1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
13 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
14 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
16 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
20 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
23 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
25 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
26 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
27 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
28 u16 words
, u16
*data
);
29 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
30 u16 words
, u16
*data
);
31 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
33 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
);
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X
[IXGBE_MVALS_IDX_LIMIT
] = {
37 IXGBE_MVALS_INIT(8259X
)
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
43 * @hw: pointer to hardware structure
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
51 bool supported
= false;
52 ixgbe_link_speed speed
;
55 switch (hw
->phy
.media_type
) {
56 case ixgbe_media_type_fiber
:
57 /* flow control autoneg black list */
58 switch (hw
->device_id
) {
59 case IXGBE_DEV_ID_X550EM_A_SFP
:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N
:
64 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
65 /* if link is down, assume supported */
67 supported
= speed
== IXGBE_LINK_SPEED_1GB_FULL
?
74 case ixgbe_media_type_backplane
:
75 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_X_XFI
)
80 case ixgbe_media_type_copper
:
81 /* only some copper devices support flow control autoneg */
82 switch (hw
->device_id
) {
83 case IXGBE_DEV_ID_82599_T3_LOM
:
84 case IXGBE_DEV_ID_X540T
:
85 case IXGBE_DEV_ID_X540T1
:
86 case IXGBE_DEV_ID_X550T
:
87 case IXGBE_DEV_ID_X550T1
:
88 case IXGBE_DEV_ID_X550EM_X_10G_T
:
89 case IXGBE_DEV_ID_X550EM_A_10G_T
:
90 case IXGBE_DEV_ID_X550EM_A_1G_T
:
91 case IXGBE_DEV_ID_X550EM_A_1G_T_L
:
102 hw_dbg(hw
, "Device %x does not support flow control autoneg\n",
109 * ixgbe_setup_fc_generic - Set up flow control
110 * @hw: pointer to hardware structure
112 * Called at init time to set up flow control.
114 s32
ixgbe_setup_fc_generic(struct ixgbe_hw
*hw
)
117 u32 reg
= 0, reg_bp
= 0;
122 * Validate the requested mode. Strict IEEE mode does not allow
123 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
125 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
126 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
131 * 10gig parts do not have a word in the EEPROM to determine the
132 * default flow control setting, so we explicitly set it to full.
134 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
135 hw
->fc
.requested_mode
= ixgbe_fc_full
;
138 * Set up the 1G and 10G flow control advertisement registers so the
139 * HW will be able to do fc autoneg once the cable is plugged in. If
140 * we link at 10G, the 1G advertisement is harmless and vice versa.
142 switch (hw
->phy
.media_type
) {
143 case ixgbe_media_type_backplane
:
144 /* some MAC's need RMW protection on AUTOC */
145 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, ®_bp
);
149 /* fall through - only backplane uses autoc */
150 case ixgbe_media_type_fiber
:
151 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
154 case ixgbe_media_type_copper
:
155 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
156 MDIO_MMD_AN
, ®_cu
);
163 * The possible values of fc.requested_mode are:
164 * 0: Flow control is completely disabled
165 * 1: Rx flow control is enabled (we can receive pause frames,
166 * but not send pause frames).
167 * 2: Tx flow control is enabled (we can send pause frames but
168 * we do not support receiving pause frames).
169 * 3: Both Rx and Tx flow control (symmetric) are enabled.
172 switch (hw
->fc
.requested_mode
) {
174 /* Flow control completely disabled by software override. */
175 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
176 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
177 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
178 IXGBE_AUTOC_ASM_PAUSE
);
179 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
180 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
182 case ixgbe_fc_tx_pause
:
184 * Tx Flow control is enabled, and Rx Flow control is
185 * disabled by software override.
187 reg
|= IXGBE_PCS1GANA_ASM_PAUSE
;
188 reg
&= ~IXGBE_PCS1GANA_SYM_PAUSE
;
189 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
190 reg_bp
|= IXGBE_AUTOC_ASM_PAUSE
;
191 reg_bp
&= ~IXGBE_AUTOC_SYM_PAUSE
;
192 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
193 reg_cu
|= IXGBE_TAF_ASM_PAUSE
;
194 reg_cu
&= ~IXGBE_TAF_SYM_PAUSE
;
197 case ixgbe_fc_rx_pause
:
199 * Rx Flow control is enabled and Tx Flow control is
200 * disabled by software override. Since there really
201 * isn't a way to advertise that we are capable of RX
202 * Pause ONLY, we will advertise that we support both
203 * symmetric and asymmetric Rx PAUSE, as such we fall
204 * through to the fc_full statement. Later, we will
205 * disable the adapter's ability to send PAUSE frames.
208 /* Flow control (both Rx and Tx) is enabled by SW override. */
209 reg
|= IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
;
210 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
211 reg_bp
|= IXGBE_AUTOC_SYM_PAUSE
|
212 IXGBE_AUTOC_ASM_PAUSE
;
213 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
214 reg_cu
|= IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
;
217 hw_dbg(hw
, "Flow control param set incorrectly\n");
218 return IXGBE_ERR_CONFIG
;
221 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
223 * Enable auto-negotiation between the MAC & PHY;
224 * the MAC will advertise clause 37 flow control.
226 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
227 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
229 /* Disable AN timeout */
230 if (hw
->fc
.strict_ieee
)
231 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
233 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
234 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
238 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 * and copper. There is no need to set the PCS1GCTL register.
242 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
243 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 * LESM is on, likewise reset_pipeline requries the lock as
245 * it also writes AUTOC.
247 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, reg_bp
, locked
);
251 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
252 ixgbe_device_supports_autoneg_fc(hw
)) {
253 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
254 MDIO_MMD_AN
, reg_cu
);
257 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
262 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 * @hw: pointer to hardware structure
265 * Starts the hardware by filling the bus info structure and media type, clears
266 * all on chip counters, initializes receive address registers, multicast
267 * table, VLAN filter table, calls routine to set up link and flow control
268 * settings, and leaves transmit and receive units disabled and uninitialized
270 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
276 /* Set the media type */
277 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
279 /* Identify the PHY */
280 hw
->phy
.ops
.identify(hw
);
282 /* Clear the VLAN filter table */
283 hw
->mac
.ops
.clear_vfta(hw
);
285 /* Clear statistics registers */
286 hw
->mac
.ops
.clear_hw_cntrs(hw
);
288 /* Set No Snoop Disable */
289 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
290 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
291 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
292 IXGBE_WRITE_FLUSH(hw
);
294 /* Setup flow control if method for doing so */
295 if (hw
->mac
.ops
.setup_fc
) {
296 ret_val
= hw
->mac
.ops
.setup_fc(hw
);
301 /* Cashe bit indicating need for crosstalk fix */
302 switch (hw
->mac
.type
) {
303 case ixgbe_mac_82599EB
:
304 case ixgbe_mac_X550EM_x
:
305 case ixgbe_mac_x550em_a
:
306 hw
->mac
.ops
.get_device_caps(hw
, &device_caps
);
307 if (device_caps
& IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR
)
308 hw
->need_crosstalk_fix
= false;
310 hw
->need_crosstalk_fix
= true;
313 hw
->need_crosstalk_fix
= false;
317 /* Clear adapter stopped flag */
318 hw
->adapter_stopped
= false;
324 * ixgbe_start_hw_gen2 - Init sequence for common device family
325 * @hw: pointer to hw structure
327 * Performs the init sequence common to the second generation
329 * Devices in the second generation:
333 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
337 /* Clear the rate limiters */
338 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
339 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
340 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
342 IXGBE_WRITE_FLUSH(hw
);
348 * ixgbe_init_hw_generic - Generic hardware initialization
349 * @hw: pointer to hardware structure
351 * Initialize the hardware by resetting the hardware, filling the bus info
352 * structure and media type, clears all on chip counters, initializes receive
353 * address registers, multicast table, VLAN filter table, calls routine to set
354 * up link and flow control settings, and leaves transmit and receive units
355 * disabled and uninitialized
357 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
361 /* Reset the hardware */
362 status
= hw
->mac
.ops
.reset_hw(hw
);
366 status
= hw
->mac
.ops
.start_hw(hw
);
369 /* Initialize the LED link active for LED blink support */
370 if (hw
->mac
.ops
.init_led_link_act
)
371 hw
->mac
.ops
.init_led_link_act(hw
);
377 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 * @hw: pointer to hardware structure
380 * Clears all hardware statistics counters by reading them from the hardware
381 * Statistics counters are clear on read.
383 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
387 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
388 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
389 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
390 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
391 for (i
= 0; i
< 8; i
++)
392 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
394 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
395 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
396 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
397 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
398 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
399 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
400 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
401 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
403 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
404 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
407 for (i
= 0; i
< 8; i
++) {
408 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
409 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
410 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
411 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
412 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
414 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
415 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
418 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
419 for (i
= 0; i
< 8; i
++)
420 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
421 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
422 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
423 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
424 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
425 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
426 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
427 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
428 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
429 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
430 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
431 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
432 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
433 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
434 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
435 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
436 for (i
= 0; i
< 8; i
++)
437 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
438 IXGBE_READ_REG(hw
, IXGBE_RUC
);
439 IXGBE_READ_REG(hw
, IXGBE_RFC
);
440 IXGBE_READ_REG(hw
, IXGBE_ROC
);
441 IXGBE_READ_REG(hw
, IXGBE_RJC
);
442 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
443 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
444 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
445 IXGBE_READ_REG(hw
, IXGBE_TORL
);
446 IXGBE_READ_REG(hw
, IXGBE_TORH
);
447 IXGBE_READ_REG(hw
, IXGBE_TPR
);
448 IXGBE_READ_REG(hw
, IXGBE_TPT
);
449 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
450 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
451 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
452 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
453 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
454 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
455 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
456 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
457 for (i
= 0; i
< 16; i
++) {
458 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
459 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
460 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
461 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
462 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
463 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
464 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
465 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
467 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
468 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
472 if (hw
->mac
.type
== ixgbe_mac_X550
|| hw
->mac
.type
== ixgbe_mac_X540
) {
474 hw
->phy
.ops
.identify(hw
);
475 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECL
, MDIO_MMD_PCS
, &i
);
476 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECH
, MDIO_MMD_PCS
, &i
);
477 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECL
, MDIO_MMD_PCS
, &i
);
478 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECH
, MDIO_MMD_PCS
, &i
);
485 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 * @hw: pointer to hardware structure
487 * @pba_num: stores the part number string from the EEPROM
488 * @pba_num_size: part number string buffer length
490 * Reads the part number string from the EEPROM.
