gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / renesas / sh_eth.c
blob8ed73f44405d3ff32a137aea5e10af3f68f12a60
1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
35 #include "sh_eth.h"
37 #define SH_ETH_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR| \
41 NETIF_MSG_TX_ERR)
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 SH_ETH_OFFSET_DEFAULTS,
51 [EDSR] = 0x0000,
52 [EDMR] = 0x0400,
53 [EDTRR] = 0x0408,
54 [EDRRR] = 0x0410,
55 [EESR] = 0x0428,
56 [EESIPR] = 0x0430,
57 [TDLAR] = 0x0010,
58 [TDFAR] = 0x0014,
59 [TDFXR] = 0x0018,
60 [TDFFR] = 0x001c,
61 [RDLAR] = 0x0030,
62 [RDFAR] = 0x0034,
63 [RDFXR] = 0x0038,
64 [RDFFR] = 0x003c,
65 [TRSCER] = 0x0438,
66 [RMFCR] = 0x0440,
67 [TFTR] = 0x0448,
68 [FDR] = 0x0450,
69 [RMCR] = 0x0458,
70 [RPADIR] = 0x0460,
71 [FCFTR] = 0x0468,
72 [CSMR] = 0x04E4,
74 [ECMR] = 0x0500,
75 [ECSR] = 0x0510,
76 [ECSIPR] = 0x0518,
77 [PIR] = 0x0520,
78 [PSR] = 0x0528,
79 [PIPR] = 0x052c,
80 [RFLR] = 0x0508,
81 [APR] = 0x0554,
82 [MPR] = 0x0558,
83 [PFTCR] = 0x055c,
84 [PFRCR] = 0x0560,
85 [TPAUSER] = 0x0564,
86 [GECMR] = 0x05b0,
87 [BCULR] = 0x05b4,
88 [MAHR] = 0x05c0,
89 [MALR] = 0x05c8,
90 [TROCR] = 0x0700,
91 [CDCR] = 0x0708,
92 [LCCR] = 0x0710,
93 [CEFCR] = 0x0740,
94 [FRECR] = 0x0748,
95 [TSFRCR] = 0x0750,
96 [TLFRCR] = 0x0758,
97 [RFCR] = 0x0760,
98 [CERCR] = 0x0768,
99 [CEECR] = 0x0770,
100 [MAFCR] = 0x0778,
101 [RMII_MII] = 0x0790,
103 [ARSTR] = 0x0000,
104 [TSU_CTRST] = 0x0004,
105 [TSU_FWEN0] = 0x0010,
106 [TSU_FWEN1] = 0x0014,
107 [TSU_FCM] = 0x0018,
108 [TSU_BSYSL0] = 0x0020,
109 [TSU_BSYSL1] = 0x0024,
110 [TSU_PRISL0] = 0x0028,
111 [TSU_PRISL1] = 0x002c,
112 [TSU_FWSL0] = 0x0030,
113 [TSU_FWSL1] = 0x0034,
114 [TSU_FWSLC] = 0x0038,
115 [TSU_QTAGM0] = 0x0040,
116 [TSU_QTAGM1] = 0x0044,
117 [TSU_FWSR] = 0x0050,
118 [TSU_FWINMK] = 0x0054,
119 [TSU_ADQT0] = 0x0048,
120 [TSU_ADQT1] = 0x004c,
121 [TSU_VTAG0] = 0x0058,
122 [TSU_VTAG1] = 0x005c,
123 [TSU_ADSBSY] = 0x0060,
124 [TSU_TEN] = 0x0064,
125 [TSU_POST1] = 0x0070,
126 [TSU_POST2] = 0x0074,
127 [TSU_POST3] = 0x0078,
128 [TSU_POST4] = 0x007c,
129 [TSU_ADRH0] = 0x0100,
131 [TXNLCR0] = 0x0080,
132 [TXALCR0] = 0x0084,
133 [RXNLCR0] = 0x0088,
134 [RXALCR0] = 0x008c,
135 [FWNLCR0] = 0x0090,
136 [FWALCR0] = 0x0094,
137 [TXNLCR1] = 0x00a0,
138 [TXALCR1] = 0x00a4,
139 [RXNLCR1] = 0x00a8,
140 [RXALCR1] = 0x00ac,
141 [FWNLCR1] = 0x00b0,
142 [FWALCR1] = 0x00b4,
145 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
146 SH_ETH_OFFSET_DEFAULTS,
148 [ECMR] = 0x0300,
149 [RFLR] = 0x0308,
150 [ECSR] = 0x0310,
151 [ECSIPR] = 0x0318,
152 [PIR] = 0x0320,
153 [PSR] = 0x0328,
154 [RDMLR] = 0x0340,
155 [IPGR] = 0x0350,
156 [APR] = 0x0354,
157 [MPR] = 0x0358,
158 [RFCF] = 0x0360,
159 [TPAUSER] = 0x0364,
160 [TPAUSECR] = 0x0368,
161 [MAHR] = 0x03c0,
162 [MALR] = 0x03c8,
163 [TROCR] = 0x03d0,
164 [CDCR] = 0x03d4,
165 [LCCR] = 0x03d8,
166 [CNDCR] = 0x03dc,
167 [CEFCR] = 0x03e4,
168 [FRECR] = 0x03e8,
169 [TSFRCR] = 0x03ec,
170 [TLFRCR] = 0x03f0,
171 [RFCR] = 0x03f4,
172 [MAFCR] = 0x03f8,
174 [EDMR] = 0x0200,
175 [EDTRR] = 0x0208,
176 [EDRRR] = 0x0210,
177 [TDLAR] = 0x0218,
178 [RDLAR] = 0x0220,
179 [EESR] = 0x0228,
180 [EESIPR] = 0x0230,
181 [TRSCER] = 0x0238,
182 [RMFCR] = 0x0240,
183 [TFTR] = 0x0248,
184 [FDR] = 0x0250,
185 [RMCR] = 0x0258,
186 [TFUCR] = 0x0264,
187 [RFOCR] = 0x0268,
188 [RMIIMODE] = 0x026c,
189 [FCFTR] = 0x0270,
190 [TRIMD] = 0x027c,
193 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
194 SH_ETH_OFFSET_DEFAULTS,
196 [ECMR] = 0x0100,
197 [RFLR] = 0x0108,
198 [ECSR] = 0x0110,
199 [ECSIPR] = 0x0118,
200 [PIR] = 0x0120,
201 [PSR] = 0x0128,
202 [RDMLR] = 0x0140,
203 [IPGR] = 0x0150,
204 [APR] = 0x0154,
205 [MPR] = 0x0158,
206 [TPAUSER] = 0x0164,
207 [RFCF] = 0x0160,
208 [TPAUSECR] = 0x0168,
209 [BCFRR] = 0x016c,
210 [MAHR] = 0x01c0,
211 [MALR] = 0x01c8,
212 [TROCR] = 0x01d0,
213 [CDCR] = 0x01d4,
214 [LCCR] = 0x01d8,
215 [CNDCR] = 0x01dc,
216 [CEFCR] = 0x01e4,
217 [FRECR] = 0x01e8,
218 [TSFRCR] = 0x01ec,
219 [TLFRCR] = 0x01f0,
220 [RFCR] = 0x01f4,
221 [MAFCR] = 0x01f8,
222 [RTRATE] = 0x01fc,
224 [EDMR] = 0x0000,
225 [EDTRR] = 0x0008,
226 [EDRRR] = 0x0010,
227 [TDLAR] = 0x0018,
228 [RDLAR] = 0x0020,
229 [EESR] = 0x0028,
230 [EESIPR] = 0x0030,
231 [TRSCER] = 0x0038,
232 [RMFCR] = 0x0040,
233 [TFTR] = 0x0048,
234 [FDR] = 0x0050,
235 [RMCR] = 0x0058,
236 [TFUCR] = 0x0064,
237 [RFOCR] = 0x0068,
238 [FCFTR] = 0x0070,
239 [RPADIR] = 0x0078,
240 [TRIMD] = 0x007c,
241 [RBWAR] = 0x00c8,
242 [RDFAR] = 0x00cc,
243 [TBRAR] = 0x00d4,
244 [TDFAR] = 0x00d8,
247 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
248 SH_ETH_OFFSET_DEFAULTS,
250 [EDMR] = 0x0000,
251 [EDTRR] = 0x0004,
252 [EDRRR] = 0x0008,
253 [TDLAR] = 0x000c,
254 [RDLAR] = 0x0010,
255 [EESR] = 0x0014,
256 [EESIPR] = 0x0018,
257 [TRSCER] = 0x001c,
258 [RMFCR] = 0x0020,
259 [TFTR] = 0x0024,
260 [FDR] = 0x0028,
261 [RMCR] = 0x002c,
262 [EDOCR] = 0x0030,
263 [FCFTR] = 0x0034,
264 [RPADIR] = 0x0038,
265 [TRIMD] = 0x003c,
266 [RBWAR] = 0x0040,
267 [RDFAR] = 0x0044,
268 [TBRAR] = 0x004c,
269 [TDFAR] = 0x0050,
271 [ECMR] = 0x0160,
272 [ECSR] = 0x0164,
273 [ECSIPR] = 0x0168,
274 [PIR] = 0x016c,
275 [MAHR] = 0x0170,
276 [MALR] = 0x0174,
277 [RFLR] = 0x0178,
278 [PSR] = 0x017c,
279 [TROCR] = 0x0180,
280 [CDCR] = 0x0184,
281 [LCCR] = 0x0188,
282 [CNDCR] = 0x018c,
283 [CEFCR] = 0x0194,
284 [FRECR] = 0x0198,
285 [TSFRCR] = 0x019c,
286 [TLFRCR] = 0x01a0,
287 [RFCR] = 0x01a4,
288 [MAFCR] = 0x01a8,
289 [IPGR] = 0x01b4,
290 [APR] = 0x01b8,
291 [MPR] = 0x01bc,
292 [TPAUSER] = 0x01c4,
293 [BCFR] = 0x01cc,
295 [ARSTR] = 0x0000,
296 [TSU_CTRST] = 0x0004,
297 [TSU_FWEN0] = 0x0010,
298 [TSU_FWEN1] = 0x0014,
299 [TSU_FCM] = 0x0018,
300 [TSU_BSYSL0] = 0x0020,
301 [TSU_BSYSL1] = 0x0024,
302 [TSU_PRISL0] = 0x0028,
303 [TSU_PRISL1] = 0x002c,
304 [TSU_FWSL0] = 0x0030,
305 [TSU_FWSL1] = 0x0034,
306 [TSU_FWSLC] = 0x0038,
307 [TSU_QTAGM0] = 0x0040,
308 [TSU_QTAGM1] = 0x0044,
309 [TSU_ADQT0] = 0x0048,
310 [TSU_ADQT1] = 0x004c,
311 [TSU_FWSR] = 0x0050,
312 [TSU_FWINMK] = 0x0054,
313 [TSU_ADSBSY] = 0x0060,
314 [TSU_TEN] = 0x0064,
315 [TSU_POST1] = 0x0070,
316 [TSU_POST2] = 0x0074,
317 [TSU_POST3] = 0x0078,
318 [TSU_POST4] = 0x007c,
320 [TXNLCR0] = 0x0080,
321 [TXALCR0] = 0x0084,
322 [RXNLCR0] = 0x0088,
323 [RXALCR0] = 0x008c,
324 [FWNLCR0] = 0x0090,
325 [FWALCR0] = 0x0094,
326 [TXNLCR1] = 0x00a0,
327 [TXALCR1] = 0x00a4,
328 [RXNLCR1] = 0x00a8,
329 [RXALCR1] = 0x00ac,
330 [FWNLCR1] = 0x00b0,
331 [FWALCR1] = 0x00b4,
333 [TSU_ADRH0] = 0x0100,
336 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
337 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
339 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
341 struct sh_eth_private *mdp = netdev_priv(ndev);
342 u16 offset = mdp->reg_offset[enum_index];
344 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
345 return;
347 iowrite32(data, mdp->addr + offset);
350 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
352 struct sh_eth_private *mdp = netdev_priv(ndev);
353 u16 offset = mdp->reg_offset[enum_index];
355 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
356 return ~0U;
358 return ioread32(mdp->addr + offset);
361 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
362 u32 set)
364 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
365 enum_index);
368 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
370 return mdp->reg_offset[enum_index];
373 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
374 int enum_index)
376 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
378 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
379 return;
381 iowrite32(data, mdp->tsu_addr + offset);
384 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
386 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
388 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
389 return ~0U;
391 return ioread32(mdp->tsu_addr + offset);
394 static void sh_eth_soft_swap(char *src, int len)
396 #ifdef __LITTLE_ENDIAN
397 u32 *p = (u32 *)src;
398 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
400 for (; p < maxp; p++)
401 *p = swab32(*p);
402 #endif
405 static void sh_eth_select_mii(struct net_device *ndev)
407 struct sh_eth_private *mdp = netdev_priv(ndev);
408 u32 value;
410 switch (mdp->phy_interface) {
411 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
412 value = 0x3;
413 break;
414 case PHY_INTERFACE_MODE_GMII:
415 value = 0x2;
416 break;
417 case PHY_INTERFACE_MODE_MII:
418 value = 0x1;
419 break;
420 case PHY_INTERFACE_MODE_RMII:
421 value = 0x0;
422 break;
423 default:
424 netdev_warn(ndev,
425 "PHY interface mode was not setup. Set to MII.\n");
426 value = 0x1;
427 break;
430 sh_eth_write(ndev, value, RMII_MII);
433 static void sh_eth_set_duplex(struct net_device *ndev)
435 struct sh_eth_private *mdp = netdev_priv(ndev);
437 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
440 static void sh_eth_chip_reset(struct net_device *ndev)
442 struct sh_eth_private *mdp = netdev_priv(ndev);
444 /* reset device */
445 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
446 mdelay(1);
449 static int sh_eth_soft_reset(struct net_device *ndev)
451 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
452 mdelay(3);
453 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
455 return 0;
458 static int sh_eth_check_soft_reset(struct net_device *ndev)
460 int cnt;
462 for (cnt = 100; cnt > 0; cnt--) {
463 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
464 return 0;
465 mdelay(1);
468 netdev_err(ndev, "Device reset failed\n");
469 return -ETIMEDOUT;
472 static int sh_eth_soft_reset_gether(struct net_device *ndev)
474 struct sh_eth_private *mdp = netdev_priv(ndev);
475 int ret;
477 sh_eth_write(ndev, EDSR_ENALL, EDSR);
478 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
480 ret = sh_eth_check_soft_reset(ndev);
481 if (ret)
482 return ret;
484 /* Table Init */
485 sh_eth_write(ndev, 0, TDLAR);
486 sh_eth_write(ndev, 0, TDFAR);
487 sh_eth_write(ndev, 0, TDFXR);
488 sh_eth_write(ndev, 0, TDFFR);
489 sh_eth_write(ndev, 0, RDLAR);
490 sh_eth_write(ndev, 0, RDFAR);
491 sh_eth_write(ndev, 0, RDFXR);
492 sh_eth_write(ndev, 0, RDFFR);
494 /* Reset HW CRC register */
495 if (mdp->cd->csmr)
496 sh_eth_write(ndev, 0, CSMR);
498 /* Select MII mode */
499 if (mdp->cd->select_mii)
500 sh_eth_select_mii(ndev);
502 return ret;
505 static void sh_eth_set_rate_gether(struct net_device *ndev)
507 struct sh_eth_private *mdp = netdev_priv(ndev);
509 if (WARN_ON(!mdp->cd->gecmr))
510 return;
512 switch (mdp->speed) {
513 case 10: /* 10BASE */
514 sh_eth_write(ndev, GECMR_10, GECMR);
515 break;
516 case 100:/* 100BASE */
517 sh_eth_write(ndev, GECMR_100, GECMR);
518 break;
519 case 1000: /* 1000BASE */
520 sh_eth_write(ndev, GECMR_1000, GECMR);
521 break;
525 #ifdef CONFIG_OF
526 /* R7S72100 */
527 static struct sh_eth_cpu_data r7s72100_data = {
528 .soft_reset = sh_eth_soft_reset_gether,
530 .chip_reset = sh_eth_chip_reset,
531 .set_duplex = sh_eth_set_duplex,
533 .register_type = SH_ETH_REG_GIGABIT,
535 .edtrr_trns = EDTRR_TRNS_GETHER,
536 .ecsr_value = ECSR_ICD,
537 .ecsipr_value = ECSIPR_ICDIP,
538 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
539 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
540 EESIPR_ECIIP |
541 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
542 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
543 EESIPR_RMAFIP | EESIPR_RRFIP |
544 EESIPR_RTLFIP | EESIPR_RTSFIP |
545 EESIPR_PREIP | EESIPR_CERFIP,
547 .tx_check = EESR_TC1 | EESR_FTC,
548 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
