gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / intel / ice / ice_flex_pipe.c
blob42bac3ec55263da6304777245c0c21d8fa319e88
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
8 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
9 /* SWITCH */
11 ICE_SID_XLT0_SW,
12 ICE_SID_XLT_KEY_BUILDER_SW,
13 ICE_SID_XLT1_SW,
14 ICE_SID_XLT2_SW,
15 ICE_SID_PROFID_TCAM_SW,
16 ICE_SID_PROFID_REDIR_SW,
17 ICE_SID_FLD_VEC_SW,
18 ICE_SID_CDID_KEY_BUILDER_SW,
19 ICE_SID_CDID_REDIR_SW
22 /* ACL */
24 ICE_SID_XLT0_ACL,
25 ICE_SID_XLT_KEY_BUILDER_ACL,
26 ICE_SID_XLT1_ACL,
27 ICE_SID_XLT2_ACL,
28 ICE_SID_PROFID_TCAM_ACL,
29 ICE_SID_PROFID_REDIR_ACL,
30 ICE_SID_FLD_VEC_ACL,
31 ICE_SID_CDID_KEY_BUILDER_ACL,
32 ICE_SID_CDID_REDIR_ACL
35 /* FD */
37 ICE_SID_XLT0_FD,
38 ICE_SID_XLT_KEY_BUILDER_FD,
39 ICE_SID_XLT1_FD,
40 ICE_SID_XLT2_FD,
41 ICE_SID_PROFID_TCAM_FD,
42 ICE_SID_PROFID_REDIR_FD,
43 ICE_SID_FLD_VEC_FD,
44 ICE_SID_CDID_KEY_BUILDER_FD,
45 ICE_SID_CDID_REDIR_FD
48 /* RSS */
50 ICE_SID_XLT0_RSS,
51 ICE_SID_XLT_KEY_BUILDER_RSS,
52 ICE_SID_XLT1_RSS,
53 ICE_SID_XLT2_RSS,
54 ICE_SID_PROFID_TCAM_RSS,
55 ICE_SID_PROFID_REDIR_RSS,
56 ICE_SID_FLD_VEC_RSS,
57 ICE_SID_CDID_KEY_BUILDER_RSS,
58 ICE_SID_CDID_REDIR_RSS
61 /* PE */
63 ICE_SID_XLT0_PE,
64 ICE_SID_XLT_KEY_BUILDER_PE,
65 ICE_SID_XLT1_PE,
66 ICE_SID_XLT2_PE,
67 ICE_SID_PROFID_TCAM_PE,
68 ICE_SID_PROFID_REDIR_PE,
69 ICE_SID_FLD_VEC_PE,
70 ICE_SID_CDID_KEY_BUILDER_PE,
71 ICE_SID_CDID_REDIR_PE
75 /**
76 * ice_sect_id - returns section ID
77 * @blk: block type
78 * @sect: section type
80 * This helper function returns the proper section ID given a block type and a
81 * section type.
83 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85 return ice_sect_lkup[blk][sect];
88 /**
89 * ice_pkg_val_buf
90 * @buf: pointer to the ice buffer
92 * This helper function validates a buffer's header.
94 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
96 struct ice_buf_hdr *hdr;
97 u16 section_count;
98 u16 data_end;
100 hdr = (struct ice_buf_hdr *)buf->buf;
101 /* verify data */
102 section_count = le16_to_cpu(hdr->section_count);
103 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
104 return NULL;
106 data_end = le16_to_cpu(hdr->data_end);
107 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
108 return NULL;
110 return hdr;
114 * ice_find_buf_table
115 * @ice_seg: pointer to the ice segment
117 * Returns the address of the buffer table within the ice segment.
119 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
121 struct ice_nvm_table *nvms;
123 nvms = (struct ice_nvm_table *)
124 (ice_seg->device_table +
125 le32_to_cpu(ice_seg->device_table_count));
127 return (__force struct ice_buf_table *)
128 (nvms->vers + le32_to_cpu(nvms->table_count));
132 * ice_pkg_enum_buf
133 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
134 * @state: pointer to the enum state
136 * This function will enumerate all the buffers in the ice segment. The first
137 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
138 * ice_seg is set to NULL which continues the enumeration. When the function
139 * returns a NULL pointer, then the end of the buffers has been reached, or an
140 * unexpected value has been detected (for example an invalid section count or
141 * an invalid buffer end value).
143 static struct ice_buf_hdr *
144 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
146 if (ice_seg) {
147 state->buf_table = ice_find_buf_table(ice_seg);
148 if (!state->buf_table)
149 return NULL;
151 state->buf_idx = 0;
152 return ice_pkg_val_buf(state->buf_table->buf_array);
155 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
156 return ice_pkg_val_buf(state->buf_table->buf_array +
157 state->buf_idx);
158 else
159 return NULL;
163 * ice_pkg_advance_sect
164 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
165 * @state: pointer to the enum state
167 * This helper function will advance the section within the ice segment,
168 * also advancing the buffer if needed.
170 static bool
171 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
173 if (!ice_seg && !state->buf)
174 return false;
176 if (!ice_seg && state->buf)
177 if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
178 return true;
180 state->buf = ice_pkg_enum_buf(ice_seg, state);
181 if (!state->buf)
182 return false;
184 /* start of new buffer, reset section index */
185 state->sect_idx = 0;
186 return true;
190 * ice_pkg_enum_section
191 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
192 * @state: pointer to the enum state
193 * @sect_type: section type to enumerate
195 * This function will enumerate all the sections of a particular type in the
196 * ice segment. The first call is made with the ice_seg parameter non-NULL;
197 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
198 * When the function returns a NULL pointer, then the end of the matching
199 * sections has been reached.
201 static void *
202 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
203 u32 sect_type)
205 u16 offset, size;
207 if (ice_seg)
208 state->type = sect_type;
210 if (!ice_pkg_advance_sect(ice_seg, state))
211 return NULL;
213 /* scan for next matching section */
214 while (state->buf->section_entry[state->sect_idx].type !=
215 cpu_to_le32(state->type))
216 if (!ice_pkg_advance_sect(NULL, state))
217 return NULL;
219 /* validate section */
220 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
221 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
222 return NULL;
224 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
225 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
226 return NULL;
228 /* make sure the section fits in the buffer */
229 if (offset + size > ICE_PKG_BUF_SIZE)
230 return NULL;
232 state->sect_type =
233 le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
235 /* calc pointer to this section */
236 state->sect = ((u8 *)state->buf) +
237 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
239 return state->sect;
242 /* Key creation */
244 #define ICE_DC_KEY 0x1 /* don't care */
245 #define ICE_DC_KEYINV 0x1
246 #define ICE_NM_KEY 0x0 /* never match */
247 #define ICE_NM_KEYINV 0x0
248 #define ICE_0_KEY 0x1 /* match 0 */
249 #define ICE_0_KEYINV 0x0
250 #define ICE_1_KEY 0x0 /* match 1 */
251 #define ICE_1_KEYINV 0x1
254 * ice_gen_key_word - generate 16-bits of a key/mask word
255 * @val: the value
256 * @valid: valid bits mask (change only the valid bits)
257 * @dont_care: don't care mask
258 * @nvr_mtch: never match mask
259 * @key: pointer to an array of where the resulting key portion
260 * @key_inv: pointer to an array of where the resulting key invert portion
262 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
263 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
264 * of key and 8 bits of key invert.
266 * '0' = b01, always match a 0 bit
267 * '1' = b10, always match a 1 bit
268 * '?' = b11, don't care bit (always matches)
269 * '~' = b00, never match bit
271 * Input:
272 * val: b0 1 0 1 0 1
273 * dont_care: b0 0 1 1 0 0
274 * never_mtch: b0 0 0 0 1 1
275 * ------------------------------
276 * Result: key: b01 10 11 11 00 00
278 static enum ice_status
279 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
280 u8 *key_inv)
282 u8 in_key = *key, in_key_inv = *key_inv;
283 u8 i;
285 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
286 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
287 return ICE_ERR_CFG;
289 *key = 0;
290 *key_inv = 0;
292 /* encode the 8 bits into 8-bit key and 8-bit key invert */
293 for (i = 0; i < 8; i++) {
294 *key >>= 1;
295 *key_inv >>= 1;
297 if (!(valid & 0x1)) { /* change only valid bits */
298 *key |= (in_key & 0x1) << 7;
299 *key_inv |= (in_key_inv & 0x1) << 7;
300 } else if (dont_care & 0x1) { /* don't care bit */
301 *key |= ICE_DC_KEY << 7;
302 *key_inv |= ICE_DC_KEYINV << 7;
303 } else if (nvr_mtch & 0x1) { /* never match bit */
304 *key |= ICE_NM_KEY << 7;
305 *key_inv |= ICE_NM_KEYINV << 7;
306 } else if (val & 0x01) { /* exact 1 match */
307 *key |= ICE_1_KEY << 7;
308 *key_inv |= ICE_1_KEYINV << 7;
309 } else { /* exact 0 match */
310 *key |= ICE_0_KEY << 7;
311 *key_inv |= ICE_0_KEYINV << 7;
314 dont_care >>= 1;
315 nvr_mtch >>= 1;
316 valid >>= 1;
317 val >>= 1;
318 in_key >>= 1;
319 in_key_inv >>= 1;
322 return 0;
326 * ice_bits_max_set - determine if the number of bits set is within a maximum
327 * @mask: pointer to the byte array which is the mask
328 * @size: the number of bytes in the mask
329 * @max: the max number of set bits
331 * This function determines if there are at most 'max' number of bits set in an
332 * array. Returns true if the number for bits set is <= max or will return false
333 * otherwise.
335 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
337 u16 count = 0;
338 u16 i;
340 /* check each byte */
341 for (i = 0; i < size; i++) {
342 /* if 0, go to next byte */
343 if (!mask[i])
344 continue;
346 /* We know there is at least one set bit in this byte because of
347 * the above check; if we already have found 'max' number of
348 * bits set, then we can return failure now.
350 if (count == max)
351 return false;
353 /* count the bits in this byte, checking threshold */
354 count += hweight8(mask[i]);
355 if (count > max)
356 return false;
359 return true;
363 * ice_set_key - generate a variable sized key with multiples of 16-bits
364 * @key: pointer to where the key will be stored
365 * @size: the size of the complete key in bytes (must be even)
366 * @val: array of 8-bit values that makes up the value portion of the key
367 * @upd: array of 8-bit masks that determine what key portion to update
368 * @dc: array of 8-bit masks that make up the don't care mask
369 * @nm: array of 8-bit masks that make up the never match mask
370 * @off: the offset of the first byte in the key to update
371 * @len: the number of bytes in the key update
373 * This function generates a key from a value, a don't care mask and a never
374 * match mask.
375 * upd, dc, and nm are optional parameters, and can be NULL:
376 * upd == NULL --> udp mask is all 1's (update all bits)
377 * dc == NULL --> dc mask is all 0's (no don't care bits)
378 * nm == NULL --> nm mask is all 0's (no never match bits)
380 static enum ice_status
381 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
382 u16 len)
384 u16 half_size;
385 u16 i;
387 /* size must be a multiple of 2 bytes. */
388 if (size % 2)
389 return ICE_ERR_CFG;
391 half_size = size / 2;
392 if (off + len > half_size)
393 return ICE_ERR_CFG;
395 /* Make sure at most one bit is set in the never match mask. Having more
396 * than one never match mask bit set will cause HW to consume excessive
397 * power otherwise; this is a power management efficiency check.
399 #define ICE_NVR_MTCH_BITS_MAX 1
400 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
401 return ICE_ERR_CFG;
403 for (i = 0; i < len; i++)
404 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
405 dc ? dc[i] : 0, nm ? nm[i] : 0,
406 key + off + i, key + half_size + off + i))
407 return ICE_ERR_CFG;
409 return 0;
413 * ice_acquire_global_cfg_lock
414 * @hw: pointer to the HW structure
415 * @access: access type (read or write)
417 * This function will request ownership of the global config lock for reading
418 * or writing of the package. When attempting to obtain write access, the
419 * caller must check for the following two return values:
421 * ICE_SUCCESS - Means the caller has acquired the global config lock
422 * and can perform writing of the package.
423 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
424 * package or has found that no update was necessary; in
425 * this case, the caller can just skip performing any
426 * update of the package.
428 static enum ice_status
429 ice_acquire_global_cfg_lock(struct ice_hw *hw,
430 enum ice_aq_res_access_type access)
432 enum ice_status status;
434 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
435 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
437 if (!status)
438 mutex_lock(&ice_global_cfg_lock_sw);
439 else if (status == ICE_ERR_AQ_NO_WORK)
440 ice_debug(hw, ICE_DBG_PKG,
441 "Global config lock: No work to do\n");
443 return status;
447 * ice_release_global_cfg_lock
448 * @hw: pointer to the HW structure
450 * This function will release the global config lock.
452 static void ice_release_global_cfg_lock(struct ice_hw *hw)
454 mutex_unlock(&ice_global_cfg_lock_sw);
455 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
459 * ice_acquire_change_lock
460 * @hw: pointer to the HW structure
461 * @access: access type (read or write)
463 * This function will request ownership of the change lock.
465 static enum ice_status
466 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
468 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
469 ICE_CHANGE_LOCK_TIMEOUT);
473 * ice_release_change_lock
474 * @hw: pointer to the HW structure
476 * This function will release the change lock using the proper Admin Command.
