm10k_write_reg(hw
, FM10K_TDBAH(vf_q_idx
+ i
), tdbah
);
1052 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1053 * explanation of how TDLEN is used.
1055 fm10k_write_reg(hw
, FM10K_TDLEN(vf_q_idx
+ i
),
1056 hw
->mac
.itr_scale
<<
1057 FM10K_TDLEN_ITR_SCALE_SHIFT
);
1058 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
+ i
), vf_q_idx
+ i
);
1059 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
+ i
), vf_q_idx
+ i
);
1062 /* repeat the first ring for all the remaining VF rings */
1063 for (i
= queues_per_pool
; i
< qmap_stride
; i
++) {
1064 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
+ i
), vf_q_idx
);
1065 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
+ i
), vf_q_idx
);
1072 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1073 * @hw: pointer to hardware structure
1074 * @vf_info: pointer to VF information structure
1075 * @lport_idx: Logical port offset from the hardware glort
1076 * @flags: Set of capability flags to extend port beyond basic functionality
1078 * This function allows enabling a VF port by assigning it a GLORT and
1079 * setting the flags so that it can enable an Rx mode.
1081 static s32
fm10k_iov_set_lport_pf(struct fm10k_hw
*hw
,
1082 struct fm10k_vf_info
*vf_info
,
1083 u16 lport_idx
, u8 flags
)
1085 u16 glort
= (hw
->mac
.dglort_map
+ lport_idx
) & FM10K_DGLORTMAP_NONE
;
1087 /* if glort is not valid return error */
1088 if (!fm10k_glort_valid_pf(hw
, glort
))
1089 return FM10K_ERR_PARAM
;
1091 vf_info
->vf_flags
= flags
| FM10K_VF_FLAG_NONE_CAPABLE
;
1092 vf_info
->glort
= glort
;
1098 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1099 * @hw: pointer to hardware structure
1100 * @vf_info: pointer to VF information structure
1102 * This function disables a VF port by stripping it of a GLORT and
1103 * setting the flags so that it cannot enable any Rx mode.
1105 static void fm10k_iov_reset_lport_pf(struct fm10k_hw
*hw
,
1106 struct fm10k_vf_info
*vf_info
)
1110 /* need to disable the port if it is already enabled */
1111 if (FM10K_VF_FLAG_ENABLED(vf_info
)) {
1112 /* notify switch that this port has been disabled */
1113 fm10k_update_lport_state_pf(hw
, vf_info
->glort
, 1, false);
1115 /* generate port state response to notify VF it is not ready */
1116 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_LPORT_STATE
);
1117 vf_info
->mbx
.ops
.enqueue_tx(hw
, &vf_info
->mbx
, msg
);
1120 /* clear flags and glort if it exists */
1121 vf_info
->vf_flags
= 0;
1126 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1127 * @hw: pointer to hardware structure
1128 * @q: stats for all queues of a VF
1129 * @vf_idx: index of VF
1131 * This function collects queue stats for VFs.
1133 static void fm10k_iov_update_stats_pf(struct fm10k_hw
*hw
,
1134 struct fm10k_hw_stats_q
*q
,
1139 /* get stats for all of the queues */
1140 qpp
= fm10k_queues_per_pool(hw
);
1141 idx
= fm10k_vf_queue_index(hw
, vf_idx
);
1142 fm10k_update_hw_stats_q(hw
, q
, idx
, qpp
);
1146 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1147 * @hw: Pointer to hardware structure
1148 * @results: Pointer array to message, results[0] is pointer to message
1149 * @mbx: Pointer to mailbox information structure
1151 * This function is a default handler for MSI-X requests from the VF. The
1152 * assumption is that in this case it is acceptable to just directly
1153 * hand off the message from the VF to the underlying shared code.
1155 s32
fm10k_iov_msg_msix_pf(struct fm10k_hw
*hw
, u32 __always_unused
**results
,
1156 struct fm10k_mbx_info
*mbx
)
1158 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1159 u8 vf_idx
= vf_info
->vf_idx
;
1161 return hw
->iov
.ops
.assign_int_moderator(hw
, vf_idx
);
1165 * fm10k_iov_select_vid - Select correct default VLAN ID
1166 * @vf_info: pointer to VF information structure
1167 * @vid: VLAN ID to correct
1169 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1170 * return either the pf_vid or sw_vid depending on which one is set.