549 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
550 EESR_TDE,
551 .fdr_value = 0x0000070f,
553 .no_psr = 1,
554 .apr = 1,
555 .mpr = 1,
556 .tpauser = 1,
557 .hw_swap = 1,
558 .rpadir = 1,
559 .no_trimd = 1,
560 .no_ade = 1,
561 .xdfar_rw = 1,
562 .csmr = 1,
563 .rx_csum = 1,
564 .tsu = 1,
565 .no_tx_cntrs = 1,
568 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
570 sh_eth_chip_reset(ndev);
572 sh_eth_select_mii(ndev);
575 /* R8A7740 */
576 static struct sh_eth_cpu_data r8a7740_data = {
577 .soft_reset = sh_eth_soft_reset_gether,
579 .chip_reset = sh_eth_chip_reset_r8a7740,
580 .set_duplex = sh_eth_set_duplex,
581 .set_rate = sh_eth_set_rate_gether,
583 .register_type = SH_ETH_REG_GIGABIT,
585 .edtrr_trns = EDTRR_TRNS_GETHER,
586 .ecsr_value = ECSR_ICD | ECSR_MPD,
587 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
588 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
589 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
590 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
591 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
592 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
593 EESIPR_CEEFIP | EESIPR_CELFIP |
594 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
595 EESIPR_PREIP | EESIPR_CERFIP,
597 .tx_check = EESR_TC1 | EESR_FTC,
598 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
599 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
600 EESR_TDE,
601 .fdr_value = 0x0000070f,
603 .apr = 1,
604 .mpr = 1,
605 .tpauser = 1,
606 .gecmr = 1,
607 .bculr = 1,
608 .hw_swap = 1,
609 .rpadir = 1,
610 .no_trimd = 1,
611 .no_ade = 1,
612 .xdfar_rw = 1,
613 .csmr = 1,
614 .rx_csum = 1,
615 .tsu = 1,
616 .select_mii = 1,
617 .magic = 1,
618 .cexcr = 1,
621 /* There is CPU dependent code */
622 static void sh_eth_set_rate_rcar(struct net_device *ndev)
624 struct sh_eth_private *mdp = netdev_priv(ndev);
626 switch (mdp->speed) {
627 case 10: /* 10BASE */
628 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
629 break;
630 case 100:/* 100BASE */
631 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
632 break;
636 /* R-Car Gen1 */
637 static struct sh_eth_cpu_data rcar_gen1_data = {
638 .soft_reset = sh_eth_soft_reset,
640 .set_duplex = sh_eth_set_duplex,
641 .set_rate = sh_eth_set_rate_rcar,
643 .register_type = SH_ETH_REG_FAST_RCAR,
645 .edtrr_trns = EDTRR_TRNS_ETHER,
646 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
647 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 EESIPR_RMAFIP | EESIPR_RRFIP |
652 EESIPR_RTLFIP | EESIPR_RTSFIP |
653 EESIPR_PREIP | EESIPR_CERFIP,
655 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
656 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 .fdr_value = 0x00000f0f,
660 .apr = 1,
661 .mpr = 1,
662 .tpauser = 1,
663 .hw_swap = 1,
664 .no_xdfar = 1,
667 /* R-Car Gen2 and RZ/G1 */
668 static struct sh_eth_cpu_data rcar_gen2_data = {
669 .soft_reset = sh_eth_soft_reset,
671 .set_duplex = sh_eth_set_duplex,
672 .set_rate = sh_eth_set_rate_rcar,
674 .register_type = SH_ETH_REG_FAST_RCAR,
676 .edtrr_trns = EDTRR_TRNS_ETHER,
677 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
678 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
679 ECSIPR_MPDIP,
680 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
681 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
682 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
683 EESIPR_RMAFIP | EESIPR_RRFIP |
684 EESIPR_RTLFIP | EESIPR_RTSFIP |
685 EESIPR_PREIP | EESIPR_CERFIP,
687 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
688 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
689 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
690 .fdr_value = 0x00000f0f,
692 .trscer_err_mask = DESC_I_RINT8,
694 .apr = 1,
695 .mpr = 1,
696 .tpauser = 1,
697 .hw_swap = 1,
698 .no_xdfar = 1,
699 .rmiimode = 1,
700 .magic = 1,
703 /* R8A77980 */
704 static struct sh_eth_cpu_data r8a77980_data = {
705 .soft_reset = sh_eth_soft_reset_gether,
707 .set_duplex = sh_eth_set_duplex,
708 .set_rate = sh_eth_set_rate_gether,
710 .register_type = SH_ETH_REG_GIGABIT,
712 .edtrr_trns = EDTRR_TRNS_GETHER,
713 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
714 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
715 ECSIPR_MPDIP,
716 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
717 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
718 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
719 EESIPR_RMAFIP | EESIPR_RRFIP |
720 EESIPR_RTLFIP | EESIPR_RTSFIP |
721 EESIPR_PREIP | EESIPR_CERFIP,
723 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
724 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
725 EESR_RFE | EESR_RDE | EESR_RFRMER |
726 EESR_TFE | EESR_TDE | EESR_ECI,
727 .fdr_value = 0x0000070f,
729 .apr = 1,
730 .mpr = 1,
731 .tpauser = 1,
732 .gecmr = 1,
733 .bculr = 1,
734 .hw_swap = 1,
735 .nbst = 1,
736 .rpadir = 1,
737 .no_trimd = 1,
738 .no_ade = 1,
739 .xdfar_rw = 1,
740 .csmr = 1,
741 .rx_csum = 1,
742 .select_mii = 1,
743 .magic = 1,
744 .cexcr = 1,
747 /* R7S9210 */
748 static struct sh_eth_cpu_data r7s9210_data = {
749 .soft_reset = sh_eth_soft_reset,
751 .set_duplex = sh_eth_set_duplex,
752 .set_rate = sh_eth_set_rate_rcar,
754 .register_type = SH_ETH_REG_FAST_SH4,
756 .edtrr_trns = EDTRR_TRNS_ETHER,
757 .ecsr_value = ECSR_ICD,
758 .ecsipr_value = ECSIPR_ICDIP,
759 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
760 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
761 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
762 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
763 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
764 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
765 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
767 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
768 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
769 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
771 .fdr_value = 0x0000070f,
773 .apr = 1,
774 .mpr = 1,
775 .tpauser = 1,
776 .hw_swap = 1,
777 .rpadir = 1,
778 .no_ade = 1,
779 .xdfar_rw = 1,
781 #endif /* CONFIG_OF */
783 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
785 struct sh_eth_private *mdp = netdev_priv(ndev);
787 switch (mdp->speed) {
788 case 10: /* 10BASE */
789 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
790 break;
791 case 100:/* 100BASE */
792 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
793 break;
797 /* SH7724 */
798 static struct sh_eth_cpu_data sh7724_data = {
799 .soft_reset = sh_eth_soft_reset,
801 .set_duplex = sh_eth_set_duplex,
802 .set_rate = sh_eth_set_rate_sh7724,
804 .register_type = SH_ETH_REG_FAST_SH4,
806 .edtrr_trns = EDTRR_TRNS_ETHER,
807 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
808 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
809 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
810 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
811 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
812 EESIPR_RMAFIP | EESIPR_RRFIP |
813 EESIPR_RTLFIP | EESIPR_RTSFIP |
814 EESIPR_PREIP | EESIPR_CERFIP,
816 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
817 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
818 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
820 .apr = 1,
821 .mpr = 1,
822 .tpauser = 1,
823 .hw_swap = 1,
824 .rpadir = 1,
827 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
829 struct sh_eth_private *mdp = netdev_priv(ndev);
831 switch (mdp->speed) {
832 case 10: /* 10BASE */
833 sh_eth_write(ndev, 0, RTRATE);
834 break;
835 case 100:/* 100BASE */
836 sh_eth_write(ndev, 1, RTRATE);
837 break;
841 /* SH7757 */
842 static struct sh_eth_cpu_data sh7757_data = {
843 .soft_reset = sh_eth_soft_reset,
845 .set_duplex = sh_eth_set_duplex,
846 .set_rate = sh_eth_set_rate_sh7757,
848 .register_type = SH_ETH_REG_FAST_SH4,
850 .edtrr_trns = EDTRR_TRNS_ETHER,
851 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
852 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
853 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
854 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
855 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
856 EESIPR_CEEFIP | EESIPR_CELFIP |
857 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
858 EESIPR_PREIP | EESIPR_CERFIP,
860 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
861 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
862 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
864 .irq_flags = IRQF_SHARED,
865 .apr = 1,
866 .mpr = 1,
867 .tpauser = 1,
868 .hw_swap = 1,
869 .no_ade = 1,
870 .rpadir = 1,
871 .rtrate = 1,
872 .dual_port = 1,
875 #define SH_GIGA_ETH_BASE 0xfee00000UL
876 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
877 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
878 static void sh_eth_chip_reset_giga(struct net_device *ndev)
880 u32 mahr[2], malr[2];
881 int i;
883 /* save MAHR and MALR */
884 for (i = 0; i < 2; i++) {
885 malr[i] = ioread32((void *)GIGA_MALR(i));
886 mahr[i] = ioread32((void *)GIGA_MAHR(i));
889 sh_eth_chip_reset(ndev);
891 /* restore MAHR and MALR */
892 for (i = 0; i < 2; i++) {
893 iowrite32(malr[i], (void *)GIGA_MALR(i));
894 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
898 static void sh_eth_set_rate_giga(struct net_device *ndev)
900 struct sh_eth_private *mdp = netdev_priv(ndev);
902 if (WARN_ON(!mdp->cd->gecmr))
903 return;
905 switch (mdp->speed) {
906 case 10: /* 10BASE */
907 sh_eth_write(ndev, 0x00000000, GECMR);
908 break;
909 case 100:/* 100BASE */
910 sh_eth_write(ndev, 0x00000010, GECMR);
911 break;
912 case 1000: /* 1000BASE */
913 sh_eth_write(ndev, 0x00000020, GECMR);
914 break;
918 /* SH7757(GETHERC) */
919 static struct sh_eth_cpu_data sh7757_data_giga = {
920 .soft_reset = sh_eth_soft_reset_gether,
922 .chip_reset = sh_eth_chip_reset_giga,
923 .set_duplex = sh_eth_set_duplex,
924 .set_rate = sh_eth_set_rate_giga,
926 .register_type = SH_ETH_REG_GIGABIT,
928 .edtrr_trns = EDTRR_TRNS_GETHER,
929 .ecsr_value = ECSR_ICD | ECSR_MPD,
930 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
931 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
932 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
933 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
934 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
935 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
936 EESIPR_CEEFIP | EESIPR_CELFIP |
937 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
938 EESIPR_PREIP | EESIPR_CERFIP,
940 .tx_check = EESR_TC1 | EESR_FTC,
941 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
942 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
943 EESR_TDE,
944 .fdr_value = 0x0000072f,
946 .irq_flags = IRQF_SHARED,
947 .apr = 1,
948 .mpr = 1,
949 .tpauser = 1,
950 .gecmr = 1,
951 .bculr = 1,
952 .hw_swap = 1,
953 .rpadir = 1,
954 .no_trimd = 1,
955 .no_ade = 1,
956 .xdfar_rw = 1,
957 .tsu = 1,
958 .cexcr = 1,
959 .dual_port = 1,
962 /* SH7734 */
963 static struct sh_eth_cpu_data sh7734_data = {
964 .soft_reset = sh_eth_soft_reset_gether,
966 .chip_reset = sh_eth_chip_reset,
967 .set_duplex = sh_eth_set_duplex,
968 .set_rate = sh_eth_set_rate_gether,
970 .register_type = SH_ETH_REG_GIGABIT,
972 .edtrr_trns = EDTRR_TRNS_GETHER,
973 .ecsr_value = ECSR_ICD | ECSR_MPD,
974 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
975 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
976 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
977 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
978 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
