1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
7 * igc_check_reset_block - Check if PHY reset is blocked
8 * @hw: pointer to the HW structure
10 * Read the PHY management control register and check whether a PHY reset
11 * is blocked. If a reset is not blocked return 0, otherwise
12 * return IGC_ERR_BLK_PHY_RESET (12).
14 s32
igc_check_reset_block(struct igc_hw
*hw
)
18 manc
= rd32(IGC_MANC
);
20 return (manc
& IGC_MANC_BLK_PHY_RST_ON_IDE
) ?
21 IGC_ERR_BLK_PHY_RESET
: 0;
25 * igc_get_phy_id - Retrieve the PHY ID and revision
26 * @hw: pointer to the HW structure
28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
29 * revision in the hardware structure.
31 s32
igc_get_phy_id(struct igc_hw
*hw
)
33 struct igc_phy_info
*phy
= &hw
->phy
;
37 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
41 phy
->id
= (u32
)(phy_id
<< 16);
42 usleep_range(200, 500);
43 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
47 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
48 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
55 * igc_phy_has_link - Polls PHY for link
56 * @hw: pointer to the HW structure
57 * @iterations: number of times to poll for link
58 * @usec_interval: delay between polling attempts
59 * @success: pointer to whether polling was successful or not
61 * Polls the PHY status register for link, 'iterations' number of times.
63 s32
igc_phy_has_link(struct igc_hw
*hw
, u32 iterations
,
64 u32 usec_interval
, bool *success
)
69 for (i
= 0; i
< iterations
; i
++) {
70 /* Some PHYs require the PHY_STATUS register to be read
71 * twice due to the link bit being sticky. No harm doing
72 * it across the board.
74 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
75 if (ret_val
&& usec_interval
> 0) {
76 /* If the first read fails, another entity may have
77 * ownership of the resources, wait and try again to
78 * see if they have relinquished the resources yet.
80 if (usec_interval
>= 1000)
81 mdelay(usec_interval
/ 1000);
83 udelay(usec_interval
);
85 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
88 if (phy_status
& MII_SR_LINK_STATUS
)
90 if (usec_interval
>= 1000)
91 mdelay(usec_interval
/ 1000);
93 udelay(usec_interval
);
96 *success
= (i
< iterations
) ? true : false;
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
108 void igc_power_up_phy_copper(struct igc_hw
*hw
)
112 /* The PHY will retain its settings across a power down/up cycle */
113 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
114 mii_reg
&= ~MII_CR_POWER_DOWN
;
115 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
122 * Power down PHY to save power when interface is down and wake on lan
125 void igc_power_down_phy_copper(struct igc_hw
*hw
)
129 /* The PHY will retain its settings across a power down/up cycle */
130 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
131 mii_reg
|= MII_CR_POWER_DOWN
;
133 /* Temporary workaround - should be removed when PHY will implement
134 * IEEE registers as properly
136 /* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137 usleep_range(1000, 2000);
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
144 * Success returns 0, Failure returns 1
146 * A downshift is detected by querying the PHY link health.
148 s32
igc_check_downshift(struct igc_hw
*hw
)
150 struct igc_phy_info
*phy
= &hw
->phy
;
156 /* speed downshift not supported */
157 phy
->speed_downgraded
= false;
165 * igc_phy_hw_reset - PHY hardware reset
166 * @hw: pointer to the HW structure
168 * Verify the reset block is not blocking us from resetting. Acquire
169 * semaphore (if necessary) and read/set/write the device control reset
170 * bit in the PHY. Wait the appropriate delay time for the device to
171 * reset and release the semaphore (if necessary).