492 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
501 if (pba_num
== NULL
) {
502 hw_dbg(hw
, "PBA string buffer was null\n");
503 return IXGBE_ERR_INVALID_ARGUMENT
;
506 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
508 hw_dbg(hw
, "NVM Read Error\n");
512 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
514 hw_dbg(hw
, "NVM Read Error\n");
519 * if data is not ptr guard the PBA must be in legacy format which
520 * means pba_ptr is actually our second data word for the PBA number
521 * and we can decode it into an ascii string
523 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
524 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
526 /* we will need 11 characters to store the PBA */
527 if (pba_num_size
< 11) {
528 hw_dbg(hw
, "PBA string buffer too small\n");
529 return IXGBE_ERR_NO_SPACE
;
532 /* extract hex string from data and pba_ptr */
533 pba_num
[0] = (data
>> 12) & 0xF;
534 pba_num
[1] = (data
>> 8) & 0xF;
535 pba_num
[2] = (data
>> 4) & 0xF;
536 pba_num
[3] = data
& 0xF;
537 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
538 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
541 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
542 pba_num
[9] = pba_ptr
& 0xF;
544 /* put a null character on the end of our string */
547 /* switch all the data but the '-' to hex char */
548 for (offset
= 0; offset
< 10; offset
++) {
549 if (pba_num
[offset
] < 0xA)
550 pba_num
[offset
] += '0';
551 else if (pba_num
[offset
] < 0x10)
552 pba_num
[offset
] += 'A' - 0xA;
558 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
560 hw_dbg(hw
, "NVM Read Error\n");
564 if (length
== 0xFFFF || length
== 0) {
565 hw_dbg(hw
, "NVM PBA number section invalid length\n");
566 return IXGBE_ERR_PBA_SECTION
;
569 /* check if pba_num buffer is big enough */
570 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
571 hw_dbg(hw
, "PBA string buffer too small\n");
572 return IXGBE_ERR_NO_SPACE
;
575 /* trim pba length from start of string */
579 for (offset
= 0; offset
< length
; offset
++) {
580 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
582 hw_dbg(hw
, "NVM Read Error\n");
585 pba_num
[offset
* 2] = (u8
)(data
>> 8);
586 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
588 pba_num
[offset
* 2] = '\0';
594 * ixgbe_get_mac_addr_generic - Generic get MAC address
595 * @hw: pointer to hardware structure
596 * @mac_addr: Adapter MAC address
598 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 * A reset of the adapter must be performed prior to calling this function
600 * in order for the MAC address to have been loaded from the EEPROM into RAR0
602 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
608 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
609 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
611 for (i
= 0; i
< 4; i
++)
612 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
614 for (i
= 0; i
< 2; i
++)
615 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
620 enum ixgbe_bus_width
ixgbe_convert_bus_width(u16 link_status
)
622 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
623 case IXGBE_PCI_LINK_WIDTH_1
:
624 return ixgbe_bus_width_pcie_x1
;
625 case IXGBE_PCI_LINK_WIDTH_2
:
626 return ixgbe_bus_width_pcie_x2
;
627 case IXGBE_PCI_LINK_WIDTH_4
:
628 return ixgbe_bus_width_pcie_x4
;
629 case IXGBE_PCI_LINK_WIDTH_8
:
630 return ixgbe_bus_width_pcie_x8
;
632 return ixgbe_bus_width_unknown
;
636 enum ixgbe_bus_speed
ixgbe_convert_bus_speed(u16 link_status
)
638 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
639 case IXGBE_PCI_LINK_SPEED_2500
:
640 return ixgbe_bus_speed_2500
;
641 case IXGBE_PCI_LINK_SPEED_5000
:
642 return ixgbe_bus_speed_5000
;
643 case IXGBE_PCI_LINK_SPEED_8000
:
644 return ixgbe_bus_speed_8000
;
646 return ixgbe_bus_speed_unknown
;
651 * ixgbe_get_bus_info_generic - Generic set PCI bus info
652 * @hw: pointer to hardware structure
654 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
660 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
662 /* Get the negotiated link width and speed from PCI config space */
663 link_status
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_LINK_STATUS
);
665 hw
->bus
.width
= ixgbe_convert_bus_width(link_status
);
666 hw
->bus
.speed
= ixgbe_convert_bus_speed(link_status
);
668 hw
->mac
.ops
.set_lan_id(hw
);
674 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 * @hw: pointer to the HW structure
677 * Determines the LAN function id by reading memory-mapped registers
678 * and swaps the port value if requested.
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
682 struct ixgbe_bus_info
*bus
= &hw
->bus
;
686 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
687 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
688 bus
->lan_id
= bus
->func
;
690 /* check for a port swap */
691 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS(hw
));
692 if (reg
& IXGBE_FACTPS_LFS
)
695 /* Get MAC instance from EEPROM for configuring CS4227 */
696 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_SFP
) {
697 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CTRL_4
, &ee_ctrl_4
);
698 bus
->instance_id
= (ee_ctrl_4
& IXGBE_EE_CTRL_4_INST_ID
) >>
699 IXGBE_EE_CTRL_4_INST_ID_SHIFT
;
704 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 * @hw: pointer to hardware structure
707 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 * disables transmit and receive units. The adapter_stopped flag is used by
709 * the shared code and drivers to determine if the adapter is in a stopped
710 * state and should not touch the hardware.
712 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
718 * Set the adapter_stopped flag so other driver functions stop touching
721 hw
->adapter_stopped
= true;
723 /* Disable the receive unit */
724 hw
->mac
.ops
.disable_rx(hw
);
726 /* Clear interrupt mask to stop interrupts from being generated */
727 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
729 /* Clear any pending interrupts, flush previous writes */
730 IXGBE_READ_REG(hw
, IXGBE_EICR
);
732 /* Disable the transmit unit. Each queue must be disabled. */
733 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++)
734 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), IXGBE_TXDCTL_SWFLSH
);
736 /* Disable the receive unit by stopping each queue */
737 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
738 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
739 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
740 reg_val
|= IXGBE_RXDCTL_SWFLSH
;
741 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
744 /* flush all queues disables */
745 IXGBE_WRITE_FLUSH(hw
);
746 usleep_range(1000, 2000);
749 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
750 * access and verify no pending requests
752 return ixgbe_disable_pcie_master(hw
);
756 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 * @hw: pointer to hardware structure
759 * Store the index for the link active LED. This will be used to support
762 s32
ixgbe_init_led_link_act_generic(struct ixgbe_hw
*hw
)
764 struct ixgbe_mac_info
*mac
= &hw
->mac
;
765 u32 led_reg
, led_mode
;
768 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
770 /* Get LED link active from the LEDCTL register */
771 for (i
= 0; i
< 4; i
++) {
772 led_mode
= led_reg
>> IXGBE_LED_MODE_SHIFT(i
);
774 if ((led_mode
& IXGBE_LED_MODE_MASK_BASE
) ==
775 IXGBE_LED_LINK_ACTIVE
) {
776 mac
->led_link_act
= i
;
781 /* If LEDCTL register does not have the LED link active set, then use
782 * known MAC defaults.
784 switch (hw
->mac
.type
) {
785 case ixgbe_mac_x550em_a
:
786 mac
->led_link_act
= 0;
788 case ixgbe_mac_X550EM_x
:
789 mac
->led_link_act
= 1;
792 mac
->led_link_act
= 2;
799 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 * @hw: pointer to hardware structure
801 * @index: led number to turn on
803 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
805 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
808 return IXGBE_ERR_PARAM
;
810 /* To turn on the LED, set mode to ON. */
811 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
812 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
813 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
814 IXGBE_WRITE_FLUSH(hw
);
820 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 * @hw: pointer to hardware structure
822 * @index: led number to turn off
824 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
826 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
829 return IXGBE_ERR_PARAM
;
831 /* To turn off the LED, set mode to OFF. */
832 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
833 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
834 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
835 IXGBE_WRITE_FLUSH(hw
);
841 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 * @hw: pointer to hardware structure
844 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 * ixgbe_hw struct in order to set up EEPROM access.
847 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
849 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
853 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
854 eeprom
->type
= ixgbe_eeprom_none
;
855 /* Set default semaphore delay to 10ms which is a well
857 eeprom
->semaphore_delay
= 10;
858 /* Clear EEPROM page size, it will be initialized as needed */
859 eeprom
->word_page_size
= 0;
862 * Check for EEPROM present first.
863 * If not present leave as none
865 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
866 if (eec
& IXGBE_EEC_PRES
) {
867 eeprom
->type
= ixgbe_eeprom_spi
;
870 * SPI EEPROM is assumed here. This code would need to
871 * change if a future EEPROM is not SPI.
873 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
874 IXGBE_EEC_SIZE_SHIFT
);
875 eeprom
->word_size
= BIT(eeprom_size
+
876 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
879 if (eec
& IXGBE_EEC_ADDR_SIZE
)
880 eeprom
->address_bits
= 16;
882 eeprom
->address_bits
= 8;
883 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884 eeprom
->type
, eeprom
->word_size
, eeprom
->address_bits
);
891 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892 * @hw: pointer to hardware structure
893 * @offset: offset within the EEPROM to write
894 * @words: number of words
895 * @data: 16 bit word(s) to write to EEPROM
897 * Reads 16 bit word(s) from EEPROM through bit-bang method
899 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
900 u16 words
, u16
*data
)
905 hw
->eeprom
.ops
.init_params(hw
);
908 return IXGBE_ERR_INVALID_ARGUMENT
;
910 if (offset
+ words
> hw
->eeprom
.word_size
)
911 return IXGBE_ERR_EEPROM
;
914 * The EEPROM page size cannot be queried from the chip. We do lazy
915 * initialization. It is worth to do that when we write large buffer.
917 if ((hw
->eeprom
.word_page_size
== 0) &&
918 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
919 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
922 * We cannot hold synchronization semaphores for too long
923 * to avoid other entity starvation. However it is more efficient
924 * to read in bursts than synchronizing access for each word.
926 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
927 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
928 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
929 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
940 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
941 * @hw: pointer to hardware structure
942 * @offset: offset within the EEPROM to be written to
943 * @words: number of word(s)
944 * @data: 16 bit word(s) to be written to the EEPROM
946 * If ixgbe_eeprom_update_checksum is not called after this function, the
947 * EEPROM will most likely contain an invalid checksum.
949 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
950 u16 words
, u16
*data
)
956 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
958 /* Prepare the EEPROM for writing */
959 status
= ixgbe_acquire_eeprom(hw
);
963 if (ixgbe_ready_eeprom(hw
) != 0) {
964 ixgbe_release_eeprom(hw
);
965 return IXGBE_ERR_EEPROM
;
968 for (i
= 0; i
< words
; i
++) {
969 ixgbe_standby_eeprom(hw
);
971 /* Send the WRITE ENABLE command (8 bit opcode) */
972 ixgbe_shift_out_eeprom_bits(hw
,
973 IXGBE_EEPROM_WREN_OPCODE_SPI
,
974 IXGBE_EEPROM_OPCODE_BITS
);
976 ixgbe_standby_eeprom(hw
);
978 /* Some SPI eeproms use the 8th address bit embedded
981 if ((hw
->eeprom
.address_bits
== 8) &&
982 ((offset
+ i
) >= 128))
983 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
985 /* Send the Write command (8-bit opcode + addr) */
986 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
987 IXGBE_EEPROM_OPCODE_BITS
);
988 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
989 hw
->eeprom
.address_bits
);
991 page_size
= hw
->eeprom
.word_page_size
;
993 /* Send the data in burst via SPI */
996 word
= (word
>> 8) | (word
<< 8);
997 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
1002 /* do not wrap around page */
1003 if (((offset
+ i
) & (page_size
- 1)) ==
1006 } while (++i
< words
);
1008 ixgbe_standby_eeprom(hw
);
1009 usleep_range(10000, 20000);
1011 /* Done with writing - release the EEPROM */
1012 ixgbe_release_eeprom(hw
);
1018 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019 * @hw: pointer to hardware structure
1020 * @offset: offset within the EEPROM to be written to
1021 * @data: 16 bit word to be written to the EEPROM
1023 * If ixgbe_eeprom_update_checksum is not called after this function, the
1024 * EEPROM will most likely contain an invalid checksum.
1026 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1028 hw
->eeprom
.ops
.init_params(hw
);
1030 if (offset
>= hw
->eeprom
.word_size
)
1031 return IXGBE_ERR_EEPROM
;
1033 return ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
1037 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038 * @hw: pointer to hardware structure
1039 * @offset: offset within the EEPROM to be read
1040 * @words: number of word(s)
1041 * @data: read 16 bit words(s) from EEPROM
1043 * Reads 16 bit word(s) from EEPROM through bit-bang method
1045 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1046 u16 words
, u16
*data
)
1051 hw
->eeprom
.ops
.init_params(hw
);
1054 return IXGBE_ERR_INVALID_ARGUMENT
;
1056 if (offset
+ words
> hw
->eeprom
.word_size
)
1057 return IXGBE_ERR_EEPROM
;
1060 * We cannot hold synchronization semaphores for too long
1061 * to avoid other entity starvation. However it is more efficient
1062 * to read in bursts than synchronizing access for each word.