478 static void ice_release_change_lock(struct ice_hw *hw)
480 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
484 * ice_aq_download_pkg
485 * @hw: pointer to the hardware structure
486 * @pkg_buf: the package buffer to transfer
487 * @buf_size: the size of the package buffer
488 * @last_buf: last buffer indicator
489 * @error_offset: returns error offset
490 * @error_info: returns error information
491 * @cd: pointer to command details structure or NULL
493 * Download Package (0x0C40)
495 static enum ice_status
496 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
497 u16 buf_size, bool last_buf, u32 *error_offset,
498 u32 *error_info, struct ice_sq_cd *cd)
500 struct ice_aqc_download_pkg *cmd;
501 struct ice_aq_desc desc;
502 enum ice_status status;
504 if (error_offset)
505 *error_offset = 0;
506 if (error_info)
507 *error_info = 0;
509 cmd = &desc.params.download_pkg;
510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
511 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
513 if (last_buf)
514 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
516 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
517 if (status == ICE_ERR_AQ_ERROR) {
518 /* Read error from buffer only when the FW returned an error */
519 struct ice_aqc_download_pkg_resp *resp;
521 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
522 if (error_offset)
523 *error_offset = le32_to_cpu(resp->error_offset);
524 if (error_info)
525 *error_info = le32_to_cpu(resp->error_info);
528 return status;
532 * ice_aq_update_pkg
533 * @hw: pointer to the hardware structure
534 * @pkg_buf: the package cmd buffer
535 * @buf_size: the size of the package cmd buffer
536 * @last_buf: last buffer indicator
537 * @error_offset: returns error offset
538 * @error_info: returns error information
539 * @cd: pointer to command details structure or NULL
541 * Update Package (0x0C42)
543 static enum ice_status
544 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
545 bool last_buf, u32 *error_offset, u32 *error_info,
546 struct ice_sq_cd *cd)
548 struct ice_aqc_download_pkg *cmd;
549 struct ice_aq_desc desc;
550 enum ice_status status;
552 if (error_offset)
553 *error_offset = 0;
554 if (error_info)
555 *error_info = 0;
557 cmd = &desc.params.download_pkg;
558 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
561 if (last_buf)
562 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
564 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
565 if (status == ICE_ERR_AQ_ERROR) {
566 /* Read error from buffer only when the FW returned an error */
567 struct ice_aqc_download_pkg_resp *resp;
569 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
570 if (error_offset)
571 *error_offset = le32_to_cpu(resp->error_offset);
572 if (error_info)
573 *error_info = le32_to_cpu(resp->error_info);
576 return status;
580 * ice_find_seg_in_pkg
581 * @hw: pointer to the hardware structure
582 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
583 * @pkg_hdr: pointer to the package header to be searched
585 * This function searches a package file for a particular segment type. On
586 * success it returns a pointer to the segment header, otherwise it will
587 * return NULL.
589 static struct ice_generic_seg_hdr *
590 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
591 struct ice_pkg_hdr *pkg_hdr)
593 u32 i;
595 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
596 pkg_hdr->format_ver.major, pkg_hdr->format_ver.minor,
597 pkg_hdr->format_ver.update, pkg_hdr->format_ver.draft);
599 /* Search all package segments for the requested segment type */
600 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
601 struct ice_generic_seg_hdr *seg;
603 seg = (struct ice_generic_seg_hdr *)
604 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
606 if (le32_to_cpu(seg->seg_type) == seg_type)
607 return seg;
610 return NULL;
614 * ice_update_pkg
615 * @hw: pointer to the hardware structure
616 * @bufs: pointer to an array of buffers
617 * @count: the number of buffers in the array
619 * Obtains change lock and updates package.
621 static enum ice_status
622 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
624 enum ice_status status;
625 u32 offset, info, i;
627 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
628 if (status)
629 return status;
631 for (i = 0; i < count; i++) {
632 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
633 bool last = ((i + 1) == count);
635 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
636 last, &offset, &info, NULL);
638 if (status) {
639 ice_debug(hw, ICE_DBG_PKG,
640 "Update pkg failed: err %d off %d inf %d\n",
641 status, offset, info);
642 break;
646 ice_release_change_lock(hw);
648 return status;
652 * ice_dwnld_cfg_bufs
653 * @hw: pointer to the hardware structure
654 * @bufs: pointer to an array of buffers
655 * @count: the number of buffers in the array
657 * Obtains global config lock and downloads the package configuration buffers
658 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
659 * found indicates that the rest of the buffers are all metadata buffers.
661 static enum ice_status
662 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
664 enum ice_status status;
665 struct ice_buf_hdr *bh;
666 u32 offset, info, i;
668 if (!bufs || !count)
669 return ICE_ERR_PARAM;
671 /* If the first buffer's first section has its metadata bit set
672 * then there are no buffers to be downloaded, and the operation is
673 * considered a success.
675 bh = (struct ice_buf_hdr *)bufs;
676 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
677 return 0;
679 /* reset pkg_dwnld_status in case this function is called in the
680 * reset/rebuild flow
682 hw->pkg_dwnld_status = ICE_AQ_RC_OK;
684 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
685 if (status) {
686 if (status == ICE_ERR_AQ_NO_WORK)
687 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
688 else
689 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
690 return status;
693 for (i = 0; i < count; i++) {
694 bool last = ((i + 1) == count);
696 if (!last) {
697 /* check next buffer for metadata flag */
698 bh = (struct ice_buf_hdr *)(bufs + i + 1);
700 /* A set metadata flag in the next buffer will signal
701 * that the current buffer will be the last buffer
702 * downloaded
704 if (le16_to_cpu(bh->section_count))
705 if (le32_to_cpu(bh->section_entry[0].type) &
706 ICE_METADATA_BUF)
707 last = true;
710 bh = (struct ice_buf_hdr *)(bufs + i);
712 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
713 &offset, &info, NULL);
715 /* Save AQ status from download package */
716 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
717 if (status) {
718 ice_debug(hw, ICE_DBG_PKG,
719 "Pkg download failed: err %d off %d inf %d\n",
720 status, offset, info);
722 break;
725 if (last)
726 break;
729 ice_release_global_cfg_lock(hw);
731 return status;
735 * ice_aq_get_pkg_info_list
736 * @hw: pointer to the hardware structure
737 * @pkg_info: the buffer which will receive the information list
738 * @buf_size: the size of the pkg_info information buffer
739 * @cd: pointer to command details structure or NULL
741 * Get Package Info List (0x0C43)
743 static enum ice_status
744 ice_aq_get_pkg_info_list(struct ice_hw *hw,
745 struct ice_aqc_get_pkg_info_resp *pkg_info,
746 u16 buf_size, struct ice_sq_cd *cd)
748 struct ice_aq_desc desc;
750 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
752 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
756 * ice_download_pkg
757 * @hw: pointer to the hardware structure
758 * @ice_seg: pointer to the segment of the package to be downloaded
760 * Handles the download of a complete package.
762 static enum ice_status
763 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
765 struct ice_buf_table *ice_buf_tbl;
767 ice_debug(hw, ICE_DBG_PKG, "Segment version: %d.%d.%d.%d\n",
768 ice_seg->hdr.seg_ver.major, ice_seg->hdr.seg_ver.minor,
769 ice_seg->hdr.seg_ver.update, ice_seg->hdr.seg_ver.draft);
771 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
772 le32_to_cpu(ice_seg->hdr.seg_type),
773 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_name);
775 ice_buf_tbl = ice_find_buf_table(ice_seg);
777 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
778 le32_to_cpu(ice_buf_tbl->buf_count));
780 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
781 le32_to_cpu(ice_buf_tbl->buf_count));
785 * ice_init_pkg_info
786 * @hw: pointer to the hardware structure
787 * @pkg_hdr: pointer to the driver's package hdr
789 * Saves off the package details into the HW structure.
791 static enum ice_status
792 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
794 struct ice_global_metadata_seg *meta_seg;
795 struct ice_generic_seg_hdr *seg_hdr;
797 if (!pkg_hdr)
798 return ICE_ERR_PARAM;
800 meta_seg = (struct ice_global_metadata_seg *)
801 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
802 if (meta_seg) {
803 hw->pkg_ver = meta_seg->pkg_ver;
804 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
806 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
807 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
808 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
809 meta_seg->pkg_name);
810 } else {
811 ice_debug(hw, ICE_DBG_INIT,
812 "Did not find metadata segment in driver package\n");
813 return ICE_ERR_CFG;
816 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
817 if (seg_hdr) {
818 hw->ice_pkg_ver = seg_hdr->seg_ver;
819 memcpy(hw->ice_pkg_name, seg_hdr->seg_name,
820 sizeof(hw->ice_pkg_name));
822 ice_debug(hw, ICE_DBG_PKG, "Ice Pkg: %d.%d.%d.%d, %s\n",
823 seg_hdr->seg_ver.major, seg_hdr->seg_ver.minor,
824 seg_hdr->seg_ver.update, seg_hdr->seg_ver.draft,
825 seg_hdr->seg_name);
826 } else {
827 ice_debug(hw, ICE_DBG_INIT,
828 "Did not find ice segment in driver package\n");
829 return ICE_ERR_CFG;
832 return 0;
836 * ice_get_pkg_info
837 * @hw: pointer to the hardware structure
839 * Store details of the package currently loaded in HW into the HW structure.
841 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
843 struct ice_aqc_get_pkg_info_resp *pkg_info;
844 enum ice_status status;
845 u16 size;
846 u32 i;
848 size = sizeof(*pkg_info) + (sizeof(pkg_info->pkg_info[0]) *
849 (ICE_PKG_CNT - 1));
850 pkg_info = kzalloc(size, GFP_KERNEL);
851 if (!pkg_info)
852 return ICE_ERR_NO_MEMORY;
854 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
855 if (status)
856 goto init_pkg_free_alloc;
858 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
859 #define ICE_PKG_FLAG_COUNT 4
860 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
861 u8 place = 0;
863 if (pkg_info->pkg_info[i].is_active) {
864 flags[place++] = 'A';
865 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
866 memcpy(hw->active_pkg_name,
867 pkg_info->pkg_info[i].name,
868 sizeof(hw->active_pkg_name));
869 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
871 if (pkg_info->pkg_info[i].is_active_at_boot)
872 flags[place++] = 'B';
873 if (pkg_info->pkg_info[i].is_modified)
874 flags[place++] = 'M';
875 if (pkg_info->pkg_info[i].is_in_nvm)
876 flags[place++] = 'N';
878 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
879 i, pkg_info->pkg_info[i].ver.major,
880 pkg_info->pkg_info[i].ver.minor,
881 pkg_info->pkg_info[i].ver.update,
882 pkg_info->pkg_info[i].ver.draft,
883 pkg_info->pkg_info[i].name, flags);
886 init_pkg_free_alloc:
887 kfree(pkg_info);
889 return status;
893 * ice_verify_pkg - verify package
894 * @pkg: pointer to the package buffer
895 * @len: size of the package buffer
897 * Verifies various attributes of the package file, including length, format
898 * version, and the requirement of at least one segment.
900 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
902 u32 seg_count;
903 u32 i;
905 if (len < sizeof(*pkg))
906 return ICE_ERR_BUF_TOO_SHORT;
908 if (pkg->format_ver.major != ICE_PKG_FMT_VER_MAJ ||
909 pkg->format_ver.minor != ICE_PKG_FMT_VER_MNR ||
910 pkg->format_ver.update != ICE_PKG_FMT_VER_UPD ||
911 pkg->format_ver.draft != ICE_PKG_FMT_VER_DFT)
912 return ICE_ERR_CFG;
914 /* pkg must have at least one segment */
915 seg_count = le32_to_cpu(pkg->seg_count);
916 if (seg_count < 1)
917 return ICE_ERR_CFG;
919 /* make sure segment array fits in package length */
920 if (len < sizeof(*pkg) + ((seg_count - 1) * sizeof(pkg->seg_offset)))
921 return ICE_ERR_BUF_TOO_SHORT;
923 /* all segments must fit within length */
924 for (i = 0; i < seg_count; i++) {
925 u32 off = le32_to_cpu(pkg->seg_offset[i]);
926 struct ice_generic_seg_hdr *seg;
928 /* segment header must fit */
929 if (len < off + sizeof(*seg))
930 return ICE_ERR_BUF_TOO_SHORT;
932 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
934 /* segment body must fit */
935 if (len < off + le32_to_cpu(seg->seg_size))
936 return ICE_ERR_BUF_TOO_SHORT;
939 return 0;
943 * ice_free_seg - free package segment pointer
944 * @hw: pointer to the hardware structure
946 * Frees the package segment pointer in the proper manner, depending on if the
947 * segment was allocated or just the passed in pointer was stored.
949 void ice_free_seg(struct ice_hw *hw)
951 if (hw->pkg_copy) {
952 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
953 hw->pkg_copy = NULL;
954 hw->pkg_size = 0;
956 hw->seg = NULL;
960 * ice_init_pkg_regs - initialize additional package registers
961 * @hw: pointer to the hardware structure
963 static void ice_init_pkg_regs(struct ice_hw *hw)
965 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
966 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
967 #define ICE_SW_BLK_IDX 0
969 /* setup Switch block input mask, which is 48-bits in two parts */
970 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
971 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
975 * ice_chk_pkg_version - check package version for compatibility with driver
976 * @pkg_ver: pointer to a version structure to check
978 * Check to make sure that the package about to be downloaded is compatible with
979 * the driver. To be compatible, the major and minor components of the package
980 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
981 * definitions.
983 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
985 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
986 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
987 return ICE_ERR_NOT_SUPPORTED;
989 return 0;
993 * ice_init_pkg - initialize/download package
994 * @hw: pointer to the hardware structure
995 * @buf: pointer to the package buffer
996 * @len: size of the package buffer
998 * This function initializes a package. The package contains HW tables
999 * required to do packet processing. First, the function extracts package
1000 * information such as version. Then it finds the ice configuration segment
1001 * within the package; this function then saves a copy of the segment pointer
1002 * within the supplied package buffer. Next, the function will cache any hints
1003 * from the package, followed by downloading the package itself. Note, that if
1004 * a previous PF driver has already downloaded the package successfully, then
1005 * the current driver will not have to download the package again.
1007 * The local package contents will be used to query default behavior and to
1008 * update specific sections of the HW's version of the package (e.g. to update
1009 * the parse graph to understand new protocols).
1011 * This function stores a pointer to the package buffer memory, and it is
1012 * expected that the supplied buffer will not be freed immediately. If the
1013 * package buffer needs to be freed, such as when read from a file, use
1014 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1015 * case.
