gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ice / ice_base.c
bloba19cd6f5436bc10b0abb4de493cfe1c94b13a048
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
4 #include "ice_base.h"
5 #include "ice_dcb_lib.h"
7 /**
8 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
11 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
13 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
15 int offset, i;
17 mutex_lock(qs_cfg->qs_mutex);
18 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
19 0, qs_cfg->q_count, 0);
20 if (offset >= qs_cfg->pf_map_size) {
21 mutex_unlock(qs_cfg->qs_mutex);
22 return -ENOMEM;
25 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
26 for (i = 0; i < qs_cfg->q_count; i++)
27 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
28 mutex_unlock(qs_cfg->qs_mutex);
30 return 0;
33 /**
34 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
37 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
39 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
41 int i, index = 0;
43 mutex_lock(qs_cfg->qs_mutex);
44 for (i = 0; i < qs_cfg->q_count; i++) {
45 index = find_next_zero_bit(qs_cfg->pf_map,
46 qs_cfg->pf_map_size, index);
47 if (index >= qs_cfg->pf_map_size)
48 goto err_scatter;
49 set_bit(index, qs_cfg->pf_map);
50 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
52 mutex_unlock(qs_cfg->qs_mutex);
54 return 0;
55 err_scatter:
56 for (index = 0; index < i; index++) {
57 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
58 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
60 mutex_unlock(qs_cfg->qs_mutex);
62 return -ENOMEM;
65 /**
66 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67 * @pf: the PF being configured
68 * @pf_q: the PF queue
69 * @ena: enable or disable state of the queue
71 * This routine will wait for the given Rx queue of the PF to reach the
72 * enabled or disabled state.
73 * Returns -ETIMEDOUT in case of failing to reach the requested state after
74 * multiple retries; else will return 0 in case of success.
76 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
78 int i;
80 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
81 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
82 QRX_CTRL_QENA_STAT_M))
83 return 0;
85 usleep_range(20, 40);
88 return -ETIMEDOUT;
91 /**
92 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93 * @vsi: the VSI being configured
94 * @v_idx: index of the vector in the VSI struct
96 * We allocate one q_vector and set default value for ITR setting associated
97 * with this q_vector. If allocation fails we return -ENOMEM.
99 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
101 struct ice_pf *pf = vsi->back;
102 struct ice_q_vector *q_vector;
104 /* allocate q_vector */
105 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
106 GFP_KERNEL);
107 if (!q_vector)
108 return -ENOMEM;
110 q_vector->vsi = vsi;
111 q_vector->v_idx = v_idx;
112 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
113 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
114 if (vsi->type == ICE_VSI_VF)
115 goto out;
116 /* only set affinity_mask if the CPU is online */
117 if (cpu_online(v_idx))
118 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
120 /* This will not be called in the driver load path because the netdev
121 * will not be created yet. All other cases with register the NAPI
122 * handler here (i.e. resume, reset/rebuild, etc.)
124 if (vsi->netdev)
125 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
126 NAPI_POLL_WEIGHT);
128 out:
129 /* tie q_vector and VSI together */
130 vsi->q_vectors[v_idx] = q_vector;
132 return 0;
136 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
137 * @vsi: VSI having the memory freed
138 * @v_idx: index of the vector to be freed
140 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
142 struct ice_q_vector *q_vector;
143 struct ice_pf *pf = vsi->back;
144 struct ice_ring *ring;
145 struct device *dev;
147 dev = ice_pf_to_dev(pf);
148 if (!vsi->q_vectors[v_idx]) {
149 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
150 return;
152 q_vector = vsi->q_vectors[v_idx];
154 ice_for_each_ring(ring, q_vector->tx)
155 ring->q_vector = NULL;
156 ice_for_each_ring(ring, q_vector->rx)
157 ring->q_vector = NULL;
159 /* only VSI with an associated netdev is set up with NAPI */
160 if (vsi->netdev)
161 netif_napi_del(&q_vector->napi);
163 devm_kfree(dev, q_vector);
164 vsi->q_vectors[v_idx] = NULL;
168 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
169 * @hw: board specific structure
171 static void ice_cfg_itr_gran(struct ice_hw *hw)
173 u32 regval = rd32(hw, GLINT_CTL);
175 /* no need to update global register if ITR gran is already set */
176 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
177 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
178 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
179 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
180 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
181 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
182 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
183 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
184 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
185 return;
187 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
188 GLINT_CTL_ITR_GRAN_200_M) |
189 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
190 GLINT_CTL_ITR_GRAN_100_M) |
191 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
192 GLINT_CTL_ITR_GRAN_50_M) |
193 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
194 GLINT_CTL_ITR_GRAN_25_M);
195 wr32(hw, GLINT_CTL, regval);
199 * ice_calc_q_handle - calculate the queue handle
200 * @vsi: VSI that ring belongs to
201 * @ring: ring to get the absolute queue index
202 * @tc: traffic class number
204 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
206 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
208 /* Idea here for calculation is that we subtract the number of queue
209 * count from TC that ring belongs to from it's absolute queue index
210 * and as a result we get the queue's index within TC.