979 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
980 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
981 EESIPR_PREIP | EESIPR_CERFIP,
983 .tx_check = EESR_TC1 | EESR_FTC,
984 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
985 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
986 EESR_TDE,
988 .apr = 1,
989 .mpr = 1,
990 .tpauser = 1,
991 .gecmr = 1,
992 .bculr = 1,
993 .hw_swap = 1,
994 .no_trimd = 1,
995 .no_ade = 1,
996 .xdfar_rw = 1,
997 .tsu = 1,
998 .csmr = 1,
999 .rx_csum = 1,
1000 .select_mii = 1,
1001 .magic = 1,
1002 .cexcr = 1,
1005 /* SH7763 */
1006 static struct sh_eth_cpu_data sh7763_data = {
1007 .soft_reset = sh_eth_soft_reset_gether,
1009 .chip_reset = sh_eth_chip_reset,
1010 .set_duplex = sh_eth_set_duplex,
1011 .set_rate = sh_eth_set_rate_gether,
1013 .register_type = SH_ETH_REG_GIGABIT,
1015 .edtrr_trns = EDTRR_TRNS_GETHER,
1016 .ecsr_value = ECSR_ICD | ECSR_MPD,
1017 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1018 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1019 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1020 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1021 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1022 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1023 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1024 EESIPR_PREIP | EESIPR_CERFIP,
1026 .tx_check = EESR_TC1 | EESR_FTC,
1027 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1028 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1030 .apr = 1,
1031 .mpr = 1,
1032 .tpauser = 1,
1033 .gecmr = 1,
1034 .bculr = 1,
1035 .hw_swap = 1,
1036 .no_trimd = 1,
1037 .no_ade = 1,
1038 .xdfar_rw = 1,
1039 .tsu = 1,
1040 .irq_flags = IRQF_SHARED,
1041 .magic = 1,
1042 .cexcr = 1,
1043 .rx_csum = 1,
1044 .dual_port = 1,
1047 static struct sh_eth_cpu_data sh7619_data = {
1048 .soft_reset = sh_eth_soft_reset,
1050 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1052 .edtrr_trns = EDTRR_TRNS_ETHER,
1053 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1054 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1055 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1056 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1057 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1058 EESIPR_CEEFIP | EESIPR_CELFIP |
1059 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1060 EESIPR_PREIP | EESIPR_CERFIP,
1062 .apr = 1,
1063 .mpr = 1,
1064 .tpauser = 1,
1065 .hw_swap = 1,
1068 static struct sh_eth_cpu_data sh771x_data = {
1069 .soft_reset = sh_eth_soft_reset,
1071 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1073 .edtrr_trns = EDTRR_TRNS_ETHER,
1074 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1075 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1076 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1077 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1078 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1079 EESIPR_CEEFIP | EESIPR_CELFIP |
1080 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1081 EESIPR_PREIP | EESIPR_CERFIP,
1082 .tsu = 1,
1083 .dual_port = 1,
1086 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1088 if (!cd->ecsr_value)
1089 cd->ecsr_value = DEFAULT_ECSR_INIT;
1091 if (!cd->ecsipr_value)
1092 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1094 if (!cd->fcftr_value)
1095 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1096 DEFAULT_FIFO_F_D_RFD;
1098 if (!cd->fdr_value)
1099 cd->fdr_value = DEFAULT_FDR_INIT;
1101 if (!cd->tx_check)
1102 cd->tx_check = DEFAULT_TX_CHECK;
1104 if (!cd->eesr_err_check)
1105 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1107 if (!cd->trscer_err_mask)
1108 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1111 static void sh_eth_set_receive_align(struct sk_buff *skb)
1113 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1115 if (reserve)
1116 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1119 /* Program the hardware MAC address from dev->dev_addr. */
1120 static void update_mac_address(struct net_device *ndev)
1122 sh_eth_write(ndev,
1123 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1124 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1125 sh_eth_write(ndev,
1126 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1129 /* Get MAC address from SuperH MAC address register
1131 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1132 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1133 * When you want use this device, you must set MAC address in bootloader.
1136 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1138 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1139 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1140 } else {
1141 u32 mahr = sh_eth_read(ndev, MAHR);
1142 u32 malr = sh_eth_read(ndev, MALR);
1144 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1145 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1146 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1147 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1148 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1149 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1153 struct bb_info {
1154 void (*set_gate)(void *addr);
1155 struct mdiobb_ctrl ctrl;
1156 void *addr;
1159 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1161 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1162 u32 pir;
1164 if (bitbang->set_gate)
1165 bitbang->set_gate(bitbang->addr);
1167 pir = ioread32(bitbang->addr);
1168 if (set)
1169 pir |= mask;
1170 else
1171 pir &= ~mask;
1172 iowrite32(pir, bitbang->addr);
1175 /* Data I/O pin control */
1176 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1178 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1181 /* Set bit data*/
1182 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1184 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1187 /* Get bit data*/
1188 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1190 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1192 if (bitbang->set_gate)
1193 bitbang->set_gate(bitbang->addr);
1195 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1198 /* MDC pin control */
1199 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1201 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1204 /* mdio bus control struct */
1205 static struct mdiobb_ops bb_ops = {
1206 .owner = THIS_MODULE,
1207 .set_mdc = sh_mdc_ctrl,
1208 .set_mdio_dir = sh_mmd_ctrl,
1209 .set_mdio_data = sh_set_mdio,
1210 .get_mdio_data = sh_get_mdio,
1213 /* free Tx skb function */
1214 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1216 struct sh_eth_private *mdp = netdev_priv(ndev);
1217 struct sh_eth_txdesc *txdesc;
1218 int free_num = 0;
1219 int entry;
1220 bool sent;
1222 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1223 entry = mdp->dirty_tx % mdp->num_tx_ring;
1224 txdesc = &mdp->tx_ring[entry];
1225 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1226 if (sent_only && !sent)
1227 break;
1228 /* TACT bit must be checked before all the following reads */
1229 dma_rmb();
1230 netif_info(mdp, tx_done, ndev,
1231 "tx entry %d status 0x%08x\n",
1232 entry, le32_to_cpu(txdesc->status));
1233 /* Free the original skb. */
1234 if (mdp->tx_skbuff[entry]) {
1235 dma_unmap_single(&mdp->pdev->dev,
1236 le32_to_cpu(txdesc->addr),
1237 le32_to_cpu(txdesc->len) >> 16,
1238 DMA_TO_DEVICE);
1239 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1240 mdp->tx_skbuff[entry] = NULL;
1241 free_num++;
1243 txdesc->status = cpu_to_le32(TD_TFP);
1244 if (entry >= mdp->num_tx_ring - 1)
1245 txdesc->status |= cpu_to_le32(TD_TDLE);
1247 if (sent) {
1248 ndev->stats.tx_packets++;
1249 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1252 return free_num;
1255 /* free skb and descriptor buffer */
1256 static void sh_eth_ring_free(struct net_device *ndev)
1258 struct sh_eth_private *mdp = netdev_priv(ndev);
1259 int ringsize, i;
1261 if (mdp->rx_ring) {
1262 for (i = 0; i < mdp->num_rx_ring; i++) {
1263 if (mdp->rx_skbuff[i]) {
1264 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1266 dma_unmap_single(&mdp->pdev->dev,
1267 le32_to_cpu(rxdesc->addr),
1268 ALIGN(mdp->rx_buf_sz, 32),
1269 DMA_FROM_DEVICE);
1272 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1273 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1274 mdp->rx_desc_dma);
1275 mdp->rx_ring = NULL;
1278 /* Free Rx skb ringbuffer */
1279 if (mdp->rx_skbuff) {
1280 for (i = 0; i < mdp->num_rx_ring; i++)
1281 dev_kfree_skb(mdp->rx_skbuff[i]);
1283 kfree(mdp->rx_skbuff);
1284 mdp->rx_skbuff = NULL;
1286 if (mdp->tx_ring) {
1287 sh_eth_tx_free(ndev, false);
1289 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1290 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1291 mdp->tx_desc_dma);
1292 mdp->tx_ring = NULL;
1295 /* Free Tx skb ringbuffer */
1296 kfree(mdp->tx_skbuff);
1297 mdp->tx_skbuff = NULL;
1300 /* format skb and descriptor buffer */
1301 static void sh_eth_ring_format(struct net_device *ndev)
1303 struct sh_eth_private *mdp = netdev_priv(ndev);
1304 int i;
1305 struct sk_buff *skb;
1306 struct sh_eth_rxdesc *rxdesc = NULL;
1307 struct sh_eth_txdesc *txdesc = NULL;
1308 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1309 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1310 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1311 dma_addr_t dma_addr;
1312 u32 buf_len;
1314 mdp->cur_rx = 0;
1315 mdp->cur_tx = 0;
1316 mdp->dirty_rx = 0;
1317 mdp->dirty_tx = 0;
1319 memset(mdp->rx_ring, 0, rx_ringsize);
1321 /* build Rx ring buffer */
1322 for (i = 0; i < mdp->num_rx_ring; i++) {
1323 /* skb */
1324 mdp->rx_skbuff[i] = NULL;
1325 skb = netdev_alloc_skb(ndev, skbuff_size);
1326 if (skb == NULL)
1327 break;
1328 sh_eth_set_receive_align(skb);
1330 /* The size of the buffer is a multiple of 32 bytes. */
1331 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1332 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1333 DMA_FROM_DEVICE);
1334 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1335 kfree_skb(skb);
1336 break;
1338 mdp->rx_skbuff[i] = skb;
1340 /* RX descriptor */
1341 rxdesc = &mdp->rx_ring[i];
1342 rxdesc->len = cpu_to_le32(buf_len << 16);
1343 rxdesc->addr = cpu_to_le32(dma_addr);
1344 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1346 /* Rx descriptor address set */
1347 if (i == 0) {
1348 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1349 if (mdp->cd->xdfar_rw)
1350 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1354 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1356 /* Mark the last entry as wrapping the ring. */
1357 if (rxdesc)
1358 rxdesc->status |= cpu_to_le32(RD_RDLE);
1360 memset(mdp->tx_ring, 0, tx_ringsize);
1362 /* build Tx ring buffer */
1363 for (i = 0; i < mdp->num_tx_ring; i++) {
1364 mdp->tx_skbuff[i] = NULL;
1365 txdesc = &mdp->tx_ring[i];
1366 txdesc->status = cpu_to_le32(TD_TFP);
1367 txdesc->len = cpu_to_le32(0);
1368 if (i == 0) {
1369 /* Tx descriptor address set */
1370 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1371 if (mdp->cd->xdfar_rw)
1372 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1376 txdesc->status |= cpu_to_le32(TD_TDLE);
1379 /* Get skb and descriptor buffer */
1380 static int sh_eth_ring_init(struct net_device *ndev)
1382 struct sh_eth_private *mdp = netdev_priv(ndev);
1383 int rx_ringsize, tx_ringsize;
1385 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1386 * card needs room to do 8 byte alignment, +2 so we can reserve
1387 * the first 2 bytes, and +16 gets room for the status word from the
1388 * card.
