1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
7 #include "net_driver.h"
12 #include "mcdi_pcol.h"
13 #include "mcdi_port_common.h"
14 #include "mcdi_functions.h"
16 #include "mcdi_filters.h"
17 #include "workarounds.h"
19 #include "ef10_sriov.h"
21 #include <linux/jhash.h>
22 #include <linux/wait.h>
23 #include <linux/workqueue.h>
25 /* Hardware control for EF10 architecture including 'Huntington'. */
27 #define EFX_EF10_DRVGEN_EV 7
34 struct efx_ef10_vlan
{
35 struct list_head list
;
39 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
);
41 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
45 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
46 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
47 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
50 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
51 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
52 * bar; PFs use BAR 0/1 for memory.
54 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic
*efx
)
56 switch (efx
->pci_dev
->device
) {
57 case 0x0b03: /* SFC9250 PF */
64 /* All VFs use BAR 0/1 for memory */
65 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic
*efx
)
70 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
74 bar
= efx
->type
->mem_bar(efx
);
75 return resource_size(&efx
->pci_dev
->resource
[bar
]);
78 static bool efx_ef10_is_vf(struct efx_nic
*efx
)
80 return efx
->type
->is_vf
;
83 #ifdef CONFIG_SFC_SRIOV
84 static int efx_ef10_get_vf_index(struct efx_nic
*efx
)
86 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
87 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
91 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
92 sizeof(outbuf
), &outlen
);
95 if (outlen
< sizeof(outbuf
))
98 nic_data
->vf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_VF
);
103 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
105 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
);
106 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
110 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
112 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
113 outbuf
, sizeof(outbuf
), &outlen
);
116 if (outlen
< MC_CMD_GET_CAPABILITIES_OUT_LEN
) {
117 netif_err(efx
, drv
, efx
->net_dev
,
118 "unable to read datapath firmware capabilities\n");
122 nic_data
->datapath_caps
=
123 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
125 if (outlen
>= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN
) {
126 nic_data
->datapath_caps2
= MCDI_DWORD(outbuf
,
127 GET_CAPABILITIES_V2_OUT_FLAGS2
);
128 nic_data
->piobuf_size
= MCDI_WORD(outbuf
,
129 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF
);
131 nic_data
->datapath_caps2
= 0;
132 nic_data
->piobuf_size
= ER_DZ_TX_PIOBUF_SIZE
;
135 /* record the DPCPU firmware IDs to determine VEB vswitching support.
137 nic_data
->rx_dpcpu_fw_id
=
138 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
);
139 nic_data
->tx_dpcpu_fw_id
=
140 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
);
142 if (!(nic_data
->datapath_caps
&
143 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
144 netif_err(efx
, probe
, efx
->net_dev
,
145 "current firmware does not support an RX prefix\n");
149 if (outlen
>= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN
) {
150 u8 vi_window_mode
= MCDI_BYTE(outbuf
,
151 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE
);
153 rc
= efx_mcdi_window_mode_to_stride(efx
, vi_window_mode
);
157 /* keep default VI stride */
158 netif_dbg(efx
, probe
, efx
->net_dev
,
159 "firmware did not report VI window mode, assuming vi_stride = %u\n",
163 if (outlen
>= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
) {
164 efx
->num_mac_stats
= MCDI_WORD(outbuf
,
165 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS
);
166 netif_dbg(efx
, probe
, efx
->net_dev
,
167 "firmware reports num_mac_stats = %u\n",
170 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
171 netif_dbg(efx
, probe
, efx
->net_dev
,
172 "firmware did not report num_mac_stats, assuming %u\n",
179 static void efx_ef10_read_licensed_features(struct efx_nic
*efx
)
181 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LICENSING_V3_IN_LEN
);
182 MCDI_DECLARE_BUF(outbuf
, MC_CMD_LICENSING_V3_OUT_LEN
);
183 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
187 MCDI_SET_DWORD(inbuf
, LICENSING_V3_IN_OP
,
188 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE
);
189 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_LICENSING_V3
, inbuf
, sizeof(inbuf
),
190 outbuf
, sizeof(outbuf
), &outlen
);
191 if (rc
|| (outlen
< MC_CMD_LICENSING_V3_OUT_LEN
))
194 nic_data
->licensed_features
= MCDI_QWORD(outbuf
,
195 LICENSING_V3_OUT_LICENSED_FEATURES
);
198 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
200 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
203 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
204 outbuf
, sizeof(outbuf
), NULL
);
207 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
208 return rc
> 0 ? rc
: -ERANGE
;
211 static int efx_ef10_get_timer_workarounds(struct efx_nic
*efx
)
213 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
214 unsigned int implemented
;
215 unsigned int enabled
;
218 nic_data
->workaround_35388
= false;
219 nic_data
->workaround_61265
= false;
221 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
224 /* Firmware without GET_WORKAROUNDS - not a problem. */
226 } else if (rc
== 0) {
227 /* Bug61265 workaround is always enabled if implemented. */
228 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG61265
)
229 nic_data
->workaround_61265
= true;
231 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
232 nic_data
->workaround_35388
= true;
233 } else if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
234 /* Workaround is implemented but not enabled.
237 rc
= efx_mcdi_set_workaround(efx
,
238 MC_CMD_WORKAROUND_BUG35388
,
241 nic_data
->workaround_35388
= true;
242 /* If we failed to set the workaround just carry on. */
247 netif_dbg(efx
, probe
, efx
->net_dev
,
248 "workaround for bug 35388 is %sabled\n",
249 nic_data
->workaround_35388
? "en" : "dis");
250 netif_dbg(efx
, probe
, efx
->net_dev
,
251 "workaround for bug 61265 is %sabled\n",
252 nic_data
->workaround_61265
? "en" : "dis");
257 static void efx_ef10_process_timer_config(struct efx_nic
*efx
,
258 const efx_dword_t
*data
)
260 unsigned int max_count
;
262 if (EFX_EF10_WORKAROUND_61265(efx
)) {
263 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
264 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS
);
265 efx
->timer_max_ns
= MCDI_DWORD(data
,
266 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS
);
267 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
268 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
269 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT
);
270 max_count
= MCDI_DWORD(data
,
271 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT
);
272 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
274 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
275 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT
);
276 max_count
= MCDI_DWORD(data
,
277 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT
);
278 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
281 netif_dbg(efx
, probe
, efx
->net_dev
,
282 "got timer properties from MC: quantum %u ns; max %u ns\n",
283 efx
->timer_quantum_ns
, efx
->timer_max_ns
);
286 static int efx_ef10_get_timer_config(struct efx_nic
*efx
)
288 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
);
291 rc
= efx_ef10_get_timer_workarounds(efx
);
295 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
, NULL
, 0,
296 outbuf
, sizeof(outbuf
), NULL
);
299 efx_ef10_process_timer_config(efx
, outbuf
);
300 } else if (rc
== -ENOSYS
|| rc
== -EPERM
) {
301 /* Not available - fall back to Huntington defaults. */
302 unsigned int quantum
;
304 rc
= efx_ef10_get_sysclk_freq(efx
);
308 quantum
= 1536000 / rc
; /* 1536 cycles */
309 efx
->timer_quantum_ns
= quantum
;
310 efx
->timer_max_ns
= efx
->type
->timer_period_max
* quantum
;
313 efx_mcdi_display_error(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
,
314 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
,
321 static int efx_ef10_get_mac_address_pf(struct efx_nic
*efx
, u8
*mac_address
)
323 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
327 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
329 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
330 outbuf
, sizeof(outbuf
), &outlen
);
333 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
336 ether_addr_copy(mac_address
,
337 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
341 static int efx_ef10_get_mac_address_vf(struct efx_nic
*efx
, u8
*mac_address
)
343 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN
);
344 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX
);
348 MCDI_SET_DWORD(inbuf
, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID
,
349 EVB_PORT_ID_ASSIGNED
);
350 rc
= efx_mcdi_rpc(efx
, MC_CMD_VPORT_GET_MAC_ADDRESSES
, inbuf
,
351 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
355 if (outlen
< MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN
)
358 num_addrs
= MCDI_DWORD(outbuf
,
359 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT
);
361 WARN_ON(num_addrs
!= 1);
363 ether_addr_copy(mac_address
,
364 MCDI_PTR(outbuf
, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR
));
369 static ssize_t
efx_ef10_show_link_control_flag(struct device
*dev
,
370 struct device_attribute
*attr
,
373 struct efx_nic
*efx
= dev_get_drvdata(dev
);
375 return sprintf(buf
, "%d\n",
376 ((efx
->mcdi
->fn_flags
) &
377 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
381 static ssize_t
efx_ef10_show_primary_flag(struct device
*dev
,
382 struct device_attribute
*attr
,
385 struct efx_nic
*efx
= dev_get_drvdata(dev
);
387 return sprintf(buf
, "%d\n",
388 ((efx
->mcdi
->fn_flags
) &
389 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
393 static struct efx_ef10_vlan
*efx_ef10_find_vlan(struct efx_nic
*efx
, u16 vid
)
395 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
396 struct efx_ef10_vlan
*vlan
;
398 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
400 list_for_each_entry(vlan
, &nic_data
->vlan_list
, list
) {
401 if (vlan
->vid
== vid
)
408 static int efx_ef10_add_vlan(struct efx_nic
*efx
, u16 vid
)
410 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
411 struct efx_ef10_vlan
*vlan
;
414 mutex_lock(&nic_data
->vlan_lock
);
416 vlan
= efx_ef10_find_vlan(efx
, vid
);
418 /* We add VID 0 on init. 8021q adds it on module init
419 * for all interfaces with VLAN filtring feature.
