1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/types.h>
11 #include <linux/if_ether.h>
12 #include <linux/i2c.h>
14 #include "e1000_mac.h"
15 #include "e1000_82575.h"
16 #include "e1000_i210.h"
19 static s32
igb_get_invariants_82575(struct e1000_hw
*);
20 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
21 static void igb_release_phy_82575(struct e1000_hw
*);
22 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
23 static void igb_release_nvm_82575(struct e1000_hw
*);
24 static s32
igb_check_for_link_82575(struct e1000_hw
*);
25 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
26 static s32
igb_init_hw_82575(struct e1000_hw
*);
27 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
28 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
29 static s32
igb_reset_hw_82575(struct e1000_hw
*);
30 static s32
igb_reset_hw_82580(struct e1000_hw
*);
31 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
32 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*, bool);
33 static s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*, bool);
34 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
35 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
36 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
37 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
38 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
39 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
41 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
42 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
43 static bool igb_sgmii_active_82575(struct e1000_hw
*);
44 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
45 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
46 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
47 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
48 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
49 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
50 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
51 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
52 static const u16 e1000_82580_rxpbs_table
[] = {
53 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
55 /* Due to a hw errata, if the host tries to configure the VFTA register
56 * while performing queries from the BMC or DMA, then the VFTA in some
57 * cases won't be written.
61 * igb_write_vfta_i350 - Write value to VLAN filter table
62 * @hw: pointer to the HW structure
63 * @offset: register offset in VLAN filter table
64 * @value: register value written to VLAN filter table
66 * Writes value at the given offset in the register array which stores
67 * the VLAN filter table.
69 static void igb_write_vfta_i350(struct e1000_hw
*hw
, u32 offset
, u32 value
)
71 struct igb_adapter
*adapter
= hw
->back
;
75 array_wr32(E1000_VFTA
, offset
, value
);
78 adapter
->shadow_vfta
[offset
] = value
;
82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 * @hw: pointer to the HW structure
85 * Called to determine if the I2C pins are being used for I2C or as an
86 * external MDIO interface since the two options are mutually exclusive.
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
91 bool ext_mdio
= false;
93 switch (hw
->mac
.type
) {
96 reg
= rd32(E1000_MDIC
);
97 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
104 reg
= rd32(E1000_MDICNFG
);
105 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
114 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
115 * @hw: pointer to the HW structure
117 * Poll the M88E1112 interfaces to see which interface achieved link.
119 static s32
igb_check_for_link_media_swap(struct e1000_hw
*hw
)
121 struct e1000_phy_info
*phy
= &hw
->phy
;
126 /* Check the copper medium. */
127 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
131 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1112_STATUS
, &data
);
135 if (data
& E1000_M88E1112_STATUS_LINK
)
136 port
= E1000_MEDIA_PORT_COPPER
;
138 /* Check the other medium. */
139 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 1);
143 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1112_STATUS
, &data
);
148 if (data
& E1000_M88E1112_STATUS_LINK
)
149 port
= E1000_MEDIA_PORT_OTHER
;
151 /* Determine if a swap needs to happen. */
152 if (port
&& (hw
->dev_spec
._82575
.media_port
!= port
)) {
153 hw
->dev_spec
._82575
.media_port
= port
;
154 hw
->dev_spec
._82575
.media_changed
= true;
157 if (port
== E1000_MEDIA_PORT_COPPER
) {
158 /* reset page to 0 */
159 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
162 igb_check_for_link_82575(hw
);
164 igb_check_for_link_82575(hw
);
165 /* reset page to 0 */
166 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
175 * igb_init_phy_params_82575 - Init PHY func ptrs.
176 * @hw: pointer to the HW structure
178 static s32
igb_init_phy_params_82575(struct e1000_hw
*hw
)
180 struct e1000_phy_info
*phy
= &hw
->phy
;
184 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
185 phy
->type
= e1000_phy_none
;
189 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
190 phy
->reset_delay_us
= 100;
192 ctrl_ext
= rd32(E1000_CTRL_EXT
);
194 if (igb_sgmii_active_82575(hw
)) {
195 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
196 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
198 phy
->ops
.reset
= igb_phy_hw_reset
;
199 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
202 wr32(E1000_CTRL_EXT
, ctrl_ext
);
203 igb_reset_mdicnfg_82580(hw
);
205 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
206 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
207 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
209 switch (hw
->mac
.type
) {
215 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
216 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
219 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
220 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
225 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
226 E1000_STATUS_FUNC_SHIFT
;
228 /* Set phy->phy_addr and phy->id. */
229 ret_val
= igb_get_phy_id_82575(hw
);
233 /* Verify phy id and set remaining function pointers */
235 case M88E1543_E_PHY_ID
:
236 case M88E1512_E_PHY_ID
:
237 case I347AT4_E_PHY_ID
:
238 case M88E1112_E_PHY_ID
:
239 case M88E1111_I_PHY_ID
:
240 phy
->type
= e1000_phy_m88
;
241 phy
->ops
.check_polarity
= igb_check_polarity_m88
;
242 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
243 if (phy
->id
!= M88E1111_I_PHY_ID
)
244 phy
->ops
.get_cable_length
=
245 igb_get_cable_length_m88_gen2
;
247 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
248 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
249 /* Check if this PHY is configured for media swap. */
250 if (phy
->id
== M88E1112_E_PHY_ID
) {
253 ret_val
= phy
->ops
.write_reg(hw
,
254 E1000_M88E1112_PAGE_ADDR
,
259 ret_val
= phy
->ops
.read_reg(hw
,
260 E1000_M88E1112_MAC_CTRL_1
,
265 data
= (data
& E1000_M88E1112_MAC_CTRL_1_MODE_MASK
) >>
266 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT
;
267 if (data
== E1000_M88E1112_AUTO_COPPER_SGMII
||
268 data
== E1000_M88E1112_AUTO_COPPER_BASEX
)
269 hw
->mac
.ops
.check_for_link
=
270 igb_check_for_link_media_swap
;
272 if (phy
->id
== M88E1512_E_PHY_ID
) {
273 ret_val
= igb_initialize_M88E1512_phy(hw
);
277 if (phy
->id
== M88E1543_E_PHY_ID
) {
278 ret_val
= igb_initialize_M88E1543_phy(hw
);
283 case IGP03E1000_E_PHY_ID
:
284 phy
->type
= e1000_phy_igp_3
;
285 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
286 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
287 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
288 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
289 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
291 case I82580_I_PHY_ID
:
293 phy
->type
= e1000_phy_82580
;
294 phy
->ops
.force_speed_duplex
=
295 igb_phy_force_speed_duplex_82580
;
296 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
297 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
298 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
299 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
302 phy
->type
= e1000_phy_i210
;
303 phy
->ops
.check_polarity
= igb_check_polarity_m88
;
304 phy
->ops
.get_cfg_done
= igb_get_cfg_done_i210
;
305 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
306 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
307 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
308 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
309 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
311 case BCM54616_E_PHY_ID
:
312 phy
->type
= e1000_phy_bcm54616
;
315 ret_val
= -E1000_ERR_PHY
;
324 * igb_init_nvm_params_82575 - Init NVM func ptrs.
325 * @hw: pointer to the HW structure
327 static s32
igb_init_nvm_params_82575(struct e1000_hw
*hw
)
329 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
330 u32 eecd
= rd32(E1000_EECD
);
333 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
334 E1000_EECD_SIZE_EX_SHIFT
);
336 /* Added to a constant, "size" becomes the left-shift value
337 * for setting word_size.
339 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
341 /* Just in case size is out of range, cap it to the largest
342 * EEPROM size supported
347 nvm
->word_size
= BIT(size
);
348 nvm
->opcode_bits
= 8;
351 switch (nvm
->override
) {
352 case e1000_nvm_override_spi_large
:
354 nvm
->address_bits
= 16;
356 case e1000_nvm_override_spi_small
:
358 nvm
->address_bits
= 8;
361 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
362 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
?
366 if (nvm
->word_size
== BIT(15))
367 nvm
->page_size
= 128;
369 nvm
->type
= e1000_nvm_eeprom_spi
;
371 /* NVM Function Pointers */
372 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
373 nvm
->ops
.release
= igb_release_nvm_82575
;
374 nvm
->ops
.write
= igb_write_nvm_spi
;
375 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
376 nvm
->ops
.update
= igb_update_nvm_checksum
;
377 if (nvm
->word_size
< BIT(15))
378 nvm
->ops
.read
= igb_read_nvm_eerd
;
380 nvm
->ops
.read
= igb_read_nvm_spi
;
382 /* override generic family function pointers for specific descendants */
383 switch (hw
->mac
.type
) {
385 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
386 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
390 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
391 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
401 * igb_init_mac_params_82575 - Init MAC func ptrs.