1172 s32
fm10k_iov_select_vid(struct fm10k_vf_info
*vf_info
, u16 vid
)
1175 return vf_info
->pf_vid
? vf_info
->pf_vid
: vf_info
->sw_vid
;
1176 else if (vf_info
->pf_vid
&& vid
!= vf_info
->pf_vid
)
1177 return FM10K_ERR_PARAM
;
1183 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1184 * @hw: Pointer to hardware structure
1185 * @results: Pointer array to message, results[0] is pointer to message
1186 * @mbx: Pointer to mailbox information structure
1188 * This function is a default handler for MAC/VLAN requests from the VF.
1189 * The assumption is that in this case it is acceptable to just directly
1190 * hand off the message from the VF to the underlying shared code.
1192 s32
fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw
*hw
, u32
**results
,
1193 struct fm10k_mbx_info
*mbx
)
1195 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1203 /* we shouldn't be updating rules on a disabled interface */
1204 if (!FM10K_VF_FLAG_ENABLED(vf_info
))
1205 err
= FM10K_ERR_PARAM
;
1207 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_VLAN
]) {
1208 result
= results
[FM10K_MAC_VLAN_MSG_VLAN
];
1210 /* record VLAN id requested */
1211 err
= fm10k_tlv_attr_get_u32(result
, &vid
);
1215 set
= !(vid
& FM10K_VLAN_CLEAR
);
1216 vid
&= ~FM10K_VLAN_CLEAR
;
1218 /* if the length field has been set, this is a multi-bit
1219 * update request. For multi-bit requests, simply disallow
1220 * them when the pf_vid has been set. In this case, the PF
1221 * should have already cleared the VLAN_TABLE, and if we
1222 * allowed them, it could allow a rogue VF to receive traffic
1223 * on a VLAN it was not assigned. In the single-bit case, we
1224 * need to modify requests for VLAN 0 to use the default PF or
1225 * SW vid when assigned.
1229 /* prevent multi-bit requests when PF has
1230 * administratively set the VLAN for this VF
1232 if (vf_info
->pf_vid
)
1233 return FM10K_ERR_PARAM
;
1235 err
= fm10k_iov_select_vid(vf_info
, (u16
)vid
);
1242 /* update VSI info for VF in regards to VLAN table */
1243 err
= hw
->mac
.ops
.update_vlan(hw
, vid
, vf_info
->vsi
, set
);
1246 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_MAC
]) {
1247 result
= results
[FM10K_MAC_VLAN_MSG_MAC
];
1249 /* record unicast MAC address requested */
1250 err
= fm10k_tlv_attr_get_mac_vlan(result
, mac
, &vlan
);
1254 /* block attempts to set MAC for a locked device */
1255 if (is_valid_ether_addr(vf_info
->mac
) &&
1256 !ether_addr_equal(mac
, vf_info
->mac
))
1257 return FM10K_ERR_PARAM
;
1259 set
= !(vlan
& FM10K_VLAN_CLEAR
);
1260 vlan
&= ~FM10K_VLAN_CLEAR
;
1262 err
= fm10k_iov_select_vid(vf_info
, vlan
);
1268 /* notify switch of request for new unicast address */
1269 err
= hw
->mac
.ops
.update_uc_addr(hw
, vf_info
->glort
,
1273 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_MULTICAST
]) {
1274 result
= results
[FM10K_MAC_VLAN_MSG_MULTICAST
];
1276 /* record multicast MAC address requested */
1277 err
= fm10k_tlv_attr_get_mac_vlan(result
, mac
, &vlan
);
1281 /* verify that the VF is allowed to request multicast */
1282 if (!(vf_info
->vf_flags
& FM10K_VF_FLAG_MULTI_ENABLED
))
1283 return FM10K_ERR_PARAM