423 netif_warn(efx
, drv
, efx
->net_dev
,
424 "VLAN %u already added\n", vid
);
430 vlan
= kzalloc(sizeof(*vlan
), GFP_KERNEL
);
436 list_add_tail(&vlan
->list
, &nic_data
->vlan_list
);
438 if (efx
->filter_state
) {
439 mutex_lock(&efx
->mac_lock
);
440 down_write(&efx
->filter_sem
);
441 rc
= efx_mcdi_filter_add_vlan(efx
, vlan
->vid
);
442 up_write(&efx
->filter_sem
);
443 mutex_unlock(&efx
->mac_lock
);
445 goto fail_filter_add_vlan
;
449 mutex_unlock(&nic_data
->vlan_lock
);
452 fail_filter_add_vlan
:
453 list_del(&vlan
->list
);
457 mutex_unlock(&nic_data
->vlan_lock
);
461 static void efx_ef10_del_vlan_internal(struct efx_nic
*efx
,
462 struct efx_ef10_vlan
*vlan
)
464 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
466 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
468 if (efx
->filter_state
) {
469 down_write(&efx
->filter_sem
);
470 efx_mcdi_filter_del_vlan(efx
, vlan
->vid
);
471 up_write(&efx
->filter_sem
);
474 list_del(&vlan
->list
);
478 static int efx_ef10_del_vlan(struct efx_nic
*efx
, u16 vid
)
480 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
481 struct efx_ef10_vlan
*vlan
;
484 /* 8021q removes VID 0 on module unload for all interfaces
485 * with VLAN filtering feature. We need to keep it to receive
491 mutex_lock(&nic_data
->vlan_lock
);
493 vlan
= efx_ef10_find_vlan(efx
, vid
);
495 netif_err(efx
, drv
, efx
->net_dev
,
496 "VLAN %u to be deleted not found\n", vid
);
499 efx_ef10_del_vlan_internal(efx
, vlan
);
502 mutex_unlock(&nic_data
->vlan_lock
);
507 static void efx_ef10_cleanup_vlans(struct efx_nic
*efx
)
509 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
510 struct efx_ef10_vlan
*vlan
, *next_vlan
;
512 mutex_lock(&nic_data
->vlan_lock
);
513 list_for_each_entry_safe(vlan
, next_vlan
, &nic_data
->vlan_list
, list
)
514 efx_ef10_del_vlan_internal(efx
, vlan
);
515 mutex_unlock(&nic_data
->vlan_lock
);
518 static DEVICE_ATTR(link_control_flag
, 0444, efx_ef10_show_link_control_flag
,
520 static DEVICE_ATTR(primary_flag
, 0444, efx_ef10_show_primary_flag
, NULL
);
522 static int efx_ef10_probe(struct efx_nic
*efx
)
524 struct efx_ef10_nic_data
*nic_data
;
527 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
530 efx
->nic_data
= nic_data
;
532 /* we assume later that we can copy from this buffer in dwords */
533 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2
% 4);
535 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
536 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
540 /* Get the MC's warm boot count. In case it's rebooting right
541 * now, be prepared to retry.
545 rc
= efx_ef10_get_warm_boot_count(efx
);
552 nic_data
->warm_boot_count
= rc
;
554 efx
->rss_context
.context_id
= EFX_MCDI_RSS_CONTEXT_INVALID
;
556 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
558 /* In case we're recovering from a crash (kexec), we want to
559 * cancel any outstanding request by the previous user of this
560 * function. We send a special message using the least
561 * significant bits of the 'high' (doorbell) register.
563 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
565 rc
= efx_mcdi_init(efx
);
569 mutex_init(&nic_data
->udp_tunnels_lock
);
571 /* Reset (most) configuration for this function */
572 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
576 /* Enable event logging */
577 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
581 rc
= device_create_file(&efx
->pci_dev
->dev
,
582 &dev_attr_link_control_flag
);
586 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
590 rc
= efx_get_pf_index(efx
, &nic_data
->pf_index
);
594 rc
= efx_ef10_init_datapath_caps(efx
);
598 efx_ef10_read_licensed_features(efx
);
600 /* We can have one VI for each vi_stride-byte region.
601 * However, until we use TX option descriptors we need two TX queues
604 efx
->max_channels
= min_t(unsigned int,
606 efx_ef10_mem_map_size(efx
) /
607 (efx
->vi_stride
* EFX_TXQ_TYPES
));
608 efx
->max_tx_channels
= efx
->max_channels
;
609 if (WARN_ON(efx
->max_channels
== 0)) {
614 efx
->rx_packet_len_offset
=
615 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
617 if (nic_data
->datapath_caps
&
618 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN
))
619 efx
->net_dev
->hw_features
|= NETIF_F_RXFCS
;
621 rc
= efx_mcdi_port_get_number(efx
);
626 rc
= efx
->type
->get_mac_address(efx
, efx
->net_dev
->perm_addr
);
630 rc
= efx_ef10_get_timer_config(efx
);
634 rc
= efx_mcdi_mon_probe(efx
);
635 if (rc
&& rc
!= -EPERM
)
638 efx_ptp_defer_probe_with_channel(efx
);
640 #ifdef CONFIG_SFC_SRIOV
641 if ((efx
->pci_dev
->physfn
) && (!efx
->pci_dev
->is_physfn
)) {
642 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
643 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
645 efx_pf
->type
->get_mac_address(efx_pf
, nic_data
->port_id
);
648 ether_addr_copy(nic_data
->port_id
, efx
->net_dev
->perm_addr
);
650 INIT_LIST_HEAD(&nic_data
->vlan_list
);
651 mutex_init(&nic_data
->vlan_lock
);
653 /* Add unspecified VID to support VLAN filtering being disabled */
654 rc
= efx_ef10_add_vlan(efx
, EFX_FILTER_VID_UNSPEC
);
656 goto fail_add_vid_unspec
;
658 /* If VLAN filtering is enabled, we need VID 0 to get untagged
659 * traffic. It is added automatically if 8021q module is loaded,
660 * but we can't rely on it since module may be not loaded.
662 rc
= efx_ef10_add_vlan(efx
, 0);
669 efx_ef10_cleanup_vlans(efx
);
671 mutex_destroy(&nic_data
->vlan_lock
);
673 efx_mcdi_mon_remove(efx
);
675 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
677 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
679 efx_mcdi_detach(efx
);
681 mutex_lock(&nic_data
->udp_tunnels_lock
);
682 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
683 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
684 mutex_unlock(&nic_data
->udp_tunnels_lock
);
685 mutex_destroy(&nic_data
->udp_tunnels_lock
);
689 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
692 efx
->nic_data
= NULL
;
698 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
700 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
701 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
705 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
707 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
708 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
709 nic_data
->piobuf_handle
[i
]);
710 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
715 nic_data
->n_piobufs
= 0;
718 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
720 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
721 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
726 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
728 for (i
= 0; i
< n
; i
++) {
729 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
730 outbuf
, sizeof(outbuf
), &outlen
);
732 /* Don't display the MC error if we didn't have space
735 if (!(efx_ef10_is_vf(efx
) && rc
== -ENOSPC
))
736 efx_mcdi_display_error(efx
, MC_CMD_ALLOC_PIOBUF
,
737 0, outbuf
, outlen
, rc
);
740 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
744 nic_data
->piobuf_handle
[i
] =
745 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
746 netif_dbg(efx
, probe
, efx
->net_dev
,
747 "allocated PIO buffer %u handle %x\n", i
,
748 nic_data
->piobuf_handle
[i
]);
751 nic_data
->n_piobufs
= i
;
753 efx_ef10_free_piobufs(efx
);
757 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
759 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
760 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
);
761 struct efx_channel
*channel
;
762 struct efx_tx_queue
*tx_queue
;
763 unsigned int offset
, index
;
766 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
767 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
769 /* Link a buffer to each VI in the write-combining mapping */
770 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
771 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
772 nic_data
->piobuf_handle
[index
]);
773 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
774 nic_data
->pio_write_vi_base
+ index
);
775 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
776 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
779 netif_err(efx
, drv
, efx
->net_dev
,
780 "failed to link VI %u to PIO buffer %u (%d)\n",
781 nic_data
->pio_write_vi_base
+ index
, index
,
785 netif_dbg(efx
, probe
, efx
->net_dev
,
786 "linked VI %u to PIO buffer %u\n",
787 nic_data
->pio_write_vi_base
+ index
, index
);
790 /* Link a buffer to each TX queue */
791 efx_for_each_channel(channel
, efx
) {
792 /* Extra channels, even those with TXQs (PTP), do not require
795 if (!channel
->type
->want_pio
||
796 channel
->channel
>= efx
->xdp_channel_offset
)
799 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
800 /* We assign the PIO buffers to queues in
801 * reverse order to allow for the following
804 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
805 tx_queue
->channel
->channel
- 1) *
807 index
= offset
/ nic_data
->piobuf_size
;
808 offset
= offset
% nic_data
->piobuf_size
;
810 /* When the host page size is 4K, the first
811 * host page in the WC mapping may be within
812 * the same VI page as the last TX queue. We
813 * can only link one buffer to each VI.