402 * @hw: pointer to the HW structure
404 static s32
igb_init_mac_params_82575(struct e1000_hw
*hw
)
406 struct e1000_mac_info
*mac
= &hw
->mac
;
407 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
409 /* Set mta register count */
410 mac
->mta_reg_count
= 128;
411 /* Set uta register count */
412 mac
->uta_reg_count
= (hw
->mac
.type
== e1000_82575
) ? 0 : 128;
413 /* Set rar entry count */
416 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
419 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
423 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
426 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
430 if (mac
->type
>= e1000_82580
)
431 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
433 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
435 if (mac
->type
>= e1000_i210
) {
436 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_i210
;
437 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_i210
;
440 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_82575
;
441 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_82575
;
444 if ((hw
->mac
.type
== e1000_i350
) || (hw
->mac
.type
== e1000_i354
))
445 mac
->ops
.write_vfta
= igb_write_vfta_i350
;
447 mac
->ops
.write_vfta
= igb_write_vfta
;
449 /* Set if part includes ASF firmware */
450 mac
->asf_firmware_present
= true;
451 /* Set if manageability features are enabled. */
452 mac
->arc_subsystem_valid
=
453 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
455 /* enable EEE on i350 parts and later parts */
456 if (mac
->type
>= e1000_i350
)
457 dev_spec
->eee_disable
= false;
459 dev_spec
->eee_disable
= true;
460 /* Allow a single clear of the SW semaphore on I210 and newer */
461 if (mac
->type
>= e1000_i210
)
462 dev_spec
->clear_semaphore_once
= true;
463 /* physical interface link setup */
464 mac
->ops
.setup_physical_interface
=
465 (hw
->phy
.media_type
== e1000_media_type_copper
)
466 ? igb_setup_copper_link_82575
467 : igb_setup_serdes_link_82575
;
469 if (mac
->type
== e1000_82580
|| mac
->type
== e1000_i350
) {
470 switch (hw
->device_id
) {
471 /* feature not supported on these id's */
472 case E1000_DEV_ID_DH89XXCC_SGMII
:
473 case E1000_DEV_ID_DH89XXCC_SERDES
:
474 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
475 case E1000_DEV_ID_DH89XXCC_SFP
:
478 hw
->dev_spec
._82575
.mas_capable
= true;
486 * igb_set_sfp_media_type_82575 - derives SFP module media type.
487 * @hw: pointer to the HW structure
489 * The media type is chosen based on SFP module.
490 * compatibility flags retrieved from SFP ID EEPROM.
492 static s32
igb_set_sfp_media_type_82575(struct e1000_hw
*hw
)
494 s32 ret_val
= E1000_ERR_CONFIG
;
496 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
497 struct e1000_sfp_flags
*eth_flags
= &dev_spec
->eth_flags
;
498 u8 tranceiver_type
= 0;
501 /* Turn I2C interface ON and power on sfp cage */
502 ctrl_ext
= rd32(E1000_CTRL_EXT
);
503 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
504 wr32(E1000_CTRL_EXT
, ctrl_ext
| E1000_CTRL_I2C_ENA
);
508 /* Read SFP module data */
510 ret_val
= igb_read_sfp_data_byte(hw
,
511 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET
),
521 ret_val
= igb_read_sfp_data_byte(hw
,
522 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET
),
527 /* Check if there is some SFP module plugged and powered */
528 if ((tranceiver_type
== E1000_SFF_IDENTIFIER_SFP
) ||
529 (tranceiver_type
== E1000_SFF_IDENTIFIER_SFF
)) {
530 dev_spec
->module_plugged
= true;
531 if (eth_flags
->e1000_base_lx
|| eth_flags
->e1000_base_sx
) {
532 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
533 } else if (eth_flags
->e100_base_fx
|| eth_flags
->e100_base_lx
) {
534 dev_spec
->sgmii_active
= true;
535 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
536 } else if (eth_flags
->e1000_base_t
) {
537 dev_spec
->sgmii_active
= true;
538 hw
->phy
.media_type
= e1000_media_type_copper
;
540 hw
->phy
.media_type
= e1000_media_type_unknown
;
541 hw_dbg("PHY module has not been recognized\n");
545 hw
->phy
.media_type
= e1000_media_type_unknown
;
549 /* Restore I2C interface setting */
550 wr32(E1000_CTRL_EXT
, ctrl_ext
);
554 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
556 struct e1000_mac_info
*mac
= &hw
->mac
;
557 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
562 switch (hw
->device_id
) {
563 case E1000_DEV_ID_82575EB_COPPER
:
564 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
565 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
566 mac
->type
= e1000_82575
;
568 case E1000_DEV_ID_82576
:
569 case E1000_DEV_ID_82576_NS
:
570 case E1000_DEV_ID_82576_NS_SERDES
:
571 case E1000_DEV_ID_82576_FIBER
:
572 case E1000_DEV_ID_82576_SERDES
:
573 case E1000_DEV_ID_82576_QUAD_COPPER
:
574 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
575 case E1000_DEV_ID_82576_SERDES_QUAD
:
576 mac
->type
= e1000_82576
;
578 case E1000_DEV_ID_82580_COPPER
:
579 case E1000_DEV_ID_82580_FIBER
:
580 case E1000_DEV_ID_82580_QUAD_FIBER
:
581 case E1000_DEV_ID_82580_SERDES
:
582 case E1000_DEV_ID_82580_SGMII
:
583 case E1000_DEV_ID_82580_COPPER_DUAL
:
584 case E1000_DEV_ID_DH89XXCC_SGMII
:
585 case E1000_DEV_ID_DH89XXCC_SERDES
:
586 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
587 case E1000_DEV_ID_DH89XXCC_SFP
:
588 mac
->type
= e1000_82580
;
590 case E1000_DEV_ID_I350_COPPER
:
591 case E1000_DEV_ID_I350_FIBER
:
592 case E1000_DEV_ID_I350_SERDES
:
593 case E1000_DEV_ID_I350_SGMII
:
594 mac
->type
= e1000_i350
;
596 case E1000_DEV_ID_I210_COPPER
:
597 case E1000_DEV_ID_I210_FIBER
:
598 case E1000_DEV_ID_I210_SERDES
:
599 case E1000_DEV_ID_I210_SGMII
:
600 case E1000_DEV_ID_I210_COPPER_FLASHLESS
:
601 case E1000_DEV_ID_I210_SERDES_FLASHLESS
:
602 mac
->type
= e1000_i210
;
604 case E1000_DEV_ID_I211_COPPER
:
605 mac
->type
= e1000_i211
;
607 case E1000_DEV_ID_I354_BACKPLANE_1GBPS
:
608 case E1000_DEV_ID_I354_SGMII
:
609 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
:
610 mac
->type
= e1000_i354
;
613 return -E1000_ERR_MAC_INIT
;
617 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
618 * based on the EEPROM. We cannot rely upon device ID. There
619 * is no distinguishable difference between fiber and internal
620 * SerDes mode on the 82575. There can be an external PHY attached
621 * on the SGMII interface. For this, we'll set sgmii_active to true.
623 hw
->phy
.media_type
= e1000_media_type_copper
;
624 dev_spec
->sgmii_active
= false;
625 dev_spec
->module_plugged
= false;
627 ctrl_ext
= rd32(E1000_CTRL_EXT
);
629 link_mode
= ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
;
631 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
632 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
634 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
635 /* Get phy control interface type set (MDIO vs. I2C)*/
636 if (igb_sgmii_uses_mdio_82575(hw
)) {
637 hw
->phy
.media_type
= e1000_media_type_copper
;
638 dev_spec
->sgmii_active
= true;
641 /* fall through - for I2C based SGMII */
642 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
643 /* read media type from SFP EEPROM */
644 ret_val
= igb_set_sfp_media_type_82575(hw
);
645 if ((ret_val
!= 0) ||
646 (hw
->phy
.media_type
== e1000_media_type_unknown
)) {
647 /* If media type was not identified then return media
648 * type defined by the CTRL_EXT settings.
650 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
652 if (link_mode
== E1000_CTRL_EXT_LINK_MODE_SGMII
) {
653 hw
->phy
.media_type
= e1000_media_type_copper
;
654 dev_spec
->sgmii_active
= true;
660 /* change current link mode setting */
661 ctrl_ext
&= ~E1000_CTRL_EXT_LINK_MODE_MASK
;
663 if (dev_spec
->sgmii_active
)
664 ctrl_ext
|= E1000_CTRL_EXT_LINK_MODE_SGMII
;
666 ctrl_ext
|= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
668 wr32(E1000_CTRL_EXT
, ctrl_ext
);
675 /* mac initialization and operations */
676 ret_val
= igb_init_mac_params_82575(hw
);
680 /* NVM initialization */
681 ret_val
= igb_init_nvm_params_82575(hw
);
682 switch (hw
->mac
.type
) {
685 ret_val
= igb_init_nvm_params_i210(hw
);
694 /* if part supports SR-IOV then initialize mailbox parameters */
698 igb_init_mbx_params_pf(hw
);
704 /* setup PHY parameters */
705 ret_val
= igb_init_phy_params_82575(hw
);
712 * igb_acquire_phy_82575 - Acquire rights to access PHY
713 * @hw: pointer to the HW structure
715 * Acquire access rights to the correct PHY. This is a
716 * function pointer entry point called by the api module.