1064 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
1065 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
1066 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
1068 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
1079 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080 * @hw: pointer to hardware structure
1081 * @offset: offset within the EEPROM to be read
1082 * @words: number of word(s)
1083 * @data: read 16 bit word(s) from EEPROM
1085 * Reads 16 bit word(s) from EEPROM through bit-bang method
1087 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
1088 u16 words
, u16
*data
)
1092 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
1095 /* Prepare the EEPROM for reading */
1096 status
= ixgbe_acquire_eeprom(hw
);
1100 if (ixgbe_ready_eeprom(hw
) != 0) {
1101 ixgbe_release_eeprom(hw
);
1102 return IXGBE_ERR_EEPROM
;
1105 for (i
= 0; i
< words
; i
++) {
1106 ixgbe_standby_eeprom(hw
);
1107 /* Some SPI eeproms use the 8th address bit embedded
1110 if ((hw
->eeprom
.address_bits
== 8) &&
1111 ((offset
+ i
) >= 128))
1112 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1114 /* Send the READ command (opcode + addr) */
1115 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
1116 IXGBE_EEPROM_OPCODE_BITS
);
1117 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1118 hw
->eeprom
.address_bits
);
1120 /* Read the data. */
1121 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
1122 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
1125 /* End this read operation */
1126 ixgbe_release_eeprom(hw
);
1132 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133 * @hw: pointer to hardware structure
1134 * @offset: offset within the EEPROM to be read
1135 * @data: read 16 bit value from EEPROM
1137 * Reads 16 bit value from EEPROM through bit-bang method
1139 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1142 hw
->eeprom
.ops
.init_params(hw
);
1144 if (offset
>= hw
->eeprom
.word_size
)
1145 return IXGBE_ERR_EEPROM
;
1147 return ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1151 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152 * @hw: pointer to hardware structure
1153 * @offset: offset of word in the EEPROM to read
1154 * @words: number of word(s)
1155 * @data: 16 bit word(s) from the EEPROM
1157 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1159 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1160 u16 words
, u16
*data
)
1166 hw
->eeprom
.ops
.init_params(hw
);
1169 return IXGBE_ERR_INVALID_ARGUMENT
;
1171 if (offset
>= hw
->eeprom
.word_size
)
1172 return IXGBE_ERR_EEPROM
;
1174 for (i
= 0; i
< words
; i
++) {
1175 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1176 IXGBE_EEPROM_RW_REG_START
;
1178 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
1179 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
1182 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
1183 IXGBE_EEPROM_RW_REG_DATA
);
1185 hw_dbg(hw
, "Eeprom read timed out\n");
1194 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195 * @hw: pointer to hardware structure
1196 * @offset: offset within the EEPROM to be used as a scratch pad
1198 * Discover EEPROM page size by writing marching data at given offset.
1199 * This function is called only when we are writing a new large buffer
1200 * at given offset so the data would be overwritten anyway.
1202 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
1205 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
1209 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
1212 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
1213 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
1214 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
1215 hw
->eeprom
.word_page_size
= 0;
1219 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1224 * When writing in burst more than the actual page size
1225 * EEPROM address wraps around current page.
1227 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1229 hw_dbg(hw
, "Detected EEPROM page size = %d words.\n",
1230 hw
->eeprom
.word_page_size
);
1235 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236 * @hw: pointer to hardware structure
1237 * @offset: offset of word in the EEPROM to read
1238 * @data: word read from the EEPROM
1240 * Reads a 16 bit word from the EEPROM using the EERD register.
1242 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1244 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1248 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249 * @hw: pointer to hardware structure
1250 * @offset: offset of word in the EEPROM to write
1251 * @words: number of words
1252 * @data: word(s) write to the EEPROM
1254 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1256 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1257 u16 words
, u16
*data
)
1263 hw
->eeprom
.ops
.init_params(hw
);
1266 return IXGBE_ERR_INVALID_ARGUMENT
;
1268 if (offset
>= hw
->eeprom
.word_size
)
1269 return IXGBE_ERR_EEPROM
;
1271 for (i
= 0; i
< words
; i
++) {
1272 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1273 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1274 IXGBE_EEPROM_RW_REG_START
;
1276 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1278 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1282 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1284 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1286 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1295 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296 * @hw: pointer to hardware structure
1297 * @offset: offset of word in the EEPROM to write
1298 * @data: word write to the EEPROM
1300 * Write a 16 bit word to the EEPROM using the EEWR register.
1302 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1304 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1308 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309 * @hw: pointer to hardware structure
1310 * @ee_reg: EEPROM flag for polling
1312 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313 * read or write is done respectively.
1315 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1320 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1321 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1322 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1324 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1326 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1331 return IXGBE_ERR_EEPROM
;
1335 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336 * @hw: pointer to hardware structure
1338 * Prepares EEPROM for access using bit-bang method. This function should
1339 * be called before issuing a command to the EEPROM.
1341 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1346 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1347 return IXGBE_ERR_SWFW_SYNC
;
1349 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1351 /* Request EEPROM Access */
1352 eec
|= IXGBE_EEC_REQ
;
1353 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1355 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1356 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1357 if (eec
& IXGBE_EEC_GNT
)
1362 /* Release if grant not acquired */
1363 if (!(eec
& IXGBE_EEC_GNT
)) {
1364 eec
&= ~IXGBE_EEC_REQ
;
1365 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1366 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1368 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1369 return IXGBE_ERR_EEPROM
;
1372 /* Setup EEPROM for Read/Write */
1373 /* Clear CS and SK */
1374 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1375 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1376 IXGBE_WRITE_FLUSH(hw
);
1382 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383 * @hw: pointer to hardware structure
1385 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1387 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1393 /* Get SMBI software semaphore between device drivers first */
1394 for (i
= 0; i
< timeout
; i
++) {
1396 * If the SMBI bit is 0 when we read it, then the bit will be
1397 * set and we have the semaphore
1399 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1400 if (!(swsm
& IXGBE_SWSM_SMBI
))
1402 usleep_range(50, 100);
1406 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407 /* this release is particularly important because our attempts
1408 * above to get the semaphore may have succeeded, and if there
1409 * was a timeout, we should unconditionally clear the semaphore
1410 * bits to free the driver to make progress
1412 ixgbe_release_eeprom_semaphore(hw
);
1414 usleep_range(50, 100);
1416 * If the SMBI bit is 0 when we read it, then the bit will be
1417 * set and we have the semaphore
1419 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1420 if (swsm
& IXGBE_SWSM_SMBI
) {
1421 hw_dbg(hw
, "Software semaphore SMBI between device drivers not granted.\n");
1422 return IXGBE_ERR_EEPROM
;
1426 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1427 for (i
= 0; i
< timeout
; i
++) {
1428 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1430 /* Set the SW EEPROM semaphore bit to request access */
1431 swsm
|= IXGBE_SWSM_SWESMBI
;
1432 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1434 /* If we set the bit successfully then we got the
1437 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1438 if (swsm
& IXGBE_SWSM_SWESMBI
)
1441 usleep_range(50, 100);
1444 /* Release semaphores and return error if SW EEPROM semaphore
1445 * was not granted because we don't have access to the EEPROM
1448 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore not granted.\n");
1449 ixgbe_release_eeprom_semaphore(hw
);
1450 return IXGBE_ERR_EEPROM
;
1457 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458 * @hw: pointer to hardware structure
1460 * This function clears hardware semaphore bits.
1462 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1466 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1468 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1470 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1471 IXGBE_WRITE_FLUSH(hw
);
1475 * ixgbe_ready_eeprom - Polls for EEPROM ready
1476 * @hw: pointer to hardware structure
1478 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1484 * Read "Status Register" repeatedly until the LSB is cleared. The
1485 * EEPROM will signal that the command has been completed by clearing
1486 * bit 0 of the internal status register. If it's not cleared within
1487 * 5 milliseconds, then error out.
1489 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1490 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1491 IXGBE_EEPROM_OPCODE_BITS
);
1492 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1493 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1497 ixgbe_standby_eeprom(hw
);
1501 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502 * devices (and only 0-5mSec on 5V devices)
1504 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1505 hw_dbg(hw
, "SPI EEPROM Status error\n");
1506 return IXGBE_ERR_EEPROM
;
1513 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514 * @hw: pointer to hardware structure
1516 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1520 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1522 /* Toggle CS to flush commands */
1523 eec
|= IXGBE_EEC_CS
;
1524 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1525 IXGBE_WRITE_FLUSH(hw
);
1527 eec
&= ~IXGBE_EEC_CS
;
1528 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1529 IXGBE_WRITE_FLUSH(hw
);
1534 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535 * @hw: pointer to hardware structure
1536 * @data: data to send to the EEPROM
1537 * @count: number of bits to shift out
1539 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1546 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1549 * Mask is used to shift "count" bits of "data" out to the EEPROM
1550 * one bit at a time. Determine the starting bit based on count
1552 mask
= BIT(count
- 1);
1554 for (i
= 0; i
< count
; i
++) {
1556 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557 * "1", and then raising and then lowering the clock (the SK
1558 * bit controls the clock input to the EEPROM). A "0" is
1559 * shifted out to the EEPROM by setting "DI" to "0" and then
1560 * raising and then lowering the clock.
1563 eec
|= IXGBE_EEC_DI
;
1565 eec
&= ~IXGBE_EEC_DI
;
1567 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1568 IXGBE_WRITE_FLUSH(hw
);
1572 ixgbe_raise_eeprom_clk(hw
, &eec
);
1573 ixgbe_lower_eeprom_clk(hw
, &eec
);
1576 * Shift mask to signify next bit of data to shift in to the
1582 /* We leave the "DI" bit set to "0" when we leave this routine. */
1583 eec
&= ~IXGBE_EEC_DI
;
1584 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1585 IXGBE_WRITE_FLUSH(hw
);
1589 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590 * @hw: pointer to hardware structure
1591 * @count: number of bits to shift
1593 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1600 * In order to read a register from the EEPROM, we need to shift
1601 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602 * the clock input to the EEPROM (setting the SK bit), and then reading
1603 * the value of the "DO" bit. During this "shifting in" process the
1604 * "DI" bit should always be clear.
1606 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1608 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1610 for (i
= 0; i
< count
; i
++) {
1612 ixgbe_raise_eeprom_clk(hw
, &eec
);
1614 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1616 eec
&= ~(IXGBE_EEC_DI
);
1617 if (eec
& IXGBE_EEC_DO
)
1620 ixgbe_lower_eeprom_clk(hw
, &eec
);
1627 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628 * @hw: pointer to hardware structure
1629 * @eec: EEC register's current value
1631 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1634 * Raise the clock input to the EEPROM
1635 * (setting the SK bit), then delay
1637 *eec
= *eec
| IXGBE_EEC_SK
;
1638 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1639 IXGBE_WRITE_FLUSH(hw
);
1644 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645 * @hw: pointer to hardware structure
1646 * @eec: EEC's current value
1648 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1651 * Lower the clock input to the EEPROM (clearing the SK bit), then
1654 *eec
= *eec
& ~IXGBE_EEC_SK
;
1655 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1656 IXGBE_WRITE_FLUSH(hw
);
1661 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1662 * @hw: pointer to hardware structure
1664 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1668 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1670 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1671 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1673 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1674 IXGBE_WRITE_FLUSH(hw
);
1678 /* Stop requesting EEPROM access */
1679 eec
&= ~IXGBE_EEC_REQ
;
1680 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1682 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1685 * Delay before attempt to obtain semaphore again to allow FW
1686 * access. semaphore_delay is in ms we need us for usleep_range
1688 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1689 hw
->eeprom
.semaphore_delay
* 2000);
1693 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694 * @hw: pointer to hardware structure
1696 s32
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1705 /* Include 0x0-0x3F in the checksum */
1706 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1707 if (hw
->eeprom
.ops
.read(hw
, i
, &word
)) {
1708 hw_dbg(hw
, "EEPROM read failed\n");
1714 /* Include all data from pointers except for the fw pointer */
1715 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1716 if (hw
->eeprom
.ops
.read(hw
, i
, &pointer
)) {
1717 hw_dbg(hw
, "EEPROM read failed\n");
1718 return IXGBE_ERR_EEPROM
;
1721 /* If the pointer seems invalid */
1722 if (pointer
== 0xFFFF || pointer
== 0)
1725 if (hw
->eeprom
.ops
.read(hw
, pointer
, &length
)) {
1726 hw_dbg(hw
, "EEPROM read failed\n");
1727 return IXGBE_ERR_EEPROM
;
1730 if (length
== 0xFFFF || length
== 0)
1733 for (j
= pointer
+ 1; j
<= pointer
+ length
; j
++) {
1734 if (hw
->eeprom
.ops
.read(hw
, j
, &word
)) {
1735 hw_dbg(hw
, "EEPROM read failed\n");
1736 return IXGBE_ERR_EEPROM
;
1742 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1744 return (s32
)checksum
;
1748 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749 * @hw: pointer to hardware structure
1750 * @checksum_val: calculated checksum
1752 * Performs checksum calculation and validates the EEPROM checksum. If the
1753 * caller does not need checksum_val, the value can be NULL.