173 s32
igc_phy_hw_reset(struct igc_hw
*hw
)
175 struct igc_phy_info
*phy
= &hw
->phy
;
176 u32 phpm
= 0, timeout
= 10000;
180 ret_val
= igc_check_reset_block(hw
);
186 ret_val
= phy
->ops
.acquire(hw
);
190 phpm
= rd32(IGC_I225_PHPM
);
192 ctrl
= rd32(IGC_CTRL
);
193 wr32(IGC_CTRL
, ctrl
| IGC_CTRL_PHY_RST
);
196 udelay(phy
->reset_delay_us
);
198 wr32(IGC_CTRL
, ctrl
);
201 /* SW should guarantee 100us for the completion of the PHY reset */
202 usleep_range(100, 150);
204 phpm
= rd32(IGC_I225_PHPM
);
207 } while (!(phpm
& IGC_PHY_RST_COMP
) && timeout
);
210 hw_dbg("Timeout is expired after a phy reset\n");
212 usleep_range(100, 150);
214 phy
->ops
.release(hw
);
221 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222 * @hw: pointer to the HW structure
224 * Reads the MII auto-neg advertisement register and/or the 1000T control
225 * register and if the PHY is already setup for auto-negotiation, then
226 * return successful. Otherwise, setup advertisement and flow control to
227 * the appropriate values for the wanted auto-negotiation.
229 static s32
igc_phy_setup_autoneg(struct igc_hw
*hw
)
231 struct igc_phy_info
*phy
= &hw
->phy
;
232 u16 aneg_multigbt_an_ctrl
= 0;
233 u16 mii_1000t_ctrl_reg
= 0;
234 u16 mii_autoneg_adv_reg
;
237 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
239 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
240 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
244 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
245 /* Read the MII 1000Base-T Control Register (Address 9). */
246 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
247 &mii_1000t_ctrl_reg
);
252 if ((phy
->autoneg_mask
& ADVERTISE_2500_FULL
) &&
253 hw
->phy
.id
== I225_I_PHY_ID
) {
254 /* Read the MULTI GBT AN Control Register - reg 7.32 */
255 ret_val
= phy
->ops
.read_reg(hw
, (STANDARD_AN_REG_MASK
<<
257 ANEG_MULTIGBT_AN_CTRL
,
258 &aneg_multigbt_an_ctrl
);
264 /* Need to parse both autoneg_advertised and fc and set up
265 * the appropriate PHY registers. First we will parse for
266 * autoneg_advertised software override. Since we can advertise
267 * a plethora of combinations, we need to check each bit
271 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
272 * Advertisement Register (Address 4) and the 1000 mb speed bits in
273 * the 1000Base-T Control Register (Address 9).
275 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
276 NWAY_AR_100TX_HD_CAPS
|
277 NWAY_AR_10T_FD_CAPS
|
278 NWAY_AR_10T_HD_CAPS
);
279 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
281 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
283 /* Do we want to advertise 10 Mb Half Duplex? */
284 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
285 hw_dbg("Advertise 10mb Half duplex\n");
286 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
289 /* Do we want to advertise 10 Mb Full Duplex? */
290 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
291 hw_dbg("Advertise 10mb Full duplex\n");
292 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
295 /* Do we want to advertise 100 Mb Half Duplex? */
296 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
297 hw_dbg("Advertise 100mb Half duplex\n");
298 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
301 /* Do we want to advertise 100 Mb Full Duplex? */
302 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
303 hw_dbg("Advertise 100mb Full duplex\n");
304 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
307 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
308 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
309 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
311 /* Do we want to advertise 1000 Mb Full Duplex? */
312 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
313 hw_dbg("Advertise 1000mb Full duplex\n");
314 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
317 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
318 if (phy
->autoneg_advertised
& ADVERTISE_2500_HALF
)
319 hw_dbg("Advertise 2500mb Half duplex request denied!\n");
321 /* Do we want to advertise 2500 Mb Full Duplex? */
322 if (phy
->autoneg_advertised
& ADVERTISE_2500_FULL
) {
323 hw_dbg("Advertise 2500mb Full duplex\n");
324 aneg_multigbt_an_ctrl
|= CR_2500T_FD_CAPS
;
326 aneg_multigbt_an_ctrl
&= ~CR_2500T_FD_CAPS
;
329 /* Check for a software override of the flow control settings, and
330 * setup the PHY advertisement registers accordingly. If
331 * auto-negotiation is enabled, then software will have to set the
332 * "PAUSE" bits to the correct value in the Auto-Negotiation
333 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
336 * The possible values of the "fc" parameter are:
337 * 0: Flow control is completely disabled
338 * 1: Rx flow control is enabled (we can receive pause frames
339 * but not send pause frames).