1390 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1391 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1392 if (mdp->cd->rpadir)
1393 mdp->rx_buf_sz += NET_IP_ALIGN;
1395 /* Allocate RX and TX skb rings */
1396 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1397 GFP_KERNEL);
1398 if (!mdp->rx_skbuff)
1399 return -ENOMEM;
1401 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1402 GFP_KERNEL);
1403 if (!mdp->tx_skbuff)
1404 goto ring_free;
1406 /* Allocate all Rx descriptors. */
1407 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1408 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1409 &mdp->rx_desc_dma, GFP_KERNEL);
1410 if (!mdp->rx_ring)
1411 goto ring_free;
1413 mdp->dirty_rx = 0;
1415 /* Allocate all Tx descriptors. */
1416 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1417 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1418 &mdp->tx_desc_dma, GFP_KERNEL);
1419 if (!mdp->tx_ring)
1420 goto ring_free;
1421 return 0;
1423 ring_free:
1424 /* Free Rx and Tx skb ring buffer and DMA buffer */
1425 sh_eth_ring_free(ndev);
1427 return -ENOMEM;
1430 static int sh_eth_dev_init(struct net_device *ndev)
1432 struct sh_eth_private *mdp = netdev_priv(ndev);
1433 int ret;
1435 /* Soft Reset */
1436 ret = mdp->cd->soft_reset(ndev);
1437 if (ret)
1438 return ret;
1440 if (mdp->cd->rmiimode)
1441 sh_eth_write(ndev, 0x1, RMIIMODE);
1443 /* Descriptor format */
1444 sh_eth_ring_format(ndev);
1445 if (mdp->cd->rpadir)
1446 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1448 /* all sh_eth int mask */
1449 sh_eth_write(ndev, 0, EESIPR);
1451 #if defined(__LITTLE_ENDIAN)
1452 if (mdp->cd->hw_swap)
1453 sh_eth_write(ndev, EDMR_EL, EDMR);
1454 else
1455 #endif
1456 sh_eth_write(ndev, 0, EDMR);
1458 /* FIFO size set */
1459 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1460 sh_eth_write(ndev, 0, TFTR);
1462 /* Frame recv control (enable multiple-packets per rx irq) */
1463 sh_eth_write(ndev, RMCR_RNC, RMCR);
1465 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1467 /* DMA transfer burst mode */
1468 if (mdp->cd->nbst)
1469 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1471 /* Burst cycle count upper-limit */
1472 if (mdp->cd->bculr)
1473 sh_eth_write(ndev, 0x800, BCULR);
1475 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1477 if (!mdp->cd->no_trimd)
1478 sh_eth_write(ndev, 0, TRIMD);
1480 /* Recv frame limit set register */
1481 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1482 RFLR);
1484 sh_eth_modify(ndev, EESR, 0, 0);
1485 mdp->irq_enabled = true;
1486 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1488 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1489 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1490 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1491 ECMR_TE | ECMR_RE, ECMR);
1493 if (mdp->cd->set_rate)
1494 mdp->cd->set_rate(ndev);
1496 /* E-MAC Status Register clear */
1497 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1499 /* E-MAC Interrupt Enable register */
1500 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1502 /* Set MAC address */
1503 update_mac_address(ndev);
1505 /* mask reset */
1506 if (mdp->cd->apr)
1507 sh_eth_write(ndev, 1, APR);
1508 if (mdp->cd->mpr)
1509 sh_eth_write(ndev, 1, MPR);
1510 if (mdp->cd->tpauser)
1511 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1513 /* Setting the Rx mode will start the Rx process. */
1514 sh_eth_write(ndev, EDRRR_R, EDRRR);
1516 return ret;
1519 static void sh_eth_dev_exit(struct net_device *ndev)
1521 struct sh_eth_private *mdp = netdev_priv(ndev);
1522 int i;
1524 /* Deactivate all TX descriptors, so DMA should stop at next
1525 * packet boundary if it's currently running
1527 for (i = 0; i < mdp->num_tx_ring; i++)
1528 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1530 /* Disable TX FIFO egress to MAC */
1531 sh_eth_rcv_snd_disable(ndev);
1533 /* Stop RX DMA at next packet boundary */
1534 sh_eth_write(ndev, 0, EDRRR);
1536 /* Aside from TX DMA, we can't tell when the hardware is
1537 * really stopped, so we need to reset to make sure.
1538 * Before doing that, wait for long enough to *probably*
1539 * finish transmitting the last packet and poll stats.
1541 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1542 sh_eth_get_stats(ndev);
1543 mdp->cd->soft_reset(ndev);
1545 /* Set the RMII mode again if required */
1546 if (mdp->cd->rmiimode)
1547 sh_eth_write(ndev, 0x1, RMIIMODE);
1549 /* Set MAC address again */
1550 update_mac_address(ndev);
1553 static void sh_eth_rx_csum(struct sk_buff *skb)
1555 u8 *hw_csum;
1557 /* The hardware checksum is 2 bytes appended to packet data */
1558 if (unlikely(skb->len < sizeof(__sum16)))
1559 return;
1560 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1561 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1562 skb->ip_summed = CHECKSUM_COMPLETE;
1563 skb_trim(skb, skb->len - sizeof(__sum16));
1566 /* Packet receive function */
1567 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1569 struct sh_eth_private *mdp = netdev_priv(ndev);
1570 struct sh_eth_rxdesc *rxdesc;
1572 int entry = mdp->cur_rx % mdp->num_rx_ring;
1573 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1574 int limit;
1575 struct sk_buff *skb;
1576 u32 desc_status;
1577 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1578 dma_addr_t dma_addr;
1579 u16 pkt_len;
1580 u32 buf_len;
1582 boguscnt = min(boguscnt, *quota);
1583 limit = boguscnt;
1584 rxdesc = &mdp->rx_ring[entry];
1585 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1586 /* RACT bit must be checked before all the following reads */
1587 dma_rmb();
1588 desc_status = le32_to_cpu(rxdesc->status);
1589 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1591 if (--boguscnt < 0)
1592 break;
1594 netif_info(mdp, rx_status, ndev,
1595 "rx entry %d status 0x%08x len %d\n",
1596 entry, desc_status, pkt_len);
1598 if (!(desc_status & RDFEND))
1599 ndev->stats.rx_length_errors++;
1601 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1602 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1603 * bit 0. However, in case of the R8A7740 and R7S72100
1604 * the RFS bits are from bit 25 to bit 16. So, the
1605 * driver needs right shifting by 16.
