1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
5 #include "ice_dcb_lib.h"
8 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
11 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
13 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg
*qs_cfg
)
17 mutex_lock(qs_cfg
->qs_mutex
);
18 offset
= bitmap_find_next_zero_area(qs_cfg
->pf_map
, qs_cfg
->pf_map_size
,
19 0, qs_cfg
->q_count
, 0);
20 if (offset
>= qs_cfg
->pf_map_size
) {
21 mutex_unlock(qs_cfg
->qs_mutex
);
25 bitmap_set(qs_cfg
->pf_map
, offset
, qs_cfg
->q_count
);
26 for (i
= 0; i
< qs_cfg
->q_count
; i
++)
27 qs_cfg
->vsi_map
[i
+ qs_cfg
->vsi_map_offset
] = i
+ offset
;
28 mutex_unlock(qs_cfg
->qs_mutex
);
34 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
37 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
39 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg
*qs_cfg
)
43 mutex_lock(qs_cfg
->qs_mutex
);
44 for (i
= 0; i
< qs_cfg
->q_count
; i
++) {
45 index
= find_next_zero_bit(qs_cfg
->pf_map
,
46 qs_cfg
->pf_map_size
, index
);
47 if (index
>= qs_cfg
->pf_map_size
)
49 set_bit(index
, qs_cfg
->pf_map
);
50 qs_cfg
->vsi_map
[i
+ qs_cfg
->vsi_map_offset
] = index
;
52 mutex_unlock(qs_cfg
->qs_mutex
);
56 for (index
= 0; index
< i
; index
++) {
57 clear_bit(qs_cfg
->vsi_map
[index
], qs_cfg
->pf_map
);
58 qs_cfg
->vsi_map
[index
+ qs_cfg
->vsi_map_offset
] = 0;
60 mutex_unlock(qs_cfg
->qs_mutex
);
66 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67 * @pf: the PF being configured
69 * @ena: enable or disable state of the queue
71 * This routine will wait for the given Rx queue of the PF to reach the
72 * enabled or disabled state.
73 * Returns -ETIMEDOUT in case of failing to reach the requested state after
74 * multiple retries; else will return 0 in case of success.
76 static int ice_pf_rxq_wait(struct ice_pf
*pf
, int pf_q
, bool ena
)
80 for (i
= 0; i
< ICE_Q_WAIT_MAX_RETRY
; i
++) {
81 if (ena
== !!(rd32(&pf
->hw
, QRX_CTRL(pf_q
)) &
82 QRX_CTRL_QENA_STAT_M
))
92 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93 * @vsi: the VSI being configured
94 * @v_idx: index of the vector in the VSI struct
96 * We allocate one q_vector and set default value for ITR setting associated
97 * with this q_vector. If allocation fails we return -ENOMEM.
99 static int ice_vsi_alloc_q_vector(struct ice_vsi
*vsi
, int v_idx
)
101 struct ice_pf
*pf
= vsi
->back
;
102 struct ice_q_vector
*q_vector
;
104 /* allocate q_vector */
105 q_vector
= devm_kzalloc(ice_pf_to_dev(pf
), sizeof(*q_vector
),
111 q_vector
->v_idx
= v_idx
;
112 q_vector
->tx
.itr_setting
= ICE_DFLT_TX_ITR
;
113 q_vector
->rx
.itr_setting
= ICE_DFLT_RX_ITR
;
114 if (vsi
->type
== ICE_VSI_VF
)
116 /* only set affinity_mask if the CPU is online */
117 if (cpu_online(v_idx
))
118 cpumask_set_cpu(v_idx
, &q_vector
->affinity_mask
);
120 /* This will not be called in the driver load path because the netdev
121 * will not be created yet. All other cases with register the NAPI
122 * handler here (i.e. resume, reset/rebuild, etc.)