1017 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1019 struct ice_pkg_hdr *pkg;
1020 enum ice_status status;
1021 struct ice_seg *seg;
1023 if (!buf || !len)
1024 return ICE_ERR_PARAM;
1026 pkg = (struct ice_pkg_hdr *)buf;
1027 status = ice_verify_pkg(pkg, len);
1028 if (status) {
1029 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1030 status);
1031 return status;
1034 /* initialize package info */
1035 status = ice_init_pkg_info(hw, pkg);
1036 if (status)
1037 return status;
1039 /* before downloading the package, check package version for
1040 * compatibility with driver
1042 status = ice_chk_pkg_version(&hw->pkg_ver);
1043 if (status)
1044 return status;
1046 /* find segment in given package */
1047 seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg);
1048 if (!seg) {
1049 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1050 return ICE_ERR_CFG;
1053 /* download package */
1054 status = ice_download_pkg(hw, seg);
1055 if (status == ICE_ERR_AQ_NO_WORK) {
1056 ice_debug(hw, ICE_DBG_INIT,
1057 "package previously loaded - no work.\n");
1058 status = 0;
1061 /* Get information on the package currently loaded in HW, then make sure
1062 * the driver is compatible with this version.
1064 if (!status) {
1065 status = ice_get_pkg_info(hw);
1066 if (!status)
1067 status = ice_chk_pkg_version(&hw->active_pkg_ver);
1070 if (!status) {
1071 hw->seg = seg;
1072 /* on successful package download update other required
1073 * registers to support the package and fill HW tables
1074 * with package content.
1076 ice_init_pkg_regs(hw);
1077 ice_fill_blk_tbls(hw);
1078 } else {
1079 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1080 status);
1083 return status;
1087 * ice_copy_and_init_pkg - initialize/download a copy of the package
1088 * @hw: pointer to the hardware structure
1089 * @buf: pointer to the package buffer
1090 * @len: size of the package buffer
1092 * This function copies the package buffer, and then calls ice_init_pkg() to
1093 * initialize the copied package contents.
1095 * The copying is necessary if the package buffer supplied is constant, or if
1096 * the memory may disappear shortly after calling this function.
1098 * If the package buffer resides in the data segment and can be modified, the
1099 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1101 * However, if the package buffer needs to be copied first, such as when being
1102 * read from a file, the caller should use ice_copy_and_init_pkg().
1104 * This function will first copy the package buffer, before calling
1105 * ice_init_pkg(). The caller is free to immediately destroy the original
1106 * package buffer, as the new copy will be managed by this function and
1107 * related routines.
1109 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1111 enum ice_status status;
1112 u8 *buf_copy;
1114 if (!buf || !len)
1115 return ICE_ERR_PARAM;
1117 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1119 status = ice_init_pkg(hw, buf_copy, len);
1120 if (status) {
1121 /* Free the copy, since we failed to initialize the package */
1122 devm_kfree(ice_hw_to_dev(hw), buf_copy);
1123 } else {
1124 /* Track the copied pkg so we can free it later */
1125 hw->pkg_copy = buf_copy;
1126 hw->pkg_size = len;
1129 return status;
1133 * ice_pkg_buf_alloc
1134 * @hw: pointer to the HW structure
1136 * Allocates a package buffer and returns a pointer to the buffer header.
1137 * Note: all package contents must be in Little Endian form.
1139 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1141 struct ice_buf_build *bld;
1142 struct ice_buf_hdr *buf;
1144 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1145 if (!bld)
1146 return NULL;
1148 buf = (struct ice_buf_hdr *)bld;
1149 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1150 section_entry));
1151 return bld;
1155 * ice_pkg_buf_free
1156 * @hw: pointer to the HW structure
1157 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1159 * Frees a package buffer
1161 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1163 devm_kfree(ice_hw_to_dev(hw), bld);
1167 * ice_pkg_buf_reserve_section
1168 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1169 * @count: the number of sections to reserve
1171 * Reserves one or more section table entries in a package buffer. This routine
1172 * can be called multiple times as long as they are made before calling
1173 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1174 * is called once, the number of sections that can be allocated will not be able
1175 * to be increased; not using all reserved sections is fine, but this will
1176 * result in some wasted space in the buffer.
1177 * Note: all package contents must be in Little Endian form.
1179 static enum ice_status
1180 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1182 struct ice_buf_hdr *buf;
1183 u16 section_count;
1184 u16 data_end;
1186 if (!bld)
1187 return ICE_ERR_PARAM;
1189 buf = (struct ice_buf_hdr *)&bld->buf;
1191 /* already an active section, can't increase table size */
1192 section_count = le16_to_cpu(buf->section_count);
1193 if (section_count > 0)
1194 return ICE_ERR_CFG;
1196 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1197 return ICE_ERR_CFG;
1198 bld->reserved_section_table_entries += count;
1200 data_end = le16_to_cpu(buf->data_end) +
1201 (count * sizeof(buf->section_entry[0]));
1202 buf->data_end = cpu_to_le16(data_end);
1204 return 0;
1208 * ice_pkg_buf_alloc_section
1209 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1210 * @type: the section type value
1211 * @size: the size of the section to reserve (in bytes)
1213 * Reserves memory in the buffer for a section's content and updates the
1214 * buffers' status accordingly. This routine returns a pointer to the first
1215 * byte of the section start within the buffer, which is used to fill in the
1216 * section contents.
1217 * Note: all package contents must be in Little Endian form.
1219 static void *
1220 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1222 struct ice_buf_hdr *buf;
1223 u16 sect_count;
1224 u16 data_end;
1226 if (!bld || !type || !size)
1227 return NULL;
1229 buf = (struct ice_buf_hdr *)&bld->buf;
1231 /* check for enough space left in buffer */
1232 data_end = le16_to_cpu(buf->data_end);
1234 /* section start must align on 4 byte boundary */
1235 data_end = ALIGN(data_end, 4);
1237 if ((data_end + size) > ICE_MAX_S_DATA_END)
1238 return NULL;
1240 /* check for more available section table entries */
1241 sect_count = le16_to_cpu(buf->section_count);
1242 if (sect_count < bld->reserved_section_table_entries) {
1243 void *section_ptr = ((u8 *)buf) + data_end;
1245 buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1246 buf->section_entry[sect_count].size = cpu_to_le16(size);
1247 buf->section_entry[sect_count].type = cpu_to_le32(type);
1249 data_end += size;
1250 buf->data_end = cpu_to_le16(data_end);
1252 buf->section_count = cpu_to_le16(sect_count + 1);
1253 return section_ptr;
1256 /* no free section table entries */
1257 return NULL;
1261 * ice_pkg_buf_get_active_sections
1262 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1264 * Returns the number of active sections. Before using the package buffer
1265 * in an update package command, the caller should make sure that there is at
1266 * least one active section - otherwise, the buffer is not legal and should
1267 * not be used.
1268 * Note: all package contents must be in Little Endian form.
1270 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1272 struct ice_buf_hdr *buf;
1274 if (!bld)
1275 return 0;
1277 buf = (struct ice_buf_hdr *)&bld->buf;
1278 return le16_to_cpu(buf->section_count);
1282 * ice_pkg_buf
1283 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1285 * Return a pointer to the buffer's header
1287 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1289 if (!bld)
1290 return NULL;
1292 return &bld->buf;
1295 /* PTG Management */
1298 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1299 * @hw: pointer to the hardware structure
1300 * @blk: HW block
1301 * @ptype: the ptype to search for
1302 * @ptg: pointer to variable that receives the PTG
1304 * This function will search the PTGs for a particular ptype, returning the
1305 * PTG ID that contains it through the PTG parameter, with the value of
1306 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1308 static enum ice_status
1309 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1311 if (ptype >= ICE_XLT1_CNT || !ptg)
1312 return ICE_ERR_PARAM;
1314 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1315 return 0;
1319 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1320 * @hw: pointer to the hardware structure
1321 * @blk: HW block
1322 * @ptg: the PTG to allocate
1324 * This function allocates a given packet type group ID specified by the PTG
1325 * parameter.
1327 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1329 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1333 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1334 * @hw: pointer to the hardware structure
1335 * @blk: HW block
1336 * @ptype: the ptype to remove
1337 * @ptg: the PTG to remove the ptype from
1339 * This function will remove the ptype from the specific PTG, and move it to
1340 * the default PTG (ICE_DEFAULT_PTG).
1342 static enum ice_status
1343 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1345 struct ice_ptg_ptype **ch;
1346 struct ice_ptg_ptype *p;
1348 if (ptype > ICE_XLT1_CNT - 1)
1349 return ICE_ERR_PARAM;
1351 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1352 return ICE_ERR_DOES_NOT_EXIST;
1354 /* Should not happen if .in_use is set, bad config */
1355 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1356 return ICE_ERR_CFG;
1358 /* find the ptype within this PTG, and bypass the link over it */
1359 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1360 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1361 while (p) {
1362 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1363 *ch = p->next_ptype;
1364 break;
1367 ch = &p->next_ptype;
1368 p = p->next_ptype;
1371 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1372 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1374 return 0;
1378 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1379 * @hw: pointer to the hardware structure
1380 * @blk: HW block
1381 * @ptype: the ptype to add or move
1382 * @ptg: the PTG to add or move the ptype to
1384 * This function will either add or move a ptype to a particular PTG depending
1385 * on if the ptype is already part of another group. Note that using a
1386 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1387 * default PTG.
1389 static enum ice_status
1390 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1392 enum ice_status status;
1393 u8 original_ptg;
1395 if (ptype > ICE_XLT1_CNT - 1)
1396 return ICE_ERR_PARAM;
1398 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
1399 return ICE_ERR_DOES_NOT_EXIST;
1401 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
1402 if (status)
1403 return status;
1405 /* Is ptype already in the correct PTG? */
1406 if (original_ptg == ptg)
1407 return 0;
1409 /* Remove from original PTG and move back to the default PTG */
1410 if (original_ptg != ICE_DEFAULT_PTG)
1411 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
1413 /* Moving to default PTG? Then we're done with this request */
1414 if (ptg == ICE_DEFAULT_PTG)
1415 return 0;
1417 /* Add ptype to PTG at beginning of list */
1418 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
1419 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1420 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
1421 &hw->blk[blk].xlt1.ptypes[ptype];
1423 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
1424 hw->blk[blk].xlt1.t[ptype] = ptg;
1426 return 0;
1429 /* Block / table size info */
1430 struct ice_blk_size_details {
1431 u16 xlt1; /* # XLT1 entries */
1432 u16 xlt2; /* # XLT2 entries */
1433 u16 prof_tcam; /* # profile ID TCAM entries */
1434 u16 prof_id; /* # profile IDs */
1435 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
1436 u16 prof_redir; /* # profile redirection entries */
1437 u16 es; /* # extraction sequence entries */
1438 u16 fvw; /* # field vector words */
1439 u8 overwrite; /* overwrite existing entries allowed */
1440 u8 reverse; /* reverse FV order */
1443 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
1445 * Table Definitions
1446 * XLT1 - Number of entries in XLT1 table
1447 * XLT2 - Number of entries in XLT2 table
1448 * TCAM - Number of entries Profile ID TCAM table
1449 * CDID - Control Domain ID of the hardware block
1450 * PRED - Number of entries in the Profile Redirection Table
1451 * FV - Number of entries in the Field Vector
1452 * FVW - Width (in WORDs) of the Field Vector
1453 * OVR - Overwrite existing table entries
1454 * REV - Reverse FV
1456 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
1457 /* Overwrite , Reverse FV */
1458 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
1459 false, false },
1460 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
1461 false, false },
1462 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
1463 false, true },
1464 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
1465 true, true },
1466 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
1467 false, false },
1470 enum ice_sid_all {
1471 ICE_SID_XLT1_OFF = 0,
1472 ICE_SID_XLT2_OFF,
1473 ICE_SID_PR_OFF,
1474 ICE_SID_PR_REDIR_OFF,
1475 ICE_SID_ES_OFF,
1476 ICE_SID_OFF_COUNT,
1479 /* Characteristic handling */
1482 * ice_match_prop_lst - determine if properties of two lists match
1483 * @list1: first properties list
1484 * @list2: second properties list
1486 * Count, cookies and the order must match in order to be considered equivalent.
1488 static bool
1489 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
1491 struct ice_vsig_prof *tmp1;
1492 struct ice_vsig_prof *tmp2;
1493 u16 chk_count = 0;
1494 u16 count = 0;
1496 /* compare counts */
1497 list_for_each_entry(tmp1, list1, list)
1498 count++;
1499 list_for_each_entry(tmp2, list2, list)
1500 chk_count++;
1501 if (!count || count != chk_count)
1502 return false;
1504 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
1505 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
1507 /* profile cookies must compare, and in the exact same order to take
1508 * into account priority
1510 while (count--) {
1511 if (tmp2->profile_cookie != tmp1->profile_cookie)
1512 return false;
1514 tmp1 = list_next_entry(tmp1, list);
1515 tmp2 = list_next_entry(tmp2, list);
1518 return true;
1521 /* VSIG Management */
1524 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
1525 * @hw: pointer to the hardware structure
1526 * @blk: HW block
1527 * @vsi: VSI of interest
1528 * @vsig: pointer to receive the VSI group
1530 * This function will lookup the VSI entry in the XLT2 list and return
1531 * the VSI group its associated with.
1533 static enum ice_status
1534 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
1536 if (!vsig || vsi >= ICE_MAX_VSI)
1537 return ICE_ERR_PARAM;
1539 /* As long as there's a default or valid VSIG associated with the input
1540 * VSI, the functions returns a success. Any handling of VSIG will be
1541 * done by the following add, update or remove functions.
1543 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
1545 return 0;
1549 * ice_vsig_alloc_val - allocate a new VSIG by value
1550 * @hw: pointer to the hardware structure
1551 * @blk: HW block
1552 * @vsig: the VSIG to allocate
1554 * This function will allocate a given VSIG specified by the VSIG parameter.