212 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
216 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
217 * @ring: The Tx ring to configure
218 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
219 * @pf_q: queue index in the PF space
221 * Configure the Tx descriptor ring in TLAN context.
223 static void
224 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
226 struct ice_vsi *vsi = ring->vsi;
227 struct ice_hw *hw = &vsi->back->hw;
229 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
231 tlan_ctx->port_num = vsi->port_info->lport;
233 /* Transmit Queue Length */
234 tlan_ctx->qlen = ring->count;
236 ice_set_cgd_num(tlan_ctx, ring);
238 /* PF number */
239 tlan_ctx->pf_num = hw->pf_id;
241 /* queue belongs to a specific VSI type
242 * VF / VM index should be programmed per vmvf_type setting:
243 * for vmvf_type = VF, it is VF number between 0-256
244 * for vmvf_type = VM, it is VM number between 0-767
245 * for PF or EMP this field should be set to zero
247 switch (vsi->type) {
248 case ICE_VSI_LB:
249 case ICE_VSI_PF:
250 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
251 break;
252 case ICE_VSI_VF:
253 /* Firmware expects vmvf_num to be absolute VF ID */
254 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
255 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
256 break;
257 default:
258 return;
261 /* make sure the context is associated with the right VSI */
262 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
264 tlan_ctx->tso_ena = ICE_TX_LEGACY;
265 tlan_ctx->tso_qnum = pf_q;
267 /* Legacy or Advanced Host Interface:
268 * 0: Advanced Host Interface
269 * 1: Legacy Host Interface
271 tlan_ctx->legacy_int = ICE_TX_LEGACY;
275 * ice_setup_rx_ctx - Configure a receive ring context
276 * @ring: The Rx ring to configure
278 * Configure the Rx descriptor ring in RLAN context.
280 int ice_setup_rx_ctx(struct ice_ring *ring)
282 int chain_len = ICE_MAX_CHAINED_RX_BUFS;
283 struct ice_vsi *vsi = ring->vsi;
284 u32 rxdid = ICE_RXDID_FLEX_NIC;
285 struct ice_rlan_ctx rlan_ctx;
286 struct ice_hw *hw;
287 u32 regval;
288 u16 pf_q;
289 int err;
291 hw = &vsi->back->hw;
293 /* what is Rx queue number in global space of 2K Rx queues */
294 pf_q = vsi->rxq_map[ring->q_index];
296 /* clear the context structure first */
297 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
299 ring->rx_buf_len = vsi->rx_buf_len;
301 if (ring->vsi->type == ICE_VSI_PF) {
302 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
303 /* coverity[check_return] */
304 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
305 ring->q_index);
307 ring->xsk_umem = ice_xsk_umem(ring);
308 if (ring->xsk_umem) {
309 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
311 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr -
312 XDP_PACKET_HEADROOM;
313 /* For AF_XDP ZC, we disallow packets to span on
314 * multiple buffers, thus letting us skip that
315 * handling in the fast-path.
317 chain_len = 1;
318 ring->zca.free = ice_zca_free;
319 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
320 MEM_TYPE_ZERO_COPY,
321 &ring->zca);
322 if (err)
323 return err;
325 dev_info(ice_pf_to_dev(vsi->back), "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
326 ring->q_index);
327 } else {
328 ring->zca.free = NULL;
329 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
330 /* coverity[check_return] */
331 xdp_rxq_info_reg(&ring->xdp_rxq,
332 ring->netdev,
333 ring->q_index);
335 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
336 MEM_TYPE_PAGE_SHARED,
337 NULL);
338 if (err)
339 return err;
342 /* Receive Queue Base Address.
343 * Indicates the starting address of the descriptor queue defined in
344 * 128 Byte units.