;
1285 set
= !(vlan
& FM10K_VLAN_CLEAR
);
1286 vlan
&= ~FM10K_VLAN_CLEAR
;
1288 err
= fm10k_iov_select_vid(vf_info
, vlan
);
1294 /* notify switch of request for new multicast address */
1295 err
= hw
->mac
.ops
.update_mc_addr(hw
, vf_info
->glort
,
1303 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1304 * @vf_info: VF info structure containing capability flags
1305 * @mode: Requested xcast mode
1307 * This function outputs the mode that most closely matches the requested
1308 * mode. If not modes match it will request we disable the port
1310 static u8
fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info
*vf_info
,
1313 u8 vf_flags
= vf_info
->vf_flags
;
1315 /* match up mode to capabilities as best as possible */
1317 case FM10K_XCAST_MODE_PROMISC
:
1318 if (vf_flags
& FM10K_VF_FLAG_PROMISC_CAPABLE
)
1319 return FM10K_XCAST_MODE_PROMISC
;
1321 case FM10K_XCAST_MODE_ALLMULTI
:
1322 if (vf_flags
& FM10K_VF_FLAG_ALLMULTI_CAPABLE
)
1323 return FM10K_XCAST_MODE_ALLMULTI
;
1325 case FM10K_XCAST_MODE_MULTI
:
1326 if (vf_flags
& FM10K_VF_FLAG_MULTI_CAPABLE
)
1327 return FM10K_XCAST_MODE_MULTI
;
1329 case FM10K_XCAST_MODE_NONE
:
1330 if (vf_flags
& FM10K_VF_FLAG_NONE_CAPABLE
)
1331 return FM10K_XCAST_MODE_NONE
;
1337 /* disable interface as it should not be able to request any */
1338 return FM10K_XCAST_MODE_DISABLE
;
1342 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1343 * @hw: Pointer to hardware structure
1344 * @results: Pointer array to message, results[0] is pointer to message
1345 * @mbx: Pointer to mailbox information structure
1347 * This function is a default handler for port state requests. The port
1348 * state requests for now are basic and consist of enabling or disabling
1351 s32
fm10k_iov_msg_lport_state_pf(struct fm10k_hw
*hw
, u32
**results
,
1352 struct fm10k_mbx_info
*mbx
)
1354 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1359 /* verify VF is allowed to enable even minimal mode */
1360 if (!(vf_info
->vf_flags
& FM10K_VF_FLAG_NONE_CAPABLE
))
1361 return FM10K_ERR_PARAM
;
1363 if (!!results
[FM10K_LPORT_STATE_MSG_XCAST_MODE
]) {
1364 u32
*result
= results
[FM10K_LPORT_STATE_MSG_XCAST_MODE
];
1366 /* XCAST mode update requested */
1367 err
= fm10k_tlv_attr_get_u8(result
, &mode
);
1369 return FM10K_ERR_PARAM
;
1371 /* prep for possible demotion depending on capabilities */
1372 mode
= fm10k_iov_supported_xcast_mode_pf(vf_info
, mode
);
1374 /* if mode is not currently enabled, enable it */
1375 if (!(FM10K_VF_FLAG_ENABLED(vf_info
) & BIT(mode
)))
1376 fm10k_update_xcast_mode_pf(hw
, vf_info
->glort
, mode
);
1378 /* swap mode back to a bit flag */
1379 mode
= FM10K_VF_FLAG_SET_MODE(mode
);
1380 } else if (!results
[FM10K_LPORT_STATE_MSG_DISABLE
]) {
1381 /* need to disable the port if it is already enabled */
1382 if (FM10K_VF_FLAG_ENABLED(vf_info
))
1383 err
= fm10k_update_lport_state_pf(hw
, vf_info
->glort
,
1386 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1387 * that we actually re-enable the LPORT state below. Note that
1388 * this has no impact if the VF is already disabled, as the
1389 * flags are already cleared.