1556 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
1558 u16 idx = vsig & ICE_VSIG_IDX_M;
1560 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
1561 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1562 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
1565 return ICE_VSIG_VALUE(idx, hw->pf_id);
1569 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
1570 * @hw: pointer to the hardware structure
1571 * @blk: HW block
1573 * This function will iterate through the VSIG list and mark the first
1574 * unused entry for the new VSIG entry as used and return that value.
1576 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
1578 u16 i;
1580 for (i = 1; i < ICE_MAX_VSIGS; i++)
1581 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
1582 return ice_vsig_alloc_val(hw, blk, i);
1584 return ICE_DEFAULT_VSIG;
1588 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
1589 * @hw: pointer to the hardware structure
1590 * @blk: HW block
1591 * @chs: characteristic list
1592 * @vsig: returns the VSIG with the matching profiles, if found
1594 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
1595 * a group have the same characteristic set. To check if there exists a VSIG
1596 * which has the same characteristics as the input characteristics; this
1597 * function will iterate through the XLT2 list and return the VSIG that has a
1598 * matching configuration. In order to make sure that priorities are accounted
1599 * for, the list must match exactly, including the order in which the
1600 * characteristics are listed.
1602 static enum ice_status
1603 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
1604 struct list_head *chs, u16 *vsig)
1606 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
1607 u16 i;
1609 for (i = 0; i < xlt2->count; i++)
1610 if (xlt2->vsig_tbl[i].in_use &&
1611 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
1612 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
1613 return 0;
1616 return ICE_ERR_DOES_NOT_EXIST;
1620 * ice_vsig_free - free VSI group
1621 * @hw: pointer to the hardware structure
1622 * @blk: HW block
1623 * @vsig: VSIG to remove
1625 * The function will remove all VSIs associated with the input VSIG and move
1626 * them to the DEFAULT_VSIG and mark the VSIG available.
1628 static enum ice_status
1629 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
1631 struct ice_vsig_prof *dtmp, *del;
1632 struct ice_vsig_vsi *vsi_cur;
1633 u16 idx;
1635 idx = vsig & ICE_VSIG_IDX_M;
1636 if (idx >= ICE_MAX_VSIGS)
1637 return ICE_ERR_PARAM;
1639 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1640 return ICE_ERR_DOES_NOT_EXIST;
1642 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
1644 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1645 /* If the VSIG has at least 1 VSI then iterate through the
1646 * list and remove the VSIs before deleting the group.
1648 if (vsi_cur) {
1649 /* remove all vsis associated with this VSIG XLT2 entry */
1650 do {
1651 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1653 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1654 vsi_cur->changed = 1;
1655 vsi_cur->next_vsi = NULL;
1656 vsi_cur = tmp;
1657 } while (vsi_cur);
1659 /* NULL terminate head of VSI list */
1660 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1663 /* free characteristic list */
1664 list_for_each_entry_safe(del, dtmp,
1665 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1666 list) {
1667 list_del(&del->list);
1668 devm_kfree(ice_hw_to_dev(hw), del);
1671 /* if VSIG characteristic list was cleared for reset
1672 * re-initialize the list head
1674 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1676 return 0;
1680 * ice_vsig_remove_vsi - remove VSI from VSIG
1681 * @hw: pointer to the hardware structure
1682 * @blk: HW block
1683 * @vsi: VSI to remove
1684 * @vsig: VSI group to remove from
1686 * The function will remove the input VSI from its VSI group and move it
1687 * to the DEFAULT_VSIG.
1689 static enum ice_status
1690 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1692 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1693 u16 idx;
1695 idx = vsig & ICE_VSIG_IDX_M;
1697 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1698 return ICE_ERR_PARAM;
1700 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1701 return ICE_ERR_DOES_NOT_EXIST;
1703 /* entry already in default VSIG, don't have to remove */
1704 if (idx == ICE_DEFAULT_VSIG)
1705 return 0;
1707 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1708 if (!(*vsi_head))
1709 return ICE_ERR_CFG;
1711 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1712 vsi_cur = (*vsi_head);
1714 /* iterate the VSI list, skip over the entry to be removed */
1715 while (vsi_cur) {
1716 if (vsi_tgt == vsi_cur) {
1717 (*vsi_head) = vsi_cur->next_vsi;
1718 break;
1720 vsi_head = &vsi_cur->next_vsi;
1721 vsi_cur = vsi_cur->next_vsi;
1724 /* verify if VSI was removed from group list */
1725 if (!vsi_cur)
1726 return ICE_ERR_DOES_NOT_EXIST;
1728 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1729 vsi_cur->changed = 1;
1730 vsi_cur->next_vsi = NULL;
1732 return 0;
1736 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1737 * @hw: pointer to the hardware structure
1738 * @blk: HW block
1739 * @vsi: VSI to move
1740 * @vsig: destination VSI group
1742 * This function will move or add the input VSI to the target VSIG.
1743 * The function will find the original VSIG the VSI belongs to and
1744 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1745 * then move entry to the new VSIG.
1747 static enum ice_status
1748 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1750 struct ice_vsig_vsi *tmp;
1751 enum ice_status status;
1752 u16 orig_vsig, idx;
1754 idx = vsig & ICE_VSIG_IDX_M;
1756 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1757 return ICE_ERR_PARAM;
1759 /* if VSIG not in use and VSIG is not default type this VSIG
1760 * doesn't exist.
1762 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1763 vsig != ICE_DEFAULT_VSIG)
1764 return ICE_ERR_DOES_NOT_EXIST;
1766 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1767 if (status)
1768 return status;
1770 /* no update required if vsigs match */
1771 if (orig_vsig == vsig)
1772 return 0;
1774 if (orig_vsig != ICE_DEFAULT_VSIG) {
1775 /* remove entry from orig_vsig and add to default VSIG */
1776 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1777 if (status)
1778 return status;
1781 if (idx == ICE_DEFAULT_VSIG)
1782 return 0;
1784 /* Create VSI entry and add VSIG and prop_mask values */
1785 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1786 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1788 /* Add new entry to the head of the VSIG list */
1789 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1790 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1791 &hw->blk[blk].xlt2.vsis[vsi];
1792 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1793 hw->blk[blk].xlt2.t[vsi] = vsig;
1795 return 0;
1799 * ice_find_prof_id - find profile ID for a given field vector
1800 * @hw: pointer to the hardware structure
1801 * @blk: HW block
1802 * @fv: field vector to search for
1803 * @prof_id: receives the profile ID
1805 static enum ice_status
1806 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
1807 struct ice_fv_word *fv, u8 *prof_id)
1809 struct ice_es *es = &hw->blk[blk].es;
1810 u16 off, i;
1812 for (i = 0; i < es->count; i++) {
1813 off = i * es->fvw;
1815 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1816 continue;
1818 *prof_id = i;
1819 return 0;
1822 return ICE_ERR_DOES_NOT_EXIST;
1826 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1827 * @blk: the block type
1828 * @rsrc_type: pointer to variable to receive the resource type
1830 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1832 switch (blk) {
1833 case ICE_BLK_RSS:
1834 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1835 break;
1836 default:
1837 return false;
1839 return true;
1843 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1844 * @blk: the block type
1845 * @rsrc_type: pointer to variable to receive the resource type
1847 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1849 switch (blk) {
1850 case ICE_BLK_RSS:
1851 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1852 break;
1853 default:
1854 return false;
1856 return true;
1860 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1861 * @hw: pointer to the HW struct
1862 * @blk: the block to allocate the TCAM for
1863 * @tcam_idx: pointer to variable to receive the TCAM entry
1865 * This function allocates a new entry in a Profile ID TCAM for a specific
1866 * block.
1868 static enum ice_status
1869 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx)
1871 u16 res_type;
1873 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1874 return ICE_ERR_PARAM;
1876 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx);
1880 * ice_free_tcam_ent - free hardware TCAM entry
1881 * @hw: pointer to the HW struct
1882 * @blk: the block from which to free the TCAM entry
1883 * @tcam_idx: the TCAM entry to free
1885 * This function frees an entry in a Profile ID TCAM for a specific block.
1887 static enum ice_status
1888 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1890 u16 res_type;
1892 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1893 return ICE_ERR_PARAM;
1895 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1899 * ice_alloc_prof_id - allocate profile ID
1900 * @hw: pointer to the HW struct
1901 * @blk: the block to allocate the profile ID for
1902 * @prof_id: pointer to variable to receive the profile ID
1904 * This function allocates a new profile ID, which also corresponds to a Field
1905 * Vector (Extraction Sequence) entry.
1907 static enum ice_status
1908 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1910 enum ice_status status;
1911 u16 res_type;
1912 u16 get_prof;
1914 if (!ice_prof_id_rsrc_type(blk, &res_type))
1915 return ICE_ERR_PARAM;
1917 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1918 if (!status)
1919 *prof_id = (u8)get_prof;
1921 return status;
1925 * ice_free_prof_id - free profile ID
1926 * @hw: pointer to the HW struct
1927 * @blk: the block from which to free the profile ID
1928 * @prof_id: the profile ID to free
1930 * This function frees a profile ID, which also corresponds to a Field Vector.
1932 static enum ice_status
1933 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1935 u16 tmp_prof_id = (u16)prof_id;
1936 u16 res_type;
1938 if (!ice_prof_id_rsrc_type(blk, &res_type))
1939 return ICE_ERR_PARAM;
1941 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1945 * ice_prof_inc_ref - increment reference count for profile
1946 * @hw: pointer to the HW struct
1947 * @blk: the block from which to free the profile ID
1948 * @prof_id: the profile ID for which to increment the reference count
1950 static enum ice_status
1951 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1953 if (prof_id > hw->blk[blk].es.count)
1954 return ICE_ERR_PARAM;
1956 hw->blk[blk].es.ref_count[prof_id]++;
1958 return 0;
1962 * ice_write_es - write an extraction sequence to hardware
1963 * @hw: pointer to the HW struct
1964 * @blk: the block in which to write the extraction sequence
1965 * @prof_id: the profile ID to write
1966 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1968 static void
1969 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1970 struct ice_fv_word *fv)
1972 u16 off;
1974 off = prof_id * hw->blk[blk].es.fvw;
1975 if (!fv) {
1976 memset(&hw->blk[blk].es.t[off], 0,
1977 hw->blk[blk].es.fvw * sizeof(*fv));
1978 hw->blk[blk].es.written[prof_id] = false;
1979 } else {
1980 memcpy(&hw->blk[blk].es.t[off], fv,
1981 hw->blk[blk].es.fvw * sizeof(*fv));
1986 * ice_prof_dec_ref - decrement reference count for profile
1987 * @hw: pointer to the HW struct
1988 * @blk: the block from which to free the profile ID
1989 * @prof_id: the profile ID for which to decrement the reference count
1991 static enum ice_status
1992 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1994 if (prof_id > hw->blk[blk].es.count)
1995 return ICE_ERR_PARAM;
1997 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1998 if (!--hw->blk[blk].es.ref_count[prof_id]) {
1999 ice_write_es(hw, blk, prof_id, NULL);
2000 return ice_free_prof_id(hw, blk, prof_id);
2004 return 0;
2007 /* Block / table section IDs */
2008 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2009 /* SWITCH */
2010 { ICE_SID_XLT1_SW,
2011 ICE_SID_XLT2_SW,
2012 ICE_SID_PROFID_TCAM_SW,
2013 ICE_SID_PROFID_REDIR_SW,
2014 ICE_SID_FLD_VEC_SW
2017 /* ACL */
2018 { ICE_SID_XLT1_ACL,
2019 ICE_SID_XLT2_ACL,
2020 ICE_SID_PROFID_TCAM_ACL,
2021 ICE_SID_PROFID_REDIR_ACL,
2022 ICE_SID_FLD_VEC_ACL
2025 /* FD */
2026 { ICE_SID_XLT1_FD,
2027 ICE_SID_XLT2_FD,
2028 ICE_SID_PROFID_TCAM_FD,
2029 ICE_SID_PROFID_REDIR_FD,
2030 ICE_SID_FLD_VEC_FD
2033 /* RSS */
2034 { ICE_SID_XLT1_RSS,
2035 ICE_SID_XLT2_RSS,
2036 ICE_SID_PROFID_TCAM_RSS,
2037 ICE_SID_PROFID_REDIR_RSS,
2038 ICE_SID_FLD_VEC_RSS
2041 /* PE */
2042 { ICE_SID_XLT1_PE,
2043 ICE_SID_XLT2_PE,
2044 ICE_SID_PROFID_TCAM_PE,
2045 ICE_SID_PROFID_REDIR_PE,
2046 ICE_SID_FLD_VEC_PE
2051 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
2052 * @hw: pointer to the hardware structure
2053 * @blk: the HW block to initialize
2055 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
2057 u16 pt;
2059 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
2060 u8 ptg;
2062 ptg = hw->blk[blk].xlt1.t[pt];
2063 if (ptg != ICE_DEFAULT_PTG) {
2064 ice_ptg_alloc_val(hw, blk, ptg);
2065 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
2071 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
2072 * @hw: pointer to the hardware structure
2073 * @blk: the HW block to initialize
2075 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
2077 u16 vsi;
2079 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
2080 u16 vsig;
2082 vsig = hw->blk[blk].xlt2.t[vsi];
2083 if (vsig) {
2084 ice_vsig_alloc_val(hw, blk, vsig);
2085 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
2086 /* no changes at this time, since this has been
2087 * initialized from the original package
2089 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2095 * ice_init_sw_db - init software database from HW tables
2096 * @hw: pointer to the hardware structure
2098 static void ice_init_sw_db(struct ice_hw *hw)
2100 u16 i;
2102 for (i = 0; i < ICE_BLK_COUNT; i++) {
2103 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
2104 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
2109 * ice_fill_tbl - Reads content of a single table type into database
2110 * @hw: pointer to the hardware structure
2111 * @block_id: Block ID of the table to copy
2112 * @sid: Section ID of the table to copy
2114 * Will attempt to read the entire content of a given table of a single block
2115 * into the driver database. We assume that the buffer will always
2116 * be as large or larger than the data contained in the package. If
2117 * this condition is not met, there is most likely an error in the package
2118 * contents.