346 rlan_ctx.base = ring->dma >> 7;
348 rlan_ctx.qlen = ring->count;
350 /* Receive Packet Data Buffer Size.
351 * The Packet Data Buffer Size is defined in 128 byte units.
353 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
355 /* use 32 byte descriptors */
356 rlan_ctx.dsize = 1;
358 /* Strip the Ethernet CRC bytes before the packet is posted to host
359 * memory.
361 rlan_ctx.crcstrip = 1;
363 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
364 rlan_ctx.l2tsel = 1;
366 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
367 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
368 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
370 /* This controls whether VLAN is stripped from inner headers
371 * The VLAN in the inner L2 header is stripped to the receive
372 * descriptor if enabled by this flag.
374 rlan_ctx.showiv = 0;
376 /* Max packet size for this queue - must not be set to a larger value
377 * than 5 x DBUF
379 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
380 chain_len * ring->rx_buf_len);
382 /* Rx queue threshold in units of 64 */
383 rlan_ctx.lrxqthresh = 1;
385 /* Enable Flexible Descriptors in the queue context which
386 * allows this driver to select a specific receive descriptor format
388 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
389 if (vsi->type != ICE_VSI_VF) {
390 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
391 QRXFLXP_CNTXT_RXDID_IDX_M;
393 /* increasing context priority to pick up profile ID;
394 * default is 0x01; setting to 0x03 to ensure profile
395 * is programming if prev context is of same priority
397 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
398 QRXFLXP_CNTXT_RXDID_PRIO_M;
400 } else {
401 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
402 QRXFLXP_CNTXT_RXDID_PRIO_M |
403 QRXFLXP_CNTXT_TS_M);
405 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
407 /* Absolute queue number out of 2K needs to be passed */
408 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
409 if (err) {
410 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
411 pf_q, err);
412 return -EIO;
415 if (vsi->type == ICE_VSI_VF)
416 return 0;
418 /* configure Rx buffer alignment */
419 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
420 ice_clear_ring_build_skb_ena(ring);
421 else
422 ice_set_ring_build_skb_ena(ring);
424 /* init queue specific tail register */
425 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
426 writel(0, ring->tail);
428 err = ring->xsk_umem ?
429 ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) :
430 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
431 if (err)
432 dev_info(ice_pf_to_dev(vsi->back), "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
433 ring->xsk_umem ? "UMEM enabled " : "",
434 ring->q_index, pf_q);
436 return 0;
440 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
441 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
443 * This function first tries to find contiguous space. If it is not successful,
444 * it tries with the scatter approach.
446 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
448 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
450 int ret = 0;
452 ret = __ice_vsi_get_qs_contig(qs_cfg);
453 if (ret) {
454 /* contig failed, so try with scatter approach */
455 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
456 qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
457 qs_cfg->scatter_count);
458 ret = __ice_vsi_get_qs_sc(qs_cfg);
460 return ret;
464 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
465 * @vsi: the VSI being configured
466 * @ena: start or stop the Rx ring
467 * @rxq_idx: 0-based Rx queue index for the VSI passed in
468 * @wait: wait or don't wait for configuration to finish in hardware
470 * Return 0 on success and negative on error.
473 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
475 int pf_q = vsi->rxq_map[rxq_idx];
476 struct ice_pf *pf = vsi->back;
477 struct ice_hw *hw = &pf->hw;
478 u32 rx_reg;
480 rx_reg = rd32(hw, QRX_CTRL(pf_q));
482 /* Skip if the queue is already in the requested state */
483 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
484 return 0;
486 /* turn on/off the queue */
487 if (ena)
488 rx_reg |= QRX_CTRL_QENA_REQ_M;
489 else
490 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
491 wr32(hw, QRX_CTRL(pf_q), rx_reg);
493 if (!wait)
494 return 0;
496 ice_flush(hw);
497 return ice_pf_rxq_wait(pf, pf_q, ena);
501 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
502 * @vsi: the VSI being configured
503 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
504 * @rxq_idx: 0-based Rx queue index for the VSI passed in
506 * This routine will wait for the given Rx queue of the VSI to reach the
507 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
508 * the requested state after multiple retries; else will return 0 in case of
509 * success.
511 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
513 int pf_q = vsi->rxq_map[rxq_idx];
514 struct ice_pf *pf = vsi->back;
516 return ice_pf_rxq_wait(pf, pf_q, ena);
520 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
521 * @vsi: the VSI being configured
523 * We allocate one q_vector per queue interrupt. If allocation fails we
524 * return -ENOMEM.