340 * 2: Tx flow control is enabled (we can send pause frames
341 * but we do not support receiving pause frames).
342 * 3: Both Rx and Tx flow control (symmetric) are enabled.
343 * other: No software override. The flow control configuration
344 * in the EEPROM is used.
346 switch (hw
->fc
.current_mode
) {
348 /* Flow control (Rx & Tx) is completely disabled by a
349 * software over-ride.
351 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
353 case igc_fc_rx_pause
:
354 /* Rx Flow control is enabled, and Tx Flow control is
355 * disabled, by a software over-ride.
357 * Since there really isn't a way to advertise that we are
358 * capable of Rx Pause ONLY, we will advertise that we
359 * support both symmetric and asymmetric Rx PAUSE. Later
360 * (in igc_config_fc_after_link_up) we will disable the
361 * hw's ability to send PAUSE frames.
363 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
365 case igc_fc_tx_pause
:
366 /* Tx Flow control is enabled, and Rx Flow control is
367 * disabled, by a software over-ride.
369 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
370 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
373 /* Flow control (both Rx and Tx) is enabled by a software
376 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
379 hw_dbg("Flow control param set incorrectly\n");
380 return -IGC_ERR_CONFIG
;
383 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
387 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
389 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
390 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
,
393 if ((phy
->autoneg_mask
& ADVERTISE_2500_FULL
) &&
394 hw
->phy
.id
== I225_I_PHY_ID
)
395 ret_val
= phy
->ops
.write_reg(hw
,
396 (STANDARD_AN_REG_MASK
<<
398 ANEG_MULTIGBT_AN_CTRL
,
399 aneg_multigbt_an_ctrl
);
405 * igc_wait_autoneg - Wait for auto-neg completion
406 * @hw: pointer to the HW structure
408 * Waits for auto-negotiation to complete or for the auto-negotiation time
409 * limit to expire, which ever happens first.
411 static s32
igc_wait_autoneg(struct igc_hw
*hw
)
416 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
417 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
418 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
421 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
424 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
429 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
436 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
437 * @hw: pointer to the HW structure
439 * Performs initial bounds checking on autoneg advertisement parameter, then
440 * configure to advertise the full capability. Setup the PHY to autoneg
441 * and restart the negotiation process between the link partner. If
442 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
444 static s32
igc_copper_link_autoneg(struct igc_hw
*hw
)
446 struct igc_phy_info
*phy
= &hw
->phy
;
450 /* Perform some bounds checking on the autoneg advertisement
453 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
455 /* If autoneg_advertised is zero, we assume it was not defaulted
456 * by the calling code so we set to advertise full capability.
458 if (phy
->autoneg_advertised
== 0)
459 phy
->autoneg_advertised
= phy
->autoneg_mask
;
461 hw_dbg("Reconfiguring auto-neg advertisement params\n");
462 ret_val
= igc_phy_setup_autoneg(hw
);
464 hw_dbg("Error Setting up Auto-Negotiation\n");
467 hw_dbg("Restarting Auto-Neg\n");
469 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
470 * the Auto Neg Restart bit in the PHY control register.
472 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
476 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
477 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
481 /* Does the user want to wait for Auto-Neg to complete here, or
482 * check at a later time (for example, callback routine).
484 if (phy
->autoneg_wait_to_complete
) {
485 ret_val
= igc_wait_autoneg(hw
);
487 hw_dbg("Error while waiting for autoneg to complete\n");
492 hw
->mac
.get_link_status
= true;
499 * igc_setup_copper_link - Configure copper link settings
500 * @hw: pointer to the HW structure
502 * Calls the appropriate function to configure the link for auto-neg or forced
503 * speed and duplex. Then we check for link, once link is established calls
504 * to configure collision distance and flow control are called. If link is
505 * not established, we return -IGC_ERR_PHY (-2).
507 s32
igc_setup_copper_link(struct igc_hw
*hw
)
512 if (hw
->mac
.autoneg
) {
513 /* Setup autoneg and flow control advertisement and perform
516 ret_val
= igc_copper_link_autoneg(hw
);
520 /* PHY will be set to 10H, 10F, 100H or 100F
521 * depending on user settings.