125 netif_napi_add(vsi
->netdev
, &q_vector
->napi
, ice_napi_poll
,
129 /* tie q_vector and VSI together */
130 vsi
->q_vectors
[v_idx
] = q_vector
;
136 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
137 * @vsi: VSI having the memory freed
138 * @v_idx: index of the vector to be freed
140 static void ice_free_q_vector(struct ice_vsi
*vsi
, int v_idx
)
142 struct ice_q_vector
*q_vector
;
143 struct ice_pf
*pf
= vsi
->back
;
144 struct ice_ring
*ring
;
147 dev
= ice_pf_to_dev(pf
);
148 if (!vsi
->q_vectors
[v_idx
]) {
149 dev_dbg(dev
, "Queue vector at index %d not found\n", v_idx
);
152 q_vector
= vsi
->q_vectors
[v_idx
];
154 ice_for_each_ring(ring
, q_vector
->tx
)
155 ring
->q_vector
= NULL
;
156 ice_for_each_ring(ring
, q_vector
->rx
)
157 ring
->q_vector
= NULL
;
159 /* only VSI with an associated netdev is set up with NAPI */
161 netif_napi_del(&q_vector
->napi
);
163 devm_kfree(dev
, q_vector
);
164 vsi
->q_vectors
[v_idx
] = NULL
;
168 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
169 * @hw: board specific structure
171 static void ice_cfg_itr_gran(struct ice_hw
*hw
)
173 u32 regval
= rd32(hw
, GLINT_CTL
);
175 /* no need to update global register if ITR gran is already set */
176 if (!(regval
& GLINT_CTL_DIS_AUTOMASK_M
) &&
177 (((regval
& GLINT_CTL_ITR_GRAN_200_M
) >>
178 GLINT_CTL_ITR_GRAN_200_S
) == ICE_ITR_GRAN_US
) &&
179 (((regval
& GLINT_CTL_ITR_GRAN_100_M
) >>
180 GLINT_CTL_ITR_GRAN_100_S
) == ICE_ITR_GRAN_US
) &&
181 (((regval
& GLINT_CTL_ITR_GRAN_50_M
) >>
182 GLINT_CTL_ITR_GRAN_50_S
) == ICE_ITR_GRAN_US
) &&
183 (((regval
& GLINT_CTL_ITR_GRAN_25_M
) >>
184 GLINT_CTL_ITR_GRAN_25_S
) == ICE_ITR_GRAN_US
))
187 regval
= ((ICE_ITR_GRAN_US
<< GLINT_CTL_ITR_GRAN_200_S
) &
188 GLINT_CTL_ITR_GRAN_200_M
) |
189 ((ICE_ITR_GRAN_US
<< GLINT_CTL_ITR_GRAN_100_S
) &
190 GLINT_CTL_ITR_GRAN_100_M
) |
191 ((ICE_ITR_GRAN_US
<< GLINT_CTL_ITR_GRAN_50_S
) &
192 GLINT_CTL_ITR_GRAN_50_M
) |
193 ((ICE_ITR_GRAN_US
<< GLINT_CTL_ITR_GRAN_25_S
) &
194 GLINT_CTL_ITR_GRAN_25_M
);
195 wr32(hw
, GLINT_CTL
, regval
);
199 * ice_calc_q_handle - calculate the queue handle
200 * @vsi: VSI that ring belongs to
201 * @ring: ring to get the absolute queue index
202 * @tc: traffic class number
204 static u16
ice_calc_q_handle(struct ice_vsi
*vsi
, struct ice_ring
*ring
, u8 tc
)
206 WARN_ONCE(ice_ring_is_xdp(ring
) && tc
, "XDP ring can't belong to TC other than 0\n");
208 /* Idea here for calculation is that we subtract the number of queue
209 * count from TC that ring belongs to from it's absolute queue index
210 * and as a result we get the queue's index within TC.
212 return ring
->q_index
- vsi
->tc_cfg
.tc_info
[tc
].qoffset
;
216 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
217 * @ring: The Tx ring to configure
218 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
219 * @pf_q: queue index in the PF space
221 * Configure the Tx descriptor ring in TLAN context.