718 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
720 u16 mask
= E1000_SWFW_PHY0_SM
;
722 if (hw
->bus
.func
== E1000_FUNC_1
)
723 mask
= E1000_SWFW_PHY1_SM
;
724 else if (hw
->bus
.func
== E1000_FUNC_2
)
725 mask
= E1000_SWFW_PHY2_SM
;
726 else if (hw
->bus
.func
== E1000_FUNC_3
)
727 mask
= E1000_SWFW_PHY3_SM
;
729 return hw
->mac
.ops
.acquire_swfw_sync(hw
, mask
);
733 * igb_release_phy_82575 - Release rights to access PHY
734 * @hw: pointer to the HW structure
736 * A wrapper to release access rights to the correct PHY. This is a
737 * function pointer entry point called by the api module.
739 static void igb_release_phy_82575(struct e1000_hw
*hw
)
741 u16 mask
= E1000_SWFW_PHY0_SM
;
743 if (hw
->bus
.func
== E1000_FUNC_1
)
744 mask
= E1000_SWFW_PHY1_SM
;
745 else if (hw
->bus
.func
== E1000_FUNC_2
)
746 mask
= E1000_SWFW_PHY2_SM
;
747 else if (hw
->bus
.func
== E1000_FUNC_3
)
748 mask
= E1000_SWFW_PHY3_SM
;
750 hw
->mac
.ops
.release_swfw_sync(hw
, mask
);
754 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
755 * @hw: pointer to the HW structure
756 * @offset: register offset to be read
757 * @data: pointer to the read data
759 * Reads the PHY register at offset using the serial gigabit media independent
760 * interface and stores the retrieved information in data.
762 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
765 s32 ret_val
= -E1000_ERR_PARAM
;
767 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
768 hw_dbg("PHY Address %u is out of range\n", offset
);
772 ret_val
= hw
->phy
.ops
.acquire(hw
);
776 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
778 hw
->phy
.ops
.release(hw
);
785 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
786 * @hw: pointer to the HW structure
787 * @offset: register offset to write to
788 * @data: data to write at register offset
790 * Writes the data to PHY register at the offset using the serial gigabit
791 * media independent interface.
793 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
796 s32 ret_val
= -E1000_ERR_PARAM
;
799 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
800 hw_dbg("PHY Address %d is out of range\n", offset
);
804 ret_val
= hw
->phy
.ops
.acquire(hw
);
808 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
810 hw
->phy
.ops
.release(hw
);
817 * igb_get_phy_id_82575 - Retrieve PHY addr and id
818 * @hw: pointer to the HW structure
820 * Retrieves the PHY address and ID for both PHY's which do and do not use
823 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
825 struct e1000_phy_info
*phy
= &hw
->phy
;
831 /* Extra read required for some PHY's on i354 */
832 if (hw
->mac
.type
== e1000_i354
)
835 /* For SGMII PHYs, we try the list of possible addresses until
836 * we find one that works. For non-SGMII PHYs
837 * (e.g. integrated copper PHYs), an address of 1 should
838 * work. The result of this function should mean phy->phy_addr
839 * and phy->id are set correctly.
841 if (!(igb_sgmii_active_82575(hw
))) {
843 ret_val
= igb_get_phy_id(hw
);
847 if (igb_sgmii_uses_mdio_82575(hw
)) {
848 switch (hw
->mac
.type
) {
851 mdic
= rd32(E1000_MDIC
);
852 mdic
&= E1000_MDIC_PHY_MASK
;
853 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
860 mdic
= rd32(E1000_MDICNFG
);
861 mdic
&= E1000_MDICNFG_PHY_MASK
;
862 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
865 ret_val
= -E1000_ERR_PHY
;
868 ret_val
= igb_get_phy_id(hw
);
872 /* Power on sgmii phy if it is disabled */
873 ctrl_ext
= rd32(E1000_CTRL_EXT
);
874 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
878 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
879 * Therefore, we need to test 1-7
881 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
882 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
884 hw_dbg("Vendor ID 0x%08X read at address %u\n",
886 /* At the time of this writing, The M88 part is
887 * the only supported SGMII PHY product.
889 if (phy_id
== M88_VENDOR
)
892 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
896 /* A valid PHY type couldn't be found. */
897 if (phy
->addr
== 8) {
899 ret_val
= -E1000_ERR_PHY
;
902 ret_val
= igb_get_phy_id(hw
);
905 /* restore previous sfp cage power state */
906 wr32(E1000_CTRL_EXT
, ctrl_ext
);
913 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
914 * @hw: pointer to the HW structure
916 * Resets the PHY using the serial gigabit media independent interface.
918 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
920 struct e1000_phy_info
*phy
= &hw
->phy
;
923 /* This isn't a true "hard" reset, but is the only reset
924 * available to us at this time.
927 hw_dbg("Soft resetting SGMII attached PHY...\n");
929 /* SFP documentation requires the following to configure the SPF module
930 * to work on SGMII. No further documentation is given.
932 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
936 ret_val
= igb_phy_sw_reset(hw
);
940 if (phy
->id
== M88E1512_E_PHY_ID
)
941 ret_val
= igb_initialize_M88E1512_phy(hw
);
942 if (phy
->id
== M88E1543_E_PHY_ID
)
943 ret_val
= igb_initialize_M88E1543_phy(hw
);
949 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
950 * @hw: pointer to the HW structure
951 * @active: true to enable LPLU, false to disable
953 * Sets the LPLU D0 state according to the active flag. When
954 * activating LPLU this function also disables smart speed
955 * and vice versa. LPLU will not be activated unless the
956 * device autonegotiation advertisement meets standards of
957 * either 10 or 10/100 or 10/100/1000 at all duplexes.
958 * This is a function pointer entry point only called by
959 * PHY setup routines.
961 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
963 struct e1000_phy_info
*phy
= &hw
->phy
;
967 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
972 data
|= IGP02E1000_PM_D0_LPLU
;
973 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
978 /* When LPLU is enabled, we should disable SmartSpeed */
979 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
981 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
982 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
987 data
&= ~IGP02E1000_PM_D0_LPLU
;
988 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
990 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
991 * during Dx states where the power conservation is most
992 * important. During driver activity we should enable
993 * SmartSpeed, so performance is maintained.
995 if (phy
->smart_speed
== e1000_smart_speed_on
) {
996 ret_val
= phy
->ops
.read_reg(hw
,
997 IGP01E1000_PHY_PORT_CONFIG
, &data
);
1001 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1002 ret_val
= phy
->ops
.write_reg(hw
,
1003 IGP01E1000_PHY_PORT_CONFIG
, data
);
1006 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1007 ret_val
= phy
->ops
.read_reg(hw
,
1008 IGP01E1000_PHY_PORT_CONFIG
, &data
);
1012 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1013 ret_val
= phy
->ops
.write_reg(hw
,
1014 IGP01E1000_PHY_PORT_CONFIG
, data
);
1025 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 * @hw: pointer to the HW structure
1027 * @active: true to enable LPLU, false to disable
1029 * Sets the LPLU D0 state according to the active flag. When
1030 * activating LPLU this function also disables smart speed
1031 * and vice versa. LPLU will not be activated unless the
1032 * device autonegotiation advertisement meets standards of
1033 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 * This is a function pointer entry point only called by
1035 * PHY setup routines.
1037 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
1039 struct e1000_phy_info
*phy
= &hw
->phy
;
1042 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
1045 data
|= E1000_82580_PM_D0_LPLU
;
1047 /* When LPLU is enabled, we should disable SmartSpeed */
1048 data
&= ~E1000_82580_PM_SPD
;
1050 data
&= ~E1000_82580_PM_D0_LPLU
;
1052 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1053 * during Dx states where the power conservation is most
1054 * important. During driver activity we should enable
1055 * SmartSpeed, so performance is maintained.
1057 if (phy
->smart_speed
== e1000_smart_speed_on
)
1058 data
|= E1000_82580_PM_SPD
;
1059 else if (phy
->smart_speed
== e1000_smart_speed_off
)
1060 data
&= ~E1000_82580_PM_SPD
; }
1062 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
1067 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 * @hw: pointer to the HW structure
1069 * @active: boolean used to enable/disable lplu
1071 * Success returns 0, Failure returns 1
1073 * The low power link up (lplu) state is set to the power management level D3
1074 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1076 * is used during Dx states where the power conservation is most important.