1607 if (mdp->cd->csmr)
1608 desc_status >>= 16;
1610 skb = mdp->rx_skbuff[entry];
1611 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1612 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1613 ndev->stats.rx_errors++;
1614 if (desc_status & RD_RFS1)
1615 ndev->stats.rx_crc_errors++;
1616 if (desc_status & RD_RFS2)
1617 ndev->stats.rx_frame_errors++;
1618 if (desc_status & RD_RFS3)
1619 ndev->stats.rx_length_errors++;
1620 if (desc_status & RD_RFS4)
1621 ndev->stats.rx_length_errors++;
1622 if (desc_status & RD_RFS6)
1623 ndev->stats.rx_missed_errors++;
1624 if (desc_status & RD_RFS10)
1625 ndev->stats.rx_over_errors++;
1626 } else if (skb) {
1627 dma_addr = le32_to_cpu(rxdesc->addr);
1628 if (!mdp->cd->hw_swap)
1629 sh_eth_soft_swap(
1630 phys_to_virt(ALIGN(dma_addr, 4)),
1631 pkt_len + 2);
1632 mdp->rx_skbuff[entry] = NULL;
1633 if (mdp->cd->rpadir)
1634 skb_reserve(skb, NET_IP_ALIGN);
1635 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1636 ALIGN(mdp->rx_buf_sz, 32),
1637 DMA_FROM_DEVICE);
1638 skb_put(skb, pkt_len);
1639 skb->protocol = eth_type_trans(skb, ndev);
1640 if (ndev->features & NETIF_F_RXCSUM)
1641 sh_eth_rx_csum(skb);
1642 netif_receive_skb(skb);
1643 ndev->stats.rx_packets++;
1644 ndev->stats.rx_bytes += pkt_len;
1645 if (desc_status & RD_RFS8)
1646 ndev->stats.multicast++;
1648 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1649 rxdesc = &mdp->rx_ring[entry];
1652 /* Refill the Rx ring buffers. */
1653 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1654 entry = mdp->dirty_rx % mdp->num_rx_ring;
1655 rxdesc = &mdp->rx_ring[entry];
1656 /* The size of the buffer is 32 byte boundary. */
1657 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1658 rxdesc->len = cpu_to_le32(buf_len << 16);
1660 if (mdp->rx_skbuff[entry] == NULL) {
1661 skb = netdev_alloc_skb(ndev, skbuff_size);
1662 if (skb == NULL)
1663 break; /* Better luck next round. */
1664 sh_eth_set_receive_align(skb);
1665 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1666 buf_len, DMA_FROM_DEVICE);
1667 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1668 kfree_skb(skb);
1669 break;
1671 mdp->rx_skbuff[entry] = skb;
1673 skb_checksum_none_assert(skb);
1674 rxdesc->addr = cpu_to_le32(dma_addr);
1676 dma_wmb(); /* RACT bit must be set after all the above writes */
1677 if (entry >= mdp->num_rx_ring - 1)
1678 rxdesc->status |=
1679 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1680 else
1681 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1684 /* Restart Rx engine if stopped. */
1685 /* If we don't need to check status, don't. -KDU */
1686 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1687 /* fix the values for the next receiving if RDE is set */
1688 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1689 u32 count = (sh_eth_read(ndev, RDFAR) -
1690 sh_eth_read(ndev, RDLAR)) >> 4;
1692 mdp->cur_rx = count;
1693 mdp->dirty_rx = count;
1695 sh_eth_write(ndev, EDRRR_R, EDRRR);
1698 *quota -= limit - boguscnt - 1;
1700 return *quota <= 0;
1703 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1705 /* disable tx and rx */
1706 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1709 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1711 /* enable tx and rx */
1712 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1715 /* E-MAC interrupt handler */
1716 static void sh_eth_emac_interrupt(struct net_device *ndev)
1718 struct sh_eth_private *mdp = netdev_priv(ndev);
1719 u32 felic_stat;
1720 u32 link_stat;
1722 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1723 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1724 if (felic_stat & ECSR_ICD)
1725 ndev->stats.tx_carrier_errors++;
1726 if (felic_stat & ECSR_MPD)
1727 pm_wakeup_event(&mdp->pdev->dev, 0);
1728 if (felic_stat & ECSR_LCHNG) {
1729 /* Link Changed */
1730 if (mdp->cd->no_psr || mdp->no_ether_link)
1731 return;
1732 link_stat = sh_eth_read(ndev, PSR);
1733 if (mdp->ether_link_active_low)
1734 link_stat = ~link_stat;
1735 if (!(link_stat & PHY_ST_LINK)) {
1736 sh_eth_rcv_snd_disable(ndev);
1737 } else {
1738 /* Link Up */
1739 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1740 /* clear int */
1741 sh_eth_modify(ndev, ECSR, 0, 0);
1742 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1743 /* enable tx and rx */
1744 sh_eth_rcv_snd_enable(ndev);
1749 /* error control function */
1750 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1752 struct sh_eth_private *mdp = netdev_priv(ndev);
1753 u32 mask;
1755 if (intr_status & EESR_TWB) {
1756 /* Unused write back interrupt */
1757 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1758 ndev->stats.tx_aborted_errors++;
1759 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1763 if (intr_status & EESR_RABT) {
1764 /* Receive Abort int */
1765 if (intr_status & EESR_RFRMER) {
1766 /* Receive Frame Overflow int */
1767 ndev->stats.rx_frame_errors++;
1771 if (intr_status & EESR_TDE) {
1772 /* Transmit Descriptor Empty int */
1773 ndev->stats.tx_fifo_errors++;
1774 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1777 if (intr_status & EESR_TFE) {
1778 /* FIFO under flow */
1779 ndev->stats.tx_fifo_errors++;
1780 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1783 if (intr_status & EESR_RDE) {
1784 /* Receive Descriptor Empty int */
1785 ndev->stats.rx_over_errors++;
1788 if (intr_status & EESR_RFE) {
1789 /* Receive FIFO Overflow int */
1790 ndev->stats.rx_fifo_errors++;
1793 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1794 /* Address Error */
1795 ndev->stats.tx_fifo_errors++;
1796 netif_err(mdp, tx_err, ndev, "Address Error\n");
1799 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1800 if (mdp->cd->no_ade)
1801 mask &= ~EESR_ADE;
1802 if (intr_status & mask) {
1803 /* Tx error */
1804 u32 edtrr = sh_eth_read(ndev, EDTRR);
1806 /* dmesg */
1807 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1808 intr_status, mdp->cur_tx, mdp->dirty_tx,
1809 (u32)ndev->state, edtrr);
1810 /* dirty buffer free */
1811 sh_eth_tx_free(ndev, true);
1813 /* SH7712 BUG */
1814 if (edtrr ^ mdp->cd->edtrr_trns) {
1815 /* tx dma start */
1816 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1818 /* wakeup */
1819 netif_wake_queue(ndev);
1823 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1825 struct net_device *ndev = netdev;
1826 struct sh_eth_private *mdp = netdev_priv(ndev);
1827 struct sh_eth_cpu_data *cd = mdp->cd;
1828 irqreturn_t ret = IRQ_NONE;
1829 u32 intr_status, intr_enable;
1831 spin_lock(&mdp->lock);
1833 /* Get interrupt status */
1834 intr_status = sh_eth_read(ndev, EESR);
1835 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1836 * enabled since it's the one that comes thru regardless of the mask,
1837 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1838 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1839 * bit...
1841 intr_enable = sh_eth_read(ndev, EESIPR);
1842 intr_status &= intr_enable | EESIPR_ECIIP;
1843 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1844 cd->eesr_err_check))
1845 ret = IRQ_HANDLED;
1846 else
1847 goto out;
1849 if (unlikely(!mdp->irq_enabled)) {
1850 sh_eth_write(ndev, 0, EESIPR);
1851 goto out;
1854 if (intr_status & EESR_RX_CHECK) {
1855 if (napi_schedule_prep(&mdp->napi)) {
1856 /* Mask Rx interrupts */
1857 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1858 EESIPR);
1859 __napi_schedule(&mdp->napi);
1860 } else {
1861 netdev_warn(ndev,
1862 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1863 intr_status, intr_enable);
1867 /* Tx Check */
1868 if (intr_status & cd->tx_check) {
1869 /* Clear Tx interrupts */
1870 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1872 sh_eth_tx_free(ndev, true);
1873 netif_wake_queue(ndev);
1876 /* E-MAC interrupt */
1877 if (intr_status & EESR_ECI)
1878 sh_eth_emac_interrupt(ndev);
1880 if (intr_status & cd->eesr_err_check) {
1881 /* Clear error interrupts */
1882 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1884 sh_eth_error(ndev, intr_status);
1887 out:
1888 spin_unlock(&mdp->lock);
1890 return ret;
1893 static int sh_eth_poll(struct napi_struct *napi, int budget)
1895 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1896 napi);
1897 struct net_device *ndev = napi->dev;
1898 int quota = budget;
1899 u32 intr_status;
1901 for (;;) {
1902 intr_status = sh_eth_read(ndev, EESR);
1903 if (!(intr_status & EESR_RX_CHECK))
1904 break;
1905 /* Clear Rx interrupts */
1906 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1908 if (sh_eth_rx(ndev, intr_status, &quota))
1909 goto out;
1912 napi_complete(napi);
1914 /* Reenable Rx interrupts */
1915 if (mdp->irq_enabled)
1916 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1917 out:
1918 return budget - quota;
1921 /* PHY state control function */
1922 static void sh_eth_adjust_link(struct net_device *ndev)
1924 struct sh_eth_private *mdp = netdev_priv(ndev);
1925 struct phy_device *phydev = ndev->phydev;
1926 unsigned long flags;
1927 int new_state = 0;
1929 spin_lock_irqsave(&mdp->lock, flags);
1931 /* Disable TX and RX right over here, if E-MAC change is ignored */
1932 if (mdp->cd->no_psr || mdp->no_ether_link)
1933 sh_eth_rcv_snd_disable(ndev);
1935 if (phydev->link) {
1936 if (phydev->duplex != mdp->duplex) {
1937 new_state = 1;
1938 mdp->duplex = phydev->duplex;
1939 if (mdp->cd->set_duplex)
1940 mdp->cd->set_duplex(ndev);
1943 if (phydev->speed != mdp->speed) {
1944 new_state = 1;
1945 mdp->speed = phydev->speed;
1946 if (mdp->cd->set_rate)
1947 mdp->cd->set_rate(ndev);
1949 if (!mdp->link) {
1950 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1951 new_state = 1;
1952 mdp->link = phydev->link;
1954 } else if (mdp->link) {
1955 new_state = 1;
1956 mdp->link = 0;
1957 mdp->speed = 0;
1958 mdp->duplex = -1;
1961 /* Enable TX and RX right over here, if E-MAC change is ignored */
1962 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1963 sh_eth_rcv_snd_enable(ndev);
1965 spin_unlock_irqrestore(&mdp->lock, flags);
1967 if (new_state && netif_msg_link(mdp))
1968 phy_print_status(phydev);
1971 /* PHY init function */
1972 static int sh_eth_phy_init(struct net_device *ndev)
1974 struct device_node *np = ndev->dev.parent->of_node;
1975 struct sh_eth_private *mdp = netdev_priv(ndev);
1976 struct phy_device *phydev;
1978 mdp->link = 0;
1979 mdp->speed = 0;
1980 mdp->duplex = -1;
1982 /* Try connect to PHY */
1983 if (np) {
1984 struct device_node *pn;
1986 pn = of_parse_phandle(np, "phy-handle", 0);
1987 phydev = of_phy_connect(ndev, pn,
1988 sh_eth_adjust_link, 0,
1989 mdp->phy_interface);
1991 of_node_put(pn);
1992 if (!phydev)
1993 phydev = ERR_PTR(-ENOENT);
1994 } else {
1995 char phy_id[MII_BUS_ID_SIZE + 3];
1997 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1998 mdp->mii_bus->id, mdp->phy_id);
2000 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2001 mdp->phy_interface);
2004 if (IS_ERR(phydev)) {
2005 netdev_err(ndev, "failed to connect PHY\n");
2006 return PTR_ERR(phydev);
2009 /* mask with MAC supported features */
2010 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2011 int err = phy_set_max_speed(phydev, SPEED_100);
2012 if (err) {
2013 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2014 phy_disconnect(phydev);
2015 return err;
2019 phy_attached_info(phydev);
2021 return 0;
2024 /* PHY control start function */
2025 static int sh_eth_phy_start(struct net_device *ndev)
2027 int ret;
2029 ret = sh_eth_phy_init(ndev);
2030 if (ret)
2031 return ret;
2033 phy_start(ndev->phydev);
2035 return 0;
2038 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2039 * version must be bumped as well. Just adding registers up to that
2040 * limit is fine, as long as the existing register indices don't
2041 * change.
2043 #define SH_ETH_REG_DUMP_VERSION 1
2044 #define SH_ETH_REG_DUMP_MAX_REGS 256
2046 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2048 struct sh_eth_private *mdp = netdev_priv(ndev);
2049 struct sh_eth_cpu_data *cd = mdp->cd;
2050 u32 *valid_map;
2051 size_t len;
2053 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2055 /* Dump starts with a bitmap that tells ethtool which
2056 * registers are defined for this chip.
2058 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2059 if (buf) {
2060 valid_map = buf;
2061 buf += len;
2062 } else {
2063 valid_map = NULL;
2066 /* Add a register to the dump, if it has a defined offset.
2067 * This automatically skips most undefined registers, but for
2068 * some it is also necessary to check a capability flag in
2069 * struct sh_eth_cpu_data.