224 ice_setup_tx_ctx(struct ice_ring
*ring
, struct ice_tlan_ctx
*tlan_ctx
, u16 pf_q
)
226 struct ice_vsi
*vsi
= ring
->vsi
;
227 struct ice_hw
*hw
= &vsi
->back
->hw
;
229 tlan_ctx
->base
= ring
->dma
>> ICE_TLAN_CTX_BASE_S
;
231 tlan_ctx
->port_num
= vsi
->port_info
->lport
;
233 /* Transmit Queue Length */
234 tlan_ctx
->qlen
= ring
->count
;
236 ice_set_cgd_num(tlan_ctx
, ring
);
239 tlan_ctx
->pf_num
= hw
->pf_id
;
241 /* queue belongs to a specific VSI type
242 * VF / VM index should be programmed per vmvf_type setting:
243 * for vmvf_type = VF, it is VF number between 0-256
244 * for vmvf_type = VM, it is VM number between 0-767
245 * for PF or EMP this field should be set to zero
250 tlan_ctx
->vmvf_type
= ICE_TLAN_CTX_VMVF_TYPE_PF
;
253 /* Firmware expects vmvf_num to be absolute VF ID */
254 tlan_ctx
->vmvf_num
= hw
->func_caps
.vf_base_id
+ vsi
->vf_id
;
255 tlan_ctx
->vmvf_type
= ICE_TLAN_CTX_VMVF_TYPE_VF
;
261 /* make sure the context is associated with the right VSI */
262 tlan_ctx
->src_vsi
= ice_get_hw_vsi_num(hw
, vsi
->idx
);
264 tlan_ctx
->tso_ena
= ICE_TX_LEGACY
;
265 tlan_ctx
->tso_qnum
= pf_q
;
267 /* Legacy or Advanced Host Interface:
268 * 0: Advanced Host Interface
269 * 1: Legacy Host Interface
271 tlan_ctx
->legacy_int
= ICE_TX_LEGACY
;
275 * ice_setup_rx_ctx - Configure a receive ring context
276 * @ring: The Rx ring to configure
278 * Configure the Rx descriptor ring in RLAN context.
280 int ice_setup_rx_ctx(struct ice_ring
*ring
)
282 int chain_len
= ICE_MAX_CHAINED_RX_BUFS
;
283 struct ice_vsi
*vsi
= ring
->vsi
;
284 u32 rxdid
= ICE_RXDID_FLEX_NIC
;
285 struct ice_rlan_ctx rlan_ctx
;
293 /* what is Rx queue number in global space of 2K Rx queues */
294 pf_q
= vsi
->rxq_map
[ring
->q_index
];
296 /* clear the context structure first */
297 memset(&rlan_ctx
, 0, sizeof(rlan_ctx
));
299 ring
->rx_buf_len
= vsi
->rx_buf_len
;
301 if (ring
->vsi
->type
== ICE_VSI_PF
) {
302 if (!xdp_rxq_info_is_reg(&ring
->xdp_rxq
))
303 /* coverity[check_return] */
304 xdp_rxq_info_reg(&ring
->xdp_rxq
, ring
->netdev
,
307 ring
->xsk_umem
= ice_xsk_umem(ring
);
308 if (ring
->xsk_umem
) {
309 xdp_rxq_info_unreg_mem_model(&ring
->xdp_rxq
);
311 ring
->rx_buf_len
= ring
->xsk_umem
->chunk_size_nohr
-
313 /* For AF_XDP ZC, we disallow packets to span on
314 * multiple buffers, thus letting us skip that
315 * handling in the fast-path.
318 ring
->zca
.free
= ice_zca_free
;
319 err
= xdp_rxq_info_reg_mem_model(&ring
->xdp_rxq
,
325 dev_info(ice_pf_to_dev(vsi
->back
), "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
328 ring
->zca
.free
= NULL
;
329 if (!xdp_rxq_info_is_reg(&ring
->xdp_rxq
))
330 /* coverity[check_return] */
331 xdp_rxq_info_reg(&ring
->xdp_rxq
,
335 err
= xdp_rxq_info_reg_mem_model(&ring
->xdp_rxq
,
336 MEM_TYPE_PAGE_SHARED
,
342 /* Receive Queue Base Address.