1392 vf_info
->vf_flags
= FM10K_VF_FLAG_CAPABLE(vf_info
);
1394 /* when enabling the port we should reset the rate limiters */
1395 hw
->iov
.ops
.configure_tc(hw
, vf_info
->vf_idx
, vf_info
->rate
);
1397 /* set mode for minimal functionality */
1398 mode
= FM10K_VF_FLAG_SET_MODE_NONE
;
1400 /* generate port state response to notify VF it is ready */
1401 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_LPORT_STATE
);
1402 fm10k_tlv_attr_put_bool(msg
, FM10K_LPORT_STATE_MSG_READY
);
1403 mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
1406 /* if enable state toggled note the update */
1407 if (!err
&& (!FM10K_VF_FLAG_ENABLED(vf_info
) != !mode
))
1408 err
= fm10k_update_lport_state_pf(hw
, vf_info
->glort
, 1,
1411 /* if state change succeeded, then update our stored state */
1412 mode
|= FM10K_VF_FLAG_CAPABLE(vf_info
);
1414 vf_info
->vf_flags
= mode
;
1420 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1421 * @hw: pointer to hardware structure
1422 * @stats: pointer to the stats structure to update
1424 * This function collects and aggregates global and per queue hardware
1427 static void fm10k_update_hw_stats_pf(struct fm10k_hw
*hw
,
1428 struct fm10k_hw_stats
*stats
)
1430 u32 timeout
, ur
, ca
, um
, xec
, vlan_drop
, loopback_drop
, nodesc_drop
;
1433 /* Use Tx queue 0 as a canary to detect a reset */
1434 id
= fm10k_read_reg(hw
, FM10K_TXQCTL(0));
1436 /* Read Global Statistics */
1438 timeout
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_TIMEOUT
,
1440 ur
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_UR
, &stats
->ur
);
1441 ca
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_CA
, &stats
->ca
);
1442 um
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_UM
, &stats
->um
);
1443 xec
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_XEC
, &stats
->xec
);
1444 vlan_drop
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_VLAN_DROP
,
1447 fm10k_read_hw_stats_32b(hw
,
1448 FM10K_STATS_LOOPBACK_DROP
,
1449 &stats
->loopback_drop
);
1450 nodesc_drop
= fm10k_read_hw_stats_32b(hw
,
1451 FM10K_STATS_NODESC_DROP
,
1452 &stats
->nodesc_drop
);
1454 /* if value has not changed then we have consistent data */
1456 id
= fm10k_read_reg(hw
, FM10K_TXQCTL(0));
1457 } while ((id
^ id_prev
) & FM10K_TXQCTL_ID_MASK
);
1459 /* drop non-ID bits and set VALID ID bit */
1460 id
&= FM10K_TXQCTL_ID_MASK
;
1461 id
|= FM10K_STAT_VALID
;
1463 /* Update Global Statistics */
1464 if (stats
->stats_idx
== id
) {
1465 stats
->timeout
.count
+= timeout
;
1466 stats
->ur
.count
+= ur
;
1467 stats
->ca
.count
+= ca
;
1468 stats
->um
.count
+= um
;
1469 stats
->xec
.count
+= xec
;
1470 stats
->vlan_drop
.count
+= vlan_drop
;
1471 stats
->loopback_drop
.count
+= loopback_drop
;
1472 stats
->nodesc_drop
.count
+= nodesc_drop
;
1475 /* Update bases and record current PF id */
1476 fm10k_update_hw_base_32b(&stats
->timeout
, timeout
);
1477 fm10k_update_hw_base_32b(&stats
->ur
, ur
);
1478 fm10k_update_hw_base_32b(&stats
->ca
, ca
);
1479 fm10k_update_hw_base_32b(&stats
->um
, um
);
1480 fm10k_update_hw_base_32b(&stats
->xec
, xec
);
1481 fm10k_update_hw_base_32b(&stats
->vlan_drop
, vlan_drop
);
1482 fm10k_update_hw_base_32b(&stats
->loopback_drop
, loopback_drop
);
1483 fm10k_update_hw_base_32b(&stats
->nodesc_drop
, nodesc_drop
);
1484 stats
->stats_idx
= id
;
1486 /* Update Queue Statistics */
1487 fm10k_update_hw_stats_q(hw
, stats
->q
, 0, hw
->mac
.max_queues
);
1491 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1492 * @hw: pointer to hardware structure
1493 * @stats: pointer to the stats structure to update
1495 * This function resets the base for global and per queue hardware
1498 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw
*hw
,
1499 struct fm10k_hw_stats
*stats
)
1501 /* Unbind Global Statistics */
1502 fm10k_unbind_hw_stats_32b(&stats
->timeout
);
1503 fm10k_unbind_hw_stats_32b(&stats
->ur
);
1504 fm10k_unbind_hw_stats_32b(&stats
->ca
);
1505 fm10k_unbind_hw_stats_32b(&stats
->um
);
1506 fm10k_unbind_hw_stats_32b(&stats
->xec
);
1507 fm10k_unbind_hw_stats_32b(&stats
->vlan_drop
);
1508 fm10k_unbind_hw_stats_32b(&stats
->loopback_drop
);
1509 fm10k_unbind_hw_stats_32b(&stats
->nodesc_drop
);
1511 /* Unbind Queue Statistics */
1512 fm10k_unbind_hw_stats_q(stats
->q
, 0, hw
->mac
.max_queues
);
1514 /* Reinitialize bases for all stats */
1515 fm10k_update_hw_stats_pf(hw
, stats
);
1519 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1520 * @hw: pointer to hardware structure
1521 * @dma_mask: 64 bit DMA mask required for platform
1523 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1524 * to limit the access to memory beyond what is physically in the system.