815 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
819 MCDI_SET_DWORD(inbuf
,
820 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
821 nic_data
->piobuf_handle
[index
]);
822 MCDI_SET_DWORD(inbuf
,
823 LINK_PIOBUF_IN_TXQ_INSTANCE
,
825 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
826 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
831 /* This is non-fatal; the TX path just
832 * won't use PIO for this queue
834 netif_err(efx
, drv
, efx
->net_dev
,
835 "failed to link VI %u to PIO buffer %u (%d)\n",
836 tx_queue
->queue
, index
, rc
);
837 tx_queue
->piobuf
= NULL
;
840 nic_data
->pio_write_base
+
841 index
* efx
->vi_stride
+ offset
;
842 tx_queue
->piobuf_offset
= offset
;
843 netif_dbg(efx
, probe
, efx
->net_dev
,
844 "linked VI %u to PIO buffer %u offset %x addr %p\n",
845 tx_queue
->queue
, index
,
846 tx_queue
->piobuf_offset
,
855 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
856 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
858 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN
< MC_CMD_UNLINK_PIOBUF_IN_LEN
);
860 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
861 nic_data
->pio_write_vi_base
+ index
);
862 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
863 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
869 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
871 struct efx_channel
*channel
;
872 struct efx_tx_queue
*tx_queue
;
874 /* All our existing PIO buffers went away */
875 efx_for_each_channel(channel
, efx
)
876 efx_for_each_channel_tx_queue(tx_queue
, channel
)
877 tx_queue
->piobuf
= NULL
;
880 #else /* !EFX_USE_PIO */
882 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
884 return n
== 0 ? 0 : -ENOBUFS
;
887 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
892 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
896 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
900 #endif /* EFX_USE_PIO */
902 static void efx_ef10_remove(struct efx_nic
*efx
)
904 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
907 #ifdef CONFIG_SFC_SRIOV
908 struct efx_ef10_nic_data
*nic_data_pf
;
909 struct pci_dev
*pci_dev_pf
;
910 struct efx_nic
*efx_pf
;
913 if (efx
->pci_dev
->is_virtfn
) {
914 pci_dev_pf
= efx
->pci_dev
->physfn
;
916 efx_pf
= pci_get_drvdata(pci_dev_pf
);
917 nic_data_pf
= efx_pf
->nic_data
;
918 vf
= nic_data_pf
->vf
+ nic_data
->vf_index
;
921 netif_info(efx
, drv
, efx
->net_dev
,
922 "Could not get the PF id from VF\n");
926 efx_ef10_cleanup_vlans(efx
);
927 mutex_destroy(&nic_data
->vlan_lock
);
931 efx_mcdi_mon_remove(efx
);
933 efx_mcdi_rx_free_indir_table(efx
);
935 if (nic_data
->wc_membase
)
936 iounmap(nic_data
->wc_membase
);
938 rc
= efx_mcdi_free_vis(efx
);
941 if (!nic_data
->must_restore_piobufs
)
942 efx_ef10_free_piobufs(efx
);
944 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
945 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
947 efx_mcdi_detach(efx
);
949 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
950 mutex_lock(&nic_data
->udp_tunnels_lock
);
951 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
952 mutex_unlock(&nic_data
->udp_tunnels_lock
);
954 mutex_destroy(&nic_data
->udp_tunnels_lock
);
957 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
961 static int efx_ef10_probe_pf(struct efx_nic
*efx
)
963 return efx_ef10_probe(efx
);
966 int efx_ef10_vadaptor_query(struct efx_nic
*efx
, unsigned int port_id
,
967 u32
*port_flags
, u32
*vadaptor_flags
,
968 unsigned int *vlan_tags
)
970 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
971 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_QUERY_IN_LEN
);
972 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VADAPTOR_QUERY_OUT_LEN
);
976 if (nic_data
->datapath_caps
&
977 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN
)) {
978 MCDI_SET_DWORD(inbuf
, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID
,
981 rc
= efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_QUERY
, inbuf
, sizeof(inbuf
),
982 outbuf
, sizeof(outbuf
), &outlen
);
986 if (outlen
< sizeof(outbuf
)) {
993 *port_flags
= MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_PORT_FLAGS
);
996 MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS
);
1000 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS
);
1005 int efx_ef10_vadaptor_alloc(struct efx_nic
*efx
, unsigned int port_id
)
1007 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_ALLOC_IN_LEN
);
1009 MCDI_SET_DWORD(inbuf
, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID
, port_id
);
1010 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_ALLOC
, inbuf
, sizeof(inbuf
),
1014 int efx_ef10_vadaptor_free(struct efx_nic
*efx
, unsigned int port_id
)
1016 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_FREE_IN_LEN
);
1018 MCDI_SET_DWORD(inbuf
, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID
, port_id
);
1019 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_FREE
, inbuf
, sizeof(inbuf
),
1023 int efx_ef10_vport_add_mac(struct efx_nic
*efx
,
1024 unsigned int port_id
, u8
*mac
)
1026 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN
);
1028 MCDI_SET_DWORD(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1029 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_MACADDR
), mac
);
1031 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_ADD_MAC_ADDRESS
, inbuf
,
1032 sizeof(inbuf
), NULL
, 0, NULL
);
1035 int efx_ef10_vport_del_mac(struct efx_nic
*efx
,
1036 unsigned int port_id
, u8
*mac
)
1038 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN
);
1040 MCDI_SET_DWORD(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1041 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_MACADDR
), mac
);
1043 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_DEL_MAC_ADDRESS
, inbuf
,
1044 sizeof(inbuf
), NULL
, 0, NULL
);
1047 #ifdef CONFIG_SFC_SRIOV
1048 static int efx_ef10_probe_vf(struct efx_nic
*efx
)
1051 struct pci_dev
*pci_dev_pf
;
1053 /* If the parent PF has no VF data structure, it doesn't know about this
1054 * VF so fail probe. The VF needs to be re-created. This can happen
1055 * if the PF driver is unloaded while the VF is assigned to a guest.
1057 pci_dev_pf
= efx
->pci_dev
->physfn
;
1059 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
1060 struct efx_ef10_nic_data
*nic_data_pf
= efx_pf
->nic_data
;
1062 if (!nic_data_pf
->vf
) {
1063 netif_info(efx
, drv
, efx
->net_dev
,
1064 "The VF cannot link to its parent PF; "
1065 "please destroy and re-create the VF\n");
1070 rc
= efx_ef10_probe(efx
);
1074 rc
= efx_ef10_get_vf_index(efx
);
1078 if (efx
->pci_dev
->is_virtfn
) {
1079 if (efx
->pci_dev
->physfn
) {
1080 struct efx_nic
*efx_pf
=
1081 pci_get_drvdata(efx
->pci_dev
->physfn
);
1082 struct efx_ef10_nic_data
*nic_data_p
= efx_pf
->nic_data
;
1083 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1085 nic_data_p
->vf
[nic_data
->vf_index
].efx
= efx
;
1086 nic_data_p
->vf
[nic_data
->vf_index
].pci_dev
=
1089 netif_info(efx
, drv
, efx
->net_dev
,
1090 "Could not get the PF id from VF\n");
1096 efx_ef10_remove(efx
);
1100 static int efx_ef10_probe_vf(struct efx_nic
*efx
__attribute__ ((unused
)))
1106 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
1107 unsigned int min_vis
, unsigned int max_vis
)
1109 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1111 return efx_mcdi_alloc_vis(efx
, min_vis
, max_vis
, &nic_data
->vi_base
,
1112 &nic_data
->n_allocated_vis
);
1115 /* Note that the failure path of this function does not free
1116 * resources, as this will be done by efx_ef10_remove().
1118 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
1120 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1121 unsigned int uc_mem_map_size
, wc_mem_map_size
;
1122 unsigned int min_vis
= max(EFX_TXQ_TYPES
,
1123 efx_separate_tx_channels
? 2 : 1);
1124 unsigned int channel_vis
, pio_write_vi_base
, max_vis
;
1125 void __iomem
*membase
;
1128 channel_vis
= max(efx
->n_channels
,
1129 ((efx
->n_tx_channels
+ efx
->n_extra_tx_channels
) *
1131 efx
->n_xdp_channels
* efx
->xdp_tx_per_channel
);
1134 /* Try to allocate PIO buffers if wanted and if the full
1135 * number of PIO buffers would be sufficient to allocate one
1136 * copy-buffer per TX channel. Failure is non-fatal, as there
1137 * are only a small number of PIO buffers shared between all
1138 * functions of the controller.
1140 if (efx_piobuf_size
!= 0 &&
1141 nic_data
->piobuf_size
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
1142 efx
->n_tx_channels
) {
1143 unsigned int n_piobufs
=
1144 DIV_ROUND_UP(efx
->n_tx_channels
,
1145 nic_data
->piobuf_size
/ efx_piobuf_size
);
1147 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
1149 netif_dbg(efx
, probe
, efx
->net_dev
,
1150 "out of PIO buffers; cannot allocate more\n");
1151 else if (rc
== -EPERM
)
1152 netif_dbg(efx
, probe
, efx
->net_dev
,
1153 "not permitted to allocate PIO buffers\n");
1155 netif_err(efx
, probe
, efx
->net_dev
,
1156 "failed to allocate PIO buffers (%d)\n", rc
);
1158 netif_dbg(efx
, probe
, efx
->net_dev
,
1159 "allocated %u PIO buffers\n", n_piobufs
);
1162 nic_data
->n_piobufs
= 0;
1165 /* PIO buffers should be mapped with write-combining enabled,
1166 * and we want to make single UC and WC mappings rather than
1167 * several of each (in fact that's the only option if host
1168 * page size is >4K). So we may allocate some extra VIs just
1169 * for writing PIO buffers through.
1171 * The UC mapping contains (channel_vis - 1) complete VIs and the
1172 * first 4K of the next VI. Then the WC mapping begins with
1173 * the remainder of this last VI.