523 hw_dbg("Forcing Speed and Duplex\n");
524 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
526 hw_dbg("Error Forcing Speed and Duplex\n");
531 /* Check link status. Wait up to 100 microseconds for link to become
534 ret_val
= igc_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
539 hw_dbg("Valid link established!!!\n");
540 igc_config_collision_dist(hw
);
541 ret_val
= igc_config_fc_after_link_up(hw
);
543 hw_dbg("Unable to establish link!!!\n");
551 * igc_read_phy_reg_mdic - Read MDI control register
552 * @hw: pointer to the HW structure
553 * @offset: register offset to be read
554 * @data: pointer to the read data
556 * Reads the MDI control register in the PHY at offset and stores the
557 * information read to data.
559 static s32
igc_read_phy_reg_mdic(struct igc_hw
*hw
, u32 offset
, u16
*data
)
561 struct igc_phy_info
*phy
= &hw
->phy
;
565 if (offset
> MAX_PHY_REG_ADDRESS
) {
566 hw_dbg("PHY Address %d is out of range\n", offset
);
567 ret_val
= -IGC_ERR_PARAM
;
571 /* Set up Op-code, Phy Address, and register offset in the MDI
572 * Control register. The MAC will take care of interfacing with the
573 * PHY to retrieve the desired data.
575 mdic
= ((offset
<< IGC_MDIC_REG_SHIFT
) |
576 (phy
->addr
<< IGC_MDIC_PHY_SHIFT
) |
579 wr32(IGC_MDIC
, mdic
);
581 /* Poll the ready bit to see if the MDI read completed
582 * Increasing the time out as testing showed failures with
585 for (i
= 0; i
< IGC_GEN_POLL_TIMEOUT
; i
++) {
586 usleep_range(500, 1000);
587 mdic
= rd32(IGC_MDIC
);
588 if (mdic
& IGC_MDIC_READY
)
591 if (!(mdic
& IGC_MDIC_READY
)) {
592 hw_dbg("MDI Read did not complete\n");
593 ret_val
= -IGC_ERR_PHY
;
596 if (mdic
& IGC_MDIC_ERROR
) {
597 hw_dbg("MDI Error\n");
598 ret_val
= -IGC_ERR_PHY
;
608 * igc_write_phy_reg_mdic - Write MDI control register
609 * @hw: pointer to the HW structure
610 * @offset: register offset to write to
611 * @data: data to write to register at offset
613 * Writes data to MDI control register in the PHY at offset.
615 static s32
igc_write_phy_reg_mdic(struct igc_hw
*hw
, u32 offset
, u16 data
)
617 struct igc_phy_info
*phy
= &hw
->phy
;
621 if (offset
> MAX_PHY_REG_ADDRESS
) {
622 hw_dbg("PHY Address %d is out of range\n", offset
);
623 ret_val
= -IGC_ERR_PARAM
;
627 /* Set up Op-code, Phy Address, and register offset in the MDI
628 * Control register. The MAC will take care of interfacing with the
629 * PHY to write the desired data.