1077 * During driver activity, SmartSpeed should be enabled so performance is
1080 static s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
1082 struct e1000_phy_info
*phy
= &hw
->phy
;
1085 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
1088 data
&= ~E1000_82580_PM_D3_LPLU
;
1089 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1090 * during Dx states where the power conservation is most
1091 * important. During driver activity we should enable
1092 * SmartSpeed, so performance is maintained.
1094 if (phy
->smart_speed
== e1000_smart_speed_on
)
1095 data
|= E1000_82580_PM_SPD
;
1096 else if (phy
->smart_speed
== e1000_smart_speed_off
)
1097 data
&= ~E1000_82580_PM_SPD
;
1098 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1099 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1100 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1101 data
|= E1000_82580_PM_D3_LPLU
;
1102 /* When LPLU is enabled, we should disable SmartSpeed */
1103 data
&= ~E1000_82580_PM_SPD
;
1106 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
1111 * igb_acquire_nvm_82575 - Request for access to EEPROM
1112 * @hw: pointer to the HW structure
1114 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 * Return successful if access grant bit set, else clear the request for
1117 * EEPROM access and return -E1000_ERR_NVM (-1).
1119 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
1123 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1127 ret_val
= igb_acquire_nvm(hw
);
1130 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1137 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 * @hw: pointer to the HW structure
1140 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 * then release the semaphores acquired.
1143 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
1145 igb_release_nvm(hw
);
1146 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1150 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 * @hw: pointer to the HW structure
1152 * @mask: specifies which semaphore to acquire
1154 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1155 * will also specify which port we're acquiring the lock for.
1157 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
1161 u32 fwmask
= mask
<< 16;
1163 s32 i
= 0, timeout
= 200;
1165 while (i
< timeout
) {
1166 if (igb_get_hw_semaphore(hw
)) {
1167 ret_val
= -E1000_ERR_SWFW_SYNC
;
1171 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
1172 if (!(swfw_sync
& (fwmask
| swmask
)))
1175 /* Firmware currently using resource (fwmask)
1176 * or other software thread using resource (swmask)
1178 igb_put_hw_semaphore(hw
);
1184 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185 ret_val
= -E1000_ERR_SWFW_SYNC
;
1189 swfw_sync
|= swmask
;
1190 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
1192 igb_put_hw_semaphore(hw
);
1199 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 * @hw: pointer to the HW structure
1201 * @mask: specifies which semaphore to acquire
1203 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1204 * will also specify which port we're releasing the lock for.
1206 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
1210 while (igb_get_hw_semaphore(hw
) != 0)
1213 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
1215 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
1217 igb_put_hw_semaphore(hw
);
1221 * igb_get_cfg_done_82575 - Read config done bit
1222 * @hw: pointer to the HW structure
1224 * Read the management control register for the config done bit for
1225 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1226 * to read the config done bit, so an error is *ONLY* logged and returns
1227 * 0. If we were to return with error, EEPROM-less silicon
1228 * would not be able to be reset or change link.
1230 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
1232 s32 timeout
= PHY_CFG_TIMEOUT
;
1233 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
1235 if (hw
->bus
.func
== 1)
1236 mask
= E1000_NVM_CFG_DONE_PORT_1
;
1237 else if (hw
->bus
.func
== E1000_FUNC_2
)
1238 mask
= E1000_NVM_CFG_DONE_PORT_2
;
1239 else if (hw
->bus
.func
== E1000_FUNC_3
)
1240 mask
= E1000_NVM_CFG_DONE_PORT_3
;
1243 if (rd32(E1000_EEMNGCTL
) & mask
)
1245 usleep_range(1000, 2000);
1249 hw_dbg("MNG configuration cycle has not completed.\n");
1251 /* If EEPROM is not marked present, init the PHY manually */
1252 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
1253 (hw
->phy
.type
== e1000_phy_igp_3
))
1254 igb_phy_init_script_igp3(hw
);
1260 * igb_get_link_up_info_82575 - Get link speed/duplex info
1261 * @hw: pointer to the HW structure
1262 * @speed: stores the current speed
1263 * @duplex: stores the current duplex
1265 * This is a wrapper function, if using the serial gigabit media independent
1266 * interface, use PCS to retrieve the link speed and duplex information.
1267 * Otherwise, use the generic function to get the link speed and duplex info.
1269 static s32
igb_get_link_up_info_82575(struct e1000_hw
*hw
, u16
*speed
,
1274 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
1275 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, speed
,
1278 ret_val
= igb_get_speed_and_duplex_copper(hw
, speed
,
1285 * igb_check_for_link_82575 - Check for link
1286 * @hw: pointer to the HW structure
1288 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 * use the generic interface for determining link.
1291 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
1296 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1297 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
1299 /* Use this flag to determine if link needs to be checked or
1300 * not. If we have link clear the flag so that we do not
1301 * continue to check for link.
1303 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
1305 /* Configure Flow Control now that Auto-Neg has completed.
1306 * First, we need to restore the desired flow control
1307 * settings because we may have had to re-autoneg with a
1308 * different link partner.
1310 ret_val
= igb_config_fc_after_link_up(hw
);
1312 hw_dbg("Error configuring flow control\n");
1314 ret_val
= igb_check_for_copper_link(hw
);
1321 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 * @hw: pointer to the HW structure
1324 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
1329 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1330 !igb_sgmii_active_82575(hw
))
1333 /* Enable PCS to turn on link */
1334 reg
= rd32(E1000_PCS_CFG0
);
1335 reg
|= E1000_PCS_CFG_PCS_EN
;
1336 wr32(E1000_PCS_CFG0
, reg
);
1338 /* Power up the laser */
1339 reg
= rd32(E1000_CTRL_EXT
);
1340 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1341 wr32(E1000_CTRL_EXT
, reg
);
1343 /* flush the write to verify completion */
1345 usleep_range(1000, 2000);
1349 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 * @hw: pointer to the HW structure
1351 * @speed: stores the current speed
1352 * @duplex: stores the current duplex
1354 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 * duplex, then store the values in the pointers provided.
1357 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
1360 struct e1000_mac_info
*mac
= &hw
->mac
;
1363 /* Set up defaults for the return values of this function */
1364 mac
->serdes_has_link
= false;
1368 /* Read the PCS Status register for link state. For non-copper mode,
1369 * the status register is not accurate. The PCS status register is
1372 pcs
= rd32(E1000_PCS_LSTAT
);
1374 /* The link up bit determines when link is up on autoneg. The sync ok
1375 * gets set once both sides sync up and agree upon link. Stable link
1376 * can be determined by checking for both link up and link sync ok
1378 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
1379 mac
->serdes_has_link
= true;
1381 /* Detect and store PCS speed */
1382 if (pcs
& E1000_PCS_LSTS_SPEED_1000
)
1383 *speed
= SPEED_1000
;
1384 else if (pcs
& E1000_PCS_LSTS_SPEED_100
)
1389 /* Detect and store PCS duplex */
1390 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
)
1391 *duplex
= FULL_DUPLEX
;
1393 *duplex
= HALF_DUPLEX
;
1395 /* Check if it is an I354 2.5Gb backplane connection. */
1396 if (mac
->type
== e1000_i354
) {
1397 status
= rd32(E1000_STATUS
);
1398 if ((status
& E1000_STATUS_2P5_SKU
) &&
1399 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
1400 *speed
= SPEED_2500
;
1401 *duplex
= FULL_DUPLEX
;
1402 hw_dbg("2500 Mbs, ");
1403 hw_dbg("Full Duplex\n");
1413 * igb_shutdown_serdes_link_82575 - Remove link during power down
1414 * @hw: pointer to the HW structure
1416 * In the case of fiber serdes, shut down optics and PCS on driver unload
1417 * when management pass thru is not enabled.
1419 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
1423 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
1424 igb_sgmii_active_82575(hw
))
1427 if (!igb_enable_mng_pass_thru(hw
)) {
1428 /* Disable PCS to turn off link */
1429 reg
= rd32(E1000_PCS_CFG0
);
1430 reg
&= ~E1000_PCS_CFG_PCS_EN
;
1431 wr32(E1000_PCS_CFG0
, reg
);
1433 /* shutdown the laser */
1434 reg
= rd32(E1000_CTRL_EXT
);
1435 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
1436 wr32(E1000_CTRL_EXT
, reg
);
1438 /* flush the write to verify completion */
1440 usleep_range(1000, 2000);
1445 * igb_reset_hw_82575 - Reset hardware
1446 * @hw: pointer to the HW structure
1448 * This resets the hardware into a known state. This is a
1449 * function pointer entry point called by the api module.
1451 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
1456 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1457 * on the last TLP read/write transaction when MAC is reset.