2120 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
2122 u32 dst_len, sect_len, offset = 0;
2123 struct ice_prof_redir_section *pr;
2124 struct ice_prof_id_section *pid;
2125 struct ice_xlt1_section *xlt1;
2126 struct ice_xlt2_section *xlt2;
2127 struct ice_sw_fv_section *es;
2128 struct ice_pkg_enum state;
2129 u8 *src, *dst;
2130 void *sect;
2132 /* if the HW segment pointer is null then the first iteration of
2133 * ice_pkg_enum_section() will fail. In this case the HW tables will
2134 * not be filled and return success.
2136 if (!hw->seg) {
2137 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
2138 return;
2141 memset(&state, 0, sizeof(state));
2143 sect = ice_pkg_enum_section(hw->seg, &state, sid);
2145 while (sect) {
2146 switch (sid) {
2147 case ICE_SID_XLT1_SW:
2148 case ICE_SID_XLT1_FD:
2149 case ICE_SID_XLT1_RSS:
2150 case ICE_SID_XLT1_ACL:
2151 case ICE_SID_XLT1_PE:
2152 xlt1 = (struct ice_xlt1_section *)sect;
2153 src = xlt1->value;
2154 sect_len = le16_to_cpu(xlt1->count) *
2155 sizeof(*hw->blk[block_id].xlt1.t);
2156 dst = hw->blk[block_id].xlt1.t;
2157 dst_len = hw->blk[block_id].xlt1.count *
2158 sizeof(*hw->blk[block_id].xlt1.t);
2159 break;
2160 case ICE_SID_XLT2_SW:
2161 case ICE_SID_XLT2_FD:
2162 case ICE_SID_XLT2_RSS:
2163 case ICE_SID_XLT2_ACL:
2164 case ICE_SID_XLT2_PE:
2165 xlt2 = (struct ice_xlt2_section *)sect;
2166 src = (__force u8 *)xlt2->value;
2167 sect_len = le16_to_cpu(xlt2->count) *
2168 sizeof(*hw->blk[block_id].xlt2.t);
2169 dst = (u8 *)hw->blk[block_id].xlt2.t;
2170 dst_len = hw->blk[block_id].xlt2.count *
2171 sizeof(*hw->blk[block_id].xlt2.t);
2172 break;
2173 case ICE_SID_PROFID_TCAM_SW:
2174 case ICE_SID_PROFID_TCAM_FD:
2175 case ICE_SID_PROFID_TCAM_RSS:
2176 case ICE_SID_PROFID_TCAM_ACL:
2177 case ICE_SID_PROFID_TCAM_PE:
2178 pid = (struct ice_prof_id_section *)sect;
2179 src = (u8 *)pid->entry;
2180 sect_len = le16_to_cpu(pid->count) *
2181 sizeof(*hw->blk[block_id].prof.t);
2182 dst = (u8 *)hw->blk[block_id].prof.t;
2183 dst_len = hw->blk[block_id].prof.count *
2184 sizeof(*hw->blk[block_id].prof.t);
2185 break;
2186 case ICE_SID_PROFID_REDIR_SW:
2187 case ICE_SID_PROFID_REDIR_FD:
2188 case ICE_SID_PROFID_REDIR_RSS:
2189 case ICE_SID_PROFID_REDIR_ACL:
2190 case ICE_SID_PROFID_REDIR_PE:
2191 pr = (struct ice_prof_redir_section *)sect;
2192 src = pr->redir_value;
2193 sect_len = le16_to_cpu(pr->count) *
2194 sizeof(*hw->blk[block_id].prof_redir.t);
2195 dst = hw->blk[block_id].prof_redir.t;
2196 dst_len = hw->blk[block_id].prof_redir.count *
2197 sizeof(*hw->blk[block_id].prof_redir.t);
2198 break;
2199 case ICE_SID_FLD_VEC_SW:
2200 case ICE_SID_FLD_VEC_FD:
2201 case ICE_SID_FLD_VEC_RSS:
2202 case ICE_SID_FLD_VEC_ACL:
2203 case ICE_SID_FLD_VEC_PE:
2204 es = (struct ice_sw_fv_section *)sect;
2205 src = (u8 *)es->fv;
2206 sect_len = (u32)(le16_to_cpu(es->count) *
2207 hw->blk[block_id].es.fvw) *
2208 sizeof(*hw->blk[block_id].es.t);
2209 dst = (u8 *)hw->blk[block_id].es.t;
2210 dst_len = (u32)(hw->blk[block_id].es.count *
2211 hw->blk[block_id].es.fvw) *
2212 sizeof(*hw->blk[block_id].es.t);
2213 break;
2214 default:
2215 return;
2218 /* if the section offset exceeds destination length, terminate
2219 * table fill.
2221 if (offset > dst_len)
2222 return;
2224 /* if the sum of section size and offset exceed destination size
2225 * then we are out of bounds of the HW table size for that PF.
2226 * Changing section length to fill the remaining table space
2227 * of that PF.
2229 if ((offset + sect_len) > dst_len)
2230 sect_len = dst_len - offset;
2232 memcpy(dst + offset, src, sect_len);
2233 offset += sect_len;
2234 sect = ice_pkg_enum_section(NULL, &state, sid);
2239 * ice_fill_blk_tbls - Read package context for tables
2240 * @hw: pointer to the hardware structure
2242 * Reads the current package contents and populates the driver
2243 * database with the data iteratively for all advanced feature
2244 * blocks. Assume that the HW tables have been allocated.
2246 void ice_fill_blk_tbls(struct ice_hw *hw)
2248 u8 i;
2250 for (i = 0; i < ICE_BLK_COUNT; i++) {
2251 enum ice_block blk_id = (enum ice_block)i;
2253 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2254 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2255 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2256 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2257 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2260 ice_init_sw_db(hw);
2264 * ice_free_prof_map - free profile map
2265 * @hw: pointer to the hardware structure
2266 * @blk_idx: HW block index
2268 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2270 struct ice_es *es = &hw->blk[blk_idx].es;
2271 struct ice_prof_map *del, *tmp;
2273 mutex_lock(&es->prof_map_lock);
2274 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2275 list_del(&del->list);
2276 devm_kfree(ice_hw_to_dev(hw), del);
2278 INIT_LIST_HEAD(&es->prof_map);
2279 mutex_unlock(&es->prof_map_lock);
2283 * ice_free_flow_profs - free flow profile entries
2284 * @hw: pointer to the hardware structure
2285 * @blk_idx: HW block index
2287 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2289 struct ice_flow_prof *p, *tmp;
2291 mutex_lock(&hw->fl_profs_locks[blk_idx]);
2292 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2293 list_del(&p->l_entry);
2294 devm_kfree(ice_hw_to_dev(hw), p);
2296 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2298 /* if driver is in reset and tables are being cleared
2299 * re-initialize the flow profile list heads
2301 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2305 * ice_free_vsig_tbl - free complete VSIG table entries
2306 * @hw: pointer to the hardware structure
2307 * @blk: the HW block on which to free the VSIG table entries
2309 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2311 u16 i;
2313 if (!hw->blk[blk].xlt2.vsig_tbl)
2314 return;
2316 for (i = 1; i < ICE_MAX_VSIGS; i++)
2317 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2318 ice_vsig_free(hw, blk, i);
2322 * ice_free_hw_tbls - free hardware table memory
2323 * @hw: pointer to the hardware structure
2325 void ice_free_hw_tbls(struct ice_hw *hw)
2327 struct ice_rss_cfg *r, *rt;
2328 u8 i;
2330 for (i = 0; i < ICE_BLK_COUNT; i++) {
2331 if (hw->blk[i].is_list_init) {
2332 struct ice_es *es = &hw->blk[i].es;
2334 ice_free_prof_map(hw, i);
2335 mutex_destroy(&es->prof_map_lock);
2337 ice_free_flow_profs(hw, i);
2338 mutex_destroy(&hw->fl_profs_locks[i]);
2340 hw->blk[i].is_list_init = false;
2342 ice_free_vsig_tbl(hw, (enum ice_block)i);
2343 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2344 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2345 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2346 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2347 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2348 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2349 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2350 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2351 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2352 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2353 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2356 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2357 list_del(&r->l_entry);
2358 devm_kfree(ice_hw_to_dev(hw), r);
2360 mutex_destroy(&hw->rss_locks);
2361 memset(hw->blk, 0, sizeof(hw->blk));
2365 * ice_init_flow_profs - init flow profile locks and list heads
2366 * @hw: pointer to the hardware structure
2367 * @blk_idx: HW block index
2369 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2371 mutex_init(&hw->fl_profs_locks[blk_idx]);
2372 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2376 * ice_clear_hw_tbls - clear HW tables and flow profiles
2377 * @hw: pointer to the hardware structure
2379 void ice_clear_hw_tbls(struct ice_hw *hw)
2381 u8 i;
2383 for (i = 0; i < ICE_BLK_COUNT; i++) {
2384 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2385 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2386 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2387 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2388 struct ice_es *es = &hw->blk[i].es;
2390 if (hw->blk[i].is_list_init) {
2391 ice_free_prof_map(hw, i);
2392 ice_free_flow_profs(hw, i);
2395 ice_free_vsig_tbl(hw, (enum ice_block)i);
2397 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2398 memset(xlt1->ptg_tbl, 0,
2399 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2400 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2402 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2403 memset(xlt2->vsig_tbl, 0,
2404 xlt2->count * sizeof(*xlt2->vsig_tbl));
2405 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2407 memset(prof->t, 0, prof->count * sizeof(*prof->t));
2408 memset(prof_redir->t, 0,
2409 prof_redir->count * sizeof(*prof_redir->t));
2411 memset(es->t, 0, es->count * sizeof(*es->t));
2412 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2413 memset(es->written, 0, es->count * sizeof(*es->written));
2418 * ice_init_hw_tbls - init hardware table memory
2419 * @hw: pointer to the hardware structure
2421 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
2423 u8 i;
2425 mutex_init(&hw->rss_locks);
2426 INIT_LIST_HEAD(&hw->rss_list_head);
2427 for (i = 0; i < ICE_BLK_COUNT; i++) {
2428 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2429 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2430 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2431 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2432 struct ice_es *es = &hw->blk[i].es;
2433 u16 j;
2435 if (hw->blk[i].is_list_init)
2436 continue;
2438 ice_init_flow_profs(hw, i);
2439 mutex_init(&es->prof_map_lock);
2440 INIT_LIST_HEAD(&es->prof_map);
2441 hw->blk[i].is_list_init = true;
2443 hw->blk[i].overwrite = blk_sizes[i].overwrite;
2444 es->reverse = blk_sizes[i].reverse;
2446 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2447 xlt1->count = blk_sizes[i].xlt1;
2449 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2450 sizeof(*xlt1->ptypes), GFP_KERNEL);
2452 if (!xlt1->ptypes)
2453 goto err;
2455 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2456 sizeof(*xlt1->ptg_tbl),
2457 GFP_KERNEL);
2459 if (!xlt1->ptg_tbl)
2460 goto err;
2462 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2463 sizeof(*xlt1->t), GFP_KERNEL);
2464 if (!xlt1->t)
2465 goto err;
2467 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2468 xlt2->count = blk_sizes[i].xlt2;
2470 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2471 sizeof(*xlt2->vsis), GFP_KERNEL);
2473 if (!xlt2->vsis)
2474 goto err;
2476 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2477 sizeof(*xlt2->vsig_tbl),
2478 GFP_KERNEL);
2479 if (!xlt2->vsig_tbl)
2480 goto err;
2482 for (j = 0; j < xlt2->count; j++)
2483 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2485 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2486 sizeof(*xlt2->t), GFP_KERNEL);
2487 if (!xlt2->t)
2488 goto err;
2490 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2491 prof->count = blk_sizes[i].prof_tcam;
2492 prof->max_prof_id = blk_sizes[i].prof_id;
2493 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2494 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2495 sizeof(*prof->t), GFP_KERNEL);
2497 if (!prof->t)
2498 goto err;
2500 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2501 prof_redir->count = blk_sizes[i].prof_redir;
2502 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2503 prof_redir->count,
2504 sizeof(*prof_redir->t),
2505 GFP_KERNEL);
2507 if (!prof_redir->t)
2508 goto err;
2510 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2511 es->count = blk_sizes[i].es;
2512 es->fvw = blk_sizes[i].fvw;
2513 es->t = devm_kcalloc(ice_hw_to_dev(hw),
2514 (u32)(es->count * es->fvw),
2515 sizeof(*es->t), GFP_KERNEL);
2516 if (!es->t)
2517 goto err;
2519 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2520 sizeof(*es->ref_count),
2521 GFP_KERNEL);
2523 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2524 sizeof(*es->written), GFP_KERNEL);
2525 if (!es->ref_count)
2526 goto err;
2528 return 0;
2530 err:
2531 ice_free_hw_tbls(hw);
2532 return ICE_ERR_NO_MEMORY;
2536 * ice_prof_gen_key - generate profile ID key
2537 * @hw: pointer to the HW struct
2538 * @blk: the block in which to write profile ID to
2539 * @ptg: packet type group (PTG) portion of key
2540 * @vsig: VSIG portion of key
2541 * @cdid: CDID portion of key
2542 * @flags: flag portion of key
2543 * @vl_msk: valid mask
2544 * @dc_msk: don't care mask
2545 * @nm_msk: never match mask
2546 * @key: output of profile ID key
2548 static enum ice_status
2549 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2550 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2551 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2552 u8 key[ICE_TCAM_KEY_SZ])
2554 struct ice_prof_id_key inkey;
2556 inkey.xlt1 = ptg;
2557 inkey.xlt2_cdid = cpu_to_le16(vsig);
2558 inkey.flags = cpu_to_le16(flags);
2560 switch (hw->blk[blk].prof.cdid_bits) {
2561 case 0:
2562 break;
2563 case 2:
2564 #define ICE_CD_2_M 0xC000U
2565 #define ICE_CD_2_S 14
2566 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2567 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2568 break;
2569 case 4:
2570 #define ICE_CD_4_M 0xF000U
2571 #define ICE_CD_4_S 12
2572 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2573 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2574 break;
2575 case 8:
2576 #define ICE_CD_8_M 0xFF00U
2577 #define ICE_CD_8_S 16
2578 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2579 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2580 break;
2581 default:
2582 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2583 break;
2586 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2587 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2591 * ice_tcam_write_entry - write TCAM entry
2592 * @hw: pointer to the HW struct
2593 * @blk: the block in which to write profile ID to
2594 * @idx: the entry index to write to
2595 * @prof_id: profile ID
2596 * @ptg: packet type group (PTG) portion of key
2597 * @vsig: VSIG portion of key
2598 * @cdid: CDID portion of key
2599 * @flags: flag portion of key
2600 * @vl_msk: valid mask
2601 * @dc_msk: don't care mask
2602 * @nm_msk: never match mask