1755 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1760 u16 read_checksum
= 0;
1763 * Read the first word from the EEPROM. If this times out or fails, do
1764 * not continue or we could be in for a very long wait while every
1767 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1769 hw_dbg(hw
, "EEPROM read failed\n");
1773 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1777 checksum
= (u16
)(status
& 0xffff);
1779 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1781 hw_dbg(hw
, "EEPROM read failed\n");
1785 /* Verify read checksum from EEPROM is the same as
1786 * calculated checksum
1788 if (read_checksum
!= checksum
)
1789 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1791 /* If the user cares, return the calculated checksum */
1793 *checksum_val
= checksum
;
1799 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800 * @hw: pointer to hardware structure
1802 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1808 * Read the first word from the EEPROM. If this times out or fails, do
1809 * not continue or we could be in for a very long wait while every
1812 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1814 hw_dbg(hw
, "EEPROM read failed\n");
1818 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1822 checksum
= (u16
)(status
& 0xffff);
1824 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
, checksum
);
1830 * ixgbe_set_rar_generic - Set Rx address register
1831 * @hw: pointer to hardware structure
1832 * @index: Receive address register to write
1833 * @addr: Address to put into receive address register
1834 * @vmdq: VMDq "set" or "pool" index
1835 * @enable_addr: set flag that address is active
1837 * Puts an ethernet address into a receive address register.
1839 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1842 u32 rar_low
, rar_high
;
1843 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1845 /* Make sure we are using a valid rar index range */
1846 if (index
>= rar_entries
) {
1847 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1848 return IXGBE_ERR_INVALID_ARGUMENT
;
1851 /* setup VMDq pool selection before this RAR gets enabled */
1852 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1855 * HW expects these in little endian so we reverse the byte
1856 * order from network order (big endian) to little endian
1858 rar_low
= ((u32
)addr
[0] |
1859 ((u32
)addr
[1] << 8) |
1860 ((u32
)addr
[2] << 16) |
1861 ((u32
)addr
[3] << 24));
1863 * Some parts put the VMDq setting in the extra RAH bits,
1864 * so save everything except the lower 16 bits that hold part
1865 * of the address and the address valid bit.
1867 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1868 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1869 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1871 if (enable_addr
!= 0)
1872 rar_high
|= IXGBE_RAH_AV
;
1874 /* Record lower 32 bits of MAC address and then make
1875 * sure that write is flushed to hardware before writing
1876 * the upper 16 bits and setting the valid bit.
1878 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1879 IXGBE_WRITE_FLUSH(hw
);
1880 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1886 * ixgbe_clear_rar_generic - Remove Rx address register
1887 * @hw: pointer to hardware structure
1888 * @index: Receive address register to write
1890 * Clears an ethernet address from a receive address register.
1892 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1895 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1897 /* Make sure we are using a valid rar index range */
1898 if (index
>= rar_entries
) {
1899 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1900 return IXGBE_ERR_INVALID_ARGUMENT
;
1904 * Some parts put the VMDq setting in the extra RAH bits,
1905 * so save everything except the lower 16 bits that hold part
1906 * of the address and the address valid bit.
1908 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1909 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1911 /* Clear the address valid bit and upper 16 bits of the address
1912 * before clearing the lower bits. This way we aren't updating
1915 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1916 IXGBE_WRITE_FLUSH(hw
);
1917 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1919 /* clear VMDq pool/queue selection for this RAR */
1920 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1926 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927 * @hw: pointer to hardware structure
1929 * Places the MAC address in receive address register 0 and clears the rest
1930 * of the receive address registers. Clears the multicast table. Assumes
1931 * the receiver is in reset when the routine is called.
1933 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1936 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1939 * If the current mac address is valid, assume it is a software override
1940 * to the permanent address.
1941 * Otherwise, use the permanent address from the eeprom.
1943 if (!is_valid_ether_addr(hw
->mac
.addr
)) {
1944 /* Get the MAC address from the RAR0 for later reference */
1945 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1947 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1949 /* Setup the receive address. */
1950 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1951 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1953 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1956 /* clear VMDq pool/queue selection for RAR 0 */
1957 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1959 hw
->addr_ctrl
.overflow_promisc
= 0;
1961 hw
->addr_ctrl
.rar_used_count
= 1;
1963 /* Zero out the other receive addresses. */
1964 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1965 for (i
= 1; i
< rar_entries
; i
++) {
1966 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1967 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1971 hw
->addr_ctrl
.mta_in_use
= 0;
1972 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1974 hw_dbg(hw
, " Clearing MTA\n");
1975 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1976 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1978 if (hw
->mac
.ops
.init_uta_tables
)
1979 hw
->mac
.ops
.init_uta_tables(hw
);
1985 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986 * @hw: pointer to hardware structure
1987 * @mc_addr: the multicast address
1989 * Extracts the 12 bits, from a multicast address, to determine which
1990 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991 * incoming rx multicast addresses, to determine the bit-vector to check in
1992 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1994 * to mc_filter_type.
1996 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2000 switch (hw
->mac
.mc_filter_type
) {
2001 case 0: /* use bits [47:36] of the address */
2002 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
2004 case 1: /* use bits [46:35] of the address */
2005 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
2007 case 2: /* use bits [45:34] of the address */
2008 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
2010 case 3: /* use bits [43:32] of the address */
2011 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
2013 default: /* Invalid mc_filter_type */
2014 hw_dbg(hw
, "MC filter type param set incorrectly\n");
2018 /* vector can only be 12-bits or boundary will be exceeded */
2024 * ixgbe_set_mta - Set bit-vector in multicast table
2025 * @hw: pointer to hardware structure
2026 * @mc_addr: Multicast address
2028 * Sets the bit-vector in the multicast table.
2030 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2036 hw
->addr_ctrl
.mta_in_use
++;
2038 vector
= ixgbe_mta_vector(hw
, mc_addr
);
2039 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
2042 * The MTA is a register array of 128 32-bit registers. It is treated
2043 * like an array of 4096 bits. We want to set bit
2044 * BitArray[vector_value]. So we figure out what register the bit is
2045 * in, read it, OR in the new bit, then write back the new value. The
2046 * register is determined by the upper 7 bits of the vector value and
2047 * the bit within that register are determined by the lower 5 bits of
2050 vector_reg
= (vector
>> 5) & 0x7F;
2051 vector_bit
= vector
& 0x1F;
2052 hw
->mac
.mta_shadow
[vector_reg
] |= BIT(vector_bit
);
2056 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057 * @hw: pointer to hardware structure
2058 * @netdev: pointer to net device structure
2060 * The given list replaces any existing list. Clears the MC addrs from receive
2061 * address registers and the multicast table. Uses unused receive address
2062 * registers for the first multicast addresses, and hashes the rest into the
2065 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
2066 struct net_device
*netdev
)
2068 struct netdev_hw_addr
*ha
;
2072 * Set the new number of MC addresses that we are being requested to
2075 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
2076 hw
->addr_ctrl
.mta_in_use
= 0;
2078 /* Clear mta_shadow */
2079 hw_dbg(hw
, " Clearing MTA\n");
2080 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
2082 /* Update mta shadow */
2083 netdev_for_each_mc_addr(ha
, netdev
) {
2084 hw_dbg(hw
, " Adding the multicast addresses:\n");
2085 ixgbe_set_mta(hw
, ha
->addr
);
2089 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
2090 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
2091 hw
->mac
.mta_shadow
[i
]);
2093 if (hw
->addr_ctrl
.mta_in_use
> 0)
2094 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
2095 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
2097 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
2102 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2103 * @hw: pointer to hardware structure
2105 * Enables multicast address in RAR and the use of the multicast hash table.
2107 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
2109 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2111 if (a
->mta_in_use
> 0)
2112 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
2113 hw
->mac
.mc_filter_type
);
2119 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2120 * @hw: pointer to hardware structure
2122 * Disables multicast address in RAR and the use of the multicast hash table.
2124 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
2126 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2128 if (a
->mta_in_use
> 0)
2129 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
2135 * ixgbe_fc_enable_generic - Enable flow control
2136 * @hw: pointer to hardware structure
2138 * Enable flow control according to the current settings.
2140 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
)
2142 u32 mflcn_reg
, fccfg_reg
;
2147 /* Validate the water mark configuration. */
2148 if (!hw
->fc
.pause_time
)
2149 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2151 /* Low water mark of zero causes XOFF floods */
2152 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2153 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2154 hw
->fc
.high_water
[i
]) {
2155 if (!hw
->fc
.low_water
[i
] ||
2156 hw
->fc
.low_water
[i
] >= hw
->fc
.high_water
[i
]) {
2157 hw_dbg(hw
, "Invalid water mark configuration\n");
2158 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2163 /* Negotiate the fc mode to use */
2164 hw
->mac
.ops
.fc_autoneg(hw
);
2166 /* Disable any previous flow control settings */
2167 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
2168 mflcn_reg
&= ~(IXGBE_MFLCN_RPFCE_MASK
| IXGBE_MFLCN_RFCE
);
2170 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
2171 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
2174 * The possible values of fc.current_mode are:
2175 * 0: Flow control is completely disabled
2176 * 1: Rx flow control is enabled (we can receive pause frames,
2177 * but not send pause frames).
2178 * 2: Tx flow control is enabled (we can send pause frames but
2179 * we do not support receiving pause frames).
2180 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2183 switch (hw
->fc
.current_mode
) {
2186 * Flow control is disabled by software override or autoneg.
2187 * The code below will actually disable it in the HW.
2190 case ixgbe_fc_rx_pause
:
2192 * Rx Flow control is enabled and Tx Flow control is
2193 * disabled by software override. Since there really
2194 * isn't a way to advertise that we are capable of RX
2195 * Pause ONLY, we will advertise that we support both
2196 * symmetric and asymmetric Rx PAUSE. Later, we will
2197 * disable the adapter's ability to send PAUSE frames.
2199 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2201 case ixgbe_fc_tx_pause
:
2203 * Tx Flow control is enabled, and Rx Flow control is
2204 * disabled by software override.
2206 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2209 /* Flow control (both Rx and Tx) is enabled by SW override. */
2210 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2211 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2214 hw_dbg(hw
, "Flow control param set incorrectly\n");
2215 return IXGBE_ERR_CONFIG
;
2218 /* Set 802.3x based flow control settings. */
2219 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2220 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2221 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2223 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2225 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2226 hw
->fc
.high_water
[i
]) {
2227 fcrtl
= (hw
->fc
.low_water
[i
] << 10) | IXGBE_FCRTL_XONE
;
2228 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), fcrtl
);
2229 fcrth
= (hw
->fc
.high_water
[i
] << 10) | IXGBE_FCRTH_FCEN
;
2231 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), 0);
2233 * In order to prevent Tx hangs when the internal Tx
2234 * switch is enabled we must set the high water mark
2235 * to the Rx packet buffer size - 24KB. This allows
2236 * the Tx switch to function even under heavy Rx
2239 fcrth
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(i
)) - 24576;
2242 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(i
), fcrth
);
2245 /* Configure pause time (2 TCs per register) */
2246 reg
= hw
->fc
.pause_time
* 0x00010001;
2247 for (i
= 0; i
< (MAX_TRAFFIC_CLASS
/ 2); i
++)
2248 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(i
), reg
);
2250 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, hw
->fc
.pause_time
/ 2);
2256 * ixgbe_negotiate_fc - Negotiate flow control
2257 * @hw: pointer to hardware structure
2258 * @adv_reg: flow control advertised settings
2259 * @lp_reg: link partner's flow control settings
2260 * @adv_sym: symmetric pause bit in advertisement
2261 * @adv_asm: asymmetric pause bit in advertisement
2262 * @lp_sym: symmetric pause bit in link partner advertisement
2263 * @lp_asm: asymmetric pause bit in link partner advertisement
2265 * Find the intersection between advertised settings and link partner's
2266 * advertised settings
2268 s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2269 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2271 if ((!(adv_reg
)) || (!(lp_reg
)))
2272 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2274 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2276 * Now we need to check if the user selected Rx ONLY
2277 * of pause frames. In this case, we had to advertise
2278 * FULL flow control because we could not advertise RX
2279 * ONLY. Hence, we must now check to see if we need to
2280 * turn OFF the TRANSMISSION of PAUSE frames.
2282 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2283 hw
->fc
.current_mode
= ixgbe_fc_full
;
2284 hw_dbg(hw
, "Flow Control = FULL.\n");
2286 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2287 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2289 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2290 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2291 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2292 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2293 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2294 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2295 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2296 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2298 hw
->fc
.current_mode
= ixgbe_fc_none
;
2299 hw_dbg(hw
, "Flow Control = NONE.\n");
2305 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306 * @hw: pointer to hardware structure
2308 * Enable flow control according on 1 gig fiber.