2071 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2072 #define add_reg_from(reg, read_expr) do { \
2073 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2074 if (buf) { \
2075 mark_reg_valid(reg); \
2076 *buf++ = read_expr; \
2078 ++len; \
2080 } while (0)
2081 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2082 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2084 add_reg(EDSR);
2085 add_reg(EDMR);
2086 add_reg(EDTRR);
2087 add_reg(EDRRR);
2088 add_reg(EESR);
2089 add_reg(EESIPR);
2090 add_reg(TDLAR);
2091 if (!cd->no_xdfar)
2092 add_reg(TDFAR);
2093 add_reg(TDFXR);
2094 add_reg(TDFFR);
2095 add_reg(RDLAR);
2096 if (!cd->no_xdfar)
2097 add_reg(RDFAR);
2098 add_reg(RDFXR);
2099 add_reg(RDFFR);
2100 add_reg(TRSCER);
2101 add_reg(RMFCR);
2102 add_reg(TFTR);
2103 add_reg(FDR);
2104 add_reg(RMCR);
2105 add_reg(TFUCR);
2106 add_reg(RFOCR);
2107 if (cd->rmiimode)
2108 add_reg(RMIIMODE);
2109 add_reg(FCFTR);
2110 if (cd->rpadir)
2111 add_reg(RPADIR);
2112 if (!cd->no_trimd)
2113 add_reg(TRIMD);
2114 add_reg(ECMR);
2115 add_reg(ECSR);
2116 add_reg(ECSIPR);
2117 add_reg(PIR);
2118 if (!cd->no_psr)
2119 add_reg(PSR);
2120 add_reg(RDMLR);
2121 add_reg(RFLR);
2122 add_reg(IPGR);
2123 if (cd->apr)
2124 add_reg(APR);
2125 if (cd->mpr)
2126 add_reg(MPR);
2127 add_reg(RFCR);
2128 add_reg(RFCF);
2129 if (cd->tpauser)
2130 add_reg(TPAUSER);
2131 add_reg(TPAUSECR);
2132 if (cd->gecmr)
2133 add_reg(GECMR);
2134 if (cd->bculr)
2135 add_reg(BCULR);
2136 add_reg(MAHR);
2137 add_reg(MALR);
2138 if (!cd->no_tx_cntrs) {
2139 add_reg(TROCR);
2140 add_reg(CDCR);
2141 add_reg(LCCR);
2142 add_reg(CNDCR);
2144 add_reg(CEFCR);
2145 add_reg(FRECR);
2146 add_reg(TSFRCR);
2147 add_reg(TLFRCR);
2148 if (cd->cexcr) {
2149 add_reg(CERCR);
2150 add_reg(CEECR);
2152 add_reg(MAFCR);
2153 if (cd->rtrate)
2154 add_reg(RTRATE);
2155 if (cd->csmr)
2156 add_reg(CSMR);
2157 if (cd->select_mii)
2158 add_reg(RMII_MII);
2159 if (cd->tsu) {
2160 add_tsu_reg(ARSTR);
2161 add_tsu_reg(TSU_CTRST);
2162 if (cd->dual_port) {
2163 add_tsu_reg(TSU_FWEN0);
2164 add_tsu_reg(TSU_FWEN1);
2165 add_tsu_reg(TSU_FCM);
2166 add_tsu_reg(TSU_BSYSL0);
2167 add_tsu_reg(TSU_BSYSL1);
2168 add_tsu_reg(TSU_PRISL0);
2169 add_tsu_reg(TSU_PRISL1);
2170 add_tsu_reg(TSU_FWSL0);
2171 add_tsu_reg(TSU_FWSL1);
2173 add_tsu_reg(TSU_FWSLC);
2174 if (cd->dual_port) {
2175 add_tsu_reg(TSU_QTAGM0);
2176 add_tsu_reg(TSU_QTAGM1);
2177 add_tsu_reg(TSU_FWSR);
2178 add_tsu_reg(TSU_FWINMK);
2179 add_tsu_reg(TSU_ADQT0);
2180 add_tsu_reg(TSU_ADQT1);
2181 add_tsu_reg(TSU_VTAG0);
2182 add_tsu_reg(TSU_VTAG1);
2184 add_tsu_reg(TSU_ADSBSY);
2185 add_tsu_reg(TSU_TEN);
2186 add_tsu_reg(TSU_POST1);
2187 add_tsu_reg(TSU_POST2);
2188 add_tsu_reg(TSU_POST3);
2189 add_tsu_reg(TSU_POST4);
2190 /* This is the start of a table, not just a single register. */
2191 if (buf) {
2192 unsigned int i;
2194 mark_reg_valid(TSU_ADRH0);
2195 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2196 *buf++ = ioread32(mdp->tsu_addr +
2197 mdp->reg_offset[TSU_ADRH0] +
2198 i * 4);
2200 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2203 #undef mark_reg_valid
2204 #undef add_reg_from
2205 #undef add_reg
2206 #undef add_tsu_reg
2208 return len * 4;
2211 static int sh_eth_get_regs_len(struct net_device *ndev)
2213 return __sh_eth_get_regs(ndev, NULL);
2216 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2217 void *buf)
2219 struct sh_eth_private *mdp = netdev_priv(ndev);
2221 regs->version = SH_ETH_REG_DUMP_VERSION;
2223 pm_runtime_get_sync(&mdp->pdev->dev);
2224 __sh_eth_get_regs(ndev, buf);
2225 pm_runtime_put_sync(&mdp->pdev->dev);
2228 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2230 struct sh_eth_private *mdp = netdev_priv(ndev);
2231 return mdp->msg_enable;
2234 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2236 struct sh_eth_private *mdp = netdev_priv(ndev);
2237 mdp->msg_enable = value;
2240 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2241 "rx_current", "tx_current",
2242 "rx_dirty", "tx_dirty",
2244 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2246 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2248 switch (sset) {
2249 case ETH_SS_STATS:
2250 return SH_ETH_STATS_LEN;
2251 default:
2252 return -EOPNOTSUPP;
2256 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2257 struct ethtool_stats *stats, u64 *data)
2259 struct sh_eth_private *mdp = netdev_priv(ndev);
2260 int i = 0;
2262 /* device-specific stats */
2263 data[i++] = mdp->cur_rx;
2264 data[i++] = mdp->cur_tx;
2265 data[i++] = mdp->dirty_rx;
2266 data[i++] = mdp->dirty_tx;
2269 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2271 switch (stringset) {
2272 case ETH_SS_STATS:
2273 memcpy(data, *sh_eth_gstrings_stats,
2274 sizeof(sh_eth_gstrings_stats));
2275 break;
2279 static void sh_eth_get_ringparam(struct net_device *ndev,
2280 struct ethtool_ringparam *ring)
2282 struct sh_eth_private *mdp = netdev_priv(ndev);
2284 ring->rx_max_pending = RX_RING_MAX;
2285 ring->tx_max_pending = TX_RING_MAX;
2286 ring->rx_pending = mdp->num_rx_ring;
2287 ring->tx_pending = mdp->num_tx_ring;
2290 static int sh_eth_set_ringparam(struct net_device *ndev,
2291 struct ethtool_ringparam *ring)
2293 struct sh_eth_private *mdp = netdev_priv(ndev);
2294 int ret;
2296 if (ring->tx_pending > TX_RING_MAX ||
2297 ring->rx_pending > RX_RING_MAX ||
2298 ring->tx_pending < TX_RING_MIN ||
2299 ring->rx_pending < RX_RING_MIN)
2300 return -EINVAL;
2301 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2302 return -EINVAL;
2304 if (netif_running(ndev)) {
2305 netif_device_detach(ndev);
2306 netif_tx_disable(ndev);
2308 /* Serialise with the interrupt handler and NAPI, then
2309 * disable interrupts. We have to clear the
2310 * irq_enabled flag first to ensure that interrupts
2311 * won't be re-enabled.
2313 mdp->irq_enabled = false;
2314 synchronize_irq(ndev->irq);
2315 napi_synchronize(&mdp->napi);
2316 sh_eth_write(ndev, 0x0000, EESIPR);
2318 sh_eth_dev_exit(ndev);
2320 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2321 sh_eth_ring_free(ndev);
2324 /* Set new parameters */
2325 mdp->num_rx_ring = ring->rx_pending;
2326 mdp->num_tx_ring = ring->tx_pending;
2328 if (netif_running(ndev)) {
2329 ret = sh_eth_ring_init(ndev);
2330 if (ret < 0) {
2331 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2332 __func__);
2333 return ret;
2335 ret = sh_eth_dev_init(ndev);
2336 if (ret < 0) {
2337 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2338 __func__);
2339 return ret;
2342 netif_device_attach(ndev);
2345 return 0;
2348 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2350 struct sh_eth_private *mdp = netdev_priv(ndev);
2352 wol->supported = 0;
2353 wol->wolopts = 0;
2355 if (mdp->cd->magic) {
2356 wol->supported = WAKE_MAGIC;
2357 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2361 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2363 struct sh_eth_private *mdp = netdev_priv(ndev);
2365 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2366 return -EOPNOTSUPP;
2368 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2370 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2372 return 0;
2375 static const struct ethtool_ops sh_eth_ethtool_ops = {
2376 .get_regs_len = sh_eth_get_regs_len,
2377 .get_regs = sh_eth_get_regs,
2378 .nway_reset = phy_ethtool_nway_reset,
2379 .get_msglevel = sh_eth_get_msglevel,
2380 .set_msglevel = sh_eth_set_msglevel,
2381 .get_link = ethtool_op_get_link,
2382 .get_strings = sh_eth_get_strings,
2383 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2384 .get_sset_count = sh_eth_get_sset_count,
2385 .get_ringparam = sh_eth_get_ringparam,
2386 .set_ringparam = sh_eth_set_ringparam,
2387 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2388 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2389 .get_wol = sh_eth_get_wol,
2390 .set_wol = sh_eth_set_wol,
2393 /* network device open function */
2394 static int sh_eth_open(struct net_device *ndev)
2396 struct sh_eth_private *mdp = netdev_priv(ndev);
2397 int ret;
2399 pm_runtime_get_sync(&mdp->pdev->dev);
2401 napi_enable(&mdp->napi);
2403 ret = request_irq(ndev->irq, sh_eth_interrupt,
2404 mdp->cd->irq_flags, ndev->name, ndev);
2405 if (ret) {
2406 netdev_err(ndev, "Can not assign IRQ number\n");
2407 goto out_napi_off;
2410 /* Descriptor set */
2411 ret = sh_eth_ring_init(ndev);
2412 if (ret)
2413 goto out_free_irq;
2415 /* device init */
2416 ret = sh_eth_dev_init(ndev);
2417 if (ret)
2418 goto out_free_irq;
2420 /* PHY control start*/
2421 ret = sh_eth_phy_start(ndev);
2422 if (ret)
2423 goto out_free_irq;
2425 netif_start_queue(ndev);
2427 mdp->is_opened = 1;
2429 return ret;
2431 out_free_irq:
2432 free_irq(ndev->irq, ndev);
2433 out_napi_off:
2434 napi_disable(&mdp->napi);
2435 pm_runtime_put_sync(&mdp->pdev->dev);
2436 return ret;
2439 /* Timeout function */
2440 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2442 struct sh_eth_private *mdp = netdev_priv(ndev);
2443 struct sh_eth_rxdesc *rxdesc;
2444 int i;
2446 netif_stop_queue(ndev);
2448 netif_err(mdp, timer, ndev,
2449 "transmit timed out, status %8.8x, resetting...\n",
2450 sh_eth_read(ndev, EESR));
2452 /* tx_errors count up */
2453 ndev->stats.tx_errors++;
2455 /* Free all the skbuffs in the Rx queue. */
2456 for (i = 0; i < mdp->num_rx_ring; i++) {
2457 rxdesc = &mdp->rx_ring[i];
2458 rxdesc->status = cpu_to_le32(0);
2459 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2460 dev_kfree_skb(mdp->rx_skbuff[i]);
2461 mdp->rx_skbuff[i] = NULL;
2463 for (i = 0; i < mdp->num_tx_ring; i++) {
2464 dev_kfree_skb(mdp->tx_skbuff[i]);
2465 mdp->tx_skbuff[i] = NULL;
2468 /* device init */
2469 sh_eth_dev_init(ndev);
2471 netif_start_queue(ndev);
2474 /* Packet transmit function */
2475 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2477 struct sh_eth_private *mdp = netdev_priv(ndev);
2478 struct sh_eth_txdesc *txdesc;
2479 dma_addr_t dma_addr;
2480 u32 entry;
2481 unsigned long flags;
2483 spin_lock_irqsave(&mdp->lock, flags);
2484 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2485 if (!sh_eth_tx_free(ndev, true)) {
2486 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2487 netif_stop_queue(ndev);
2488 spin_unlock_irqrestore(&mdp->lock, flags);
2489 return NETDEV_TX_BUSY;
2492 spin_unlock_irqrestore(&mdp->lock, flags);
2494 if (skb_put_padto(skb, ETH_ZLEN))
2495 return NETDEV_TX_OK;
2497 entry = mdp->cur_tx % mdp->num_tx_ring;
2498 mdp->tx_skbuff[entry] = skb;
2499 txdesc = &mdp->tx_ring[entry];
2500 /* soft swap. */
2501 if (!mdp->cd->hw_swap)
2502 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2503 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2504 DMA_TO_DEVICE);
2505 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2506 kfree_skb(skb);
2507 return NETDEV_TX_OK;
2509 txdesc->addr = cpu_to_le32(dma_addr);
2510 txdesc->len = cpu_to_le32(skb->len << 16);
2512 dma_wmb(); /* TACT bit must be set after all the above writes */
2513 if (entry >= mdp->num_tx_ring - 1)
2514 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2515 else
2516 txdesc->status |= cpu_to_le32(TD_TACT);
2518 mdp->cur_tx++;
2520 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2521 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2523 return NETDEV_TX_OK;
2526 /* The statistics registers have write-clear behaviour, which means we
2527 * will lose any increment between the read and write. We mitigate
2528 * this by only clearing when we read a non-zero value, so we will
2529 * never falsely report a total of zero.