2604 static enum ice_status
2605 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2606 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2607 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2608 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2609 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2611 struct ice_prof_tcam_entry;
2612 enum ice_status status;
2614 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2615 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2616 if (!status) {
2617 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2618 hw->blk[blk].prof.t[idx].prof_id = prof_id;
2621 return status;
2625 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2626 * @hw: pointer to the hardware structure
2627 * @blk: HW block
2628 * @vsig: VSIG to query
2629 * @refs: pointer to variable to receive the reference count
2631 static enum ice_status
2632 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2634 u16 idx = vsig & ICE_VSIG_IDX_M;
2635 struct ice_vsig_vsi *ptr;
2637 *refs = 0;
2639 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2640 return ICE_ERR_DOES_NOT_EXIST;
2642 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2643 while (ptr) {
2644 (*refs)++;
2645 ptr = ptr->next_vsi;
2648 return 0;
2652 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2653 * @hw: pointer to the hardware structure
2654 * @blk: HW block
2655 * @vsig: VSIG to check against
2656 * @hdl: profile handle
2658 static bool
2659 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2661 u16 idx = vsig & ICE_VSIG_IDX_M;
2662 struct ice_vsig_prof *ent;
2664 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2665 list)
2666 if (ent->profile_cookie == hdl)
2667 return true;
2669 ice_debug(hw, ICE_DBG_INIT,
2670 "Characteristic list for VSI group %d not found.\n",
2671 vsig);
2672 return false;
2676 * ice_prof_bld_es - build profile ID extraction sequence changes
2677 * @hw: pointer to the HW struct
2678 * @blk: hardware block
2679 * @bld: the update package buffer build to add to
2680 * @chgs: the list of changes to make in hardware
2682 static enum ice_status
2683 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2684 struct ice_buf_build *bld, struct list_head *chgs)
2686 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2687 struct ice_chs_chg *tmp;
2689 list_for_each_entry(tmp, chgs, list_entry)
2690 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2691 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2692 struct ice_pkg_es *p;
2693 u32 id;
2695 id = ice_sect_id(blk, ICE_VEC_TBL);
2696 p = (struct ice_pkg_es *)
2697 ice_pkg_buf_alloc_section(bld, id, sizeof(*p) +
2698 vec_size -
2699 sizeof(p->es[0]));
2701 if (!p)
2702 return ICE_ERR_MAX_LIMIT;
2704 p->count = cpu_to_le16(1);
2705 p->offset = cpu_to_le16(tmp->prof_id);
2707 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2710 return 0;
2714 * ice_prof_bld_tcam - build profile ID TCAM changes
2715 * @hw: pointer to the HW struct
2716 * @blk: hardware block
2717 * @bld: the update package buffer build to add to
2718 * @chgs: the list of changes to make in hardware
2720 static enum ice_status
2721 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2722 struct ice_buf_build *bld, struct list_head *chgs)
2724 struct ice_chs_chg *tmp;
2726 list_for_each_entry(tmp, chgs, list_entry)
2727 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2728 struct ice_prof_id_section *p;
2729 u32 id;
2731 id = ice_sect_id(blk, ICE_PROF_TCAM);
2732 p = (struct ice_prof_id_section *)
2733 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
2735 if (!p)
2736 return ICE_ERR_MAX_LIMIT;
2738 p->count = cpu_to_le16(1);
2739 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2740 p->entry[0].prof_id = tmp->prof_id;
2742 memcpy(p->entry[0].key,
2743 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2744 sizeof(hw->blk[blk].prof.t->key));
2747 return 0;
2751 * ice_prof_bld_xlt1 - build XLT1 changes
2752 * @blk: hardware block
2753 * @bld: the update package buffer build to add to
2754 * @chgs: the list of changes to make in hardware
2756 static enum ice_status
2757 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2758 struct list_head *chgs)
2760 struct ice_chs_chg *tmp;
2762 list_for_each_entry(tmp, chgs, list_entry)
2763 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2764 struct ice_xlt1_section *p;
2765 u32 id;
2767 id = ice_sect_id(blk, ICE_XLT1);
2768 p = (struct ice_xlt1_section *)
2769 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
2771 if (!p)
2772 return ICE_ERR_MAX_LIMIT;
2774 p->count = cpu_to_le16(1);
2775 p->offset = cpu_to_le16(tmp->ptype);
2776 p->value[0] = tmp->ptg;
2779 return 0;
2783 * ice_prof_bld_xlt2 - build XLT2 changes
2784 * @blk: hardware block
2785 * @bld: the update package buffer build to add to
2786 * @chgs: the list of changes to make in hardware
2788 static enum ice_status
2789 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2790 struct list_head *chgs)
2792 struct ice_chs_chg *tmp;
2794 list_for_each_entry(tmp, chgs, list_entry) {
2795 struct ice_xlt2_section *p;
2796 u32 id;
2798 switch (tmp->type) {
2799 case ICE_VSIG_ADD:
2800 case ICE_VSI_MOVE:
2801 case ICE_VSIG_REM:
2802 id = ice_sect_id(blk, ICE_XLT2);
2803 p = (struct ice_xlt2_section *)
2804 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
2806 if (!p)
2807 return ICE_ERR_MAX_LIMIT;
2809 p->count = cpu_to_le16(1);
2810 p->offset = cpu_to_le16(tmp->vsi);
2811 p->value[0] = cpu_to_le16(tmp->vsig);
2812 break;
2813 default:
2814 break;
2818 return 0;
2822 * ice_upd_prof_hw - update hardware using the change list
2823 * @hw: pointer to the HW struct
2824 * @blk: hardware block
2825 * @chgs: the list of changes to make in hardware
2827 static enum ice_status
2828 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2829 struct list_head *chgs)
2831 struct ice_buf_build *b;
2832 struct ice_chs_chg *tmp;
2833 enum ice_status status;
2834 u16 pkg_sects;
2835 u16 xlt1 = 0;
2836 u16 xlt2 = 0;
2837 u16 tcam = 0;
2838 u16 es = 0;
2839 u16 sects;
2841 /* count number of sections we need */
2842 list_for_each_entry(tmp, chgs, list_entry) {
2843 switch (tmp->type) {
2844 case ICE_PTG_ES_ADD:
2845 if (tmp->add_ptg)
2846 xlt1++;
2847 if (tmp->add_prof)
2848 es++;
2849 break;
2850 case ICE_TCAM_ADD:
2851 tcam++;
2852 break;
2853 case ICE_VSIG_ADD:
2854 case ICE_VSI_MOVE:
2855 case ICE_VSIG_REM:
2856 xlt2++;
2857 break;
2858 default:
2859 break;
2862 sects = xlt1 + xlt2 + tcam + es;
2864 if (!sects)
2865 return 0;
2867 /* Build update package buffer */
2868 b = ice_pkg_buf_alloc(hw);
2869 if (!b)
2870 return ICE_ERR_NO_MEMORY;
2872 status = ice_pkg_buf_reserve_section(b, sects);
2873 if (status)
2874 goto error_tmp;
2876 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
2877 if (es) {
2878 status = ice_prof_bld_es(hw, blk, b, chgs);
2879 if (status)
2880 goto error_tmp;
2883 if (tcam) {
2884 status = ice_prof_bld_tcam(hw, blk, b, chgs);
2885 if (status)
2886 goto error_tmp;
2889 if (xlt1) {
2890 status = ice_prof_bld_xlt1(blk, b, chgs);
2891 if (status)
2892 goto error_tmp;
2895 if (xlt2) {
2896 status = ice_prof_bld_xlt2(blk, b, chgs);
2897 if (status)
2898 goto error_tmp;
2901 /* After package buffer build check if the section count in buffer is
2902 * non-zero and matches the number of sections detected for package
2903 * update.
2905 pkg_sects = ice_pkg_buf_get_active_sections(b);
2906 if (!pkg_sects || pkg_sects != sects) {
2907 status = ICE_ERR_INVAL_SIZE;
2908 goto error_tmp;
2911 /* update package */
2912 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2913 if (status == ICE_ERR_AQ_ERROR)
2914 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2916 error_tmp:
2917 ice_pkg_buf_free(hw, b);
2918 return status;
2922 * ice_add_prof - add profile
2923 * @hw: pointer to the HW struct
2924 * @blk: hardware block
2925 * @id: profile tracking ID
2926 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
2927 * @es: extraction sequence (length of array is determined by the block)
2929 * This function registers a profile, which matches a set of PTGs with a
2930 * particular extraction sequence. While the hardware profile is allocated
2931 * it will not be written until the first call to ice_add_flow that specifies
2932 * the ID value used here.
2934 enum ice_status
2935 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
2936 struct ice_fv_word *es)
2938 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
2939 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
2940 struct ice_prof_map *prof;
2941 enum ice_status status;
2942 u32 byte = 0;
2943 u8 prof_id;
2945 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
2947 mutex_lock(&hw->blk[blk].es.prof_map_lock);
2949 /* search for existing profile */
2950 status = ice_find_prof_id(hw, blk, es, &prof_id);
2951 if (status) {
2952 /* allocate profile ID */
2953 status = ice_alloc_prof_id(hw, blk, &prof_id);
2954 if (status)
2955 goto err_ice_add_prof;
2957 /* and write new es */
2958 ice_write_es(hw, blk, prof_id, es);
2961 ice_prof_inc_ref(hw, blk, prof_id);
2963 /* add profile info */
2964 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
2965 if (!prof)
2966 goto err_ice_add_prof;
2968 prof->profile_cookie = id;
2969 prof->prof_id = prof_id;
2970 prof->ptg_cnt = 0;
2971 prof->context = 0;
2973 /* build list of ptgs */
2974 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
2975 u32 bit;
2977 if (!ptypes[byte]) {
2978 bytes--;
2979 byte++;
2980 continue;
2983 /* Examine 8 bits per byte */
2984 for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
2985 BITS_PER_BYTE) {
2986 u16 ptype;
2987 u8 ptg;
2988 u8 m;
2990 ptype = byte * BITS_PER_BYTE + bit;
2992 /* The package should place all ptypes in a non-zero
2993 * PTG, so the following call should never fail.
2995 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
2996 continue;
2998 /* If PTG is already added, skip and continue */
2999 if (test_bit(ptg, ptgs_used))
3000 continue;
3002 set_bit(ptg, ptgs_used);
3003 prof->ptg[prof->ptg_cnt] = ptg;
3005 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3006 break;
3008 /* nothing left in byte, then exit */
3009 m = ~((1 << (bit + 1)) - 1);
3010 if (!(ptypes[byte] & m))
3011 break;
3014 bytes--;
3015 byte++;
3018 list_add(&prof->list, &hw->blk[blk].es.prof_map);
3019 status = 0;
3021 err_ice_add_prof:
3022 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3023 return status;
3027 * ice_search_prof_id_low - Search for a profile tracking ID low level
3028 * @hw: pointer to the HW struct
3029 * @blk: hardware block
3030 * @id: profile tracking ID
3032 * This will search for a profile tracking ID which was previously added. This
3033 * version assumes that the caller has already acquired the prof map lock.
3035 static struct ice_prof_map *
3036 ice_search_prof_id_low(struct ice_hw *hw, enum ice_block blk, u64 id)
3038 struct ice_prof_map *entry = NULL;
3039 struct ice_prof_map *map;
3041 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3042 if (map->profile_cookie == id) {
3043 entry = map;
3044 break;
3047 return entry;
3051 * ice_search_prof_id - Search for a profile tracking ID
3052 * @hw: pointer to the HW struct
3053 * @blk: hardware block
3054 * @id: profile tracking ID
3056 * This will search for a profile tracking ID which was previously added.
3058 static struct ice_prof_map *
3059 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3061 struct ice_prof_map *entry;
3063 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3064 entry = ice_search_prof_id_low(hw, blk, id);
3065 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3067 return entry;
3071 * ice_vsig_prof_id_count - count profiles in a VSIG
3072 * @hw: pointer to the HW struct
3073 * @blk: hardware block
3074 * @vsig: VSIG to remove the profile from
3076 static u16
3077 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3079 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3080 struct ice_vsig_prof *p;
3082 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3083 list)
3084 count++;
3086 return count;
3090 * ice_rel_tcam_idx - release a TCAM index
3091 * @hw: pointer to the HW struct
3092 * @blk: hardware block
3093 * @idx: the index to release
3095 static enum ice_status
3096 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3098 /* Masks to invoke a never match entry */
3099 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3100 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3101 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3102 enum ice_status status;
3104 /* write the TCAM entry */
3105 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3106 dc_msk, nm_msk);
3107 if (status)
3108 return status;
3110 /* release the TCAM entry */
3111 status = ice_free_tcam_ent(hw, blk, idx);
3113 return status;
3117 * ice_rem_prof_id - remove one profile from a VSIG
3118 * @hw: pointer to the HW struct
3119 * @blk: hardware block
3120 * @prof: pointer to profile structure to remove
3122 static enum ice_status
3123 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3124 struct ice_vsig_prof *prof)
3126 enum ice_status status;
3127 u16 i;
3129 for (i = 0; i < prof->tcam_count; i++)
3130 if (prof->tcam[i].in_use) {
3131 prof->tcam[i].in_use = false;
3132 status = ice_rel_tcam_idx(hw, blk,
3133 prof->tcam[i].tcam_idx);
3134 if (status)
3135 return ICE_ERR_HW_TABLE;
3138 return 0;
3142 * ice_rem_vsig - remove VSIG
3143 * @hw: pointer to the HW struct
3144 * @blk: hardware block
3145 * @vsig: the VSIG to remove
3146 * @chg: the change list
3148 static enum ice_status
3149 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3150 struct list_head *chg)
3152 u16 idx = vsig & ICE_VSIG_IDX_M;
3153 struct ice_vsig_vsi *vsi_cur;
3154 struct ice_vsig_prof *d, *t;
3155 enum ice_status status;
3157 /* remove TCAM entries */
3158 list_for_each_entry_safe(d, t,
3159 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3160 list) {
3161 status = ice_rem_prof_id(hw, blk, d);
3162 if (status)
3163 return status;
3165 list_del(&d->list);
3166 devm_kfree(ice_hw_to_dev(hw), d);
3169 /* Move all VSIS associated with this VSIG to the default VSIG */
3170 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3171 /* If the VSIG has at least 1 VSI then iterate through the list
3172 * and remove the VSIs before deleting the group.