1175 uc_mem_map_size
= PAGE_ALIGN((channel_vis
- 1) * efx
->vi_stride
+
1177 if (nic_data
->n_piobufs
) {
1178 /* pio_write_vi_base rounds down to give the number of complete
1179 * VIs inside the UC mapping.
1181 pio_write_vi_base
= uc_mem_map_size
/ efx
->vi_stride
;
1182 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
1183 nic_data
->n_piobufs
) *
1186 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
1188 pio_write_vi_base
= 0;
1189 wc_mem_map_size
= 0;
1190 max_vis
= channel_vis
;
1193 /* In case the last attached driver failed to free VIs, do it now */
1194 rc
= efx_mcdi_free_vis(efx
);
1198 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
1202 if (nic_data
->n_allocated_vis
< channel_vis
) {
1203 netif_info(efx
, drv
, efx
->net_dev
,
1204 "Could not allocate enough VIs to satisfy RSS"
1205 " requirements. Performance may not be optimal.\n");
1206 /* We didn't get the VIs to populate our channels.
1207 * We could keep what we got but then we'd have more
1208 * interrupts than we need.
1209 * Instead calculate new max_channels and restart
1211 efx
->max_channels
= nic_data
->n_allocated_vis
;
1212 efx
->max_tx_channels
=
1213 nic_data
->n_allocated_vis
/ EFX_TXQ_TYPES
;
1215 efx_mcdi_free_vis(efx
);
1219 /* If we didn't get enough VIs to map all the PIO buffers, free the
1222 if (nic_data
->n_piobufs
&&
1223 nic_data
->n_allocated_vis
<
1224 pio_write_vi_base
+ nic_data
->n_piobufs
) {
1225 netif_dbg(efx
, probe
, efx
->net_dev
,
1226 "%u VIs are not sufficient to map %u PIO buffers\n",
1227 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
1228 efx_ef10_free_piobufs(efx
);
1231 /* Shrink the original UC mapping of the memory BAR */
1232 membase
= ioremap(efx
->membase_phys
, uc_mem_map_size
);
1234 netif_err(efx
, probe
, efx
->net_dev
,
1235 "could not shrink memory BAR to %x\n",
1239 iounmap(efx
->membase
);
1240 efx
->membase
= membase
;
1242 /* Set up the WC mapping if needed */
1243 if (wc_mem_map_size
) {
1244 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
1247 if (!nic_data
->wc_membase
) {
1248 netif_err(efx
, probe
, efx
->net_dev
,
1249 "could not allocate WC mapping of size %x\n",
1253 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
1254 nic_data
->pio_write_base
=
1255 nic_data
->wc_membase
+
1256 (pio_write_vi_base
* efx
->vi_stride
+ ER_DZ_TX_PIOBUF
-
1259 rc
= efx_ef10_link_piobufs(efx
);
1261 efx_ef10_free_piobufs(efx
);
1264 netif_dbg(efx
, probe
, efx
->net_dev
,
1265 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1266 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
1267 nic_data
->wc_membase
, wc_mem_map_size
);
1272 static int efx_ef10_init_nic(struct efx_nic
*efx
)
1274 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1277 if (nic_data
->must_check_datapath_caps
) {
1278 rc
= efx_ef10_init_datapath_caps(efx
);
1281 nic_data
->must_check_datapath_caps
= false;
1284 if (nic_data
->must_realloc_vis
) {
1285 /* We cannot let the number of VIs change now */
1286 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
1287 nic_data
->n_allocated_vis
);
1290 nic_data
->must_realloc_vis
= false;
1293 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
1294 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
1296 rc
= efx_ef10_link_piobufs(efx
);
1298 efx_ef10_free_piobufs(efx
);
1301 /* Log an error on failure, but this is non-fatal.
1302 * Permission errors are less important - we've presumably
1303 * had the PIO buffer licence removed.
1306 netif_dbg(efx
, drv
, efx
->net_dev
,
1307 "not permitted to restore PIO buffers\n");
1309 netif_err(efx
, drv
, efx
->net_dev
,
1310 "failed to restore PIO buffers (%d)\n", rc
);
1311 nic_data
->must_restore_piobufs
= false;
1314 /* don't fail init if RSS setup doesn't work */
1315 rc
= efx
->type
->rx_push_rss_config(efx
, false,
1316 efx
->rss_context
.rx_indir_table
, NULL
);
1321 static void efx_ef10_table_reset_mc_allocations(struct efx_nic
*efx
)
1323 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1324 #ifdef CONFIG_SFC_SRIOV
1328 /* All our allocations have been reset */
1329 nic_data
->must_realloc_vis
= true;
1330 nic_data
->must_restore_rss_contexts
= true;
1331 nic_data
->must_restore_filters
= true;
1332 nic_data
->must_restore_piobufs
= true;
1333 efx_ef10_forget_old_piobufs(efx
);
1334 efx
->rss_context
.context_id
= EFX_MCDI_RSS_CONTEXT_INVALID
;
1336 /* Driver-created vswitches and vports must be re-created */
1337 nic_data
->must_probe_vswitching
= true;
1338 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1339 #ifdef CONFIG_SFC_SRIOV
1341 for (i
= 0; i
< efx
->vf_count
; i
++)
1342 nic_data
->vf
[i
].vport_id
= 0;
1346 static enum reset_type
efx_ef10_map_reset_reason(enum reset_type reason
)
1348 if (reason
== RESET_TYPE_MC_FAILURE
)
1349 return RESET_TYPE_DATAPATH
;
1351 return efx_mcdi_map_reset_reason(reason
);
1354 static int efx_ef10_map_reset_flags(u32
*flags
)
1357 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
1358 ETH_RESET_SHARED_SHIFT
),
1359 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
1360 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
1361 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
1362 ETH_RESET_SHARED_SHIFT
)
1365 /* We assume for now that our PCI function is permitted to
1369 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
1370 *flags
&= ~EF10_RESET_MC
;
1371 return RESET_TYPE_WORLD
;
1374 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
1375 *flags
&= ~EF10_RESET_PORT
;
1376 return RESET_TYPE_ALL
;
1379 /* no invisible reset implemented */
1384 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
1386 int rc
= efx_mcdi_reset(efx
, reset_type
);
1388 /* Unprivileged functions return -EPERM, but need to return success
1389 * here so that the datapath is brought back up.
1391 if (reset_type
== RESET_TYPE_WORLD
&& rc
== -EPERM
)
1394 /* If it was a port reset, trigger reallocation of MC resources.
1395 * Note that on an MC reset nothing needs to be done now because we'll
1396 * detect the MC reset later and handle it then.
1397 * For an FLR, we never get an MC reset event, but the MC has reset all
1398 * resources assigned to us, so we have to trigger reallocation now.
1400 if ((reset_type
== RESET_TYPE_ALL
||
1401 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
1402 efx_ef10_table_reset_mc_allocations(efx
);
1406 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1407 [EF10_STAT_ ## ext_name] = \
1408 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1409 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1410 [EF10_STAT_ ## int_name] = \
1411 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1412 #define EF10_OTHER_STAT(ext_name) \
1413 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1414 #define GENERIC_SW_STAT(ext_name) \
1415 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1417 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
1418 EF10_DMA_STAT(port_tx_bytes
, TX_BYTES
),
1419 EF10_DMA_STAT(port_tx_packets
, TX_PKTS
),
1420 EF10_DMA_STAT(port_tx_pause
, TX_PAUSE_PKTS
),
1421 EF10_DMA_STAT(port_tx_control
, TX_CONTROL_PKTS
),
1422 EF10_DMA_STAT(port_tx_unicast
, TX_UNICAST_PKTS
),
1423 EF10_DMA_STAT(port_tx_multicast
, TX_MULTICAST_PKTS
),
1424 EF10_DMA_STAT(port_tx_broadcast
, TX_BROADCAST_PKTS
),
1425 EF10_DMA_STAT(port_tx_lt64
, TX_LT64_PKTS
),
1426 EF10_DMA_STAT(port_tx_64
, TX_64_PKTS
),
1427 EF10_DMA_STAT(port_tx_65_to_127
, TX_65_TO_127_PKTS
),
1428 EF10_DMA_STAT(port_tx_128_to_255
, TX_128_TO_255_PKTS
),
1429 EF10_DMA_STAT(port_tx_256_to_511
, TX_256_TO_511_PKTS
),
1430 EF10_DMA_STAT(port_tx_512_to_1023
, TX_512_TO_1023_PKTS
),
1431 EF10_DMA_STAT(port_tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
1432 EF10_DMA_STAT(port_tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
1433 EF10_DMA_STAT(port_rx_bytes
, RX_BYTES
),
1434 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
1435 EF10_OTHER_STAT(port_rx_good_bytes
),
1436 EF10_OTHER_STAT(port_rx_bad_bytes
),
1437 EF10_DMA_STAT(port_rx_packets
, RX_PKTS
),
1438 EF10_DMA_STAT(port_rx_good
, RX_GOOD_PKTS
),
1439 EF10_DMA_STAT(port_rx_bad
, RX_BAD_FCS_PKTS
),
1440 EF10_DMA_STAT(port_rx_pause
, RX_PAUSE_PKTS
),
1441 EF10_DMA_STAT(port_rx_control
, RX_CONTROL_PKTS
),
1442 EF10_DMA_STAT(port_rx_unicast
, RX_UNICAST_PKTS
),
1443 EF10_DMA_STAT(port_rx_multicast
, RX_MULTICAST_PKTS
),
1444 EF10_DMA_STAT(port_rx_broadcast
, RX_BROADCAST_PKTS
),
1445 EF10_DMA_STAT(port_rx_lt64
, RX_UNDERSIZE_PKTS
),
1446 EF10_DMA_STAT(port_rx_64
, RX_64_PKTS
),
1447 EF10_DMA_STAT(port_rx_65_to_127
, RX_65_TO_127_PKTS
),