1459 ret_val
= igb_disable_pcie_master(hw
);
1461 hw_dbg("PCI-E Master disable polling has failed.\n");
1463 /* set the completion timeout for interface */
1464 ret_val
= igb_set_pcie_completion_timeout(hw
);
1466 hw_dbg("PCI-E Set completion timeout has failed.\n");
1468 hw_dbg("Masking off all interrupts\n");
1469 wr32(E1000_IMC
, 0xffffffff);
1471 wr32(E1000_RCTL
, 0);
1472 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1475 usleep_range(10000, 20000);
1477 ctrl
= rd32(E1000_CTRL
);
1479 hw_dbg("Issuing a global reset to MAC\n");
1480 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1482 ret_val
= igb_get_auto_rd_done(hw
);
1484 /* When auto config read does not complete, do not
1485 * return with an error. This can happen in situations
1486 * where there is no eeprom and prevents getting link.
1488 hw_dbg("Auto Read Done did not complete\n");
1491 /* If EEPROM is not present, run manual init scripts */
1492 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1493 igb_reset_init_script_82575(hw
);
1495 /* Clear any pending interrupt events. */
1496 wr32(E1000_IMC
, 0xffffffff);
1499 /* Install any alternate MAC address into RAR0 */
1500 ret_val
= igb_check_alt_mac_addr(hw
);
1506 * igb_init_hw_82575 - Initialize hardware
1507 * @hw: pointer to the HW structure
1509 * This inits the hardware readying it for operation.
1511 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1513 struct e1000_mac_info
*mac
= &hw
->mac
;
1515 u16 i
, rar_count
= mac
->rar_entry_count
;
1517 if ((hw
->mac
.type
>= e1000_i210
) &&
1518 !(igb_get_flash_presence_i210(hw
))) {
1519 ret_val
= igb_pll_workaround_i210(hw
);
1524 /* Initialize identification LED */
1525 ret_val
= igb_id_led_init(hw
);
1527 hw_dbg("Error initializing identification LED\n");
1528 /* This is not fatal and we should not stop init due to this */
1531 /* Disabling VLAN filtering */
1532 hw_dbg("Initializing the IEEE VLAN\n");
1535 /* Setup the receive address */
1536 igb_init_rx_addrs(hw
, rar_count
);
1538 /* Zero out the Multicast HASH table */
1539 hw_dbg("Zeroing the MTA\n");
1540 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1541 array_wr32(E1000_MTA
, i
, 0);
1543 /* Zero out the Unicast HASH table */
1544 hw_dbg("Zeroing the UTA\n");
1545 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1546 array_wr32(E1000_UTA
, i
, 0);
1548 /* Setup link and flow control */
1549 ret_val
= igb_setup_link(hw
);
1551 /* Clear all of the statistics registers (clear on read). It is
1552 * important that we do this after we have tried to establish link
1553 * because the symbol error count will increment wildly if there
1556 igb_clear_hw_cntrs_82575(hw
);
1561 * igb_setup_copper_link_82575 - Configure copper link settings
1562 * @hw: pointer to the HW structure
1564 * Configures the link for auto-neg or forced speed and duplex. Then we check
1565 * for link, once link is established calls to configure collision distance
1566 * and flow control are called.
1568 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1574 ctrl
= rd32(E1000_CTRL
);
1575 ctrl
|= E1000_CTRL_SLU
;
1576 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1577 wr32(E1000_CTRL
, ctrl
);
1579 /* Clear Go Link Disconnect bit on supported devices */
1580 switch (hw
->mac
.type
) {
1585 phpm_reg
= rd32(E1000_82580_PHY_POWER_MGMT
);
1586 phpm_reg
&= ~E1000_82580_PM_GO_LINKD
;
1587 wr32(E1000_82580_PHY_POWER_MGMT
, phpm_reg
);
1593 ret_val
= igb_setup_serdes_link_82575(hw
);
1597 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1598 /* allow time for SFP cage time to power up phy */
1601 ret_val
= hw
->phy
.ops
.reset(hw
);
1603 hw_dbg("Error resetting the PHY.\n");
1607 switch (hw
->phy
.type
) {
1608 case e1000_phy_i210
:
1610 switch (hw
->phy
.id
) {
1611 case I347AT4_E_PHY_ID
:
1612 case M88E1112_E_PHY_ID
:
1613 case M88E1543_E_PHY_ID
:
1614 case M88E1512_E_PHY_ID
:
1616 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1619 ret_val
= igb_copper_link_setup_m88(hw
);
1623 case e1000_phy_igp_3
:
1624 ret_val
= igb_copper_link_setup_igp(hw
);
1626 case e1000_phy_82580
:
1627 ret_val
= igb_copper_link_setup_82580(hw
);
1629 case e1000_phy_bcm54616
:
1633 ret_val
= -E1000_ERR_PHY
;
1640 ret_val
= igb_setup_copper_link(hw
);
1646 * igb_setup_serdes_link_82575 - Setup link for serdes
1647 * @hw: pointer to the HW structure
1649 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1650 * used on copper connections where the serialized gigabit media independent
1651 * interface (sgmii), or serdes fiber is being used. Configures the link
1652 * for auto-negotiation or forces speed/duplex.
1654 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1656 u32 ctrl_ext
, ctrl_reg
, reg
, anadv_reg
;
1661 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1662 !igb_sgmii_active_82575(hw
))
1666 /* On the 82575, SerDes loopback mode persists until it is
1667 * explicitly turned off or a power cycle is performed. A read to
1668 * the register does not indicate its status. Therefore, we ensure
1669 * loopback mode is disabled during initialization.
1671 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1673 /* power on the sfp cage if present and turn on I2C */
1674 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1675 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1676 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
1677 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1679 ctrl_reg
= rd32(E1000_CTRL
);
1680 ctrl_reg
|= E1000_CTRL_SLU
;
1682 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1683 /* set both sw defined pins */
1684 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1686 /* Set switch control to serdes energy detect */
1687 reg
= rd32(E1000_CONNSW
);
1688 reg
|= E1000_CONNSW_ENRGSRC
;
1689 wr32(E1000_CONNSW
, reg
);
1692 reg
= rd32(E1000_PCS_LCTL
);
1694 /* default pcs_autoneg to the same setting as mac autoneg */
1695 pcs_autoneg
= hw
->mac
.autoneg
;
1697 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1698 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1699 /* sgmii mode lets the phy handle forcing speed/duplex */
1701 /* autoneg time out should be disabled for SGMII mode */
1702 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1704 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1705 /* disable PCS autoneg and support parallel detect only */
1706 pcs_autoneg
= false;
1709 if (hw
->mac
.type
== e1000_82575
||
1710 hw
->mac
.type
== e1000_82576
) {
1711 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &data
);
1713 hw_dbg(KERN_DEBUG
"NVM Read Error\n\n");
1717 if (data
& E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT
)
1718 pcs_autoneg
= false;
1721 /* non-SGMII modes only supports a speed of 1000/Full for the
1722 * link so it is best to just force the MAC and let the pcs
1723 * link either autoneg or be forced to 1000/Full
1725 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1726 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1728 /* set speed of 1000/Full if speed/duplex is forced */
1729 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1733 wr32(E1000_CTRL
, ctrl_reg
);
1735 /* New SerDes mode allows for forcing speed or autonegotiating speed
1736 * at 1gb. Autoneg should be default set by most drivers. This is the
1737 * mode that will be compatible with older link partners and switches.
1738 * However, both are supported by the hardware and some drivers/tools.
1740 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1741 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1744 /* Set PCS register for autoneg */
1745 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1746 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1748 /* Disable force flow control for autoneg */
1749 reg
&= ~E1000_PCS_LCTL_FORCE_FCTRL
;
1751 /* Configure flow control advertisement for autoneg */
1752 anadv_reg
= rd32(E1000_PCS_ANADV
);
1753 anadv_reg
&= ~(E1000_TXCW_ASM_DIR
| E1000_TXCW_PAUSE
);
1754 switch (hw
->fc
.requested_mode
) {
1756 case e1000_fc_rx_pause
:
1757 anadv_reg
|= E1000_TXCW_ASM_DIR
;
1758 anadv_reg
|= E1000_TXCW_PAUSE
;
1760 case e1000_fc_tx_pause
:
1761 anadv_reg
|= E1000_TXCW_ASM_DIR
;
1766 wr32(E1000_PCS_ANADV
, anadv_reg
);
1768 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1770 /* Set PCS register for forced link */
1771 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1773 /* Force flow control for forced link */
1774 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1776 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1779 wr32(E1000_PCS_LCTL
, reg
);
1781 if (!pcs_autoneg
&& !igb_sgmii_active_82575(hw
))
1782 igb_force_mac_fc(hw
);
1788 * igb_sgmii_active_82575 - Return sgmii state
1789 * @hw: pointer to the HW structure
1791 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 * which can be enabled for use in the embedded applications. Simply
1793 * return the current state of the sgmii interface.