2310 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2312 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2316 * On multispeed fiber at 1g, bail out if
2317 * - link is up but AN did not complete, or if
2318 * - link is up and AN completed but timed out
2321 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2322 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2323 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1))
2324 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2326 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2327 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2329 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2330 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2331 IXGBE_PCS1GANA_ASM_PAUSE
,
2332 IXGBE_PCS1GANA_SYM_PAUSE
,
2333 IXGBE_PCS1GANA_ASM_PAUSE
);
2339 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340 * @hw: pointer to hardware structure
2342 * Enable flow control according to IEEE clause 37.
2344 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2346 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2350 * On backplane, bail out if
2351 * - backplane autoneg was not completed, or if
2352 * - we are 82599 and link partner is not AN enabled
2354 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2355 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0)
2356 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2358 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2359 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2360 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0)
2361 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2364 * Read the 10g AN autoc and LP ability registers and resolve
2365 * local flow control settings accordingly
2367 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2368 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2370 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2371 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2372 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2378 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379 * @hw: pointer to hardware structure
2381 * Enable flow control according to IEEE clause 37.
2383 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2385 u16 technology_ability_reg
= 0;
2386 u16 lp_technology_ability_reg
= 0;
2388 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2390 &technology_ability_reg
);
2391 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2393 &lp_technology_ability_reg
);
2395 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2396 (u32
)lp_technology_ability_reg
,
2397 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2398 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2402 * ixgbe_fc_autoneg - Configure flow control
2403 * @hw: pointer to hardware structure
2405 * Compares our advertised flow control capabilities to those advertised by
2406 * our link partner, and determines the proper flow control mode to use.
2408 void ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2410 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2411 ixgbe_link_speed speed
;
2415 * AN should have completed when the cable was plugged in.
2416 * Look for reasons to bail out. Bail out if:
2417 * - FC autoneg is disabled, or if
2420 * Since we're being called from an LSC, link is already known to be up.
2421 * So use link_up_wait_to_complete=false.
2423 if (hw
->fc
.disable_fc_autoneg
)
2426 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2430 switch (hw
->phy
.media_type
) {
2431 /* Autoneg flow control on fiber adapters */
2432 case ixgbe_media_type_fiber
:
2433 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2434 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2437 /* Autoneg flow control on backplane adapters */
2438 case ixgbe_media_type_backplane
:
2439 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2442 /* Autoneg flow control on copper adapters */
2443 case ixgbe_media_type_copper
:
2444 if (ixgbe_device_supports_autoneg_fc(hw
))
2445 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2454 hw
->fc
.fc_was_autonegged
= true;
2456 hw
->fc
.fc_was_autonegged
= false;
2457 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2462 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463 * @hw: pointer to hardware structure
2465 * System-wide timeout range is encoded in PCIe Device Control2 register.
2467 * Add 10% to specified maximum and return the number of times to poll for
2468 * completion timeout, in units of 100 microsec. Never return less than
2469 * 800 = 80 millisec.
2471 static u32
ixgbe_pcie_timeout_poll(struct ixgbe_hw
*hw
)
2476 devctl2
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_CONTROL2
);
2477 devctl2
&= IXGBE_PCIDEVCTRL2_TIMEO_MASK
;
2480 case IXGBE_PCIDEVCTRL2_65_130ms
:
2481 pollcnt
= 1300; /* 130 millisec */
2483 case IXGBE_PCIDEVCTRL2_260_520ms
:
2484 pollcnt
= 5200; /* 520 millisec */
2486 case IXGBE_PCIDEVCTRL2_1_2s
:
2487 pollcnt
= 20000; /* 2 sec */
2489 case IXGBE_PCIDEVCTRL2_4_8s
:
2490 pollcnt
= 80000; /* 8 sec */
2492 case IXGBE_PCIDEVCTRL2_17_34s
:
2493 pollcnt
= 34000; /* 34 sec */
2495 case IXGBE_PCIDEVCTRL2_50_100us
: /* 100 microsecs */
2496 case IXGBE_PCIDEVCTRL2_1_2ms
: /* 2 millisecs */
2497 case IXGBE_PCIDEVCTRL2_16_32ms
: /* 32 millisec */
2498 case IXGBE_PCIDEVCTRL2_16_32ms_def
: /* 32 millisec default */
2500 pollcnt
= 800; /* 80 millisec minimum */
2504 /* add 10% to spec maximum */
2505 return (pollcnt
* 11) / 10;
2509 * ixgbe_disable_pcie_master - Disable PCI-express master access
2510 * @hw: pointer to hardware structure
2512 * Disables PCI-Express master access and verifies there are no pending
2513 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2514 * bit hasn't caused the master requests to be disabled, else 0
2515 * is returned signifying master requests disabled.
2517 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2522 /* Always set this bit to ensure any future transactions are blocked */
2523 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, IXGBE_CTRL_GIO_DIS
);
2525 /* Poll for bit to read as set */
2526 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2527 if (IXGBE_READ_REG(hw
, IXGBE_CTRL
) & IXGBE_CTRL_GIO_DIS
)
2529 usleep_range(100, 120);
2531 if (i
>= IXGBE_PCI_MASTER_DISABLE_TIMEOUT
) {
2532 hw_dbg(hw
, "GIO disable did not set - requesting resets\n");
2533 goto gio_disable_fail
;
2536 /* Exit if master requests are blocked */
2537 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
) ||
2538 ixgbe_removed(hw
->hw_addr
))
2541 /* Poll for master request bit to clear */
2542 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2544 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2549 * Two consecutive resets are required via CTRL.RST per datasheet
2550 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2551 * of this need. The first reset prevents new master requests from
2552 * being issued by our device. We then must wait 1usec or more for any
2553 * remaining completions from the PCIe bus to trickle in, and then reset
2554 * again to clear out any effects they may have had on our device.
2556 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2558 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2560 if (hw
->mac
.type
>= ixgbe_mac_X550
)
2564 * Before proceeding, make sure that the PCIe block does not have
2565 * transactions pending.
2567 poll
= ixgbe_pcie_timeout_poll(hw
);
2568 for (i
= 0; i
< poll
; i
++) {
2570 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
2571 if (ixgbe_removed(hw
->hw_addr
))
2573 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2577 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2578 return IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2582 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583 * @hw: pointer to hardware structure
2584 * @mask: Mask to specify which semaphore to acquire
2586 * Acquires the SWFW semaphore through the GSSR register for the specified
2587 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2589 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2593 u32 fwmask
= mask
<< 5;
2597 for (i
= 0; i
< timeout
; i
++) {
2599 * SW NVM semaphore bit is used for access to all
2600 * SW_FW_SYNC bits (not just NVM)
2602 if (ixgbe_get_eeprom_semaphore(hw
))
2603 return IXGBE_ERR_SWFW_SYNC
;
2605 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2606 if (!(gssr
& (fwmask
| swmask
))) {
2608 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2609 ixgbe_release_eeprom_semaphore(hw
);
2612 /* Resource is currently in use by FW or SW */
2613 ixgbe_release_eeprom_semaphore(hw
);
2614 usleep_range(5000, 10000);
2618 /* If time expired clear the bits holding the lock and retry */
2619 if (gssr
& (fwmask
| swmask
))
2620 ixgbe_release_swfw_sync(hw
, gssr
& (fwmask
| swmask
));
2622 usleep_range(5000, 10000);
2623 return IXGBE_ERR_SWFW_SYNC
;
2627 * ixgbe_release_swfw_sync - Release SWFW semaphore
2628 * @hw: pointer to hardware structure
2629 * @mask: Mask to specify which semaphore to release
2631 * Releases the SWFW semaphore through the GSSR register for the specified
2632 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2634 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2639 ixgbe_get_eeprom_semaphore(hw
);
2641 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2643 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2645 ixgbe_release_eeprom_semaphore(hw
);
2649 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650 * @hw: pointer to hardware structure
2651 * @reg_val: Value we read from AUTOC
2652 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2653 * true in this the generic case.
2655 * The default case requires no protection so just to the register read.
2657 s32
prot_autoc_read_generic(struct ixgbe_hw
*hw
, bool *locked
, u32
*reg_val
)
2660 *reg_val
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2665 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666 * @hw: pointer to hardware structure
2667 * @reg_val: value to write to AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock was already taken by
2671 s32
prot_autoc_write_generic(struct ixgbe_hw
*hw
, u32 reg_val
, bool locked
)
2673 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_val
);
2678 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2679 * @hw: pointer to hardware structure
2681 * Stops the receive data path and waits for the HW to internally
2682 * empty the Rx security block.
2684 s32
ixgbe_disable_rx_buff_generic(struct ixgbe_hw
*hw
)
2686 #define IXGBE_MAX_SECRX_POLL 40
2690 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2691 secrxreg
|= IXGBE_SECRXCTRL_RX_DIS
;
2692 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2693 for (i
= 0; i
< IXGBE_MAX_SECRX_POLL
; i
++) {
2694 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXSTAT
);
2695 if (secrxreg
& IXGBE_SECRXSTAT_SECRX_RDY
)
2698 /* Use interrupt-safe sleep just in case */
2702 /* For informational purposes only */
2703 if (i
>= IXGBE_MAX_SECRX_POLL
)
2704 hw_dbg(hw
, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2711 * ixgbe_enable_rx_buff - Enables the receive data path
2712 * @hw: pointer to hardware structure
2714 * Enables the receive data path
2716 s32
ixgbe_enable_rx_buff_generic(struct ixgbe_hw
*hw
)
2720 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2721 secrxreg
&= ~IXGBE_SECRXCTRL_RX_DIS
;
2722 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2723 IXGBE_WRITE_FLUSH(hw
);
2729 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730 * @hw: pointer to hardware structure
2731 * @regval: register value to write to RXCTRL
2733 * Enables the Rx DMA unit
2735 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2737 if (regval
& IXGBE_RXCTRL_RXEN
)
2738 hw
->mac
.ops
.enable_rx(hw
);
2740 hw
->mac
.ops
.disable_rx(hw
);
2746 * ixgbe_blink_led_start_generic - Blink LED based on index.
2747 * @hw: pointer to hardware structure
2748 * @index: led number to blink
2750 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2752 ixgbe_link_speed speed
= 0;
2753 bool link_up
= false;
2754 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2755 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2756 bool locked
= false;
2760 return IXGBE_ERR_PARAM
;
2763 * Link must be up to auto-blink the LEDs;
2764 * Force it if link is down.
2766 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2769 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2773 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2774 autoc_reg
|= IXGBE_AUTOC_FLU
;
2776 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2780 IXGBE_WRITE_FLUSH(hw
);
2782 usleep_range(10000, 20000);
2785 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2786 led_reg
|= IXGBE_LED_BLINK(index
);
2787 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2788 IXGBE_WRITE_FLUSH(hw
);
2794 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795 * @hw: pointer to hardware structure
2796 * @index: led number to stop blinking
2798 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2801 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2802 bool locked
= false;
2806 return IXGBE_ERR_PARAM
;
2808 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2812 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2813 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2815 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2819 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2820 led_reg
&= ~IXGBE_LED_BLINK(index
);
2821 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2822 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2823 IXGBE_WRITE_FLUSH(hw
);
2829 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830 * @hw: pointer to hardware structure
2831 * @san_mac_offset: SAN MAC address offset
2833 * This function will read the EEPROM location for the SAN MAC address
2834 * pointer, and returns the value at that location. This is used in both
2835 * get and set mac_addr routines.
2837 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2838 u16
*san_mac_offset
)
2843 * First read the EEPROM pointer to see if the MAC addresses are
2846 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
,
2849 hw_err(hw
, "eeprom read at offset %d failed\n",
2850 IXGBE_SAN_MAC_ADDR_PTR
);
2856 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857 * @hw: pointer to hardware structure
2858 * @san_mac_addr: SAN MAC address
2860 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2861 * per-port, so set_lan_id() must be called before reading the addresses.
2862 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2863 * upon for non-SFP connections, so we must call it here.
2865 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2867 u16 san_mac_data
, san_mac_offset
;
2872 * First read the EEPROM pointer to see if the MAC addresses are
2873 * available. If they're not, no point in calling set_lan_id() here.
2875 ret_val
= ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2876 if (ret_val
|| san_mac_offset
== 0 || san_mac_offset
== 0xFFFF)
2878 goto san_mac_addr_clr
;
2880 /* make sure we know which port we need to program */
2881 hw
->mac
.ops
.set_lan_id(hw
);
2882 /* apply the port offset to the address offset */
2883 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2884 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2885 for (i
= 0; i
< 3; i
++) {
2886 ret_val
= hw
->eeprom
.ops
.read(hw
, san_mac_offset
,
2889 hw_err(hw
, "eeprom read at offset %d failed\n",
2891 goto san_mac_addr_clr
;
2893 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2894 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2900 /* No addresses available in this EEPROM. It's not necessarily an
2901 * error though, so just wipe the local address and return.