631 mdic
= (((u32
)data
) |
632 (offset
<< IGC_MDIC_REG_SHIFT
) |
633 (phy
->addr
<< IGC_MDIC_PHY_SHIFT
) |
634 (IGC_MDIC_OP_WRITE
));
636 wr32(IGC_MDIC
, mdic
);
638 /* Poll the ready bit to see if the MDI read completed
639 * Increasing the time out as testing showed failures with
642 for (i
= 0; i
< IGC_GEN_POLL_TIMEOUT
; i
++) {
643 usleep_range(500, 1000);
644 mdic
= rd32(IGC_MDIC
);
645 if (mdic
& IGC_MDIC_READY
)
648 if (!(mdic
& IGC_MDIC_READY
)) {
649 hw_dbg("MDI Write did not complete\n");
650 ret_val
= -IGC_ERR_PHY
;
653 if (mdic
& IGC_MDIC_ERROR
) {
654 hw_dbg("MDI Error\n");
655 ret_val
= -IGC_ERR_PHY
;
664 * __igc_access_xmdio_reg - Read/write XMDIO register
665 * @hw: pointer to the HW structure
666 * @address: XMDIO address to program
667 * @dev_addr: device address to program
668 * @data: pointer to value to read/write from/to the XMDIO address
669 * @read: boolean flag to indicate read or write
671 static s32
__igc_access_xmdio_reg(struct igc_hw
*hw
, u16 address
,
672 u8 dev_addr
, u16
*data
, bool read
)
676 ret_val
= hw
->phy
.ops
.write_reg(hw
, IGC_MMDAC
, dev_addr
);
680 ret_val
= hw
->phy
.ops
.write_reg(hw
, IGC_MMDAAD
, address
);
684 ret_val
= hw
->phy
.ops
.write_reg(hw
, IGC_MMDAC
, IGC_MMDAC_FUNC_DATA
|
690 ret_val
= hw
->phy
.ops
.read_reg(hw
, IGC_MMDAAD
, data
);
692 ret_val
= hw
->phy
.ops
.write_reg(hw
, IGC_MMDAAD
, *data
);
696 /* Recalibrate the device back to 0 */
697 ret_val
= hw
->phy
.ops
.write_reg(hw
, IGC_MMDAC
, 0);
705 * igc_read_xmdio_reg - Read XMDIO register
706 * @hw: pointer to the HW structure
707 * @addr: XMDIO address to program
708 * @dev_addr: device address to program
709 * @data: value to be read from the EMI address
711 static s32
igc_read_xmdio_reg(struct igc_hw
*hw
, u16 addr
,
712 u8 dev_addr
, u16
*data
)
714 return __igc_access_xmdio_reg(hw
, addr
, dev_addr
, data
, true);
718 * igc_write_xmdio_reg - Write XMDIO register
719 * @hw: pointer to the HW structure
720 * @addr: XMDIO address to program
721 * @dev_addr: device address to program
722 * @data: value to be written to the XMDIO address
724 static s32
igc_write_xmdio_reg(struct igc_hw
*hw
, u16 addr
,
725 u8 dev_addr
, u16 data
)
727 return __igc_access_xmdio_reg(hw
, addr
, dev_addr
, &data
, false);
731 * igc_write_phy_reg_gpy - Write GPY PHY register
732 * @hw: pointer to the HW structure
733 * @offset: register offset to write to
734 * @data: data to write at register offset
736 * Acquires semaphore, if necessary, then writes the data to PHY register
737 * at the offset. Release any acquired semaphores before exiting.
739 s32
igc_write_phy_reg_gpy(struct igc_hw
*hw
, u32 offset
, u16 data
)
741 u8 dev_addr
= (offset
& GPY_MMD_MASK
) >> GPY_MMD_SHIFT
;
744 offset
= offset
& GPY_REG_MASK
;
747 ret_val
= hw
->phy
.ops
.acquire(hw
);
750 ret_val
= igc_write_phy_reg_mdic(hw
, offset
, data
);
753 hw
->phy
.ops
.release(hw
);
755 ret_val
= igc_write_xmdio_reg(hw
, (u16
)offset
, dev_addr
,
763 * igc_read_phy_reg_gpy - Read GPY PHY register
764 * @hw: pointer to the HW structure
765 * @offset: lower half is register offset to read to
766 * upper half is MMD to use.
767 * @data: data to read at register offset
769 * Acquires semaphore, if necessary, then reads the data in the PHY register
770 * at the offset. Release any acquired semaphores before exiting.
772 s32
igc_read_phy_reg_gpy(struct igc_hw
*hw
, u32 offset
, u16
*data
)
774 u8 dev_addr
= (offset
& GPY_MMD_MASK
) >> GPY_MMD_SHIFT
;
777 offset
= offset
& GPY_REG_MASK
;
780 ret_val
= hw
->phy
.ops
.acquire(hw
);
783 ret_val
= igc_read_phy_reg_mdic(hw
, offset
, data
);
786 hw
->phy
.ops
.release(hw
);
788 ret_val
= igc_read_xmdio_reg(hw
, (u16
)offset
, dev_addr
,