3174 if (vsi_cur)
3175 do {
3176 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3177 struct ice_chs_chg *p;
3179 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3180 GFP_KERNEL);
3181 if (!p)
3182 return ICE_ERR_NO_MEMORY;
3184 p->type = ICE_VSIG_REM;
3185 p->orig_vsig = vsig;
3186 p->vsig = ICE_DEFAULT_VSIG;
3187 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3189 list_add(&p->list_entry, chg);
3191 vsi_cur = tmp;
3192 } while (vsi_cur);
3194 return ice_vsig_free(hw, blk, vsig);
3198 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3199 * @hw: pointer to the HW struct
3200 * @blk: hardware block
3201 * @vsig: VSIG to remove the profile from
3202 * @hdl: profile handle indicating which profile to remove
3203 * @chg: list to receive a record of changes
3205 static enum ice_status
3206 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3207 struct list_head *chg)
3209 u16 idx = vsig & ICE_VSIG_IDX_M;
3210 struct ice_vsig_prof *p, *t;
3211 enum ice_status status;
3213 list_for_each_entry_safe(p, t,
3214 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3215 list)
3216 if (p->profile_cookie == hdl) {
3217 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3218 /* this is the last profile, remove the VSIG */
3219 return ice_rem_vsig(hw, blk, vsig, chg);
3221 status = ice_rem_prof_id(hw, blk, p);
3222 if (!status) {
3223 list_del(&p->list);
3224 devm_kfree(ice_hw_to_dev(hw), p);
3226 return status;
3229 return ICE_ERR_DOES_NOT_EXIST;
3233 * ice_rem_flow_all - remove all flows with a particular profile
3234 * @hw: pointer to the HW struct
3235 * @blk: hardware block
3236 * @id: profile tracking ID
3238 static enum ice_status
3239 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3241 struct ice_chs_chg *del, *tmp;
3242 enum ice_status status;
3243 struct list_head chg;
3244 u16 i;
3246 INIT_LIST_HEAD(&chg);
3248 for (i = 1; i < ICE_MAX_VSIGS; i++)
3249 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3250 if (ice_has_prof_vsig(hw, blk, i, id)) {
3251 status = ice_rem_prof_id_vsig(hw, blk, i, id,
3252 &chg);
3253 if (status)
3254 goto err_ice_rem_flow_all;
3258 status = ice_upd_prof_hw(hw, blk, &chg);
3260 err_ice_rem_flow_all:
3261 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3262 list_del(&del->list_entry);
3263 devm_kfree(ice_hw_to_dev(hw), del);
3266 return status;
3270 * ice_rem_prof - remove profile
3271 * @hw: pointer to the HW struct
3272 * @blk: hardware block
3273 * @id: profile tracking ID
3275 * This will remove the profile specified by the ID parameter, which was
3276 * previously created through ice_add_prof. If any existing entries
3277 * are associated with this profile, they will be removed as well.
3279 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3281 struct ice_prof_map *pmap;
3282 enum ice_status status;
3284 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3286 pmap = ice_search_prof_id_low(hw, blk, id);
3287 if (!pmap) {
3288 status = ICE_ERR_DOES_NOT_EXIST;
3289 goto err_ice_rem_prof;
3292 /* remove all flows with this profile */
3293 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3294 if (status)
3295 goto err_ice_rem_prof;
3297 /* dereference profile, and possibly remove */
3298 ice_prof_dec_ref(hw, blk, pmap->prof_id);
3300 list_del(&pmap->list);
3301 devm_kfree(ice_hw_to_dev(hw), pmap);
3303 err_ice_rem_prof:
3304 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3305 return status;
3309 * ice_get_prof - get profile
3310 * @hw: pointer to the HW struct
3311 * @blk: hardware block
3312 * @hdl: profile handle
3313 * @chg: change list
3315 static enum ice_status
3316 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3317 struct list_head *chg)
3319 struct ice_prof_map *map;
3320 struct ice_chs_chg *p;
3321 u16 i;
3323 /* Get the details on the profile specified by the handle ID */
3324 map = ice_search_prof_id(hw, blk, hdl);
3325 if (!map)
3326 return ICE_ERR_DOES_NOT_EXIST;
3328 for (i = 0; i < map->ptg_cnt; i++)
3329 if (!hw->blk[blk].es.written[map->prof_id]) {
3330 /* add ES to change list */
3331 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3332 GFP_KERNEL);
3333 if (!p)
3334 goto err_ice_get_prof;
3336 p->type = ICE_PTG_ES_ADD;
3337 p->ptype = 0;
3338 p->ptg = map->ptg[i];
3339 p->add_ptg = 0;
3341 p->add_prof = 1;
3342 p->prof_id = map->prof_id;
3344 hw->blk[blk].es.written[map->prof_id] = true;
3346 list_add(&p->list_entry, chg);
3349 return 0;
3351 err_ice_get_prof:
3352 /* let caller clean up the change list */
3353 return ICE_ERR_NO_MEMORY;
3357 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3358 * @hw: pointer to the HW struct
3359 * @blk: hardware block
3360 * @vsig: VSIG from which to copy the list
3361 * @lst: output list
3363 * This routine makes a copy of the list of profiles in the specified VSIG.
3365 static enum ice_status
3366 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3367 struct list_head *lst)
3369 struct ice_vsig_prof *ent1, *ent2;
3370 u16 idx = vsig & ICE_VSIG_IDX_M;
3372 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3373 list) {
3374 struct ice_vsig_prof *p;
3376 /* copy to the input list */
3377 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3378 GFP_KERNEL);
3379 if (!p)
3380 goto err_ice_get_profs_vsig;
3382 list_add_tail(&p->list, lst);
3385 return 0;
3387 err_ice_get_profs_vsig:
3388 list_for_each_entry_safe(ent1, ent2, lst, list) {
3389 list_del(&ent1->list);
3390 devm_kfree(ice_hw_to_dev(hw), ent1);
3393 return ICE_ERR_NO_MEMORY;
3397 * ice_add_prof_to_lst - add profile entry to a list
3398 * @hw: pointer to the HW struct
3399 * @blk: hardware block
3400 * @lst: the list to be added to
3401 * @hdl: profile handle of entry to add
3403 static enum ice_status
3404 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3405 struct list_head *lst, u64 hdl)
3407 struct ice_prof_map *map;
3408 struct ice_vsig_prof *p;
3409 u16 i;
3411 map = ice_search_prof_id(hw, blk, hdl);
3412 if (!map)
3413 return ICE_ERR_DOES_NOT_EXIST;
3415 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3416 if (!p)
3417 return ICE_ERR_NO_MEMORY;
3419 p->profile_cookie = map->profile_cookie;
3420 p->prof_id = map->prof_id;
3421 p->tcam_count = map->ptg_cnt;
3423 for (i = 0; i < map->ptg_cnt; i++) {
3424 p->tcam[i].prof_id = map->prof_id;
3425 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3426 p->tcam[i].ptg = map->ptg[i];
3429 list_add(&p->list, lst);
3431 return 0;
3435 * ice_move_vsi - move VSI to another VSIG
3436 * @hw: pointer to the HW struct
3437 * @blk: hardware block
3438 * @vsi: the VSI to move
3439 * @vsig: the VSIG to move the VSI to
3440 * @chg: the change list
3442 static enum ice_status
3443 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3444 struct list_head *chg)
3446 enum ice_status status;
3447 struct ice_chs_chg *p;
3448 u16 orig_vsig;
3450 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3451 if (!p)
3452 return ICE_ERR_NO_MEMORY;
3454 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3455 if (!status)
3456 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3458 if (status) {
3459 devm_kfree(ice_hw_to_dev(hw), p);
3460 return status;
3463 p->type = ICE_VSI_MOVE;
3464 p->vsi = vsi;
3465 p->orig_vsig = orig_vsig;
3466 p->vsig = vsig;
3468 list_add(&p->list_entry, chg);
3470 return 0;
3474 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3475 * @hw: pointer to the HW struct
3476 * @idx: the index of the TCAM entry to remove
3477 * @chg: the list of change structures to search
3479 static void
3480 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3482 struct ice_chs_chg *pos, *tmp;
3484 list_for_each_entry_safe(tmp, pos, chg, list_entry)
3485 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3486 list_del(&tmp->list_entry);
3487 devm_kfree(ice_hw_to_dev(hw), tmp);
3492 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3493 * @hw: pointer to the HW struct
3494 * @blk: hardware block
3495 * @enable: true to enable, false to disable
3496 * @vsig: the VSIG of the TCAM entry
3497 * @tcam: pointer the TCAM info structure of the TCAM to disable
3498 * @chg: the change list
3500 * This function appends an enable or disable TCAM entry in the change log
3502 static enum ice_status
3503 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3504 u16 vsig, struct ice_tcam_inf *tcam,
3505 struct list_head *chg)
3507 enum ice_status status;
3508 struct ice_chs_chg *p;
3510 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3511 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3512 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3514 /* if disabling, free the TCAM */
3515 if (!enable) {
3516 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3518 /* if we have already created a change for this TCAM entry, then
3519 * we need to remove that entry, in order to prevent writing to
3520 * a TCAM entry we no longer will have ownership of.
3522 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3523 tcam->tcam_idx = 0;
3524 tcam->in_use = 0;
3525 return status;
3528 /* for re-enabling, reallocate a TCAM */
3529 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx);
3530 if (status)
3531 return status;
3533 /* add TCAM to change list */
3534 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3535 if (!p)
3536 return ICE_ERR_NO_MEMORY;
3538 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3539 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
3540 nm_msk);
3541 if (status)
3542 goto err_ice_prof_tcam_ena_dis;
3544 tcam->in_use = 1;
3546 p->type = ICE_TCAM_ADD;
3547 p->add_tcam_idx = true;
3548 p->prof_id = tcam->prof_id;
3549 p->ptg = tcam->ptg;
3550 p->vsig = 0;
3551 p->tcam_idx = tcam->tcam_idx;
3553 /* log change */
3554 list_add(&p->list_entry, chg);
3556 return 0;
3558 err_ice_prof_tcam_ena_dis:
3559 devm_kfree(ice_hw_to_dev(hw), p);
3560 return status;
3564 * ice_adj_prof_priorities - adjust profile based on priorities
3565 * @hw: pointer to the HW struct
3566 * @blk: hardware block
3567 * @vsig: the VSIG for which to adjust profile priorities
3568 * @chg: the change list
3570 static enum ice_status
3571 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3572 struct list_head *chg)
3574 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3575 struct ice_vsig_prof *t;
3576 enum ice_status status;
3577 u16 idx;
3579 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3580 idx = vsig & ICE_VSIG_IDX_M;
3582 /* Priority is based on the order in which the profiles are added. The
3583 * newest added profile has highest priority and the oldest added
3584 * profile has the lowest priority. Since the profile property list for
3585 * a VSIG is sorted from newest to oldest, this code traverses the list
3586 * in order and enables the first of each PTG that it finds (that is not
3587 * already enabled); it also disables any duplicate PTGs that it finds
3588 * in the older profiles (that are currently enabled).
3591 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3592 list) {
3593 u16 i;
3595 for (i = 0; i < t->tcam_count; i++) {
3596 /* Scan the priorities from newest to oldest.
3597 * Make sure that the newest profiles take priority.