1448 EF10_DMA_STAT(port_rx_128_to_255
, RX_128_TO_255_PKTS
),
1449 EF10_DMA_STAT(port_rx_256_to_511
, RX_256_TO_511_PKTS
),
1450 EF10_DMA_STAT(port_rx_512_to_1023
, RX_512_TO_1023_PKTS
),
1451 EF10_DMA_STAT(port_rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
1452 EF10_DMA_STAT(port_rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
1453 EF10_DMA_STAT(port_rx_gtjumbo
, RX_GTJUMBO_PKTS
),
1454 EF10_DMA_STAT(port_rx_bad_gtjumbo
, RX_JABBER_PKTS
),
1455 EF10_DMA_STAT(port_rx_overflow
, RX_OVERFLOW_PKTS
),
1456 EF10_DMA_STAT(port_rx_align_error
, RX_ALIGN_ERROR_PKTS
),
1457 EF10_DMA_STAT(port_rx_length_error
, RX_LENGTH_ERROR_PKTS
),
1458 EF10_DMA_STAT(port_rx_nodesc_drops
, RX_NODESC_DROPS
),
1459 GENERIC_SW_STAT(rx_nodesc_trunc
),
1460 GENERIC_SW_STAT(rx_noskb_drops
),
1461 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
1462 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
1463 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
1464 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
1465 EF10_DMA_STAT(port_rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
1466 EF10_DMA_STAT(port_rx_pm_discard_qbb
, PM_DISCARD_QBB
),
1467 EF10_DMA_STAT(port_rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
1468 EF10_DMA_STAT(port_rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
1469 EF10_DMA_STAT(port_rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
1470 EF10_DMA_STAT(port_rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
1471 EF10_DMA_STAT(port_rx_dp_hlb_fetch
, RXDP_HLB_FETCH_CONDITIONS
),
1472 EF10_DMA_STAT(port_rx_dp_hlb_wait
, RXDP_HLB_WAIT_CONDITIONS
),
1473 EF10_DMA_STAT(rx_unicast
, VADAPTER_RX_UNICAST_PACKETS
),
1474 EF10_DMA_STAT(rx_unicast_bytes
, VADAPTER_RX_UNICAST_BYTES
),
1475 EF10_DMA_STAT(rx_multicast
, VADAPTER_RX_MULTICAST_PACKETS
),
1476 EF10_DMA_STAT(rx_multicast_bytes
, VADAPTER_RX_MULTICAST_BYTES
),
1477 EF10_DMA_STAT(rx_broadcast
, VADAPTER_RX_BROADCAST_PACKETS
),
1478 EF10_DMA_STAT(rx_broadcast_bytes
, VADAPTER_RX_BROADCAST_BYTES
),
1479 EF10_DMA_STAT(rx_bad
, VADAPTER_RX_BAD_PACKETS
),
1480 EF10_DMA_STAT(rx_bad_bytes
, VADAPTER_RX_BAD_BYTES
),
1481 EF10_DMA_STAT(rx_overflow
, VADAPTER_RX_OVERFLOW
),
1482 EF10_DMA_STAT(tx_unicast
, VADAPTER_TX_UNICAST_PACKETS
),
1483 EF10_DMA_STAT(tx_unicast_bytes
, VADAPTER_TX_UNICAST_BYTES
),
1484 EF10_DMA_STAT(tx_multicast
, VADAPTER_TX_MULTICAST_PACKETS
),
1485 EF10_DMA_STAT(tx_multicast_bytes
, VADAPTER_TX_MULTICAST_BYTES
),
1486 EF10_DMA_STAT(tx_broadcast
, VADAPTER_TX_BROADCAST_PACKETS
),
1487 EF10_DMA_STAT(tx_broadcast_bytes
, VADAPTER_TX_BROADCAST_BYTES
),
1488 EF10_DMA_STAT(tx_bad
, VADAPTER_TX_BAD_PACKETS
),
1489 EF10_DMA_STAT(tx_bad_bytes
, VADAPTER_TX_BAD_BYTES
),
1490 EF10_DMA_STAT(tx_overflow
, VADAPTER_TX_OVERFLOW
),
1491 EF10_DMA_STAT(fec_uncorrected_errors
, FEC_UNCORRECTED_ERRORS
),
1492 EF10_DMA_STAT(fec_corrected_errors
, FEC_CORRECTED_ERRORS
),
1493 EF10_DMA_STAT(fec_corrected_symbols_lane0
, FEC_CORRECTED_SYMBOLS_LANE0
),
1494 EF10_DMA_STAT(fec_corrected_symbols_lane1
, FEC_CORRECTED_SYMBOLS_LANE1
),
1495 EF10_DMA_STAT(fec_corrected_symbols_lane2
, FEC_CORRECTED_SYMBOLS_LANE2
),
1496 EF10_DMA_STAT(fec_corrected_symbols_lane3
, FEC_CORRECTED_SYMBOLS_LANE3
),
1497 EF10_DMA_STAT(ctpio_vi_busy_fallback
, CTPIO_VI_BUSY_FALLBACK
),
1498 EF10_DMA_STAT(ctpio_long_write_success
, CTPIO_LONG_WRITE_SUCCESS
),
1499 EF10_DMA_STAT(ctpio_missing_dbell_fail
, CTPIO_MISSING_DBELL_FAIL
),
1500 EF10_DMA_STAT(ctpio_overflow_fail
, CTPIO_OVERFLOW_FAIL
),
1501 EF10_DMA_STAT(ctpio_underflow_fail
, CTPIO_UNDERFLOW_FAIL
),
1502 EF10_DMA_STAT(ctpio_timeout_fail
, CTPIO_TIMEOUT_FAIL
),
1503 EF10_DMA_STAT(ctpio_noncontig_wr_fail
, CTPIO_NONCONTIG_WR_FAIL
),
1504 EF10_DMA_STAT(ctpio_frm_clobber_fail
, CTPIO_FRM_CLOBBER_FAIL
),
1505 EF10_DMA_STAT(ctpio_invalid_wr_fail
, CTPIO_INVALID_WR_FAIL
),
1506 EF10_DMA_STAT(ctpio_vi_clobber_fallback
, CTPIO_VI_CLOBBER_FALLBACK
),
1507 EF10_DMA_STAT(ctpio_unqualified_fallback
, CTPIO_UNQUALIFIED_FALLBACK
),
1508 EF10_DMA_STAT(ctpio_runt_fallback
, CTPIO_RUNT_FALLBACK
),
1509 EF10_DMA_STAT(ctpio_success
, CTPIO_SUCCESS
),
1510 EF10_DMA_STAT(ctpio_fallback
, CTPIO_FALLBACK
),
1511 EF10_DMA_STAT(ctpio_poison
, CTPIO_POISON
),
1512 EF10_DMA_STAT(ctpio_erase
, CTPIO_ERASE
),
1515 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1516 (1ULL << EF10_STAT_port_tx_packets) | \
1517 (1ULL << EF10_STAT_port_tx_pause) | \
1518 (1ULL << EF10_STAT_port_tx_unicast) | \
1519 (1ULL << EF10_STAT_port_tx_multicast) | \
1520 (1ULL << EF10_STAT_port_tx_broadcast) | \
1521 (1ULL << EF10_STAT_port_rx_bytes) | \
1523 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1524 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1525 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1526 (1ULL << EF10_STAT_port_rx_packets) | \
1527 (1ULL << EF10_STAT_port_rx_good) | \
1528 (1ULL << EF10_STAT_port_rx_bad) | \
1529 (1ULL << EF10_STAT_port_rx_pause) | \
1530 (1ULL << EF10_STAT_port_rx_control) | \
1531 (1ULL << EF10_STAT_port_rx_unicast) | \
1532 (1ULL << EF10_STAT_port_rx_multicast) | \
1533 (1ULL << EF10_STAT_port_rx_broadcast) | \
1534 (1ULL << EF10_STAT_port_rx_lt64) | \
1535 (1ULL << EF10_STAT_port_rx_64) | \
1536 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1537 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1538 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1539 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1540 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1541 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1542 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1543 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1544 (1ULL << EF10_STAT_port_rx_overflow) | \
1545 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1546 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1547 (1ULL << GENERIC_STAT_rx_noskb_drops))
1549 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1550 * For a 10G/40G switchable port we do not expose these because they might
1551 * not include all the packets they should.
1552 * On 8000 series NICs these statistics are always provided.
1554 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1555 (1ULL << EF10_STAT_port_tx_lt64) | \
1556 (1ULL << EF10_STAT_port_tx_64) | \
1557 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1558 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1559 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1560 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1561 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1562 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1564 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1565 * switchable port we do expose these because the errors will otherwise
1568 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1569 (1ULL << EF10_STAT_port_rx_length_error))
1571 /* These statistics are only provided if the firmware supports the
1572 * capability PM_AND_RXDP_COUNTERS.
1574 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1575 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1576 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1577 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1578 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1579 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1580 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1581 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1582 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1583 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1584 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1585 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1586 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1588 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1589 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1590 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1591 * These bits are in the second u64 of the raw mask.
1593 #define EF10_FEC_STAT_MASK ( \
1594 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1595 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1596 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1597 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1598 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1599 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1601 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1602 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1603 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1604 * These bits are in the second u64 of the raw mask.