2903 for (i
= 0; i
< 6; i
++)
2904 san_mac_addr
[i
] = 0xFF;
2909 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910 * @hw: pointer to hardware structure
2912 * Read PCIe configuration space, and get the MSI-X vector count from
2913 * the capabilities table.
2915 u16
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2921 switch (hw
->mac
.type
) {
2922 case ixgbe_mac_82598EB
:
2923 pcie_offset
= IXGBE_PCIE_MSIX_82598_CAPS
;
2924 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82598
;
2926 case ixgbe_mac_82599EB
:
2927 case ixgbe_mac_X540
:
2928 case ixgbe_mac_X550
:
2929 case ixgbe_mac_X550EM_x
:
2930 case ixgbe_mac_x550em_a
:
2931 pcie_offset
= IXGBE_PCIE_MSIX_82599_CAPS
;
2932 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82599
;
2938 msix_count
= ixgbe_read_pci_cfg_word(hw
, pcie_offset
);
2939 if (ixgbe_removed(hw
->hw_addr
))
2941 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2943 /* MSI-X count is zero-based in HW */
2946 if (msix_count
> max_msix_count
)
2947 msix_count
= max_msix_count
;
2953 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954 * @hw: pointer to hardware struct
2955 * @rar: receive address register index to disassociate
2956 * @vmdq: VMDq pool index to remove from the rar
2958 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2960 u32 mpsar_lo
, mpsar_hi
;
2961 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2963 /* Make sure we are using a valid rar index range */
2964 if (rar
>= rar_entries
) {
2965 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2966 return IXGBE_ERR_INVALID_ARGUMENT
;
2969 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2970 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2972 if (ixgbe_removed(hw
->hw_addr
))
2975 if (!mpsar_lo
&& !mpsar_hi
)
2978 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2980 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2984 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2987 } else if (vmdq
< 32) {
2988 mpsar_lo
&= ~BIT(vmdq
);
2989 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2991 mpsar_hi
&= ~BIT(vmdq
- 32);
2992 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2995 /* was that the last pool using this rar? */
2996 if (mpsar_lo
== 0 && mpsar_hi
== 0 &&
2997 rar
!= 0 && rar
!= hw
->mac
.san_mac_rar_index
)
2998 hw
->mac
.ops
.clear_rar(hw
, rar
);
3004 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005 * @hw: pointer to hardware struct
3006 * @rar: receive address register index to associate with a VMDq index
3007 * @vmdq: VMDq pool index
3009 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
3012 u32 rar_entries
= hw
->mac
.num_rar_entries
;
3014 /* Make sure we are using a valid rar index range */
3015 if (rar
>= rar_entries
) {
3016 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
3017 return IXGBE_ERR_INVALID_ARGUMENT
;
3021 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
3023 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
3025 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
3026 mpsar
|= BIT(vmdq
- 32);
3027 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
3033 * This function should only be involved in the IOV mode.
3034 * In IOV mode, Default pool is next pool after the number of
3035 * VFs advertized and not 0.
3036 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3038 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3039 * @hw: pointer to hardware struct
3040 * @vmdq: VMDq pool index
3042 s32
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw
*hw
, u32 vmdq
)
3044 u32 rar
= hw
->mac
.san_mac_rar_index
;
3047 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), BIT(vmdq
));
3048 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3050 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
3051 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), BIT(vmdq
- 32));
3058 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059 * @hw: pointer to hardware structure
3061 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
3065 for (i
= 0; i
< 128; i
++)
3066 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
3072 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073 * @hw: pointer to hardware structure
3074 * @vlan: VLAN id to write to VLAN filter
3075 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3078 * return the VLVF index where this VLAN id should be placed
3081 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
, bool vlvf_bypass
)
3083 s32 regindex
, first_empty_slot
;
3086 /* short cut the special case */
3090 /* if vlvf_bypass is set we don't want to use an empty slot, we
3091 * will simply bypass the VLVF if there are no entries present in the
3092 * VLVF that contain our VLAN
3094 first_empty_slot
= vlvf_bypass
? IXGBE_ERR_NO_SPACE
: 0;
3096 /* add VLAN enable bit for comparison */
3097 vlan
|= IXGBE_VLVF_VIEN
;
3099 /* Search for the vlan id in the VLVF entries. Save off the first empty
3100 * slot found along the way.
3102 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3104 for (regindex
= IXGBE_VLVF_ENTRIES
; --regindex
;) {
3105 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
3108 if (!first_empty_slot
&& !bits
)
3109 first_empty_slot
= regindex
;
3112 /* If we are here then we didn't find the VLAN. Return first empty
3113 * slot we found during our search, else error.
3115 if (!first_empty_slot
)
3116 hw_dbg(hw
, "No space in VLVF.\n");
3118 return first_empty_slot
? : IXGBE_ERR_NO_SPACE
;
3122 * ixgbe_set_vfta_generic - Set VLAN filter table
3123 * @hw: pointer to hardware structure
3124 * @vlan: VLAN id to write to VLAN filter
3125 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3129 * Turn on/off specified VLAN in the VLAN filter table.
3131 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
3132 bool vlan_on
, bool vlvf_bypass
)
3134 u32 regidx
, vfta_delta
, vfta
, bits
;
3137 if ((vlan
> 4095) || (vind
> 63))
3138 return IXGBE_ERR_PARAM
;
3141 * this is a 2 part operation - first the VFTA, then the
3142 * VLVF and VLVFB if VT Mode is set
3143 * We don't write the VFTA until we know the VLVF part succeeded.
3147 * The VFTA is a bitstring made up of 128 32-bit registers
3148 * that enable the particular VLAN id, much like the MTA:
3149 * bits[11-5]: which register
3150 * bits[4-0]: which bit in the register
3153 vfta_delta
= BIT(vlan
% 32);
3154 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regidx
));
3156 /* vfta_delta represents the difference between the current value
3157 * of vfta and the value we want in the register. Since the diff
3158 * is an XOR mask we can just update vfta using an XOR.
3160 vfta_delta
&= vlan_on
? ~vfta
: vfta
;
3166 * make sure the vlan is in VLVF
3167 * set the vind bit in the matching VLVFB
3169 * clear the pool bit and possibly the vind
3171 if (!(IXGBE_READ_REG(hw
, IXGBE_VT_CTL
) & IXGBE_VT_CTL_VT_ENABLE
))
3174 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
, vlvf_bypass
);
3175 if (vlvf_index
< 0) {
3181 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32));
3183 /* set the pool bit */
3184 bits
|= BIT(vind
% 32);
3188 /* clear the pool bit */
3189 bits
^= BIT(vind
% 32);
3192 !IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + 1 - vind
/ 32))) {
3193 /* Clear VFTA first, then disable VLVF. Otherwise
3194 * we run the risk of stray packets leaking into
3195 * the PF via the default pool
3198 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3200 /* disable VLVF and clear remaining bit from pool */
3201 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3202 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), 0);
3207 /* If there are still bits set in the VLVFB registers
3208 * for the VLAN ID indicated we need to see if the
3209 * caller is requesting that we clear the VFTA entry bit.
3210 * If the caller has requested that we clear the VFTA
3211 * entry bit but there are still pools/VFs using this VLAN
3212 * ID entry then ignore the request. We're not worried
3213 * about the case where we're turning the VFTA VLAN ID
3214 * entry bit on, only when requested to turn it off as
3215 * there may be multiple pools and/or VFs using the
3216 * VLAN ID entry. In that case we cannot clear the
3217 * VFTA bit until all pools/VFs using that VLAN ID have also
3218 * been cleared. This will be indicated by "bits" being
3224 /* record pool change and enable VLAN ID if not already enabled */
3225 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), bits
);
3226 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), IXGBE_VLVF_VIEN
| vlan
);
3229 /* Update VFTA now that we are ready for traffic */
3231 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3237 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3238 * @hw: pointer to hardware structure
3240 * Clears the VLAN filer table, and the VMDq index associated with the filter
3242 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3246 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3247 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3249 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3250 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3251 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2), 0);
3252 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2 + 1), 0);
3259 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260 * @hw: pointer to hardware structure
3262 * Contains the logic to identify if we need to verify link for the
3265 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw
*hw
)
3267 /* Does FW say we need the fix */
3268 if (!hw
->need_crosstalk_fix
)
3271 /* Only consider SFP+ PHYs i.e. media type fiber */
3272 switch (hw
->mac
.ops
.get_media_type(hw
)) {
3273 case ixgbe_media_type_fiber
:
3274 case ixgbe_media_type_fiber_qsfp
:
3284 * ixgbe_check_mac_link_generic - Determine link and speed status
3285 * @hw: pointer to hardware structure
3286 * @speed: pointer to link speed
3287 * @link_up: true when link is up
3288 * @link_up_wait_to_complete: bool used to wait for link up or not
3290 * Reads the links register to determine if link is up and the current speed
3292 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3293 bool *link_up
, bool link_up_wait_to_complete
)
3295 u32 links_reg
, links_orig
;
3298 /* If Crosstalk fix enabled do the sanity check of making sure
3299 * the SFP+ cage is full.
3301 if (ixgbe_need_crosstalk_fix(hw
)) {
3304 switch (hw
->mac
.type
) {
3305 case ixgbe_mac_82599EB
:
3306 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3309 case ixgbe_mac_X550EM_x
:
3310 case ixgbe_mac_x550em_a
:
3311 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3315 /* sanity check - No SFP+ devices here */
3316 sfp_cage_full
= false;
3320 if (!sfp_cage_full
) {
3322 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3327 /* clear the old state */
3328 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3330 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3332 if (links_orig
!= links_reg
) {
3333 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3334 links_orig
, links_reg
);
3337 if (link_up_wait_to_complete
) {
3338 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3339 if (links_reg
& IXGBE_LINKS_UP
) {
3346 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3349 if (links_reg
& IXGBE_LINKS_UP
)
3355 switch (links_reg
& IXGBE_LINKS_SPEED_82599
) {
3356 case IXGBE_LINKS_SPEED_10G_82599
:
3357 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3358 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3359 *speed
= IXGBE_LINK_SPEED_2_5GB_FULL
;
3361 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3363 case IXGBE_LINKS_SPEED_1G_82599
:
3364 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3366 case IXGBE_LINKS_SPEED_100_82599
:
3367 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3368 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3369 *speed
= IXGBE_LINK_SPEED_5GB_FULL
;
3371 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3373 case IXGBE_LINKS_SPEED_10_X550EM_A
:
3374 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3375 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T
||
3376 hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T_L
) {
3377 *speed
= IXGBE_LINK_SPEED_10_FULL
;
3381 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3388 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3390 * @hw: pointer to hardware structure
3391 * @wwnn_prefix: the alternative WWNN prefix
3392 * @wwpn_prefix: the alternative WWPN prefix
3394 * This function will read the EEPROM from the alternative SAN MAC address
3395 * block to check the support for the alternative WWNN/WWPN prefix support.
3397 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3401 u16 alt_san_mac_blk_offset
;
3403 /* clear output first */
3404 *wwnn_prefix
= 0xFFFF;
3405 *wwpn_prefix
= 0xFFFF;
3407 /* check if alternative SAN MAC is supported */
3408 offset
= IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
;
3409 if (hw
->eeprom
.ops
.read(hw
, offset
, &alt_san_mac_blk_offset
))
3410 goto wwn_prefix_err
;
3412 if ((alt_san_mac_blk_offset
== 0) ||
3413 (alt_san_mac_blk_offset
== 0xFFFF))
3416 /* check capability in alternative san mac address block */
3417 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3418 if (hw
->eeprom
.ops
.read(hw
, offset
, &caps
))
3419 goto wwn_prefix_err
;
3420 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3423 /* get the corresponding prefix for WWNN/WWPN */
3424 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3425 if (hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
))
3426 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3428 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3429 if (hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
))
3430 goto wwn_prefix_err
;
3435 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3440 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441 * @hw: pointer to hardware structure
3442 * @enable: enable or disable switch for MAC anti-spoofing
3443 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3448 int vf_target_reg
= vf
>> 3;
3449 int vf_target_shift
= vf
% 8;
3452 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3455 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3457 pfvfspoof
|= BIT(vf_target_shift
);
3459 pfvfspoof
&= ~BIT(vf_target_shift
);
3460 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3464 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465 * @hw: pointer to hardware structure
3466 * @enable: enable or disable switch for VLAN anti-spoofing
3467 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3472 int vf_target_reg
= vf
>> 3;
3473 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3476 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3479 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3481 pfvfspoof
|= BIT(vf_target_shift
);
3483 pfvfspoof
&= ~BIT(vf_target_shift
);
3484 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3488 * ixgbe_get_device_caps_generic - Get additional device capabilities
3489 * @hw: pointer to hardware structure
3490 * @device_caps: the EEPROM word with the extra device capabilities
3492 * This function will read the EEPROM location for the device capabilities,
3493 * and return the word through device_caps.