1795 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1797 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1798 return dev_spec
->sgmii_active
;
1802 * igb_reset_init_script_82575 - Inits HW defaults after reset
1803 * @hw: pointer to the HW structure
1805 * Inits recommended HW defaults after a reset when there is no EEPROM
1806 * detected. This is only for the 82575.
1808 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1810 if (hw
->mac
.type
== e1000_82575
) {
1811 hw_dbg("Running reset init script for 82575\n");
1812 /* SerDes configuration via SERDESCTRL */
1813 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1814 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1815 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1816 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1818 /* CCM configuration via CCMCTL register */
1819 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1820 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1822 /* PCIe lanes configuration */
1823 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1824 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1825 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1826 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1828 /* PCIe PLL Configuration */
1829 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1830 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1831 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1838 * igb_read_mac_addr_82575 - Read device MAC address
1839 * @hw: pointer to the HW structure
1841 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1845 /* If there's an alternate MAC address place it in RAR0
1846 * so that it will override the Si installed default perm
1849 ret_val
= igb_check_alt_mac_addr(hw
);
1853 ret_val
= igb_read_mac_addr(hw
);
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1866 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1868 /* If the management interface is not enabled, then power down */
1869 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1870 igb_power_down_phy_copper(hw
);
1874 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 * @hw: pointer to the HW structure
1877 * Clears the hardware counters by reading the counter registers.
1879 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1881 igb_clear_hw_cntrs_base(hw
);
1887 rd32(E1000_PRC1023
);
1888 rd32(E1000_PRC1522
);
1893 rd32(E1000_PTC1023
);
1894 rd32(E1000_PTC1522
);
1896 rd32(E1000_ALGNERRC
);
1899 rd32(E1000_CEXTERR
);
1910 rd32(E1000_ICRXPTC
);
1911 rd32(E1000_ICRXATC
);
1912 rd32(E1000_ICTXPTC
);
1913 rd32(E1000_ICTXATC
);
1914 rd32(E1000_ICTXQEC
);
1915 rd32(E1000_ICTXQMTC
);
1916 rd32(E1000_ICRXDMTC
);
1923 rd32(E1000_HTCBDPC
);
1928 rd32(E1000_LENERRS
);
1930 /* This register should not be read in copper configurations */
1931 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1932 igb_sgmii_active_82575(hw
))
1937 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 * @hw: pointer to the HW structure
1940 * After rx enable if manageability is enabled then there is likely some
1941 * bad data at the start of the fifo and possibly in the DMA fifo. This
1942 * function clears the fifos and flushes any packets that came in as rx was
1945 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1947 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1950 /* disable IPv6 options as per hardware errata */
1951 rfctl
= rd32(E1000_RFCTL
);
1952 rfctl
|= E1000_RFCTL_IPV6_EX_DIS
;
1953 wr32(E1000_RFCTL
, rfctl
);
1955 if (hw
->mac
.type
!= e1000_82575
||
1956 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1959 /* Disable all RX queues */
1960 for (i
= 0; i
< 4; i
++) {
1961 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1962 wr32(E1000_RXDCTL(i
),
1963 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1965 /* Poll all queues to verify they have shut down */
1966 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1967 usleep_range(1000, 2000);
1969 for (i
= 0; i
< 4; i
++)
1970 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1971 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1976 hw_dbg("Queue disable timed out after 10ms\n");
1978 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979 * incoming packets are rejected. Set enable and wait 2ms so that
1980 * any packet that was coming in as RCTL.EN was set is flushed
1982 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1984 rlpml
= rd32(E1000_RLPML
);
1985 wr32(E1000_RLPML
, 0);
1987 rctl
= rd32(E1000_RCTL
);
1988 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1989 temp_rctl
|= E1000_RCTL_LPE
;
1991 wr32(E1000_RCTL
, temp_rctl
);
1992 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1994 usleep_range(2000, 3000);
1996 /* Enable RX queues that were previously enabled and restore our
1999 for (i
= 0; i
< 4; i
++)
2000 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
2001 wr32(E1000_RCTL
, rctl
);
2004 wr32(E1000_RLPML
, rlpml
);
2005 wr32(E1000_RFCTL
, rfctl
);
2007 /* Flush receive errors generated by workaround */
2014 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 * @hw: pointer to the HW structure
2017 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 * however the hardware default for these parts is 500us to 1ms which is less
2019 * than the 10ms recommended by the pci-e spec. To address this we need to
2020 * increase the value to either 10ms to 200ms for capability version 1 config,
2021 * or 16ms to 55ms for version 2.
2023 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
2025 u32 gcr
= rd32(E1000_GCR
);
2029 /* only take action if timeout value is defaulted to 0 */
2030 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
2033 /* if capabilities version is type 1 we can write the
2034 * timeout of 10ms to 200ms through the GCR register
2036 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
2037 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
2041 /* for version 2 capabilities we need to write the config space
2042 * directly in order to set the completion timeout value for
2045 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
2050 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
2052 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
2055 /* disable completion timeout resend */
2056 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
2058 wr32(E1000_GCR
, gcr
);
2063 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 * @hw: pointer to the hardware struct
2065 * @enable: state to enter, either enabled or disabled
2066 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2068 * enables/disables L2 switch anti-spoofing functionality.
2070 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
2072 u32 reg_val
, reg_offset
;
2074 switch (hw
->mac
.type
) {
2076 reg_offset
= E1000_DTXSWC
;
2080 reg_offset
= E1000_TXSWC
;
2086 reg_val
= rd32(reg_offset
);
2088 reg_val
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
2089 E1000_DTXSWC_VLAN_SPOOF_MASK
);
2090 /* The PF can spoof - it has to in order to
2091 * support emulation mode NICs
2093 reg_val
^= (BIT(pf
) | BIT(pf
+ MAX_NUM_VFS
));
2095 reg_val
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
2096 E1000_DTXSWC_VLAN_SPOOF_MASK
);
2098 wr32(reg_offset
, reg_val
);
2102 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 * @hw: pointer to the hardware struct
2104 * @enable: state to enter, either enabled or disabled
2106 * enables/disables L2 switch loopback functionality.
2108 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
2112 switch (hw
->mac
.type
) {
2114 dtxswc
= rd32(E1000_DTXSWC
);
2116 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2118 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2119 wr32(E1000_DTXSWC
, dtxswc
);
2123 dtxswc
= rd32(E1000_TXSWC
);
2125 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2127 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2128 wr32(E1000_TXSWC
, dtxswc
);
2131 /* Currently no other hardware supports loopback */
2138 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 * @hw: pointer to the hardware struct
2140 * @enable: state to enter, either enabled or disabled
2142 * enables/disables replication of packets across multiple pools.
2144 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
2146 u32 vt_ctl
= rd32(E1000_VT_CTL
);
2149 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
2151 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
2153 wr32(E1000_VT_CTL
, vt_ctl
);
2157 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 * @hw: pointer to the HW structure
2159 * @offset: register offset to be read
2160 * @data: pointer to the read data
2162 * Reads the MDI control register in the PHY at offset and stores the
2163 * information read to data.
2165 s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2169 ret_val
= hw
->phy
.ops
.acquire(hw
);
2173 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
2175 hw
->phy
.ops
.release(hw
);
2182 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 * @hw: pointer to the HW structure
2184 * @offset: register offset to write to
2185 * @data: data to write to register at offset
2187 * Writes data to MDI control register in the PHY at offset.
2189 s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2194 ret_val
= hw
->phy
.ops
.acquire(hw
);
2198 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
2200 hw
->phy
.ops
.release(hw
);
2207 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 * @hw: pointer to the HW structure
2210 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 * the values found in the EEPROM. This addresses an issue in which these
2212 * bits are not restored from EEPROM after reset.
2214 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
2220 if (hw
->mac
.type
!= e1000_82580
)
2222 if (!igb_sgmii_active_82575(hw
))
2225 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
2226 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
2229 hw_dbg("NVM Read Error\n");
2233 mdicnfg
= rd32(E1000_MDICNFG
);
2234 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
2235 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
2236 if (nvm_data
& NVM_WORD24_COM_MDIO
)
2237 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
2238 wr32(E1000_MDICNFG
, mdicnfg
);
2244 * igb_reset_hw_82580 - Reset hardware
2245 * @hw: pointer to the HW structure
2247 * This resets function or entire device (all ports, etc.)
2250 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
2253 /* BH SW mailbox bit in SW_FW_SYNC */
2254 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
2256 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
2258 hw
->dev_spec
._82575
.global_device_reset
= false;
2260 /* due to hw errata, global device reset doesn't always
2263 if (hw
->mac
.type
== e1000_82580
)
2264 global_device_reset
= false;
2266 /* Get current control state. */
2267 ctrl
= rd32(E1000_CTRL
);
2269 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2270 * on the last TLP read/write transaction when MAC is reset.