1606 #define EF10_CTPIO_STAT_MASK ( \
1607 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1608 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1609 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1610 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1611 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1612 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1613 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1614 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1615 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1616 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1617 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1618 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1619 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1620 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1621 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1622 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1624 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
1626 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
1627 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
1628 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1630 if (!(efx
->mcdi
->fn_flags
&
1631 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
1634 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
)) {
1635 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
1636 /* 8000 series have everything even at 40G */
1637 if (nic_data
->datapath_caps2
&
1638 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN
))
1639 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1641 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1644 if (nic_data
->datapath_caps
&
1645 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
1646 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
1651 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
1653 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1656 raw_mask
[0] = efx_ef10_raw_stat_mask(efx
);
1658 /* Only show vadaptor stats when EVB capability is present */
1659 if (nic_data
->datapath_caps
&
1660 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
)) {
1661 raw_mask
[0] |= ~((1ULL << EF10_STAT_rx_unicast
) - 1);
1662 raw_mask
[1] = (1ULL << (EF10_STAT_V1_COUNT
- 64)) - 1;
1666 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1667 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V2
)
1668 raw_mask
[1] |= EF10_FEC_STAT_MASK
;
1670 /* CTPIO stats appear in V3. Only show them on devices that actually
1671 * support CTPIO. Although this driver doesn't use CTPIO others might,
1672 * and we may be reporting the stats for the underlying port.
1674 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V3
&&
1675 (nic_data
->datapath_caps2
&
1676 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN
)))
1677 raw_mask
[1] |= EF10_CTPIO_STAT_MASK
;
1679 #if BITS_PER_LONG == 64
1680 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 2);
1681 mask
[0] = raw_mask
[0];
1682 mask
[1] = raw_mask
[1];
1684 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 3);
1685 mask
[0] = raw_mask
[0] & 0xffffffff;
1686 mask
[1] = raw_mask
[0] >> 32;
1687 mask
[2] = raw_mask
[1] & 0xffffffff;
1691 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
*names
)
1693 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1695 efx_ef10_get_stat_mask(efx
, mask
);
1696 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1700 static size_t efx_ef10_update_stats_common(struct efx_nic
*efx
, u64
*full_stats
,
1701 struct rtnl_link_stats64
*core_stats
)
1703 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1704 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1705 u64
*stats
= nic_data
->stats
;
1706 size_t stats_count
= 0, index
;
1708 efx_ef10_get_stat_mask(efx
, mask
);
1711 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1712 if (efx_ef10_stat_desc
[index
].name
) {
1713 *full_stats
++ = stats
[index
];
1722 if (nic_data
->datapath_caps
&
1723 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
) {
1724 /* Use vadaptor stats. */
1725 core_stats
->rx_packets
= stats
[EF10_STAT_rx_unicast
] +
1726 stats
[EF10_STAT_rx_multicast
] +
1727 stats
[EF10_STAT_rx_broadcast
];
1728 core_stats
->tx_packets
= stats
[EF10_STAT_tx_unicast
] +
1729 stats
[EF10_STAT_tx_multicast
] +
1730 stats
[EF10_STAT_tx_broadcast
];
1731 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_unicast_bytes
] +
1732 stats
[EF10_STAT_rx_multicast_bytes
] +
1733 stats
[EF10_STAT_rx_broadcast_bytes
];
1734 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_unicast_bytes
] +
1735 stats
[EF10_STAT_tx_multicast_bytes
] +
1736 stats
[EF10_STAT_tx_broadcast_bytes
];
1737 core_stats
->rx_dropped
= stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1738 stats
[GENERIC_STAT_rx_noskb_drops
];
1739 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1740 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1741 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1742 core_stats
->rx_errors
= core_stats
->rx_crc_errors
;
1743 core_stats
->tx_errors
= stats
[EF10_STAT_tx_bad
];
1745 /* Use port stats. */
1746 core_stats
->rx_packets
= stats
[EF10_STAT_port_rx_packets
];
1747 core_stats
->tx_packets
= stats
[EF10_STAT_port_tx_packets
];
1748 core_stats
->rx_bytes
= stats
[EF10_STAT_port_rx_bytes
];
1749 core_stats
->tx_bytes
= stats
[EF10_STAT_port_tx_bytes
];
1750 core_stats
->rx_dropped
= stats
[EF10_STAT_port_rx_nodesc_drops
] +
1751 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1752 stats
[GENERIC_STAT_rx_noskb_drops
];
1753 core_stats
->multicast
= stats
[EF10_STAT_port_rx_multicast
];
1754 core_stats
->rx_length_errors
=
1755 stats
[EF10_STAT_port_rx_gtjumbo
] +
1756 stats
[EF10_STAT_port_rx_length_error
];
1757 core_stats
->rx_crc_errors
= stats
[EF10_STAT_port_rx_bad
];
1758 core_stats
->rx_frame_errors
=
1759 stats
[EF10_STAT_port_rx_align_error
];
1760 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_port_rx_overflow
];
1761 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1762 core_stats
->rx_crc_errors
+
1763 core_stats
->rx_frame_errors
);
1769 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic
*efx
)
1771 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1772 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1773 __le64 generation_start
, generation_end
;
1774 u64
*stats
= nic_data
->stats
;
1777 efx_ef10_get_stat_mask(efx
, mask
);
1779 dma_stats
= efx
->stats_buffer
.addr
;
1781 generation_end
= dma_stats
[efx
->num_mac_stats
- 1];
1782 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
)
1785 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1786 stats
, efx
->stats_buffer
.addr
, false);
1788 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1789 if (generation_end
!= generation_start
)
1792 /* Update derived statistics */
1793 efx_nic_fix_nodesc_drop_stat(efx
,
1794 &stats
[EF10_STAT_port_rx_nodesc_drops
]);
1795 stats
[EF10_STAT_port_rx_good_bytes
] =
1796 stats
[EF10_STAT_port_rx_bytes
] -
1797 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
];
1798 efx_update_diff_stat(&stats
[EF10_STAT_port_rx_bad_bytes
],
1799 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
]);
1800 efx_update_sw_stats(efx
, stats
);
1805 static size_t efx_ef10_update_stats_pf(struct efx_nic
*efx
, u64
*full_stats
,
1806 struct rtnl_link_stats64
*core_stats
)
1810 /* If we're unlucky enough to read statistics during the DMA, wait
1811 * up to 10ms for it to finish (typically takes <500us)
1813 for (retry
= 0; retry
< 100; ++retry
) {
1814 if (efx_ef10_try_update_nic_stats_pf(efx
) == 0)
1819 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1822 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic
*efx
)
1824 MCDI_DECLARE_BUF(inbuf
, MC_CMD_MAC_STATS_IN_LEN
);
1825 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1826 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1827 __le64 generation_start
, generation_end
;
1828 u64
*stats
= nic_data
->stats
;
1829 u32 dma_len
= efx
->num_mac_stats
* sizeof(u64
);
1830 struct efx_buffer stats_buf
;
1834 spin_unlock_bh(&efx
->stats_lock
);
1836 if (in_interrupt()) {
1837 /* If in atomic context, cannot update stats. Just update the
1838 * software stats and return so the caller can continue.
1840 spin_lock_bh(&efx
->stats_lock
);
1841 efx_update_sw_stats(efx
, stats
);
1845 efx_ef10_get_stat_mask(efx
, mask
);
1847 rc
= efx_nic_alloc_buffer(efx
, &stats_buf
, dma_len
, GFP_ATOMIC
);
1849 spin_lock_bh(&efx
->stats_lock
);
1853 dma_stats
= stats_buf
.addr
;
1854 dma_stats
[efx
->num_mac_stats
- 1] = EFX_MC_STATS_GENERATION_INVALID
;
1856 MCDI_SET_QWORD(inbuf
, MAC_STATS_IN_DMA_ADDR
, stats_buf
.dma_addr
);
1857 MCDI_POPULATE_DWORD_1(inbuf
, MAC_STATS_IN_CMD
,
1858 MAC_STATS_IN_DMA
, 1);
1859 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_DMA_LEN
, dma_len
);
1860 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1862 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_MAC_STATS
, inbuf
, sizeof(inbuf
),
1864 spin_lock_bh(&efx
->stats_lock
);
1866 /* Expect ENOENT if DMA queues have not been set up */
1867 if (rc
!= -ENOENT
|| atomic_read(&efx
->active_queues
))
1868 efx_mcdi_display_error(efx
, MC_CMD_MAC_STATS
,
1869 sizeof(inbuf
), NULL
, 0, rc
);
1873 generation_end
= dma_stats
[efx
->num_mac_stats
- 1];
1874 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
) {
1879 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1880 stats
, stats_buf
.addr
, false);
1882 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1883 if (generation_end
!= generation_start
) {
1888 efx_update_sw_stats(efx
, stats
);
1890 efx_nic_free_buffer(efx
, &stats_buf
);
1894 static size_t efx_ef10_update_stats_vf(struct efx_nic
*efx
, u64
*full_stats
,
1895 struct rtnl_link_stats64
*core_stats
)
1897 if (efx_ef10_try_update_nic_stats_vf(efx
))
1900 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1903 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
1905 struct efx_nic
*efx
= channel
->efx
;
1906 unsigned int mode
, usecs
;
1907 efx_dword_t timer_cmd
;
1909 if (channel
->irq_moderation_us
) {
1911 usecs
= channel
->irq_moderation_us
;
1917 if (EFX_EF10_WORKAROUND_61265(efx
)) {
1918 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_EVQ_TMR_IN_LEN
);
1919 unsigned int ns
= usecs
* 1000;
1921 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_INSTANCE
,
1923 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS
, ns
);
1924 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS
, ns
);
1925 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_MODE
, mode
);
1927 efx_mcdi_rpc_async(efx
, MC_CMD_SET_EVQ_TMR
,
1928 inbuf
, sizeof(inbuf
), 0, NULL
, 0);
1929 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
1930 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
1932 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
1933 EFE_DD_EVQ_IND_TIMER_FLAGS
,
1934 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
1935 ERF_DD_EVQ_IND_TIMER_VAL
, ticks
);
1936 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
1939 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
1941 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
1942 ERF_DZ_TC_TIMER_VAL
, ticks
,
1943 ERF_FZ_TC_TMR_REL_VAL
, ticks
);
1944 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
1949 static void efx_ef10_get_wol_vf(struct efx_nic
*efx
,
1950 struct ethtool_wolinfo
*wol
) {}
1952 static int efx_ef10_set_wol_vf(struct efx_nic
*efx
, u32 type
)
1957 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1961 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1964 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
1971 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
1972 const efx_dword_t
*hdr
, size_t hdr_len
,
1973 const efx_dword_t
*sdu
, size_t sdu_len
)
1975 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1976 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1978 memcpy(pdu
, hdr
, hdr_len
);
1979 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
1982 /* The hardware provides 'low' and 'high' (doorbell) registers
1983 * for passing the 64-bit address of an MCDI request to
1984 * firmware. However the dwords are swapped by firmware. The
1985 * least significant bits of the doorbell are then 0 for all
1986 * MCDI requests due to alignment.