1526 static void fm10k_set_dma_mask_pf(struct fm10k_hw
*hw
, u64 dma_mask
)
1528 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1529 u32 phyaddr
= (u32
)(dma_mask
>> 32);
1531 fm10k_write_reg(hw
, FM10K_PHYADDR
, phyaddr
);
1535 * fm10k_get_fault_pf - Record a fault in one of the interface units
1536 * @hw: pointer to hardware structure
1537 * @type: pointer to fault type register offset
1538 * @fault: pointer to memory location to record the fault
1540 * Record the fault register contents to the fault data structure and
1541 * clear the entry from the register.
1543 * Returns ERR_PARAM if invalid register is specified or no error is present.
1545 static s32
fm10k_get_fault_pf(struct fm10k_hw
*hw
, int type
,
1546 struct fm10k_fault
*fault
)
1550 /* verify the fault register is in range and is aligned */
1552 case FM10K_PCA_FAULT
:
1553 case FM10K_THI_FAULT
:
1554 case FM10K_FUM_FAULT
:
1557 return FM10K_ERR_PARAM
;
1560 /* only service faults that are valid */
1561 func
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_FUNC
);
1562 if (!(func
& FM10K_FAULT_FUNC_VALID
))
1563 return FM10K_ERR_PARAM
;
1565 /* read remaining fields */
1566 fault
->address
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_ADDR_HI
);
1567 fault
->address
<<= 32;
1568 fault
->address
|= fm10k_read_reg(hw
, type
+ FM10K_FAULT_ADDR_LO
);
1569 fault
->specinfo
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_SPECINFO
);
1571 /* clear valid bit to allow for next error */
1572 fm10k_write_reg(hw
, type
+ FM10K_FAULT_FUNC
, FM10K_FAULT_FUNC_VALID
);
1574 /* Record which function triggered the error */
1575 if (func
& FM10K_FAULT_FUNC_PF
)
1578 fault
->func
= 1 + ((func
& FM10K_FAULT_FUNC_VF_MASK
) >>
1579 FM10K_FAULT_FUNC_VF_SHIFT
);
1581 /* record fault type */
1582 fault
->type
= func
& FM10K_FAULT_FUNC_TYPE_MASK
;
1588 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1589 * @hw: pointer to hardware structure
1592 static s32
fm10k_request_lport_map_pf(struct fm10k_hw
*hw
)
1594 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
1597 /* issue request asking for LPORT map */
1598 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_LPORT_MAP
);
1600 /* load onto outgoing mailbox */
1601 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
1605 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1606 * @hw: pointer to hardware structure
1607 * @switch_ready: pointer to boolean value that will record switch state
1609 * This function will check the DMA_CTRL2 register and mailbox in order
1610 * to determine if the switch is ready for the PF to begin requesting
1611 * addresses and mapping traffic to the local interface.