3495 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3497 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3503 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504 * @hw: pointer to hardware structure
3505 * @num_pb: number of packet buffers to allocate
3506 * @headroom: reserve n KB of headroom
3507 * @strategy: packet buffer allocation strategy
3509 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3514 u32 pbsize
= hw
->mac
.rx_pb_size
;
3516 u32 rxpktsize
, txpktsize
, txpbthresh
;
3518 /* Reserve headroom */
3524 /* Divide remaining packet buffer space amongst the number
3525 * of packet buffers requested using supplied strategy.
3528 case (PBA_STRATEGY_WEIGHTED
):
3529 /* pba_80_48 strategy weight first half of packet buffer with
3530 * 5/8 of the packet buffer space.
3532 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3533 pbsize
-= rxpktsize
* (num_pb
/ 2);
3534 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3535 for (; i
< (num_pb
/ 2); i
++)
3536 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3537 /* fall through - configure remaining packet buffers */
3538 case (PBA_STRATEGY_EQUAL
):
3539 /* Divide the remaining Rx packet buffer evenly among the TCs */
3540 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3541 for (; i
< num_pb
; i
++)
3542 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3549 * Setup Tx packet buffer and threshold equally for all TCs
3550 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551 * 10 since the largest packet we support is just over 9K.
3553 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3554 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3555 for (i
= 0; i
< num_pb
; i
++) {
3556 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3557 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3560 /* Clear unused TCs, if any, to zero buffer size*/
3561 for (; i
< IXGBE_MAX_PB
; i
++) {
3562 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3563 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3564 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3569 * ixgbe_calculate_checksum - Calculate checksum for buffer
3570 * @buffer: pointer to EEPROM
3571 * @length: size of EEPROM to calculate a checksum for
3573 * Calculates the checksum for some buffer on a specified length. The
3574 * checksum calculated is returned.
3576 u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3584 for (i
= 0; i
< length
; i
++)
3587 return (u8
) (0 - sum
);
3591 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592 * @hw: pointer to the HW structure
3593 * @buffer: command to write and where the return status will be placed
3594 * @length: length of buffer, must be multiple of 4 bytes
3595 * @timeout: time in ms to wait for command completion
3597 * Communicates with the manageability block. On success return 0
3598 * else returns semaphore error when encountering an error acquiring
3599 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3601 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3604 s32
ixgbe_hic_unlocked(struct ixgbe_hw
*hw
, u32
*buffer
, u32 length
,
3610 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3611 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3612 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3615 /* Set bit 9 of FWSTS clearing FW reset indication */
3616 fwsts
= IXGBE_READ_REG(hw
, IXGBE_FWSTS
);
3617 IXGBE_WRITE_REG(hw
, IXGBE_FWSTS
, fwsts
| IXGBE_FWSTS_FWRI
);
3619 /* Check that the host interface is enabled. */
3620 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3621 if (!(hicr
& IXGBE_HICR_EN
)) {
3622 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3623 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3626 /* Calculate length in DWORDs. We must be DWORD aligned */
3627 if (length
% sizeof(u32
)) {
3628 hw_dbg(hw
, "Buffer length failure, not aligned to dword");
3629 return IXGBE_ERR_INVALID_ARGUMENT
;
3632 dword_len
= length
>> 2;
3634 /* The device driver writes the relevant command block
3635 * into the ram area.
3637 for (i
= 0; i
< dword_len
; i
++)
3638 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3639 i
, (__force u32
)cpu_to_le32(buffer
[i
]));
3641 /* Setting this bit tells the ARC that a new command is pending. */
3642 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3644 for (i
= 0; i
< timeout
; i
++) {
3645 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3646 if (!(hicr
& IXGBE_HICR_C
))
3648 usleep_range(1000, 2000);
3651 /* Check command successful completion. */
3652 if ((timeout
&& i
== timeout
) ||
3653 !(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))
3654 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3660 * ixgbe_host_interface_command - Issue command to manageability block
3661 * @hw: pointer to the HW structure
3662 * @buffer: contains the command to write and where the return status will
3664 * @length: length of buffer, must be multiple of 4 bytes
3665 * @timeout: time in ms to wait for command completion
3666 * @return_data: read and return data from the buffer (true) or not (false)
3667 * Needed because FW structures are big endian and decoding of
3668 * these fields can be 8 bit or 16 bit based on command. Decoding
3669 * is not easily understood without making a table of commands.
3670 * So we will leave this up to the caller to read back the data
3673 * Communicates with the manageability block. On success return 0
3674 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3676 s32
ixgbe_host_interface_command(struct ixgbe_hw
*hw
, void *buffer
,
3677 u32 length
, u32 timeout
,
3680 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3682 struct ixgbe_hic_hdr hdr
;
3685 u16 buf_len
, dword_len
;
3689 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3690 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3691 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3693 /* Take management host interface semaphore */
3694 status
= hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3698 status
= ixgbe_hic_unlocked(hw
, buffer
, length
, timeout
);
3705 /* Calculate length in DWORDs */
3706 dword_len
= hdr_size
>> 2;
3708 /* first pull in the header so we know the buffer length */
3709 for (bi
= 0; bi
< dword_len
; bi
++) {
3710 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3711 le32_to_cpus(&bp
->u32arr
[bi
]);
3714 /* If there is any thing in data position pull it in */
3715 buf_len
= bp
->hdr
.buf_len
;
3719 if (length
< round_up(buf_len
, 4) + hdr_size
) {
3720 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3721 status
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3725 /* Calculate length in DWORDs, add 3 for odd lengths */
3726 dword_len
= (buf_len
+ 3) >> 2;
3728 /* Pull in the rest of the buffer (bi is where we left off) */
3729 for (; bi
<= dword_len
; bi
++) {
3730 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3731 le32_to_cpus(&bp
->u32arr
[bi
]);
3735 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3741 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3742 * @hw: pointer to the HW structure
3743 * @maj: driver version major number
3744 * @min: driver version minor number
3745 * @build: driver version build number
3746 * @sub: driver version sub build number
3747 * @len: length of driver_ver string
3748 * @driver_ver: driver string
3750 * Sends driver version number to firmware through the manageability
3751 * block. On success return 0
3752 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3753 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3755 s32
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3756 u8 build
, u8 sub
, __always_unused u16 len
,
3757 __always_unused
const char *driver_ver
)
3759 struct ixgbe_hic_drv_info fw_cmd
;
3763 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3764 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3765 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3766 fw_cmd
.port_num
= hw
->bus
.func
;
3767 fw_cmd
.ver_maj
= maj
;
3768 fw_cmd
.ver_min
= min
;
3769 fw_cmd
.ver_build
= build
;
3770 fw_cmd
.ver_sub
= sub
;
3771 fw_cmd
.hdr
.checksum
= 0;
3774 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3775 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3777 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3778 ret_val
= ixgbe_host_interface_command(hw
, &fw_cmd
,
3780 IXGBE_HI_COMMAND_TIMEOUT
,
3785 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3786 FW_CEM_RESP_STATUS_SUCCESS
)
3789 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3798 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3799 * @hw: pointer to the hardware structure
3801 * The 82599 and x540 MACs can experience issues if TX work is still pending
3802 * when a reset occurs. This function prevents this by flushing the PCIe
3803 * buffers on the system.
3805 void ixgbe_clear_tx_pending(struct ixgbe_hw
*hw
)
3807 u32 gcr_ext
, hlreg0
, i
, poll
;
3811 * If double reset is not requested then all transactions should
3812 * already be clear and as such there is no work to do
3814 if (!(hw
->mac
.flags
& IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
))
3818 * Set loopback enable to prevent any transmits from being sent
3819 * should the link come up. This assumes that the RXCTRL.RXEN bit
3820 * has already been cleared.
3822 hlreg0
= IXGBE_READ_REG(hw
, IXGBE_HLREG0
);
3823 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
| IXGBE_HLREG0_LPBK
);
3825 /* wait for a last completion before clearing buffers */
3826 IXGBE_WRITE_FLUSH(hw
);
3827 usleep_range(3000, 6000);
3829 /* Before proceeding, make sure that the PCIe block does not have
3830 * transactions pending.
3832 poll
= ixgbe_pcie_timeout_poll(hw
);
3833 for (i
= 0; i
< poll
; i
++) {
3834 usleep_range(100, 200);
3835 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
3836 if (ixgbe_removed(hw
->hw_addr
))
3838 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
3842 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3843 gcr_ext
= IXGBE_READ_REG(hw
, IXGBE_GCR_EXT
);
3844 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
,
3845 gcr_ext
| IXGBE_GCR_EXT_BUFFERS_CLEAR
);
3847 /* Flush all writes and allow 20usec for all transactions to clear */
3848 IXGBE_WRITE_FLUSH(hw
);
3851 /* restore previous register values */
3852 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
, gcr_ext
);
3853 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
);
3856 static const u8 ixgbe_emc_temp_data
[4] = {
3857 IXGBE_EMC_INTERNAL_DATA
,
3858 IXGBE_EMC_DIODE1_DATA
,
3859 IXGBE_EMC_DIODE2_DATA
,
3860 IXGBE_EMC_DIODE3_DATA
3862 static const u8 ixgbe_emc_therm_limit
[4] = {
3863 IXGBE_EMC_INTERNAL_THERM_LIMIT
,
3864 IXGBE_EMC_DIODE1_THERM_LIMIT
,
3865 IXGBE_EMC_DIODE2_THERM_LIMIT
,
3866 IXGBE_EMC_DIODE3_THERM_LIMIT
3870 * ixgbe_get_ets_data - Extracts the ETS bit data
3871 * @hw: pointer to hardware structure
3872 * @ets_cfg: extected ETS data
3873 * @ets_offset: offset of ETS data
3875 * Returns error code.
3877 static s32
ixgbe_get_ets_data(struct ixgbe_hw
*hw
, u16
*ets_cfg
,
3882 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_ETS_CFG
, ets_offset
);
3886 if ((*ets_offset
== 0x0000) || (*ets_offset
== 0xFFFF))
3887 return IXGBE_NOT_IMPLEMENTED
;
3889 status
= hw
->eeprom
.ops
.read(hw
, *ets_offset
, ets_cfg
);
3893 if ((*ets_cfg
& IXGBE_ETS_TYPE_MASK
) != IXGBE_ETS_TYPE_EMC_SHIFTED
)
3894 return IXGBE_NOT_IMPLEMENTED
;
3900 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3901 * @hw: pointer to hardware structure
3903 * Returns the thermal sensor data structure
3905 s32
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw
*hw
)
3913 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3915 /* Only support thermal sensors attached to physical port 0 */
3916 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3917 return IXGBE_NOT_IMPLEMENTED
;
3919 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3923 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3924 if (num_sensors
> IXGBE_MAX_SENSORS
)
3925 num_sensors
= IXGBE_MAX_SENSORS
;
3927 for (i
= 0; i
< num_sensors
; i
++) {
3931 status
= hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
),
3936 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3937 IXGBE_ETS_DATA_INDEX_SHIFT
);
3938 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
3939 IXGBE_ETS_DATA_LOC_SHIFT
);
3941 if (sensor_location
!= 0) {
3942 status
= hw
->phy
.ops
.read_i2c_byte(hw
,
3943 ixgbe_emc_temp_data
[sensor_index
],
3944 IXGBE_I2C_THERMAL_SENSOR_ADDR
,
3945 &data
->sensor
[i
].temp
);
3955 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3956 * @hw: pointer to hardware structure
3958 * Inits the thermal sensor thresholds according to the NVM map
3959 * and save off the threshold and location values into mac.thermal_sensor_data
3961 s32
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw
*hw
)
3967 u8 low_thresh_delta
;
3971 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3973 memset(data
, 0, sizeof(struct ixgbe_thermal_sensor_data
));
3975 /* Only support thermal sensors attached to physical port 0 */
3976 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3977 return IXGBE_NOT_IMPLEMENTED
;
3979 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3983 low_thresh_delta
= ((ets_cfg
& IXGBE_ETS_LTHRES_DELTA_MASK
) >>
3984 IXGBE_ETS_LTHRES_DELTA_SHIFT
);
3985 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3986 if (num_sensors
> IXGBE_MAX_SENSORS
)
3987 num_sensors
= IXGBE_MAX_SENSORS
;
3989 for (i
= 0; i
< num_sensors
; i
++) {
3993 if (hw
->eeprom
.ops
.read(hw
, ets_offset
+ 1 + i
, &ets_sensor
)) {
3994 hw_err(hw
, "eeprom read at offset %d failed\n",
3995 ets_offset
+ 1 + i
);
3998 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3999 IXGBE_ETS_DATA_INDEX_SHIFT
);
4000 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
4001 IXGBE_ETS_DATA_LOC_SHIFT
);
4002 therm_limit
= ets_sensor
& IXGBE_ETS_DATA_HTHRESH_MASK
;
4004 hw
->phy
.ops
.write_i2c_byte(hw
,
4005 ixgbe_emc_therm_limit
[sensor_index
],
4006 IXGBE_I2C_THERMAL_SENSOR_ADDR
, therm_limit
);
4008 if (sensor_location
== 0)
4011 data
->sensor
[i
].location
= sensor_location
;
4012 data
->sensor
[i
].caution_thresh
= therm_limit
;
4013 data
->sensor
[i
].max_op_thresh
= therm_limit
- low_thresh_delta
;
4020 * ixgbe_get_orom_version - Return option ROM from EEPROM
4022 * @hw: pointer to hardware structure
4023 * @nvm_ver: pointer to output structure
4025 * if valid option ROM version, nvm_ver->or_valid set to true
4026 * else nvm_ver->or_valid is false.