3599 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3600 t->tcam[i].in_use) {
3601 /* need to mark this PTG as never match, as it
3602 * was already in use and therefore duplicate
3603 * (and lower priority)
3605 status = ice_prof_tcam_ena_dis(hw, blk, false,
3606 vsig,
3607 &t->tcam[i],
3608 chg);
3609 if (status)
3610 return status;
3611 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3612 !t->tcam[i].in_use) {
3613 /* need to enable this PTG, as it in not in use
3614 * and not enabled (highest priority)
3616 status = ice_prof_tcam_ena_dis(hw, blk, true,
3617 vsig,
3618 &t->tcam[i],
3619 chg);
3620 if (status)
3621 return status;
3624 /* keep track of used ptgs */
3625 set_bit(t->tcam[i].ptg, ptgs_used);
3629 return 0;
3633 * ice_add_prof_id_vsig - add profile to VSIG
3634 * @hw: pointer to the HW struct
3635 * @blk: hardware block
3636 * @vsig: the VSIG to which this profile is to be added
3637 * @hdl: the profile handle indicating the profile to add
3638 * @rev: true to add entries to the end of the list
3639 * @chg: the change list
3641 static enum ice_status
3642 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3643 bool rev, struct list_head *chg)
3645 /* Masks that ignore flags */
3646 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3647 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3648 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3649 struct ice_prof_map *map;
3650 struct ice_vsig_prof *t;
3651 struct ice_chs_chg *p;
3652 u16 vsig_idx, i;
3654 /* Get the details on the profile specified by the handle ID */
3655 map = ice_search_prof_id(hw, blk, hdl);
3656 if (!map)
3657 return ICE_ERR_DOES_NOT_EXIST;
3659 /* Error, if this VSIG already has this profile */
3660 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3661 return ICE_ERR_ALREADY_EXISTS;
3663 /* new VSIG profile structure */
3664 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3665 if (!t)
3666 return ICE_ERR_NO_MEMORY;
3668 t->profile_cookie = map->profile_cookie;
3669 t->prof_id = map->prof_id;
3670 t->tcam_count = map->ptg_cnt;
3672 /* create TCAM entries */
3673 for (i = 0; i < map->ptg_cnt; i++) {
3674 enum ice_status status;
3675 u16 tcam_idx;
3677 /* add TCAM to change list */
3678 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3679 if (!p)
3680 goto err_ice_add_prof_id_vsig;
3682 /* allocate the TCAM entry index */
3683 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx);
3684 if (status) {
3685 devm_kfree(ice_hw_to_dev(hw), p);
3686 goto err_ice_add_prof_id_vsig;
3689 t->tcam[i].ptg = map->ptg[i];
3690 t->tcam[i].prof_id = map->prof_id;
3691 t->tcam[i].tcam_idx = tcam_idx;
3692 t->tcam[i].in_use = true;
3694 p->type = ICE_TCAM_ADD;
3695 p->add_tcam_idx = true;
3696 p->prof_id = t->tcam[i].prof_id;
3697 p->ptg = t->tcam[i].ptg;
3698 p->vsig = vsig;
3699 p->tcam_idx = t->tcam[i].tcam_idx;
3701 /* write the TCAM entry */
3702 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3703 t->tcam[i].prof_id,
3704 t->tcam[i].ptg, vsig, 0, 0,
3705 vl_msk, dc_msk, nm_msk);
3706 if (status)
3707 goto err_ice_add_prof_id_vsig;
3709 /* log change */
3710 list_add(&p->list_entry, chg);
3713 /* add profile to VSIG */
3714 vsig_idx = vsig & ICE_VSIG_IDX_M;
3715 if (rev)
3716 list_add_tail(&t->list,
3717 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3718 else
3719 list_add(&t->list,
3720 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3722 return 0;
3724 err_ice_add_prof_id_vsig:
3725 /* let caller clean up the change list */
3726 devm_kfree(ice_hw_to_dev(hw), t);
3727 return ICE_ERR_NO_MEMORY;
3731 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3732 * @hw: pointer to the HW struct
3733 * @blk: hardware block
3734 * @vsi: the initial VSI that will be in VSIG
3735 * @hdl: the profile handle of the profile that will be added to the VSIG
3736 * @chg: the change list
3738 static enum ice_status
3739 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3740 struct list_head *chg)
3742 enum ice_status status;
3743 struct ice_chs_chg *p;
3744 u16 new_vsig;
3746 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3747 if (!p)
3748 return ICE_ERR_NO_MEMORY;
3750 new_vsig = ice_vsig_alloc(hw, blk);
3751 if (!new_vsig) {
3752 status = ICE_ERR_HW_TABLE;
3753 goto err_ice_create_prof_id_vsig;
3756 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3757 if (status)
3758 goto err_ice_create_prof_id_vsig;
3760 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3761 if (status)
3762 goto err_ice_create_prof_id_vsig;
3764 p->type = ICE_VSIG_ADD;
3765 p->vsi = vsi;
3766 p->orig_vsig = ICE_DEFAULT_VSIG;
3767 p->vsig = new_vsig;
3769 list_add(&p->list_entry, chg);
3771 return 0;
3773 err_ice_create_prof_id_vsig:
3774 /* let caller clean up the change list */
3775 devm_kfree(ice_hw_to_dev(hw), p);
3776 return status;
3780 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3781 * @hw: pointer to the HW struct
3782 * @blk: hardware block
3783 * @vsi: the initial VSI that will be in VSIG
3784 * @lst: the list of profile that will be added to the VSIG
3785 * @new_vsig: return of new VSIG
3786 * @chg: the change list
3788 static enum ice_status
3789 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3790 struct list_head *lst, u16 *new_vsig,
3791 struct list_head *chg)
3793 struct ice_vsig_prof *t;
3794 enum ice_status status;
3795 u16 vsig;
3797 vsig = ice_vsig_alloc(hw, blk);
3798 if (!vsig)
3799 return ICE_ERR_HW_TABLE;
3801 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3802 if (status)
3803 return status;
3805 list_for_each_entry(t, lst, list) {
3806 /* Reverse the order here since we are copying the list */
3807 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3808 true, chg);
3809 if (status)
3810 return status;
3813 *new_vsig = vsig;
3815 return 0;
3819 * ice_find_prof_vsig - find a VSIG with a specific profile handle
3820 * @hw: pointer to the HW struct
3821 * @blk: hardware block
3822 * @hdl: the profile handle of the profile to search for
3823 * @vsig: returns the VSIG with the matching profile
3825 static bool
3826 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3828 struct ice_vsig_prof *t;
3829 enum ice_status status;
3830 struct list_head lst;
3832 INIT_LIST_HEAD(&lst);
3834 t = kzalloc(sizeof(*t), GFP_KERNEL);
3835 if (!t)
3836 return false;
3838 t->profile_cookie = hdl;
3839 list_add(&t->list, &lst);
3841 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3843 list_del(&t->list);
3844 kfree(t);
3846 return !status;
3850 * ice_add_prof_id_flow - add profile flow
3851 * @hw: pointer to the HW struct
3852 * @blk: hardware block
3853 * @vsi: the VSI to enable with the profile specified by ID
3854 * @hdl: profile handle
3856 * Calling this function will update the hardware tables to enable the
3857 * profile indicated by the ID parameter for the VSIs specified in the VSI
3858 * array. Once successfully called, the flow will be enabled.
3860 enum ice_status
3861 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3863 struct ice_vsig_prof *tmp1, *del1;
3864 struct ice_chs_chg *tmp, *del;
3865 struct list_head union_lst;
3866 enum ice_status status;
3867 struct list_head chg;
3868 u16 vsig;
3870 INIT_LIST_HEAD(&union_lst);
3871 INIT_LIST_HEAD(&chg);
3873 /* Get profile */
3874 status = ice_get_prof(hw, blk, hdl, &chg);
3875 if (status)
3876 return status;
3878 /* determine if VSI is already part of a VSIG */
3879 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3880 if (!status && vsig) {
3881 bool only_vsi;
3882 u16 or_vsig;
3883 u16 ref;
3885 /* found in VSIG */
3886 or_vsig = vsig;
3888 /* make sure that there is no overlap/conflict between the new
3889 * characteristics and the existing ones; we don't support that
3890 * scenario
3892 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
3893 status = ICE_ERR_ALREADY_EXISTS;
3894 goto err_ice_add_prof_id_flow;
3897 /* last VSI in the VSIG? */
3898 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
3899 if (status)
3900 goto err_ice_add_prof_id_flow;
3901 only_vsi = (ref == 1);
3903 /* create a union of the current profiles and the one being
3904 * added
3906 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
3907 if (status)
3908 goto err_ice_add_prof_id_flow;
3910 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
3911 if (status)
3912 goto err_ice_add_prof_id_flow;
3914 /* search for an existing VSIG with an exact charc match */
3915 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
3916 if (!status) {
3917 /* move VSI to the VSIG that matches */
3918 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3919 if (status)
3920 goto err_ice_add_prof_id_flow;
3922 /* VSI has been moved out of or_vsig. If the or_vsig had
3923 * only that VSI it is now empty and can be removed.
3925 if (only_vsi) {
3926 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
3927 if (status)
3928 goto err_ice_add_prof_id_flow;
3930 } else if (only_vsi) {
3931 /* If the original VSIG only contains one VSI, then it
3932 * will be the requesting VSI. In this case the VSI is
3933 * not sharing entries and we can simply add the new
3934 * profile to the VSIG.
3936 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
3937 &chg);
3938 if (status)
3939 goto err_ice_add_prof_id_flow;
3941 /* Adjust priorities */
3942 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
3943 if (status)
3944 goto err_ice_add_prof_id_flow;
3945 } else {
3946 /* No match, so we need a new VSIG */
3947 status = ice_create_vsig_from_lst(hw, blk, vsi,
3948 &union_lst, &vsig,
3949 &chg);
3950 if (status)
3951 goto err_ice_add_prof_id_flow;
3953 /* Adjust priorities */
3954 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
3955 if (status)
3956 goto err_ice_add_prof_id_flow;
3958 } else {
3959 /* need to find or add a VSIG */
3960 /* search for an existing VSIG with an exact charc match */
3961 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
3962 /* found an exact match */
3963 /* add or move VSI to the VSIG that matches */
3964 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3965 if (status)
3966 goto err_ice_add_prof_id_flow;
3967 } else {
3968 /* we did not find an exact match */
3969 /* we need to add a VSIG */
3970 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
3971 &chg);
3972 if (status)
3973 goto err_ice_add_prof_id_flow;
3977 /* update hardware */
3978 if (!status)
3979 status = ice_upd_prof_hw(hw, blk, &chg);
3981 err_ice_add_prof_id_flow:
3982 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3983 list_del(&del->list_entry);
3984 devm_kfree(ice_hw_to_dev(hw), del);
3987 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
3988 list_del(&del1->list);
3989 devm_kfree(ice_hw_to_dev(hw), del1);
3992 return status;
3996 * ice_rem_prof_from_list - remove a profile from list
3997 * @hw: pointer to the HW struct
3998 * @lst: list to remove the profile from
3999 * @hdl: the profile handle indicating the profile to remove
4001 static enum ice_status
4002 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4004 struct ice_vsig_prof *ent, *tmp;
4006 list_for_each_entry_safe(ent, tmp, lst, list)
4007 if (ent->profile_cookie == hdl) {
4008 list_del(&ent->list);
4009 devm_kfree(ice_hw_to_dev(hw), ent);
4010 return 0;
4013 return ICE_ERR_DOES_NOT_EXIST;
4017 * ice_rem_prof_id_flow - remove flow
4018 * @hw: pointer to the HW struct
4019 * @blk: hardware block
4020 * @vsi: the VSI from which to remove the profile specified by ID
4021 * @hdl: profile tracking handle
4023 * Calling this function will update the hardware tables to remove the
4024 * profile indicated by the ID parameter for the VSIs specified in the VSI
4025 * array. Once successfully called, the flow will be disabled.
4027 enum ice_status
4028 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4030 struct ice_vsig_prof *tmp1, *del1;
4031 struct ice_chs_chg *tmp, *del;
4032 struct list_head chg, copy;
4033 enum ice_status status;
4034 u16 vsig;
4036 INIT_LIST_HEAD(&copy);
4037 INIT_LIST_HEAD(&chg);
4039 /* determine if VSI is already part of a VSIG */
4040 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4041 if (!status && vsig) {
4042 bool last_profile;
4043 bool only_vsi;
4044 u16 ref;
4046 /* found in VSIG */
4047 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4048 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4049 if (status)
4050 goto err_ice_rem_prof_id_flow;
4051 only_vsi = (ref == 1);
4053 if (only_vsi) {
4054 /* If the original VSIG only contains one reference,
4055 * which will be the requesting VSI, then the VSI is not
4056 * sharing entries and we can simply remove the specific
4057 * characteristics from the VSIG.
4060 if (last_profile) {
4061 /* If there are no profiles left for this VSIG,
4062 * then simply remove the the VSIG.
4064 status = ice_rem_vsig(hw, blk, vsig, &chg);
4065 if (status)
4066 goto err_ice_rem_prof_id_flow;
4067 } else {
4068 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4069 hdl, &chg);
4070 if (status)
4071 goto err_ice_rem_prof_id_flow;
4073 /* Adjust priorities */
4074 status = ice_adj_prof_priorities(hw, blk, vsig,
4075 &chg);
4076 if (status)
4077 goto err_ice_rem_prof_id_flow;
4080 } else {
4081 /* Make a copy of the VSIG's list of Profiles */
4082 status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4083 if (status)
4084 goto err_ice_rem_prof_id_flow;
4086 /* Remove specified profile entry from the list */
4087 status = ice_rem_prof_from_list(hw, &copy, hdl);
4088 if (status)
4089 goto err_ice_rem_prof_id_flow;
4091 if (list_empty(&copy)) {
4092 status = ice_move_vsi(hw, blk, vsi,
4093 ICE_DEFAULT_VSIG, &chg);
4094 if (status)
4095 goto err_ice_rem_prof_id_flow;
4097 } else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4098 &vsig)) {
4099 /* found an exact match */
4100 /* add or move VSI to the VSIG that matches */
4101 /* Search for a VSIG with a matching profile
4102 * list
4105 /* Found match, move VSI to the matching VSIG */
4106 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4107 if (status)
4108 goto err_ice_rem_prof_id_flow;
4109 } else {
4110 /* since no existing VSIG supports this
4111 * characteristic pattern, we need to create a
4112 * new VSIG and TCAM entries
4114 status = ice_create_vsig_from_lst(hw, blk, vsi,
4115 &copy, &vsig,
4116 &chg);
4117 if (status)
4118 goto err_ice_rem_prof_id_flow;
4120 /* Adjust priorities */
4121 status = ice_adj_prof_priorities(hw, blk, vsig,
4122 &chg);
4123 if (status)
4124 goto err_ice_rem_prof_id_flow;
4127 } else {
4128 status = ICE_ERR_DOES_NOT_EXIST;
4131 /* update hardware tables */
4132 if (!status)
4133 status = ice_upd_prof_hw(hw, blk, &chg);
4135 err_ice_rem_prof_id_flow:
4136 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4137 list_del(&del->list_entry);
4138 devm_kfree(ice_hw_to_dev(hw), del);
4141 list_for_each_entry_safe(del1, tmp1, &copy, list) {
4142 list_del(&del1->list);
4143 devm_kfree(ice_hw_to_dev(hw), del1);
4146 return status;