1613 static s32
fm10k_get_host_state_pf(struct fm10k_hw
*hw
, bool *switch_ready
)
1617 /* verify the switch is ready for interaction */
1618 dma_ctrl2
= fm10k_read_reg(hw
, FM10K_DMA_CTRL2
);
1619 if (!(dma_ctrl2
& FM10K_DMA_CTRL2_SWITCH_READY
))
1622 /* retrieve generic host state info */
1623 return fm10k_get_host_state_generic(hw
, switch_ready
);
1626 /* This structure defines the attibutes to be parsed below */
1627 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr
[] = {
1628 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR
,
1629 sizeof(struct fm10k_swapi_error
)),
1630 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP
),
1635 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1636 * @hw: Pointer to hardware structure
1637 * @results: pointer array containing parsed data
1638 * @mbx: Pointer to mailbox information structure
1640 * This handler configures the lport mapping based on the reply from the
1643 s32
fm10k_msg_lport_map_pf(struct fm10k_hw
*hw
, u32
**results
,
1644 struct fm10k_mbx_info __always_unused
*mbx
)
1650 err
= fm10k_tlv_attr_get_u32(results
[FM10K_PF_ATTR_ID_LPORT_MAP
],
1655 /* extract values out of the header */
1656 glort
= FM10K_MSG_HDR_FIELD_GET(dglort_map
, LPORT_MAP_GLORT
);
1657 mask
= FM10K_MSG_HDR_FIELD_GET(dglort_map
, LPORT_MAP_MASK
);
1659 /* verify mask is set and none of the masked bits in glort are set */
1660 if (!mask
|| (glort
& ~mask
))
1661 return FM10K_ERR_PARAM
;
1663 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1664 if (((~(mask
- 1) & mask
) + mask
) & FM10K_DGLORTMAP_NONE
)
1665 return FM10K_ERR_PARAM
;
1667 /* record the glort, mask, and port count */
1668 hw
->mac
.dglort_map
= dglort_map
;
1673 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr
[] = {
1674 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID
),
1679 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1680 * @hw: Pointer to hardware structure
1681 * @results: pointer array containing parsed data
1682 * @mbx: Pointer to mailbox information structure
1684 * This handler configures the default VLAN for the PF
1686 static s32
fm10k_msg_update_pvid_pf(struct fm10k_hw
*hw
, u32
**results
,
1687 struct fm10k_mbx_info __always_unused
*mbx
)
1693 err
= fm10k_tlv_attr_get_u32(results
[FM10K_PF_ATTR_ID_UPDATE_PVID
],
1698 /* extract values from the pvid update */
1699 glort
= FM10K_MSG_HDR_FIELD_GET(pvid_update
, UPDATE_PVID_GLORT
);
1700 pvid
= FM10K_MSG_HDR_FIELD_GET(pvid_update
, UPDATE_PVID_PVID
);
1702 /* if glort is not valid return error */
1703 if (!fm10k_glort_valid_pf(hw
, glort
))
1704 return FM10K_ERR_PARAM
;
1706 /* verify VLAN ID is valid */
1707 if (pvid
>= FM10K_VLAN_TABLE_VID_MAX
)
1708 return FM10K_ERR_PARAM
;
1710 /* record the port VLAN ID value */
1711 hw
->mac
.default_vid
= pvid
;
1717 * fm10k_record_global_table_data - Move global table data to swapi table info
1718 * @from: pointer to source table data structure
1719 * @to: pointer to destination table info structure
1721 * This function is will copy table_data to the table_info contained in
1724 static void fm10k_record_global_table_data(struct fm10k_global_table_data
*from
,
1725 struct fm10k_swapi_table_info
*to
)
1727 /* convert from le32 struct to CPU byte ordered values */
1728 to
->used
= le32_to_cpu(from
->used
);
1729 to
->avail
= le32_to_cpu(from
->avail
);
1732 const struct fm10k_tlv_attr fm10k_err_msg_attr
[] = {
1733 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR
,
1734 sizeof(struct fm10k_swapi_error
)),
1739 * fm10k_msg_err_pf - Message handler for error reply
1740 * @hw: Pointer to hardware structure
1741 * @results: pointer array containing parsed data
1742 * @mbx: Pointer to mailbox information structure
1744 * This handler will capture the data for any error replies to previous
1745 * messages that the PF has sent.