1988 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
1990 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
1994 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
1996 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1997 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
2000 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
2004 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
2005 size_t offset
, size_t outlen
)
2007 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2008 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
2010 memcpy(outbuf
, pdu
+ offset
, outlen
);
2013 static void efx_ef10_mcdi_reboot_detected(struct efx_nic
*efx
)
2015 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2017 /* All our allocations have been reset */
2018 efx_ef10_table_reset_mc_allocations(efx
);
2020 /* The datapath firmware might have been changed */
2021 nic_data
->must_check_datapath_caps
= true;
2023 /* MAC statistics have been cleared on the NIC; clear the local
2024 * statistic that we update with efx_update_diff_stat().
2026 nic_data
->stats
[EF10_STAT_port_rx_bad_bytes
] = 0;
2029 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
2031 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2034 rc
= efx_ef10_get_warm_boot_count(efx
);
2036 /* The firmware is presumably in the process of
2037 * rebooting. However, we are supposed to report each
2038 * reboot just once, so we must only do that once we
2039 * can read and store the updated warm boot count.
2044 if (rc
== nic_data
->warm_boot_count
)
2047 nic_data
->warm_boot_count
= rc
;
2048 efx_ef10_mcdi_reboot_detected(efx
);
2053 /* Handle an MSI interrupt
2055 * Handle an MSI hardware interrupt. This routine schedules event
2056 * queue processing. No interrupt acknowledgement cycle is necessary.
2057 * Also, we never need to check that the interrupt is for us, since
2058 * MSI interrupts cannot be shared.
2060 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
2062 struct efx_msi_context
*context
= dev_id
;
2063 struct efx_nic
*efx
= context
->efx
;
2065 netif_vdbg(efx
, intr
, efx
->net_dev
,
2066 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
2068 if (likely(READ_ONCE(efx
->irq_soft_enabled
))) {
2069 /* Note test interrupts */
2070 if (context
->index
== efx
->irq_level
)
2071 efx
->last_irq_cpu
= raw_smp_processor_id();
2073 /* Schedule processing of the channel */
2074 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
2080 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
2082 struct efx_nic
*efx
= dev_id
;
2083 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
2084 struct efx_channel
*channel
;
2088 /* Read the ISR which also ACKs the interrupts */
2089 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
2090 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
2095 if (likely(soft_enabled
)) {
2096 /* Note test interrupts */
2097 if (queues
& (1U << efx
->irq_level
))
2098 efx
->last_irq_cpu
= raw_smp_processor_id();
2100 efx_for_each_channel(channel
, efx
) {
2102 efx_schedule_channel_irq(channel
);
2107 netif_vdbg(efx
, intr
, efx
->net_dev
,
2108 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
2109 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
2114 static int efx_ef10_irq_test_generate(struct efx_nic
*efx
)
2116 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
2118 if (efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG41750
, true,
2122 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
2124 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
2125 return efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
2126 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
2129 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
2131 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
,
2132 (tx_queue
->ptr_mask
+ 1) *
2133 sizeof(efx_qword_t
),
2137 /* This writes to the TX_DESC_WPTR and also pushes data */
2138 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
2139 const efx_qword_t
*txd
)
2141 unsigned int write_ptr
;
2144 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2145 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
2146 reg
.qword
[0] = *txd
;
2147 efx_writeo_page(tx_queue
->efx
, ®
,
2148 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
2151 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2153 static int efx_ef10_tx_tso_desc(struct efx_tx_queue
*tx_queue
,
2154 struct sk_buff
*skb
,
2157 struct efx_tx_buffer
*buffer
;
2165 EFX_WARN_ON_ONCE_PARANOID(tx_queue
->tso_version
!= 2);
2167 mss
= skb_shinfo(skb
)->gso_size
;
2169 if (unlikely(mss
< 4)) {
2170 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss
);
2175 if (ip
->version
== 4) {
2176 /* Modify IPv4 header if needed. */
2179 ipv4_id
= ntohs(ip
->id
);
2181 /* Modify IPv6 header if needed. */
2182 struct ipv6hdr
*ipv6
= ipv6_hdr(skb
);
2184 ipv6
->payload_len
= 0;
2189 seqnum
= ntohl(tcp
->seq
);
2191 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2193 buffer
->flags
= EFX_TX_BUF_OPTION
;
2195 buffer
->unmap_len
= 0;
2196 EFX_POPULATE_QWORD_5(buffer
->option
,
2197 ESF_DZ_TX_DESC_IS_OPT
, 1,
2198 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2199 ESF_DZ_TX_TSO_OPTION_TYPE
,
2200 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A
,
2201 ESF_DZ_TX_TSO_IP_ID
, ipv4_id
,
2202 ESF_DZ_TX_TSO_TCP_SEQNO
, seqnum
2204 ++tx_queue
->insert_count
;
2206 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2208 buffer
->flags
= EFX_TX_BUF_OPTION
;
2210 buffer
->unmap_len
= 0;
2211 EFX_POPULATE_QWORD_4(buffer
->option
,
2212 ESF_DZ_TX_DESC_IS_OPT
, 1,
2213 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2214 ESF_DZ_TX_TSO_OPTION_TYPE
,
2215 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B
,
2216 ESF_DZ_TX_TSO_TCP_MSS
, mss
2218 ++tx_queue
->insert_count
;
2223 static u32
efx_ef10_tso_versions(struct efx_nic
*efx
)
2225 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2226 u32 tso_versions
= 0;
2228 if (nic_data
->datapath_caps
&
2229 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
))
2230 tso_versions
|= BIT(1);
2231 if (nic_data
->datapath_caps2
&
2232 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN
))
2233 tso_versions
|= BIT(2);
2234 return tso_versions
;
2237 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
2239 bool csum_offload
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
2240 struct efx_channel
*channel
= tx_queue
->channel
;
2241 struct efx_nic
*efx
= tx_queue
->efx
;
2242 struct efx_ef10_nic_data
*nic_data
;
2243 bool tso_v2
= false;
2247 nic_data
= efx
->nic_data
;
2249 /* Only attempt to enable TX timestamping if we have the license for it,
2250 * otherwise TXQ init will fail
2252 if (!(nic_data
->licensed_features
&
2253 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
))) {
2254 tx_queue
->timestamping
= false;
2255 /* Disable sync events on this channel. */
2256 if (efx
->type
->ptp_set_ts_sync_events
)
2257 efx
->type
->ptp_set_ts_sync_events(efx
, false, false);
2260 /* TSOv2 is a limited resource that can only be configured on a limited
2261 * number of queues. TSO without checksum offload is not really a thing,
2262 * so we only enable it for those queues.
2263 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2266 if (csum_offload
&& (nic_data
->datapath_caps2
&
2267 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN
)) &&
2268 !tx_queue
->timestamping
&& !tx_queue
->xdp_tx
) {
2270 netif_dbg(efx
, hw
, efx
->net_dev
, "Using TSOv2 for channel %u\n",
2274 rc
= efx_mcdi_tx_init(tx_queue
, tso_v2
);
2278 /* A previous user of this TX queue might have set us up the
2279 * bomb by writing a descriptor to the TX push collector but
2280 * not the doorbell. (Each collector belongs to a port, not a
2281 * queue or function, so cannot easily be reset.) We must
2282 * attempt to push a no-op descriptor in its place.
2284 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
2285 tx_queue
->insert_count
= 1;
2286 txd
= efx_tx_desc(tx_queue
, 0);
2287 EFX_POPULATE_QWORD_5(*txd
,
2288 ESF_DZ_TX_DESC_IS_OPT
, true,
2289 ESF_DZ_TX_OPTION_TYPE
,
2290 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
2291 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
2292 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
,
2293 ESF_DZ_TX_TIMESTAMP
, tx_queue
->timestamping
);
2294 tx_queue
->write_count
= 1;
2297 tx_queue
->handle_tso
= efx_ef10_tx_tso_desc
;
2298 tx_queue
->tso_version
= 2;
2299 } else if (nic_data
->datapath_caps
&
2300 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
)) {
2301 tx_queue
->tso_version
= 1;
2305 efx_ef10_push_tx_desc(tx_queue
, txd
);
2310 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
2314 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2315 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
2317 unsigned int write_ptr
;
2320 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2321 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
2322 efx_writed_page(tx_queue
->efx
, ®
,
2323 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
2326 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2328 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue
*tx_queue
,
2329 dma_addr_t dma_addr
, unsigned int len
)
2331 if (len
> EFX_EF10_MAX_TX_DESCRIPTOR_LEN
) {
2332 /* If we need to break across multiple descriptors we should
2333 * stop at a page boundary. This assumes the length limit is
2334 * greater than the page size.