526 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
528 struct device *dev = ice_pf_to_dev(vsi->back);
529 int v_idx, err;
531 if (vsi->q_vectors[0]) {
532 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
533 return -EEXIST;
536 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
537 err = ice_vsi_alloc_q_vector(vsi, v_idx);
538 if (err)
539 goto err_out;
542 return 0;
544 err_out:
545 while (v_idx--)
546 ice_free_q_vector(vsi, v_idx);
548 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
549 vsi->num_q_vectors, vsi->vsi_num, err);
550 vsi->num_q_vectors = 0;
551 return err;
555 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
556 * @vsi: the VSI being configured
558 * This function maps descriptor rings to the queue-specific vectors allotted
559 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
560 * and Rx rings to the vector as "efficiently" as possible.
562 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
564 int q_vectors = vsi->num_q_vectors;
565 int tx_rings_rem, rx_rings_rem;
566 int v_id;
568 /* initially assigning remaining rings count to VSIs num queue value */
569 tx_rings_rem = vsi->num_txq;
570 rx_rings_rem = vsi->num_rxq;
572 for (v_id = 0; v_id < q_vectors; v_id++) {
573 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
574 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
576 /* Tx rings mapping to vector */
577 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
578 q_vector->num_ring_tx = tx_rings_per_v;
579 q_vector->tx.ring = NULL;
580 q_vector->tx.itr_idx = ICE_TX_ITR;
581 q_base = vsi->num_txq - tx_rings_rem;
583 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
584 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
586 tx_ring->q_vector = q_vector;
587 tx_ring->next = q_vector->tx.ring;
588 q_vector->tx.ring = tx_ring;
590 tx_rings_rem -= tx_rings_per_v;
592 /* Rx rings mapping to vector */
593 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
594 q_vector->num_ring_rx = rx_rings_per_v;
595 q_vector->rx.ring = NULL;
596 q_vector->rx.itr_idx = ICE_RX_ITR;
597 q_base = vsi->num_rxq - rx_rings_rem;
599 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
600 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
602 rx_ring->q_vector = q_vector;
603 rx_ring->next = q_vector->rx.ring;
604 q_vector->rx.ring = rx_ring;
606 rx_rings_rem -= rx_rings_per_v;
611 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
612 * @vsi: the VSI having memory freed
614 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
616 int v_idx;
618 ice_for_each_q_vector(vsi, v_idx)
619 ice_free_q_vector(vsi, v_idx);
623 * ice_vsi_cfg_txq - Configure single Tx queue
624 * @vsi: the VSI that queue belongs to
625 * @ring: Tx ring to be configured
626 * @qg_buf: queue group buffer
629 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
630 struct ice_aqc_add_tx_qgrp *qg_buf)
632 struct ice_tlan_ctx tlan_ctx = { 0 };
633 struct ice_aqc_add_txqs_perq *txq;
634 struct ice_pf *pf = vsi->back;
635 u8 buf_len = sizeof(*qg_buf);
636 enum ice_status status;
637 u16 pf_q;
638 u8 tc;
640 pf_q = ring->reg_idx;
641 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
642 /* copy context contents into the qg_buf */
643 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
644 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
645 ice_tlan_ctx_info);
647 /* init queue specific tail reg. It is referred as
648 * transmit comm scheduler queue doorbell.
650 ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
652 if (IS_ENABLED(CONFIG_DCB))
653 tc = ring->dcb_tc;
654 else
655 tc = 0;
657 /* Add unique software queue handle of the Tx queue per
658 * TC into the VSI Tx ring
660 ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
662 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
663 1, qg_buf, buf_len, NULL);
664 if (status) {
665 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
666 status);
667 return -ENODEV;
670 /* Add Tx Queue TEID into the VSI Tx ring from the
671 * response. This will complete configuring and
672 * enabling the queue.
674 txq = &qg_buf->txqs[0];
675 if (pf_q == le16_to_cpu(txq->txq_id))
676 ring->txq_teid = le32_to_cpu(txq->q_teid);
678 return 0;
682 * ice_cfg_itr - configure the initial interrupt throttle values
683 * @hw: pointer to the HW structure
684 * @q_vector: interrupt vector that's being configured
686 * Configure interrupt throttling values for the ring containers that are
687 * associated with the interrupt vector passed in.