1747 s32
fm10k_msg_err_pf(struct fm10k_hw
*hw
, u32
**results
,
1748 struct fm10k_mbx_info __always_unused
*mbx
)
1750 struct fm10k_swapi_error err_msg
;
1753 /* extract structure from message */
1754 err
= fm10k_tlv_attr_get_le_struct(results
[FM10K_PF_ATTR_ID_ERR
],
1755 &err_msg
, sizeof(err_msg
));
1759 /* record table status */
1760 fm10k_record_global_table_data(&err_msg
.mac
, &hw
->swapi
.mac
);
1761 fm10k_record_global_table_data(&err_msg
.nexthop
, &hw
->swapi
.nexthop
);
1762 fm10k_record_global_table_data(&err_msg
.ffu
, &hw
->swapi
.ffu
);
1764 /* record SW API status value */
1765 hw
->swapi
.status
= le32_to_cpu(err_msg
.status
);
1770 static const struct fm10k_msg_data fm10k_msg_data_pf
[] = {
1771 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES
, fm10k_msg_err_pf
),
1772 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE
, fm10k_msg_err_pf
),
1773 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf
),
1774 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE
, fm10k_msg_err_pf
),
1775 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE
, fm10k_msg_err_pf
),
1776 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf
),
1777 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error
),
1780 static const struct fm10k_mac_ops mac_ops_pf
= {
1781 .get_bus_info
= fm10k_get_bus_info_generic
,
1782 .reset_hw
= fm10k_reset_hw_pf
,
1783 .init_hw
= fm10k_init_hw_pf
,
1784 .start_hw
= fm10k_start_hw_generic
,
1785 .stop_hw
= fm10k_stop_hw_generic
,
1786 .update_vlan
= fm10k_update_vlan_pf
,
1787 .read_mac_addr
= fm10k_read_mac_addr_pf
,
1788 .update_uc_addr
= fm10k_update_uc_addr_pf
,
1789 .update_mc_addr
= fm10k_update_mc_addr_pf
,
1790 .update_xcast_mode
= fm10k_update_xcast_mode_pf
,
1791 .update_int_moderator
= fm10k_update_int_moderator_pf
,
1792 .update_lport_state
= fm10k_update_lport_state_pf
,
1793 .update_hw_stats
= fm10k_update_hw_stats_pf
,
1794 .rebind_hw_stats
= fm10k_rebind_hw_stats_pf
,
1795 .configure_dglort_map
= fm10k_configure_dglort_map_pf
,
1796 .set_dma_mask
= fm10k_set_dma_mask_pf
,
1797 .get_fault
= fm10k_get_fault_pf
,
1798 .get_host_state
= fm10k_get_host_state_pf
,
1799 .request_lport_map
= fm10k_request_lport_map_pf
,
1802 static const struct fm10k_iov_ops iov_ops_pf
= {
1803 .assign_resources
= fm10k_iov_assign_resources_pf
,
1804 .configure_tc
= fm10k_iov_configure_tc_pf
,
1805 .assign_int_moderator
= fm10k_iov_assign_int_moderator_pf
,
1806 .assign_default_mac_vlan
= fm10k_iov_assign_default_mac_vlan_pf
,
1807 .reset_resources
= fm10k_iov_reset_resources_pf
,
1808 .set_lport
= fm10k_iov_set_lport_pf
,
1809 .reset_lport
= fm10k_iov_reset_lport_pf
,
1810 .update_stats
= fm10k_iov_update_stats_pf
,
1813 static s32
fm10k_get_invariants_pf(struct fm10k_hw
*hw
)
1815 fm10k_get_invariants_generic(hw
);
1817 return fm10k_sm_mbx_init(hw
, &hw
->mbx
, fm10k_msg_data_pf
);
1820 const struct fm10k_info fm10k_pf_info
= {
1821 .mac
= fm10k_mac_pf
,
1822 .get_invariants
= fm10k_get_invariants_pf
,
1823 .mac_ops
= &mac_ops_pf
,
1824 .iov_ops
= &iov_ops_pf
,