2531 static void
2532 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2534 u32 delta = sh_eth_read(ndev, reg);
2536 if (delta) {
2537 *stat += delta;
2538 sh_eth_write(ndev, 0, reg);
2542 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2544 struct sh_eth_private *mdp = netdev_priv(ndev);
2546 if (mdp->cd->no_tx_cntrs)
2547 return &ndev->stats;
2549 if (!mdp->is_opened)
2550 return &ndev->stats;
2552 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2553 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2554 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2556 if (mdp->cd->cexcr) {
2557 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2558 CERCR);
2559 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2560 CEECR);
2561 } else {
2562 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2563 CNDCR);
2566 return &ndev->stats;
2569 /* device close function */
2570 static int sh_eth_close(struct net_device *ndev)
2572 struct sh_eth_private *mdp = netdev_priv(ndev);
2574 netif_stop_queue(ndev);
2576 /* Serialise with the interrupt handler and NAPI, then disable
2577 * interrupts. We have to clear the irq_enabled flag first to
2578 * ensure that interrupts won't be re-enabled.
2580 mdp->irq_enabled = false;
2581 synchronize_irq(ndev->irq);
2582 napi_disable(&mdp->napi);
2583 sh_eth_write(ndev, 0x0000, EESIPR);
2585 sh_eth_dev_exit(ndev);
2587 /* PHY Disconnect */
2588 if (ndev->phydev) {
2589 phy_stop(ndev->phydev);
2590 phy_disconnect(ndev->phydev);
2593 free_irq(ndev->irq, ndev);
2595 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2596 sh_eth_ring_free(ndev);
2598 pm_runtime_put_sync(&mdp->pdev->dev);
2600 mdp->is_opened = 0;
2602 return 0;
2605 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2607 if (netif_running(ndev))
2608 return -EBUSY;
2610 ndev->mtu = new_mtu;
2611 netdev_update_features(ndev);
2613 return 0;
2616 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2617 static u32 sh_eth_tsu_get_post_mask(int entry)
2619 return 0x0f << (28 - ((entry % 8) * 4));
2622 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2624 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2627 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2628 int entry)
2630 struct sh_eth_private *mdp = netdev_priv(ndev);
2631 int reg = TSU_POST1 + entry / 8;
2632 u32 tmp;
2634 tmp = sh_eth_tsu_read(mdp, reg);
2635 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2638 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2639 int entry)
2641 struct sh_eth_private *mdp = netdev_priv(ndev);
2642 int reg = TSU_POST1 + entry / 8;
2643 u32 post_mask, ref_mask, tmp;
2645 post_mask = sh_eth_tsu_get_post_mask(entry);
2646 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2648 tmp = sh_eth_tsu_read(mdp, reg);
2649 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2651 /* If other port enables, the function returns "true" */
2652 return tmp & ref_mask;
2655 static int sh_eth_tsu_busy(struct net_device *ndev)
2657 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2658 struct sh_eth_private *mdp = netdev_priv(ndev);
2660 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2661 udelay(10);
2662 timeout--;
2663 if (timeout <= 0) {
2664 netdev_err(ndev, "%s: timeout\n", __func__);
2665 return -ETIMEDOUT;
2669 return 0;
2672 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2673 const u8 *addr)
2675 struct sh_eth_private *mdp = netdev_priv(ndev);
2676 u32 val;
2678 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2679 iowrite32(val, mdp->tsu_addr + offset);
2680 if (sh_eth_tsu_busy(ndev) < 0)
2681 return -EBUSY;
2683 val = addr[4] << 8 | addr[5];
2684 iowrite32(val, mdp->tsu_addr + offset + 4);
2685 if (sh_eth_tsu_busy(ndev) < 0)
2686 return -EBUSY;
2688 return 0;
2691 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2693 struct sh_eth_private *mdp = netdev_priv(ndev);
2694 u32 val;
2696 val = ioread32(mdp->tsu_addr + offset);
2697 addr[0] = (val >> 24) & 0xff;
2698 addr[1] = (val >> 16) & 0xff;
2699 addr[2] = (val >> 8) & 0xff;
2700 addr[3] = val & 0xff;
2701 val = ioread32(mdp->tsu_addr + offset + 4);
2702 addr[4] = (val >> 8) & 0xff;
2703 addr[5] = val & 0xff;
2707 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2709 struct sh_eth_private *mdp = netdev_priv(ndev);
2710 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2711 int i;
2712 u8 c_addr[ETH_ALEN];
2714 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2715 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2716 if (ether_addr_equal(addr, c_addr))
2717 return i;
2720 return -ENOENT;
2723 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2725 u8 blank[ETH_ALEN];
2726 int entry;
2728 memset(blank, 0, sizeof(blank));
2729 entry = sh_eth_tsu_find_entry(ndev, blank);
2730 return (entry < 0) ? -ENOMEM : entry;
2733 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2734 int entry)
2736 struct sh_eth_private *mdp = netdev_priv(ndev);
2737 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2738 int ret;
2739 u8 blank[ETH_ALEN];
2741 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2742 ~(1 << (31 - entry)), TSU_TEN);
2744 memset(blank, 0, sizeof(blank));
2745 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2746 if (ret < 0)
2747 return ret;
2748 return 0;
2751 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2753 struct sh_eth_private *mdp = netdev_priv(ndev);
2754 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2755 int i, ret;
2757 if (!mdp->cd->tsu)
2758 return 0;
2760 i = sh_eth_tsu_find_entry(ndev, addr);
2761 if (i < 0) {
2762 /* No entry found, create one */
2763 i = sh_eth_tsu_find_empty(ndev);
2764 if (i < 0)
2765 return -ENOMEM;
2766 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2767 if (ret < 0)
2768 return ret;
2770 /* Enable the entry */
2771 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2772 (1 << (31 - i)), TSU_TEN);
2775 /* Entry found or created, enable POST */
2776 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2778 return 0;
2781 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2783 struct sh_eth_private *mdp = netdev_priv(ndev);
2784 int i, ret;
2786 if (!mdp->cd->tsu)
2787 return 0;
2789 i = sh_eth_tsu_find_entry(ndev, addr);
2790 if (i) {
2791 /* Entry found */
2792 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2793 goto done;
2795 /* Disable the entry if both ports was disabled */
2796 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2797 if (ret < 0)
2798 return ret;
2800 done:
2801 return 0;
2804 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2806 struct sh_eth_private *mdp = netdev_priv(ndev);
2807 int i, ret;
2809 if (!mdp->cd->tsu)
2810 return 0;
2812 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2813 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2814 continue;
2816 /* Disable the entry if both ports was disabled */
2817 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2818 if (ret < 0)
2819 return ret;
2822 return 0;
2825 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2827 struct sh_eth_private *mdp = netdev_priv(ndev);
2828 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2829 u8 addr[ETH_ALEN];
2830 int i;
2832 if (!mdp->cd->tsu)
2833 return;
2835 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2836 sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2837 if (is_multicast_ether_addr(addr))
2838 sh_eth_tsu_del_entry(ndev, addr);
2842 /* Update promiscuous flag and multicast filter */
2843 static void sh_eth_set_rx_mode(struct net_device *ndev)
2845 struct sh_eth_private *mdp = netdev_priv(ndev);
2846 u32 ecmr_bits;
2847 int mcast_all = 0;
2848 unsigned long flags;
2850 spin_lock_irqsave(&mdp->lock, flags);
2851 /* Initial condition is MCT = 1, PRM = 0.
2852 * Depending on ndev->flags, set PRM or clear MCT
2854 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2855 if (mdp->cd->tsu)
2856 ecmr_bits |= ECMR_MCT;
2858 if (!(ndev->flags & IFF_MULTICAST)) {
2859 sh_eth_tsu_purge_mcast(ndev);
2860 mcast_all = 1;
2862 if (ndev->flags & IFF_ALLMULTI) {
2863 sh_eth_tsu_purge_mcast(ndev);
2864 ecmr_bits &= ~ECMR_MCT;
2865 mcast_all = 1;
2868 if (ndev->flags & IFF_PROMISC) {
2869 sh_eth_tsu_purge_all(ndev);
2870 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2871 } else if (mdp->cd->tsu) {
2872 struct netdev_hw_addr *ha;
2873 netdev_for_each_mc_addr(ha, ndev) {
2874 if (mcast_all && is_multicast_ether_addr(ha->addr))
2875 continue;
2877 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2878 if (!mcast_all) {
2879 sh_eth_tsu_purge_mcast(ndev);
2880 ecmr_bits &= ~ECMR_MCT;
2881 mcast_all = 1;
2887 /* update the ethernet mode */
2888 sh_eth_write(ndev, ecmr_bits, ECMR);
2890 spin_unlock_irqrestore(&mdp->lock, flags);
2893 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2895 struct sh_eth_private *mdp = netdev_priv(ndev);
2896 unsigned long flags;
2898 spin_lock_irqsave(&mdp->lock, flags);
2900 /* Disable TX and RX */
2901 sh_eth_rcv_snd_disable(ndev);
2903 /* Modify RX Checksum setting */
2904 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2906 /* Enable TX and RX */
2907 sh_eth_rcv_snd_enable(ndev);
2909 spin_unlock_irqrestore(&mdp->lock, flags);
2912 static int sh_eth_set_features(struct net_device *ndev,
2913 netdev_features_t features)
2915 netdev_features_t changed = ndev->features ^ features;
2916 struct sh_eth_private *mdp = netdev_priv(ndev);
2918 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2919 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2921 ndev->features = features;
2923 return 0;
2926 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2928 if (!mdp->port)
2929 return TSU_VTAG0;
2930 else
2931 return TSU_VTAG1;
2934 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2935 __be16 proto, u16 vid)
2937 struct sh_eth_private *mdp = netdev_priv(ndev);
2938 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2940 if (unlikely(!mdp->cd->tsu))
2941 return -EPERM;
2943 /* No filtering if vid = 0 */
2944 if (!vid)
2945 return 0;
2947 mdp->vlan_num_ids++;
2949 /* The controller has one VLAN tag HW filter. So, if the filter is
2950 * already enabled, the driver disables it and the filte
2952 if (mdp->vlan_num_ids > 1) {
2953 /* disable VLAN filter */
2954 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2955 return 0;
2958 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2959 vtag_reg_index);
2961 return 0;
2964 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2965 __be16 proto, u16 vid)
2967 struct sh_eth_private *mdp = netdev_priv(ndev);
2968 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2970 if (unlikely(!mdp->cd->tsu))
2971 return -EPERM;
2973 /* No filtering if vid = 0 */
2974 if (!vid)
2975 return 0;
2977 mdp->vlan_num_ids--;
2978 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2980 return 0;
2983 /* SuperH's TSU register init function */
2984 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2986 if (!mdp->cd->dual_port) {
2987 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2988 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2989 TSU_FWSLC); /* Enable POST registers */
2990 return;
2993 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2994 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2995 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2996 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2997 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2998 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2999 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3000 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3001 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3002 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3003 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
3004 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
3005 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
3006 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
3007 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3008 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
3009 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
3010 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
3011 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
3014 /* MDIO bus release function */
3015 static int sh_mdio_release(struct sh_eth_private *mdp)
3017 /* unregister mdio bus */
3018 mdiobus_unregister(mdp->mii_bus);
3020 /* free bitbang info */
3021 free_mdio_bitbang(mdp->mii_bus);
3023 return 0;
3026 /* MDIO bus init function */
3027 static int sh_mdio_init(struct sh_eth_private *mdp,
3028 struct sh_eth_plat_data *pd)
3030 int ret;
3031 struct bb_info *bitbang;
3032 struct platform_device *pdev = mdp->pdev;
3033 struct device *dev = &mdp->pdev->dev;
3035 /* create bit control struct for PHY */
3036 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3037 if (!bitbang)
3038 return -ENOMEM;
3040 /* bitbang init */
3041 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3042 bitbang->set_gate = pd->set_mdio_gate;