2272 ret_val
= igb_disable_pcie_master(hw
);
2274 hw_dbg("PCI-E Master disable polling has failed.\n");
2276 hw_dbg("Masking off all interrupts\n");
2277 wr32(E1000_IMC
, 0xffffffff);
2278 wr32(E1000_RCTL
, 0);
2279 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
2282 usleep_range(10000, 11000);
2284 /* Determine whether or not a global dev reset is requested */
2285 if (global_device_reset
&&
2286 hw
->mac
.ops
.acquire_swfw_sync(hw
, swmbsw_mask
))
2287 global_device_reset
= false;
2289 if (global_device_reset
&&
2290 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
2291 ctrl
|= E1000_CTRL_DEV_RST
;
2293 ctrl
|= E1000_CTRL_RST
;
2295 wr32(E1000_CTRL
, ctrl
);
2298 /* Add delay to insure DEV_RST has time to complete */
2299 if (global_device_reset
)
2300 usleep_range(5000, 6000);
2302 ret_val
= igb_get_auto_rd_done(hw
);
2304 /* When auto config read does not complete, do not
2305 * return with an error. This can happen in situations
2306 * where there is no eeprom and prevents getting link.
2308 hw_dbg("Auto Read Done did not complete\n");
2311 /* clear global device reset status bit */
2312 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
2314 /* Clear any pending interrupt events. */
2315 wr32(E1000_IMC
, 0xffffffff);
2318 ret_val
= igb_reset_mdicnfg_82580(hw
);
2320 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2322 /* Install any alternate MAC address into RAR0 */
2323 ret_val
= igb_check_alt_mac_addr(hw
);
2325 /* Release semaphore */
2326 if (global_device_reset
)
2327 hw
->mac
.ops
.release_swfw_sync(hw
, swmbsw_mask
);
2333 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 * @data: data received by reading RXPBS register
2336 * The 82580 uses a table based approach for packet buffer allocation sizes.
2337 * This function converts the retrieved value into the correct table value
2338 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 * 0x0 36 72 144 1 2 4 8 16
2340 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2342 u16
igb_rxpbs_adjust_82580(u32 data
)
2346 if (data
< ARRAY_SIZE(e1000_82580_rxpbs_table
))
2347 ret_val
= e1000_82580_rxpbs_table
[data
];
2353 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2355 * @hw: pointer to the HW structure
2356 * @offset: offset in words of the checksum protected region
2358 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2361 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
2368 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
2369 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2371 hw_dbg("NVM Read Error\n");
2374 checksum
+= nvm_data
;
2377 if (checksum
!= (u16
) NVM_SUM
) {
2378 hw_dbg("NVM Checksum Invalid\n");
2379 ret_val
= -E1000_ERR_NVM
;
2388 * igb_update_nvm_checksum_with_offset - Update EEPROM
2390 * @hw: pointer to the HW structure
2391 * @offset: offset in words of the checksum protected region
2393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 * up to the checksum. Then calculates the EEPROM checksum and writes the
2395 * value to the EEPROM.
2397 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
2403 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
2404 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2406 hw_dbg("NVM Read Error while updating checksum.\n");
2409 checksum
+= nvm_data
;
2411 checksum
= (u16
) NVM_SUM
- checksum
;
2412 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
2415 hw_dbg("NVM Write Error while updating checksum.\n");
2422 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 * @hw: pointer to the HW structure
2425 * Calculates the EEPROM section checksum by reading/adding each word of
2426 * the EEPROM and then verifies that the sum of the EEPROM is
2429 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
2432 u16 eeprom_regions_count
= 1;
2436 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2438 hw_dbg("NVM Read Error\n");
2442 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
2443 /* if checksums compatibility bit is set validate checksums
2446 eeprom_regions_count
= 4;
2449 for (j
= 0; j
< eeprom_regions_count
; j
++) {
2450 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2451 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2462 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 * @hw: pointer to the HW structure
2465 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2467 * checksum and writes the value to the EEPROM.
2469 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
2475 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2477 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2481 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
2482 /* set compatibility bit to validate checksums appropriately */
2483 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
2484 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
2487 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2492 for (j
= 0; j
< 4; j
++) {
2493 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2494 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2504 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 * @hw: pointer to the HW structure
2507 * Calculates the EEPROM section checksum by reading/adding each word of
2508 * the EEPROM and then verifies that the sum of the EEPROM is
2511 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
2517 for (j
= 0; j
< 4; j
++) {
2518 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2519 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2530 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 * @hw: pointer to the HW structure
2533 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2535 * checksum and writes the value to the EEPROM.
2537 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
2543 for (j
= 0; j
< 4; j
++) {
2544 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2545 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2555 * __igb_access_emi_reg - Read/write EMI register
2556 * @hw: pointer to the HW structure
2557 * @addr: EMI address to program
2558 * @data: pointer to value to read/write from/to the EMI address
2559 * @read: boolean flag to indicate read or write
2561 static s32
__igb_access_emi_reg(struct e1000_hw
*hw
, u16 address
,
2562 u16
*data
, bool read
)
2566 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_EMIADD
, address
);
2571 ret_val
= hw
->phy
.ops
.read_reg(hw
, E1000_EMIDATA
, data
);
2573 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_EMIDATA
, *data
);
2579 * igb_read_emi_reg - Read Extended Management Interface register
2580 * @hw: pointer to the HW structure
2581 * @addr: EMI address to program
2582 * @data: value to be read from the EMI address
2584 s32
igb_read_emi_reg(struct e1000_hw
*hw
, u16 addr
, u16
*data
)
2586 return __igb_access_emi_reg(hw
, addr
, data
, true);
2590 * igb_set_eee_i350 - Enable/disable EEE support
2591 * @hw: pointer to the HW structure
2592 * @adv1G: boolean flag enabling 1G EEE advertisement
2593 * @adv100m: boolean flag enabling 100M EEE advertisement
2595 * Enable/disable EEE based on setting in dev_spec structure.
2598 s32
igb_set_eee_i350(struct e1000_hw
*hw
, bool adv1G
, bool adv100M
)
2602 if ((hw
->mac
.type
< e1000_i350
) ||
2603 (hw
->phy
.media_type
!= e1000_media_type_copper
))
2605 ipcnfg
= rd32(E1000_IPCNFG
);
2606 eeer
= rd32(E1000_EEER
);
2608 /* enable or disable per user setting */
2609 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2610 u32 eee_su
= rd32(E1000_EEE_SU
);
2613 ipcnfg
|= E1000_IPCNFG_EEE_100M_AN
;
2615 ipcnfg
&= ~E1000_IPCNFG_EEE_100M_AN
;
2618 ipcnfg
|= E1000_IPCNFG_EEE_1G_AN
;
2620 ipcnfg
&= ~E1000_IPCNFG_EEE_1G_AN
;
2622 eeer
|= (E1000_EEER_TX_LPI_EN
| E1000_EEER_RX_LPI_EN
|
2625 /* This bit should not be set in normal operation. */
2626 if (eee_su