689 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
691 ice_cfg_itr_gran(hw);
693 if (q_vector->num_ring_rx) {
694 struct ice_ring_container *rc = &q_vector->rx;
696 rc->target_itr = ITR_TO_REG(rc->itr_setting);
697 rc->next_update = jiffies + 1;
698 rc->current_itr = rc->target_itr;
699 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
700 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
703 if (q_vector->num_ring_tx) {
704 struct ice_ring_container *rc = &q_vector->tx;
706 rc->target_itr = ITR_TO_REG(rc->itr_setting);
707 rc->next_update = jiffies + 1;
708 rc->current_itr = rc->target_itr;
709 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
710 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
715 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
716 * @vsi: the VSI being configured
717 * @txq: Tx queue being mapped to MSI-X vector
718 * @msix_idx: MSI-X vector index within the function
719 * @itr_idx: ITR index of the interrupt cause
721 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
722 * within the function space.
724 void
725 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
727 struct ice_pf *pf = vsi->back;
728 struct ice_hw *hw = &pf->hw;
729 u32 val;
731 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
733 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
734 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
736 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
737 if (ice_is_xdp_ena_vsi(vsi)) {
738 u32 xdp_txq = txq + vsi->num_xdp_txq;
740 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
741 val);
743 ice_flush(hw);
747 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
748 * @vsi: the VSI being configured
749 * @rxq: Rx queue being mapped to MSI-X vector
750 * @msix_idx: MSI-X vector index within the function
751 * @itr_idx: ITR index of the interrupt cause
753 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
754 * within the function space.
756 void
757 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
759 struct ice_pf *pf = vsi->back;
760 struct ice_hw *hw = &pf->hw;
761 u32 val;
763 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
765 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
766 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
768 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
770 ice_flush(hw);
774 * ice_trigger_sw_intr - trigger a software interrupt
775 * @hw: pointer to the HW structure
776 * @q_vector: interrupt vector to trigger the software interrupt for
778 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
780 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
781 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
782 GLINT_DYN_CTL_SWINT_TRIG_M |
783 GLINT_DYN_CTL_INTENA_M);
787 * ice_vsi_stop_tx_ring - Disable single Tx ring
788 * @vsi: the VSI being configured
789 * @rst_src: reset source
790 * @rel_vmvf_num: Relative ID of VF/VM
791 * @ring: Tx ring to be stopped
792 * @txq_meta: Meta data of Tx ring to be stopped
795 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
796 u16 rel_vmvf_num, struct ice_ring *ring,
797 struct ice_txq_meta *txq_meta)
799 struct ice_pf *pf = vsi->back;
800 struct ice_q_vector *q_vector;
801 struct ice_hw *hw = &pf->hw;
802 enum ice_status status;
803 u32 val;
805 /* clear cause_ena bit for disabled queues */
806 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
807 val &= ~QINT_TQCTL_CAUSE_ENA_M;
808 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
810 /* software is expected to wait for 100 ns */
811 ndelay(100);
813 /* trigger a software interrupt for the vector
814 * associated to the queue to schedule NAPI handler
816 q_vector = ring->q_vector;
817 if (q_vector)
818 ice_trigger_sw_intr(hw, q_vector);
820 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
821 txq_meta->tc, 1, &txq_meta->q_handle,
822 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
823 rel_vmvf_num, NULL);
825 /* if the disable queue command was exercised during an
826 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
827 * This is not an error as the reset operation disables
828 * queues at the hardware level anyway.
830 if (status == ICE_ERR_RESET_ONGOING) {
831 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
832 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
833 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
834 } else if (status) {
835 dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
836 status);
837 return -ENODEV;
840 return 0;
844 * ice_fill_txq_meta - Prepare the Tx queue's meta data
845 * @vsi: VSI that ring belongs to
846 * @ring: ring that txq_meta will be based on
847 * @txq_meta: a helper struct that wraps Tx queue's information
849 * Set up a helper struct that will contain all the necessary fields that
850 * are needed for stopping Tx queue
852 void
853 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
854 struct ice_txq_meta *txq_meta)
856 u8 tc;
858 if (IS_ENABLED(CONFIG_DCB))
859 tc = ring->dcb_tc;
860 else
861 tc = 0;
863 txq_meta->q_id = ring->reg_idx;
864 txq_meta->q_teid = ring->txq_teid;
865 txq_meta->q_handle = ring->q_handle;
866 txq_meta->vsi_idx = vsi->idx;
867 txq_meta->tc = tc;