3043 bitbang->ctrl.ops = &bb_ops;
3045 /* MII controller setting */
3046 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3047 if (!mdp->mii_bus)
3048 return -ENOMEM;
3050 /* Hook up MII support for ethtool */
3051 mdp->mii_bus->name = "sh_mii";
3052 mdp->mii_bus->parent = dev;
3053 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3054 pdev->name, pdev->id);
3056 /* register MDIO bus */
3057 if (pd->phy_irq > 0)
3058 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3060 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3061 if (ret)
3062 goto out_free_bus;
3064 return 0;
3066 out_free_bus:
3067 free_mdio_bitbang(mdp->mii_bus);
3068 return ret;
3071 static const u16 *sh_eth_get_register_offset(int register_type)
3073 const u16 *reg_offset = NULL;
3075 switch (register_type) {
3076 case SH_ETH_REG_GIGABIT:
3077 reg_offset = sh_eth_offset_gigabit;
3078 break;
3079 case SH_ETH_REG_FAST_RCAR:
3080 reg_offset = sh_eth_offset_fast_rcar;
3081 break;
3082 case SH_ETH_REG_FAST_SH4:
3083 reg_offset = sh_eth_offset_fast_sh4;
3084 break;
3085 case SH_ETH_REG_FAST_SH3_SH2:
3086 reg_offset = sh_eth_offset_fast_sh3_sh2;
3087 break;
3090 return reg_offset;
3093 static const struct net_device_ops sh_eth_netdev_ops = {
3094 .ndo_open = sh_eth_open,
3095 .ndo_stop = sh_eth_close,
3096 .ndo_start_xmit = sh_eth_start_xmit,
3097 .ndo_get_stats = sh_eth_get_stats,
3098 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3099 .ndo_tx_timeout = sh_eth_tx_timeout,
3100 .ndo_do_ioctl = phy_do_ioctl_running,
3101 .ndo_change_mtu = sh_eth_change_mtu,
3102 .ndo_validate_addr = eth_validate_addr,
3103 .ndo_set_mac_address = eth_mac_addr,
3104 .ndo_set_features = sh_eth_set_features,
3107 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3108 .ndo_open = sh_eth_open,
3109 .ndo_stop = sh_eth_close,
3110 .ndo_start_xmit = sh_eth_start_xmit,
3111 .ndo_get_stats = sh_eth_get_stats,
3112 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3113 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3114 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3115 .ndo_tx_timeout = sh_eth_tx_timeout,
3116 .ndo_do_ioctl = phy_do_ioctl_running,
3117 .ndo_change_mtu = sh_eth_change_mtu,
3118 .ndo_validate_addr = eth_validate_addr,
3119 .ndo_set_mac_address = eth_mac_addr,
3120 .ndo_set_features = sh_eth_set_features,
3123 #ifdef CONFIG_OF
3124 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3126 struct device_node *np = dev->of_node;
3127 struct sh_eth_plat_data *pdata;
3128 phy_interface_t interface;
3129 const char *mac_addr;
3130 int ret;
3132 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3133 if (!pdata)
3134 return NULL;
3136 ret = of_get_phy_mode(np, &interface);
3137 if (ret)
3138 return NULL;
3139 pdata->phy_interface = interface;
3141 mac_addr = of_get_mac_address(np);
3142 if (!IS_ERR(mac_addr))
3143 ether_addr_copy(pdata->mac_addr, mac_addr);
3145 pdata->no_ether_link =
3146 of_property_read_bool(np, "renesas,no-ether-link");
3147 pdata->ether_link_active_low =
3148 of_property_read_bool(np, "renesas,ether-link-active-low");
3150 return pdata;
3153 static const struct of_device_id sh_eth_match_table[] = {
3154 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3155 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3156 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3157 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3158 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3159 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3160 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3161 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3162 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3163 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3164 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3165 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3166 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3167 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3170 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3171 #else
3172 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3174 return NULL;
3176 #endif
3178 static int sh_eth_drv_probe(struct platform_device *pdev)
3180 struct resource *res;
3181 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3182 const struct platform_device_id *id = platform_get_device_id(pdev);
3183 struct sh_eth_private *mdp;
3184 struct net_device *ndev;
3185 int ret;
3187 /* get base addr */
3188 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3190 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3191 if (!ndev)
3192 return -ENOMEM;
3194 pm_runtime_enable(&pdev->dev);
3195 pm_runtime_get_sync(&pdev->dev);
3197 ret = platform_get_irq(pdev, 0);
3198 if (ret < 0)
3199 goto out_release;
3200 ndev->irq = ret;
3202 SET_NETDEV_DEV(ndev, &pdev->dev);
3204 mdp = netdev_priv(ndev);
3205 mdp->num_tx_ring = TX_RING_SIZE;
3206 mdp->num_rx_ring = RX_RING_SIZE;
3207 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3208 if (IS_ERR(mdp->addr)) {
3209 ret = PTR_ERR(mdp->addr);
3210 goto out_release;
3213 ndev->base_addr = res->start;
3215 spin_lock_init(&mdp->lock);
3216 mdp->pdev = pdev;
3218 if (pdev->dev.of_node)
3219 pd = sh_eth_parse_dt(&pdev->dev);
3220 if (!pd) {
3221 dev_err(&pdev->dev, "no platform data\n");
3222 ret = -EINVAL;
3223 goto out_release;
3226 /* get PHY ID */
3227 mdp->phy_id = pd->phy;
3228 mdp->phy_interface = pd->phy_interface;
3229 mdp->no_ether_link = pd->no_ether_link;
3230 mdp->ether_link_active_low = pd->ether_link_active_low;
3232 /* set cpu data */
3233 if (id)
3234 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3235 else
3236 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3238 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3239 if (!mdp->reg_offset) {
3240 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3241 mdp->cd->register_type);
3242 ret = -EINVAL;
3243 goto out_release;
3245 sh_eth_set_default_cpu_data(mdp->cd);
3247 /* User's manual states max MTU should be 2048 but due to the
3248 * alignment calculations in sh_eth_ring_init() the practical
3249 * MTU is a bit less. Maybe this can be optimized some more.
3251 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3252 ndev->min_mtu = ETH_MIN_MTU;
3254 if (mdp->cd->rx_csum) {
3255 ndev->features = NETIF_F_RXCSUM;
3256 ndev->hw_features = NETIF_F_RXCSUM;
3259 /* set function */
3260 if (mdp->cd->tsu)
3261 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3262 else
3263 ndev->netdev_ops = &sh_eth_netdev_ops;
3264 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3265 ndev->watchdog_timeo = TX_TIMEOUT;
3267 /* debug message level */
3268 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3270 /* read and set MAC address */
3271 read_mac_address(ndev, pd->mac_addr);
3272 if (!is_valid_ether_addr(ndev->dev_addr)) {
3273 dev_warn(&pdev->dev,
3274 "no valid MAC address supplied, using a random one.\n");
3275 eth_hw_addr_random(ndev);
3278 if (mdp->cd->tsu) {
3279 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3280 struct resource *rtsu;
3282 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3283 if (!rtsu) {
3284 dev_err(&pdev->dev, "no TSU resource\n");
3285 ret = -ENODEV;
3286 goto out_release;
3288 /* We can only request the TSU region for the first port
3289 * of the two sharing this TSU for the probe to succeed...
3291 if (port == 0 &&
3292 !devm_request_mem_region(&pdev->dev, rtsu->start,
3293 resource_size(rtsu),
3294 dev_name(&pdev->dev))) {
3295 dev_err(&pdev->dev, "can't request TSU resource.\n");
3296 ret = -EBUSY;
3297 goto out_release;
3299 /* ioremap the TSU registers */
3300 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3301 resource_size(rtsu));
3302 if (!mdp->tsu_addr) {
3303 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3304 ret = -ENOMEM;
3305 goto out_release;
3307 mdp->port = port;
3308 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3310 /* Need to init only the first port of the two sharing a TSU */
3311 if (port == 0) {
3312 if (mdp->cd->chip_reset)
3313 mdp->cd->chip_reset(ndev);
3315 /* TSU init (Init only)*/
3316 sh_eth_tsu_init(mdp);
3320 if (mdp->cd->rmiimode)
3321 sh_eth_write(ndev, 0x1, RMIIMODE);
3323 /* MDIO bus init */
3324 ret = sh_mdio_init(mdp, pd);
3325 if (ret) {
3326 if (ret != -EPROBE_DEFER)
3327 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3328 goto out_release;
3331 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3333 /* network device register */
3334 ret = register_netdev(ndev);
3335 if (ret)
3336 goto out_napi_del;
3338 if (mdp->cd->magic)
3339 device_set_wakeup_capable(&pdev->dev, 1);
3341 /* print device information */
3342 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3343 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3345 pm_runtime_put(&pdev->dev);
3346 platform_set_drvdata(pdev, ndev);
3348 return ret;
3350 out_napi_del:
3351 netif_napi_del(&mdp->napi);
3352 sh_mdio_release(mdp);
3354 out_release:
3355 /* net_dev free */
3356 free_netdev(ndev);
3358 pm_runtime_put(&pdev->dev);
3359 pm_runtime_disable(&pdev->dev);
3360 return ret;
3363 static int sh_eth_drv_remove(struct platform_device *pdev)
3365 struct net_device *ndev = platform_get_drvdata(pdev);
3366 struct sh_eth_private *mdp = netdev_priv(ndev);
3368 unregister_netdev(ndev);
3369 netif_napi_del(&mdp->napi);
3370 sh_mdio_release(mdp);
3371 pm_runtime_disable(&pdev->dev);
3372 free_netdev(ndev);
3374 return 0;
3377 #ifdef CONFIG_PM
3378 #ifdef CONFIG_PM_SLEEP
3379 static int sh_eth_wol_setup(struct net_device *ndev)
3381 struct sh_eth_private *mdp = netdev_priv(ndev);
3383 /* Only allow ECI interrupts */
3384 synchronize_irq(ndev->irq);
3385 napi_disable(&mdp->napi);
3386 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3388 /* Enable MagicPacket */
3389 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3391 return enable_irq_wake(ndev->irq);
3394 static int sh_eth_wol_restore(struct net_device *ndev)
3396 struct sh_eth_private *mdp = netdev_priv(ndev);
3397 int ret;
3399 napi_enable(&mdp->napi);
3401 /* Disable MagicPacket */
3402 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3404 /* The device needs to be reset to restore MagicPacket logic
3405 * for next wakeup. If we close and open the device it will
3406 * both be reset and all registers restored. This is what
3407 * happens during suspend and resume without WoL enabled.
3409 ret = sh_eth_close(ndev);
3410 if (ret < 0)
3411 return ret;
3412 ret = sh_eth_open(ndev);
3413 if (ret < 0)
3414 return ret;
3416 return disable_irq_wake(ndev->irq);
3419 static int sh_eth_suspend(struct device *dev)
3421 struct net_device *ndev = dev_get_drvdata(dev);
3422 struct sh_eth_private *mdp = netdev_priv(ndev);
3423 int ret = 0;
3425 if (!netif_running(ndev))
3426 return 0;
3428 netif_device_detach(ndev);
3430 if (mdp->wol_enabled)
3431 ret = sh_eth_wol_setup(ndev);
3432 else
3433 ret = sh_eth_close(ndev);
3435 return ret;
3438 static int sh_eth_resume(struct device *dev)
3440 struct net_device *ndev = dev_get_drvdata(dev);
3441 struct sh_eth_private *mdp = netdev_priv(ndev);
3442 int ret = 0;
3444 if (!netif_running(ndev))
3445 return 0;
3447 if (mdp->wol_enabled)
3448 ret = sh_eth_wol_restore(ndev);
3449 else
3450 ret = sh_eth_open(ndev);
3452 if (ret < 0)
3453 return ret;
3455 netif_device_attach(ndev);
3457 return ret;
3459 #endif
3461 static int sh_eth_runtime_nop(struct device *dev)
3463 /* Runtime PM callback shared between ->runtime_suspend()
3464 * and ->runtime_resume(). Simply returns success.
3466 * This driver re-initializes all registers after
3467 * pm_runtime_get_sync() anyway so there is no need
3468 * to save and restore registers here.
3470 return 0;
3473 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3474 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3475 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3477 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3478 #else
3479 #define SH_ETH_PM_OPS NULL
3480 #endif
3482 static const struct platform_device_id sh_eth_id_table[] = {
3483 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3484 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3485 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3486 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3487 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3488 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3489 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3492 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3494 static struct platform_driver sh_eth_driver = {
3495 .probe = sh_eth_drv_probe,
3496 .remove = sh_eth_drv_remove,
3497 .id_table = sh_eth_id_table,
3498 .driver = {
3499 .name = CARDNAME,
3500 .pm = SH_ETH_PM_OPS,
3501 .of_match_table = of_match_ptr(sh_eth_match_table),
3505 module_platform_driver(sh_eth_driver);
3507 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3508 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3509 MODULE_LICENSE("GPL v2");