343 * Indicates the starting address of the descriptor queue defined in
346 rlan_ctx
.base
= ring
->dma
>> 7;
348 rlan_ctx
.qlen
= ring
->count
;
350 /* Receive Packet Data Buffer Size.
351 * The Packet Data Buffer Size is defined in 128 byte units.
353 rlan_ctx
.dbuf
= ring
->rx_buf_len
>> ICE_RLAN_CTX_DBUF_S
;
355 /* use 32 byte descriptors */
358 /* Strip the Ethernet CRC bytes before the packet is posted to host
361 rlan_ctx
.crcstrip
= 1;
363 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
366 rlan_ctx
.dtype
= ICE_RX_DTYPE_NO_SPLIT
;
367 rlan_ctx
.hsplit_0
= ICE_RLAN_RX_HSPLIT_0_NO_SPLIT
;
368 rlan_ctx
.hsplit_1
= ICE_RLAN_RX_HSPLIT_1_NO_SPLIT
;
370 /* This controls whether VLAN is stripped from inner headers
371 * The VLAN in the inner L2 header is stripped to the receive
372 * descriptor if enabled by this flag.
376 /* Max packet size for this queue - must not be set to a larger value
379 rlan_ctx
.rxmax
= min_t(u16
, vsi
->max_frame
,
380 chain_len
* ring
->rx_buf_len
);
382 /* Rx queue threshold in units of 64 */
383 rlan_ctx
.lrxqthresh
= 1;
385 /* Enable Flexible Descriptors in the queue context which
386 * allows this driver to select a specific receive descriptor format
388 regval
= rd32(hw
, QRXFLXP_CNTXT(pf_q
));
389 if (vsi
->type
!= ICE_VSI_VF
) {
390 regval
|= (rxdid
<< QRXFLXP_CNTXT_RXDID_IDX_S
) &
391 QRXFLXP_CNTXT_RXDID_IDX_M
;
393 /* increasing context priority to pick up profile ID;
394 * default is 0x01; setting to 0x03 to ensure profile
395 * is programming if prev context is of same priority
397 regval
|= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S
) &
398 QRXFLXP_CNTXT_RXDID_PRIO_M
;
401 regval
&= ~(QRXFLXP_CNTXT_RXDID_IDX_M
|
402 QRXFLXP_CNTXT_RXDID_PRIO_M
|
405 wr32(hw
, QRXFLXP_CNTXT(pf_q
), regval
);
407 /* Absolute queue number out of 2K needs to be passed */
408 err
= ice_write_rxq_ctx(hw
, &rlan_ctx
, pf_q
);
410 dev_err(ice_pf_to_dev(vsi
->back
), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
415 if (vsi
->type
== ICE_VSI_VF
)
418 /* configure Rx buffer alignment */
419 if (!vsi
->netdev
|| test_bit(ICE_FLAG_LEGACY_RX
, vsi
->back
->flags
))
420 ice_clear_ring_build_skb_ena(ring
);
422 ice_set_ring_build_skb_ena(ring
);
424 /* init queue specific tail register */
425 ring
->tail
= hw
->hw_addr
+ QRX_TAIL(pf_q
);
426 writel(0, ring
->tail
);
428 err
= ring
->xsk_umem
?
429 ice_alloc_rx_bufs_slow_zc(ring
, ICE_DESC_UNUSED(ring
)) :
430 ice_alloc_rx_bufs(ring
, ICE_DESC_UNUSED(ring
));
432 dev_info(ice_pf_to_dev(vsi
->back
), "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
433 ring
->xsk_umem
? "UMEM enabled " : "",
434 ring
->q_index
, pf_q
);
440 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
441 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
443 * This function first tries to find contiguous space. If it is not successful,
444 * it tries with the scatter approach.