& E1000_EEE_SU_LPI_CLK_STP
)
2627 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2630 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2631 E1000_IPCNFG_EEE_100M_AN
);
2632 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2633 E1000_EEER_RX_LPI_EN
|
2636 wr32(E1000_IPCNFG
, ipcnfg
);
2637 wr32(E1000_EEER
, eeer
);
2646 * igb_set_eee_i354 - Enable/disable EEE support
2647 * @hw: pointer to the HW structure
2648 * @adv1G: boolean flag enabling 1G EEE advertisement
2649 * @adv100m: boolean flag enabling 100M EEE advertisement
2651 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2654 s32
igb_set_eee_i354(struct e1000_hw
*hw
, bool adv1G
, bool adv100M
)
2656 struct e1000_phy_info
*phy
= &hw
->phy
;
2660 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
2661 ((phy
->id
!= M88E1543_E_PHY_ID
) &&
2662 (phy
->id
!= M88E1512_E_PHY_ID
)))
2665 if (!hw
->dev_spec
._82575
.eee_disable
) {
2666 /* Switch to PHY page 18. */
2667 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 18);
2671 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1543_EEE_CTRL_1
,
2676 phy_data
|= E1000_M88E1543_EEE_CTRL_1_MS
;
2677 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_EEE_CTRL_1
,
2682 /* Return the PHY to page 0. */
2683 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2687 /* Turn on EEE advertisement. */
2688 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2689 E1000_EEE_ADV_DEV_I354
,
2695 phy_data
|= E1000_EEE_ADV_100_SUPPORTED
;
2697 phy_data
&= ~E1000_EEE_ADV_100_SUPPORTED
;
2700 phy_data
|= E1000_EEE_ADV_1000_SUPPORTED
;
2702 phy_data
&= ~E1000_EEE_ADV_1000_SUPPORTED
;
2704 ret_val
= igb_write_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2705 E1000_EEE_ADV_DEV_I354
,
2708 /* Turn off EEE advertisement. */
2709 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2710 E1000_EEE_ADV_DEV_I354
,
2715 phy_data
&= ~(E1000_EEE_ADV_100_SUPPORTED
|
2716 E1000_EEE_ADV_1000_SUPPORTED
);
2717 ret_val
= igb_write_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2718 E1000_EEE_ADV_DEV_I354
,
2727 * igb_get_eee_status_i354 - Get EEE status
2728 * @hw: pointer to the HW structure
2729 * @status: EEE status
2731 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2734 s32
igb_get_eee_status_i354(struct e1000_hw
*hw
, bool *status
)
2736 struct e1000_phy_info
*phy
= &hw
->phy
;
2740 /* Check if EEE is supported on this device. */
2741 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
2742 ((phy
->id
!= M88E1543_E_PHY_ID
) &&
2743 (phy
->id
!= M88E1512_E_PHY_ID
)))
2746 ret_val
= igb_read_xmdio_reg(hw
, E1000_PCS_STATUS_ADDR_I354
,
2747 E1000_PCS_STATUS_DEV_I354
,
2752 *status
= phy_data
& (E1000_PCS_STATUS_TX_LPI_RCVD
|
2753 E1000_PCS_STATUS_RX_LPI_RCVD
) ? true : false;
2759 static const u8 e1000_emc_temp_data
[4] = {
2760 E1000_EMC_INTERNAL_DATA
,
2761 E1000_EMC_DIODE1_DATA
,
2762 E1000_EMC_DIODE2_DATA
,
2763 E1000_EMC_DIODE3_DATA
2765 static const u8 e1000_emc_therm_limit
[4] = {
2766 E1000_EMC_INTERNAL_THERM_LIMIT
,
2767 E1000_EMC_DIODE1_THERM_LIMIT
,
2768 E1000_EMC_DIODE2_THERM_LIMIT
,
2769 E1000_EMC_DIODE3_THERM_LIMIT
2772 #ifdef CONFIG_IGB_HWMON
2774 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 * @hw: pointer to hardware structure
2777 * Updates the temperatures in mac.thermal_sensor_data
2779 static s32
igb_get_thermal_sensor_data_generic(struct e1000_hw
*hw
)
2788 struct e1000_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
2790 if ((hw
->mac
.type
!= e1000_i350
) || (hw
->bus
.func
!= 0))
2791 return E1000_NOT_IMPLEMENTED
;
2793 data
->sensor
[0].temp
= (rd32(E1000_THMJT
) & 0xFF);
2795 /* Return the internal sensor only if ETS is unsupported */
2796 hw
->nvm
.ops
.read(hw
, NVM_ETS_CFG
, 1, &ets_offset
);
2797 if ((ets_offset
== 0x0000) || (ets_offset
== 0xFFFF))
2800 hw
->nvm
.ops
.read(hw
, ets_offset
, 1, &ets_cfg
);
2801 if (((ets_cfg
& NVM_ETS_TYPE_MASK
) >> NVM_ETS_TYPE_SHIFT
)
2802 != NVM_ETS_TYPE_EMC
)
2803 return E1000_NOT_IMPLEMENTED
;
2805 num_sensors
= (ets_cfg
& NVM_ETS_NUM_SENSORS_MASK
);
2806 if (num_sensors
> E1000_MAX_SENSORS
)
2807 num_sensors
= E1000_MAX_SENSORS
;
2809 for (i
= 1; i
< num_sensors
; i
++) {
2810 hw
->nvm
.ops
.read(hw
, (ets_offset
+ i
), 1, &ets_sensor
);
2811 sensor_index
= ((ets_sensor
& NVM_ETS_DATA_INDEX_MASK
) >>
2812 NVM_ETS_DATA_INDEX_SHIFT
);
2813 sensor_location
= ((ets_sensor
& NVM_ETS_DATA_LOC_MASK
) >>
2814 NVM_ETS_DATA_LOC_SHIFT
);
2816 if (sensor_location
!= 0)
2817 hw
->phy
.ops
.read_i2c_byte(hw
,
2818 e1000_emc_temp_data
[sensor_index
],
2819 E1000_I2C_THERMAL_SENSOR_ADDR
,
2820 &data
->sensor
[i
].temp
);
2826 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 * @hw: pointer to hardware structure
2829 * Sets the thermal sensor thresholds according to the NVM map
2830 * and save off the threshold and location values into mac.thermal_sensor_data
2832 static s32
igb_init_thermal_sensor_thresh_generic(struct e1000_hw
*hw
)
2837 u8 low_thresh_delta
;
2843 struct e1000_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
2845 if ((hw
->mac
.type
!= e1000_i350
) || (hw
->bus
.func
!= 0))
2846 return E1000_NOT_IMPLEMENTED
;
2848 memset(data
, 0, sizeof(struct e1000_thermal_sensor_data
));
2850 data
->sensor
[0].location
= 0x1;
2851 data
->sensor
[0].caution_thresh
=
2852 (rd32(E1000_THHIGHTC
) & 0xFF);
2853 data
->sensor
[0].max_op_thresh
=
2854 (rd32(E1000_THLOWTC
) & 0xFF);
2856 /* Return the internal sensor only if ETS is unsupported */
2857 hw
->nvm
.ops
.read(hw
, NVM_ETS_CFG
, 1, &ets_offset
);
2858 if ((ets_offset
== 0x0000) || (ets_offset
== 0xFFFF))
2861 hw
->nvm
.ops
.read(hw
, ets_offset
, 1, &ets_cfg
);
2862 if (((ets_cfg
& NVM_ETS_TYPE_MASK
) >> NVM_ETS_TYPE_SHIFT
)
2863 != NVM_ETS_TYPE_EMC
)
2864 return E1000_NOT_IMPLEMENTED
;
2866 low_thresh_delta
= ((ets_cfg
& NVM_ETS_LTHRES_DELTA_MASK
) >>
2867 NVM_ETS_LTHRES_DELTA_SHIFT
);
2868 num_sensors
= (ets_cfg
& NVM_ETS_NUM_SENSORS_MASK
);
2870 for (i
= 1; i
<= num_sensors
; i
++) {
2871 hw
->nvm
.ops
.read(hw
, (ets_offset
+ i
), 1, &ets_sensor
);
2872 sensor_index
= ((ets_sensor
& NVM_ETS_DATA_INDEX_MASK
) >>
2873 NVM_ETS_DATA_INDEX_SHIFT
);
2874 sensor_location
= ((ets_sensor
& NVM_ETS_DATA_LOC_MASK
) >>
2875 NVM_ETS_DATA_LOC_SHIFT
);
2876 therm_limit
= ets_sensor
& NVM_ETS_DATA_HTHRESH_MASK
;
2878 hw
->phy
.ops
.write_i2c_byte(hw
,
2879 e1000_emc_therm_limit
[sensor_index
],
2880 E1000_I2C_THERMAL_SENSOR_ADDR
,
2883 if ((i
< E1000_MAX_SENSORS
) && (sensor_location
!= 0)) {
2884 data
->sensor
[i
].location
= sensor_location
;
2885 data
->sensor
[i
].caution_thresh
= therm_limit
;
2886 data
->sensor
[i
].max_op_thresh
= therm_limit
-
2894 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2895 .init_hw
= igb_init_hw_82575
,
2896 .check_for_link
= igb_check_for_link_82575
,
2897 .rar_set
= igb_rar_set
,
2898 .read_mac_addr
= igb_read_mac_addr_82575
,
2899 .get_speed_and_duplex
= igb_get_link_up_info_82575
,
2900 #ifdef CONFIG_IGB_HWMON
2901 .get_thermal_sensor_data
= igb_get_thermal_sensor_data_generic
,
2902 .init_thermal_sensor_thresh
= igb_init_thermal_sensor_thresh_generic
,
2906 static const struct e1000_phy_operations e1000_phy_ops_82575
= {
2907 .acquire
= igb_acquire_phy_82575
,
2908 .get_cfg_done
= igb_get_cfg_done_82575
,
2909 .release
= igb_release_phy_82575
,
2910 .write_i2c_byte
= igb_write_i2c_byte
,
2911 .read_i2c_byte
= igb_read_i2c_byte
,
2914 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2915 .acquire
= igb_acquire_nvm_82575
,
2916 .read
= igb_read_nvm_eerd
,
2917 .release
= igb_release_nvm_82575
,
2918 .write
= igb_write_nvm_spi
,
2921 const struct e1000_info e1000_82575_info
= {
2922 .get_invariants
= igb_get_invariants_82575
,
2923 .mac_ops
= &e1000_mac_ops_82575
,
2924 .phy_ops
= &e1000_phy_ops_82575
,
2925 .nvm_ops
= &e1000_nvm_ops_82575
,