4028 void ixgbe_get_orom_version(struct ixgbe_hw
*hw
,
4029 struct ixgbe_nvm_version
*nvm_ver
)
4031 u16 offset
, eeprom_cfg_blkh
, eeprom_cfg_blkl
;
4033 nvm_ver
->or_valid
= false;
4034 /* Option Rom may or may not be present. Start with pointer */
4035 hw
->eeprom
.ops
.read(hw
, NVM_OROM_OFFSET
, &offset
);
4037 /* make sure offset is valid */
4038 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4041 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_HI
, &eeprom_cfg_blkh
);
4042 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_LOW
, &eeprom_cfg_blkl
);
4044 /* option rom exists and is valid */
4045 if ((eeprom_cfg_blkl
| eeprom_cfg_blkh
) == 0x0 ||
4046 eeprom_cfg_blkl
== NVM_VER_INVALID
||
4047 eeprom_cfg_blkh
== NVM_VER_INVALID
)
4050 nvm_ver
->or_valid
= true;
4051 nvm_ver
->or_major
= eeprom_cfg_blkl
>> NVM_OROM_SHIFT
;
4052 nvm_ver
->or_build
= (eeprom_cfg_blkl
<< NVM_OROM_SHIFT
) |
4053 (eeprom_cfg_blkh
>> NVM_OROM_SHIFT
);
4054 nvm_ver
->or_patch
= eeprom_cfg_blkh
& NVM_OROM_PATCH_MASK
;
4058 * ixgbe_get_oem_prod_version Etrack ID from EEPROM
4060 * @hw: pointer to hardware structure
4061 * @nvm_ver: pointer to output structure
4063 * if valid OEM product version, nvm_ver->oem_valid set to true
4064 * else nvm_ver->oem_valid is false.
4066 void ixgbe_get_oem_prod_version(struct ixgbe_hw
*hw
,
4067 struct ixgbe_nvm_version
*nvm_ver
)
4069 u16 rel_num
, prod_ver
, mod_len
, cap
, offset
;
4071 nvm_ver
->oem_valid
= false;
4072 hw
->eeprom
.ops
.read(hw
, NVM_OEM_PROD_VER_PTR
, &offset
);
4074 /* Return is offset to OEM Product Version block is invalid */
4075 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4078 /* Read product version block */
4079 hw
->eeprom
.ops
.read(hw
, offset
, &mod_len
);
4080 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_CAP_OFF
, &cap
);
4082 /* Return if OEM product version block is invalid */
4083 if (mod_len
!= NVM_OEM_PROD_VER_MOD_LEN
||
4084 (cap
& NVM_OEM_PROD_VER_CAP_MASK
) != 0x0)
4087 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_L
, &prod_ver
);
4088 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_H
, &rel_num
);
4090 /* Return if version is invalid */
4091 if ((rel_num
| prod_ver
) == 0x0 ||
4092 rel_num
== NVM_VER_INVALID
|| prod_ver
== NVM_VER_INVALID
)
4095 nvm_ver
->oem_major
= prod_ver
>> NVM_VER_SHIFT
;
4096 nvm_ver
->oem_minor
= prod_ver
& NVM_VER_MASK
;
4097 nvm_ver
->oem_release
= rel_num
;
4098 nvm_ver
->oem_valid
= true;
4102 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4104 * @hw: pointer to hardware structure
4105 * @nvm_ver: pointer to output structure
4107 * word read errors will return 0xFFFF
4109 void ixgbe_get_etk_id(struct ixgbe_hw
*hw
,
4110 struct ixgbe_nvm_version
*nvm_ver
)
4112 u16 etk_id_l
, etk_id_h
;
4114 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_LOW
, &etk_id_l
))
4115 etk_id_l
= NVM_VER_INVALID
;
4116 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_HI
, &etk_id_h
))
4117 etk_id_h
= NVM_VER_INVALID
;
4119 /* The word order for the version format is determined by high order
4122 if ((etk_id_h
& NVM_ETK_VALID
) == 0) {
4123 nvm_ver
->etk_id
= etk_id_h
;
4124 nvm_ver
->etk_id
|= (etk_id_l
<< NVM_ETK_SHIFT
);
4126 nvm_ver
->etk_id
= etk_id_l
;
4127 nvm_ver
->etk_id
|= (etk_id_h
<< NVM_ETK_SHIFT
);
4131 void ixgbe_disable_rx_generic(struct ixgbe_hw
*hw
)
4135 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4136 if (rxctrl
& IXGBE_RXCTRL_RXEN
) {
4137 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4140 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4141 if (pfdtxgswc
& IXGBE_PFDTXGSWC_VT_LBEN
) {
4142 pfdtxgswc
&= ~IXGBE_PFDTXGSWC_VT_LBEN
;
4143 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4144 hw
->mac
.set_lben
= true;
4146 hw
->mac
.set_lben
= false;
4149 rxctrl
&= ~IXGBE_RXCTRL_RXEN
;
4150 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, rxctrl
);
4154 void ixgbe_enable_rx_generic(struct ixgbe_hw
*hw
)
4158 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4159 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, (rxctrl
| IXGBE_RXCTRL_RXEN
));
4161 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4162 if (hw
->mac
.set_lben
) {
4165 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4166 pfdtxgswc
|= IXGBE_PFDTXGSWC_VT_LBEN
;
4167 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4168 hw
->mac
.set_lben
= false;
4173 /** ixgbe_mng_present - returns true when management capability is present
4174 * @hw: pointer to hardware structure
4176 bool ixgbe_mng_present(struct ixgbe_hw
*hw
)
4180 if (hw
->mac
.type
< ixgbe_mac_82599EB
)
4183 fwsm
= IXGBE_READ_REG(hw
, IXGBE_FWSM(hw
));
4185 return !!(fwsm
& IXGBE_FWSM_FW_MODE_PT
);
4189 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4190 * @hw: pointer to hardware structure
4191 * @speed: new link speed
4192 * @autoneg_wait_to_complete: true when waiting for completion is needed
4194 * Set the link speed in the MAC and/or PHY register and restarts link.
4196 s32
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw
*hw
,
4197 ixgbe_link_speed speed
,
4198 bool autoneg_wait_to_complete
)
4200 ixgbe_link_speed link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4201 ixgbe_link_speed highest_link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4205 bool autoneg
, link_up
= false;
4207 /* Mask off requested but non-supported speeds */
4208 status
= hw
->mac
.ops
.get_link_capabilities(hw
, &link_speed
, &autoneg
);
4212 speed
&= link_speed
;
4214 /* Try each speed one by one, highest priority first. We do this in
4215 * software because 10Gb fiber doesn't support speed autonegotiation.
4217 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
) {
4219 highest_link_speed
= IXGBE_LINK_SPEED_10GB_FULL
;
4221 /* Set the module link speed */
4222 switch (hw
->phy
.media_type
) {
4223 case ixgbe_media_type_fiber
:
4224 hw
->mac
.ops
.set_rate_select_speed(hw
,
4225 IXGBE_LINK_SPEED_10GB_FULL
);
4227 case ixgbe_media_type_fiber_qsfp
:
4228 /* QSFP module automatically detects MAC link speed */
4231 hw_dbg(hw
, "Unexpected media type\n");
4235 /* Allow module to change analog characteristics (1G->10G) */
4238 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4239 IXGBE_LINK_SPEED_10GB_FULL
,
4240 autoneg_wait_to_complete
);
4244 /* Flap the Tx laser if it has not already been done */
4245 if (hw
->mac
.ops
.flap_tx_laser
)
4246 hw
->mac
.ops
.flap_tx_laser(hw
);
4248 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4249 * Section 73.10.2, we may have to wait up to 500ms if KR is
4250 * attempted. 82599 uses the same timing for 10g SFI.
4252 for (i
= 0; i
< 5; i
++) {
4253 /* Wait for the link partner to also set speed */
4256 /* If we have link, just jump out */
4257 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
,
4267 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
) {
4269 if (highest_link_speed
== IXGBE_LINK_SPEED_UNKNOWN
)
4270 highest_link_speed
= IXGBE_LINK_SPEED_1GB_FULL
;
4272 /* Set the module link speed */
4273 switch (hw
->phy
.media_type
) {
4274 case ixgbe_media_type_fiber
:
4275 hw
->mac
.ops
.set_rate_select_speed(hw
,
4276 IXGBE_LINK_SPEED_1GB_FULL
);
4278 case ixgbe_media_type_fiber_qsfp
:
4279 /* QSFP module automatically detects link speed */
4282 hw_dbg(hw
, "Unexpected media type\n");
4286 /* Allow module to change analog characteristics (10G->1G) */
4289 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4290 IXGBE_LINK_SPEED_1GB_FULL
,
4291 autoneg_wait_to_complete
);
4295 /* Flap the Tx laser if it has not already been done */
4296 if (hw
->mac
.ops
.flap_tx_laser
)
4297 hw
->mac
.ops
.flap_tx_laser(hw
);
4299 /* Wait for the link partner to also set speed */
4302 /* If we have link, just jump out */
4303 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4312 /* We didn't get link. Configure back to the highest speed we tried,
4313 * (if there was more than one). We call ourselves back with just the
4314 * single highest speed that the user requested.
4317 status
= ixgbe_setup_mac_link_multispeed_fiber(hw
,
4319 autoneg_wait_to_complete
);
4322 /* Set autoneg_advertised value based on input link speed */
4323 hw
->phy
.autoneg_advertised
= 0;
4325 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
)
4326 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10GB_FULL
;
4328 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
)
4329 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_1GB_FULL
;
4335 * ixgbe_set_soft_rate_select_speed - Set module link speed
4336 * @hw: pointer to hardware structure
4337 * @speed: link speed to set
4339 * Set module link speed via the soft rate select.
4341 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw
*hw
,
4342 ixgbe_link_speed speed
)
4348 case IXGBE_LINK_SPEED_10GB_FULL
:
4349 /* one bit mask same as setting on */
4350 rs
= IXGBE_SFF_SOFT_RS_SELECT_10G
;
4352 case IXGBE_LINK_SPEED_1GB_FULL
:
4353 rs
= IXGBE_SFF_SOFT_RS_SELECT_1G
;
4356 hw_dbg(hw
, "Invalid fixed module speed\n");
4361 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4362 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4365 hw_dbg(hw
, "Failed to read Rx Rate Select RS0\n");
4369 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4371 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4372 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4375 hw_dbg(hw
, "Failed to write Rx Rate Select RS0\n");
4380 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4381 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4384 hw_dbg(hw
, "Failed to read Rx Rate Select RS1\n");
4388 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4390 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4391 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4394 hw_dbg(hw
, "Failed to write Rx Rate Select RS1\n");