446 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
448 int __ice_vsi_get_qs(struct ice_qs_cfg
*qs_cfg
)
452 ret
= __ice_vsi_get_qs_contig(qs_cfg
);
454 /* contig failed, so try with scatter approach */
455 qs_cfg
->mapping_mode
= ICE_VSI_MAP_SCATTER
;
456 qs_cfg
->q_count
= min_t(u16
, qs_cfg
->q_count
,
457 qs_cfg
->scatter_count
);
458 ret
= __ice_vsi_get_qs_sc(qs_cfg
);
464 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
465 * @vsi: the VSI being configured
466 * @ena: start or stop the Rx ring
467 * @rxq_idx: 0-based Rx queue index for the VSI passed in
468 * @wait: wait or don't wait for configuration to finish in hardware
470 * Return 0 on success and negative on error.
473 ice_vsi_ctrl_one_rx_ring(struct ice_vsi
*vsi
, bool ena
, u16 rxq_idx
, bool wait
)
475 int pf_q
= vsi
->rxq_map
[rxq_idx
];
476 struct ice_pf
*pf
= vsi
->back
;
477 struct ice_hw
*hw
= &pf
->hw
;
480 rx_reg
= rd32(hw
, QRX_CTRL(pf_q
));
482 /* Skip if the queue is already in the requested state */
483 if (ena
== !!(rx_reg
& QRX_CTRL_QENA_STAT_M
))
486 /* turn on/off the queue */
488 rx_reg
|= QRX_CTRL_QENA_REQ_M
;
490 rx_reg
&= ~QRX_CTRL_QENA_REQ_M
;
491 wr32(hw
, QRX_CTRL(pf_q
), rx_reg
);
497 return ice_pf_rxq_wait(pf
, pf_q
, ena
);
501 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
502 * @vsi: the VSI being configured
503 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
504 * @rxq_idx: 0-based Rx queue index for the VSI passed in
506 * This routine will wait for the given Rx queue of the VSI to reach the
507 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
508 * the requested state after multiple retries; else will return 0 in case of
511 int ice_vsi_wait_one_rx_ring(struct ice_vsi
*vsi
, bool ena
, u16 rxq_idx
)
513 int pf_q
= vsi
->rxq_map
[rxq_idx
];
514 struct ice_pf
*pf
= vsi
->back
;
516 return ice_pf_rxq_wait(pf
, pf_q
, ena
);
520 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
521 * @vsi: the VSI being configured
523 * We allocate one q_vector per queue interrupt. If allocation fails we
526 int ice_vsi_alloc_q_vectors(struct ice_vsi
*vsi
)
528 struct device
*dev
= ice_pf_to_dev(vsi
->back
);
531 if (vsi
->q_vectors
[0]) {
532 dev_dbg(dev
, "VSI %d has existing q_vectors\n", vsi
->vsi_num
);
536 for (v_idx
= 0; v_idx
< vsi
->num_q_vectors
; v_idx
++) {
537 err
= ice_vsi_alloc_q_vector(vsi
, v_idx
);
546 ice_free_q_vector(vsi
, v_idx
);
548 dev_err(dev
, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
549 vsi
->num_q_vectors
, vsi
->vsi_num
, err
);
550 vsi
->num_q_vectors
= 0;
555 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
556 * @vsi: the VSI being configured
558 * This function maps descriptor rings to the queue-specific vectors allotted
559 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
560 * and Rx rings to the vector as "efficiently" as possible.
562 void ice_vsi_map_rings_to_vectors(struct ice_vsi
*vsi
)
564 int q_vectors
= vsi
->num_q_vectors
;
565 int tx_rings_rem
, rx_rings_rem
;
568 /* initially assigning remaining rings count to VSIs num queue value */
569 tx_rings_rem
= vsi
->num_txq
;
570 rx_rings_rem
= vsi
->num_rxq
;
572 for (v_id
= 0; v_id
< q_vectors
; v_id
++) {
573 struct ice_q_vector
*q_vector
= vsi
->q_vectors
[v_id
];
574 int tx_rings_per_v
, rx_rings_per_v
, q_id
, q_base
;
576 /* Tx rings mapping to vector */
577 tx_rings_per_v
= DIV_ROUND_UP(tx_rings_rem
, q_vectors
- v_id
);
578 q_vector
->num_ring_tx
= tx_rings_per_v
;
579 q_vector
->tx
.ring
= NULL
;
580 q_vector
->tx
.itr_idx
= ICE_TX_ITR
;
581 q_base
= vsi
->num_txq
- tx_rings_rem
;
583 for (q_id
= q_base
; q_id
< (q_base
+ tx_rings_per_v
); q_id
++) {
584 struct ice_ring
*tx_ring
= vsi
->tx_rings
[q_id
];
586 tx_ring
->q_vector
= q_vector
;
587 tx_ring
->next
= q_vector
->tx
.ring
;
588 q_vector
->tx
.ring
= tx_ring
;
590 tx_rings_rem
-= tx_rings_per_v
;
592 /* Rx rings mapping to vector */
593 rx_rings_per_v
= DIV_ROUND_UP(rx_rings_rem
, q_vectors
- v_id
);
594 q_vector
->num_ring_rx
= rx_rings_per_v
;
595 q_vector
->rx
.ring
= NULL
;
596 q_vector
->rx
.itr_idx
= ICE_RX_ITR
;
597 q_base
= vsi
->num_rxq
- rx_rings_rem
;
599 for (q_id
= q_base
; q_id
< (q_base
+ rx_rings_per_v
); q_id
++) {
600 struct ice_ring
*rx_ring
= vsi
->rx_rings
[q_id
];
602 rx_ring
->q_vector
= q_vector
;
603 rx_ring
->next
= q_vector
->rx
.ring
;
604 q_vector
->rx
.ring
= rx_ring
;
606 rx_rings_rem
-= rx_rings_per_v
;
611 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
612 * @vsi: the VSI having memory freed
614 void ice_vsi_free_q_vectors(struct ice_vsi
*vsi
)
618 ice_for_each_q_vector(vsi
, v_idx
)
619 ice_free_q_vector(vsi
, v_idx
);
623 * ice_vsi_cfg_txq - Configure single Tx queue
624 * @vsi: the VSI that queue belongs to
625 * @ring: Tx ring to be configured
626 * @qg_buf: queue group buffer
629 ice_vsi_cfg_txq(struct ice_vsi
*vsi
, struct ice_ring
*ring
,
630 struct ice_aqc_add_tx_qgrp
*qg_buf
)
632 struct ice_tlan_ctx tlan_ctx
= { 0 };
633 struct ice_aqc_add_txqs_perq
*txq
;
634 struct ice_pf
*pf
= vsi
->back
;
635 u8 buf_len
= sizeof(*qg_buf
);
636 enum ice_status status
;
640 pf_q
= ring
->reg_idx
;
641 ice_setup_tx_ctx(ring
, &tlan_ctx
, pf_q
);
642 /* copy context contents into the qg_buf */
643 qg_buf
->txqs
[0].txq_id
= cpu_to_le16(pf_q
);
644 ice_set_ctx((u8
*)&tlan_ctx
, qg_buf
->txqs
[0].txq_ctx
,
647 /* init queue specific tail reg. It is referred as
648 * transmit comm scheduler queue doorbell.
650 ring
->tail
= pf
->hw
.hw_addr
+ QTX_COMM_DBELL(pf_q
);
652 if (IS_ENABLED(CONFIG_DCB
))
657 /* Add unique software queue handle of the Tx queue per
658 * TC into the VSI Tx ring
660 ring
->q_handle
= ice_calc_q_handle(vsi
, ring
, tc
);
662 status
= ice_ena_vsi_txq(vsi
->port_info
, vsi
->idx
, tc
, ring
->q_handle
,
663 1, qg_buf
, buf_len
, NULL
);
665 dev_err(ice_pf_to_dev(pf
), "Failed to set LAN Tx queue context, error: %d\n",
670 /* Add Tx Queue TEID into the VSI Tx ring from the
671 * response. This will complete configuring and
672 * enabling the queue.
674 txq
= &qg_buf
->txqs
[0];
675 if (pf_q
== le16_to_cpu(txq
->txq_id
))
676 ring
->txq_teid
= le32_to_cpu(txq
->q_teid
);
682 * ice_cfg_itr - configure the initial interrupt throttle values
683 * @hw: pointer to the HW structure
684 * @q_vector: interrupt vector that's being configured
686 * Configure interrupt throttling values for the ring containers that are
687 * associated with the interrupt vector passed in.
689 void ice_cfg_itr(struct ice_hw
*hw
, struct ice_q_vector
*q_vector
)
691 ice_cfg_itr_gran(hw
);
693 if (q_vector
->num_ring_rx
) {
694 struct ice_ring_container
*rc
= &q_vector
->rx
;
696 rc
->target_itr
= ITR_TO_REG(rc
->itr_setting
);
697 rc
->next_update
= jiffies
+ 1;
698 rc
->current_itr
= rc
->target_itr
;
699 wr32(hw
, GLINT_ITR(rc
->itr_idx
, q_vector
->reg_idx
),
700 ITR_REG_ALIGN(rc
->current_itr
) >> ICE_ITR_GRAN_S
);
703 if (q_vector
->num_ring_tx
) {
704 struct ice_ring_container
*rc
= &q_vector
->tx
;
706 rc
->target_itr
= ITR_TO_REG(rc
->itr_setting
);
707 rc
->next_update
= jiffies
+ 1;
708 rc
->current_itr
= rc
->target_itr
;
709 wr32(hw
, GLINT_ITR(rc
->itr_idx
, q_vector
->reg_idx
),
710 ITR_REG_ALIGN(rc
->current_itr
) >> ICE_ITR_GRAN_S
);
715 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
716 * @vsi: the VSI being configured
717 * @txq: Tx queue being mapped to MSI-X vector
718 * @msix_idx: MSI-X vector index within the function
719 * @itr_idx: ITR index of the interrupt cause
721 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
722 * within the function space.
725 ice_cfg_txq_interrupt(struct ice_vsi
*vsi
, u16 txq
, u16 msix_idx
, u16 itr_idx
)
727 struct ice_pf
*pf
= vsi
->back
;
728 struct ice_hw
*hw
= &pf
->hw
;
731 itr_idx
= (itr_idx
<< QINT_TQCTL_ITR_INDX_S
) & QINT_TQCTL_ITR_INDX_M
;
733 val
= QINT_TQCTL_CAUSE_ENA_M
| itr_idx
|
734 ((msix_idx
<< QINT_TQCTL_MSIX_INDX_S
) & QINT_TQCTL_MSIX_INDX_M
);
736 wr32(hw
, QINT_TQCTL(vsi
->txq_map
[txq
]), val
);
737 if (ice_is_xdp_ena_vsi(vsi
)) {
738 u32 xdp_txq
= txq
+ vsi
->num_xdp_txq
;
740 wr32(hw
, QINT_TQCTL(vsi
->txq_map
[xdp_txq
]),
747 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
748 * @vsi: the VSI being configured
749 * @rxq: Rx queue being mapped to MSI-X vector
750 * @msix_idx: MSI-X vector index within the function
751 * @itr_idx: ITR index of the interrupt cause
753 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
754 * within the function space.
757 ice_cfg_rxq_interrupt(struct ice_vsi
*vsi
, u16 rxq
, u16 msix_idx
, u16 itr_idx
)
759 struct ice_pf
*pf
= vsi
->back
;
760 struct ice_hw
*hw
= &pf
->hw
;
763 itr_idx
= (itr_idx
<< QINT_RQCTL_ITR_INDX_S
) & QINT_RQCTL_ITR_INDX_M
;
765 val
= QINT_RQCTL_CAUSE_ENA_M
| itr_idx
|
766 ((msix_idx
<< QINT_RQCTL_MSIX_INDX_S
) & QINT_RQCTL_MSIX_INDX_M
);
768 wr32(hw
, QINT_RQCTL(vsi
->rxq_map
[rxq
]), val
);
774 * ice_trigger_sw_intr - trigger a software interrupt
775 * @hw: pointer to the HW structure
776 * @q_vector: interrupt vector to trigger the software interrupt for
778 void ice_trigger_sw_intr(struct ice_hw
*hw
, struct ice_q_vector
*q_vector
)
780 wr32(hw
, GLINT_DYN_CTL(q_vector
->reg_idx
),
781 (ICE_ITR_NONE
<< GLINT_DYN_CTL_ITR_INDX_S
) |
782 GLINT_DYN_CTL_SWINT_TRIG_M
|
783 GLINT_DYN_CTL_INTENA_M
);
787 * ice_vsi_stop_tx_ring - Disable single Tx ring
788 * @vsi: the VSI being configured
789 * @rst_src: reset source
790 * @rel_vmvf_num: Relative ID of VF/VM
791 * @ring: Tx ring to be stopped
792 * @txq_meta: Meta data of Tx ring to be stopped
795 ice_vsi_stop_tx_ring(struct ice_vsi
*vsi
, enum ice_disq_rst_src rst_src
,
796 u16 rel_vmvf_num
, struct ice_ring
*ring
,
797 struct ice_txq_meta
*txq_meta
)
799 struct ice_pf
*pf
= vsi
->back
;
800 struct ice_q_vector
*q_vector
;
801 struct ice_hw
*hw
= &pf
->hw
;
802 enum ice_status status
;
805 /* clear cause_ena bit for disabled queues */
806 val
= rd32(hw
, QINT_TQCTL(ring
->reg_idx
));
807 val
&= ~QINT_TQCTL_CAUSE_ENA_M
;
808 wr32(hw
, QINT_TQCTL(ring
->reg_idx
), val
);
810 /* software is expected to wait for 100 ns */
813 /* trigger a software interrupt for the vector
814 * associated to the queue to schedule NAPI handler
816 q_vector
= ring
->q_vector
;
818 ice_trigger_sw_intr(hw
, q_vector
);
820 status
= ice_dis_vsi_txq(vsi
->port_info
, txq_meta
->vsi_idx
,
821 txq_meta
->tc
, 1, &txq_meta
->q_handle
,
822 &txq_meta
->q_id
, &txq_meta
->q_teid
, rst_src
,
825 /* if the disable queue command was exercised during an
826 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
827 * This is not an error as the reset operation disables
828 * queues at the hardware level anyway.
830 if (status
== ICE_ERR_RESET_ONGOING
) {
831 dev_dbg(ice_pf_to_dev(vsi
->back
), "Reset in progress. LAN Tx queues already disabled\n");
832 } else if (status
== ICE_ERR_DOES_NOT_EXIST
) {
833 dev_dbg(ice_pf_to_dev(vsi
->back
), "LAN Tx queues do not exist, nothing to disable\n");
835 dev_err(ice_pf_to_dev(vsi
->back
), "Failed to disable LAN Tx queues, error: %d\n",
844 * ice_fill_txq_meta - Prepare the Tx queue's meta data
845 * @vsi: VSI that ring belongs to
846 * @ring: ring that txq_meta will be based on
847 * @txq_meta: a helper struct that wraps Tx queue's information
849 * Set up a helper struct that will contain all the necessary fields that
850 * are needed for stopping Tx queue
853 ice_fill_txq_meta(struct ice_vsi
*vsi
, struct ice_ring
*ring
,
854 struct ice_txq_meta
*txq_meta
)
858 if (IS_ENABLED(CONFIG_DCB
))
863 txq_meta
->q_id
= ring
->reg_idx
;
864 txq_meta
->q_teid
= ring
->txq_teid
;
865 txq_meta
->q_handle
= ring
->q_handle
;
866 txq_meta
->vsi_idx
= vsi
->idx
;