2336 dma_addr_t end
= dma_addr
+ EFX_EF10_MAX_TX_DESCRIPTOR_LEN
;
2338 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN
< EFX_PAGE_SIZE
);
2339 len
= (end
& (~(EFX_PAGE_SIZE
- 1))) - dma_addr
;
2345 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
2347 unsigned int old_write_count
= tx_queue
->write_count
;
2348 struct efx_tx_buffer
*buffer
;
2349 unsigned int write_ptr
;
2352 tx_queue
->xmit_more_available
= false;
2353 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
2357 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2358 buffer
= &tx_queue
->buffer
[write_ptr
];
2359 txd
= efx_tx_desc(tx_queue
, write_ptr
);
2360 ++tx_queue
->write_count
;
2362 /* Create TX descriptor ring entry */
2363 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
2364 *txd
= buffer
->option
;
2365 if (EFX_QWORD_FIELD(*txd
, ESF_DZ_TX_OPTION_TYPE
) == 1)
2366 /* PIO descriptor */
2367 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2369 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2370 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
2371 EFX_POPULATE_QWORD_3(
2374 buffer
->flags
& EFX_TX_BUF_CONT
,
2375 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
2376 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
2378 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
2380 wmb(); /* Ensure descriptors are written before they are fetched */
2382 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
2383 txd
= efx_tx_desc(tx_queue
,
2384 old_write_count
& tx_queue
->ptr_mask
);
2385 efx_ef10_push_tx_desc(tx_queue
, txd
);
2388 efx_ef10_notify_tx_desc(tx_queue
);
2392 /* This creates an entry in the RX descriptor queue */
2394 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
2396 struct efx_rx_buffer
*rx_buf
;
2399 rxd
= efx_rx_desc(rx_queue
, index
);
2400 rx_buf
= efx_rx_buffer(rx_queue
, index
);
2401 EFX_POPULATE_QWORD_2(*rxd
,
2402 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
2403 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
2406 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
2408 struct efx_nic
*efx
= rx_queue
->efx
;
2409 unsigned int write_count
;
2412 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2413 write_count
= rx_queue
->added_count
& ~7;
2414 if (rx_queue
->notified_count
== write_count
)
2418 efx_ef10_build_rx_desc(
2420 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
2421 while (++rx_queue
->notified_count
!= write_count
);
2424 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
2425 write_count
& rx_queue
->ptr_mask
);
2426 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
2427 efx_rx_queue_index(rx_queue
));
2430 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
2432 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
2434 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2435 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2438 EFX_POPULATE_QWORD_2(event
,
2439 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2440 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
2442 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2444 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2445 * already swapped the data to little-endian order.
2447 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2448 sizeof(efx_qword_t
));
2450 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
2451 inbuf
, sizeof(inbuf
), 0,
2452 efx_ef10_rx_defer_refill_complete
, 0);
2456 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
2457 int rc
, efx_dword_t
*outbuf
,
2458 size_t outlen_actual
)
2463 static int efx_ef10_ev_init(struct efx_channel
*channel
)
2465 struct efx_nic
*efx
= channel
->efx
;
2466 struct efx_ef10_nic_data
*nic_data
;
2467 unsigned int enabled
, implemented
;
2468 bool use_v2
, cut_thru
;
2471 nic_data
= efx
->nic_data
;
2472 use_v2
= nic_data
->datapath_caps2
&
2473 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN
;
2474 cut_thru
= !(nic_data
->datapath_caps
&
2475 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
2476 rc
= efx_mcdi_ev_init(channel
, cut_thru
, use_v2
);
2478 /* IRQ return is ignored */
2479 if (channel
->channel
|| rc
)
2482 /* Successfully created event queue on channel 0 */
2483 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
2484 if (rc
== -ENOSYS
) {
2485 /* GET_WORKAROUNDS was implemented before this workaround,
2486 * thus it must be unavailable in this firmware.
2488 nic_data
->workaround_26807
= false;
2493 nic_data
->workaround_26807
=
2494 !!(enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
);
2496 if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
&&
2497 !nic_data
->workaround_26807
) {
2500 rc
= efx_mcdi_set_workaround(efx
,
2501 MC_CMD_WORKAROUND_BUG26807
,
2506 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN
) {
2507 netif_info(efx
, drv
, efx
->net_dev
,
2508 "other functions on NIC have been reset\n");
2510 /* With MCFW v4.6.x and earlier, the
2511 * boot count will have incremented,
2512 * so re-read the warm_boot_count
2513 * value now to ensure this function
2514 * doesn't think it has changed next
2517 rc
= efx_ef10_get_warm_boot_count(efx
);
2519 nic_data
->warm_boot_count
= rc
;
2523 nic_data
->workaround_26807
= true;
2524 } else if (rc
== -EPERM
) {
2534 efx_mcdi_ev_fini(channel
);
2538 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
2539 unsigned int rx_queue_label
)
2541 struct efx_nic
*efx
= rx_queue
->efx
;
2543 netif_info(efx
, hw
, efx
->net_dev
,
2544 "rx event arrived on queue %d labeled as queue %u\n",
2545 efx_rx_queue_index(rx_queue
), rx_queue_label
);
2547 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2551 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
2552 unsigned int actual
, unsigned int expected
)
2554 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
2555 struct efx_nic
*efx
= rx_queue
->efx
;
2557 netif_info(efx
, hw
, efx
->net_dev
,
2558 "dropped %d events (index=%d expected=%d)\n",
2559 dropped
, actual
, expected
);
2561 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2564 /* partially received RX was aborted. clean up. */
2565 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
2567 unsigned int rx_desc_ptr
;
2569 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
2570 "scattered RX aborted (dropping %u buffers)\n",
2571 rx_queue
->scatter_n
);
2573 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
2575 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
2576 0, EFX_RX_PKT_DISCARD
);
2578 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2579 rx_queue
->scatter_n
= 0;
2580 rx_queue
->scatter_len
= 0;
2581 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
2584 static u16
efx_ef10_handle_rx_event_errors(struct efx_channel
*channel
,
2585 unsigned int n_packets
,
2586 unsigned int rx_encap_hdr
,
2587 unsigned int rx_l3_class
,
2588 unsigned int rx_l4_class
,
2589 const efx_qword_t
*event
)
2591 struct efx_nic
*efx
= channel
->efx
;
2592 bool handled
= false;
2594 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)) {
2595 if (!(efx
->net_dev
->features
& NETIF_F_RXALL
)) {
2596 if (!efx
->loopback_selftest
)
2597 channel
->n_rx_eth_crc_err
+= n_packets
;
2598 return EFX_RX_PKT_DISCARD
;
2602 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
)) {
2603 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
2604 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2605 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
2606 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
2607 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
2608 netdev_WARN(efx
->net_dev
,
2609 "invalid class for RX_IPCKSUM_ERR: event="
2611 EFX_QWORD_VAL(*event
));
2612 if (!efx
->loopback_selftest
)
2614 &channel
->n_rx_outer_ip_hdr_chksum_err
:
2615 &channel
->n_rx_ip_hdr_chksum_err
) += n_packets
;
2618 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_TCPUDP_CKSUM_ERR
)) {
2619 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
2620 ((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2621 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
2622 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
2623 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
))))
2624 netdev_WARN(efx
->net_dev
,
2625 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2627 EFX_QWORD_VAL(*event
));
2628 if (!efx
->loopback_selftest
)
2630 &channel
->n_rx_outer_tcp_udp_chksum_err
:
2631 &channel
->n_rx_tcp_udp_chksum_err
) += n_packets
;
2634 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_IP_INNER_CHKSUM_ERR
)) {
2635 if (unlikely(!rx_encap_hdr
))
2636 netdev_WARN(efx
->net_dev
,
2637 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2639 EFX_QWORD_VAL(*event
));
2640 else if (unlikely(rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2641 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
2642 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
2643 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
2644 netdev_WARN(efx
->net_dev
,
2645 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2647 EFX_QWORD_VAL(*event
));
2648 if (!efx
->loopback_selftest
)
2649 channel
->n_rx_inner_ip_hdr_chksum_err
+= n_packets
;
2652 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
)) {
2653 if (unlikely(!rx_encap_hdr
))
2654 netdev_WARN(efx
->net_dev
,
2655 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2657 EFX_QWORD_VAL(*event
));
2658 else if (unlikely((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2659 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
2660 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
2661 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
)))
2662 netdev_WARN(efx
->net_dev
,
2663 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2665 EFX_QWORD_VAL(*event
));
2666 if (!efx
->loopback_selftest
)
2667 channel
->n_rx_inner_tcp_udp_chksum_err
+= n_packets
;
2671 WARN_ON(!handled
); /* No error bits were recognised */
2675 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
2676 const efx_qword_t
*event
)
2678 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
;
2679 unsigned int rx_l3_class
, rx_l4_class
, rx_encap_hdr
;
2680 unsigned int n_descs
, n_packets
, i
;
2681 struct efx_nic
*efx
= channel
->efx
;
2682 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2683 struct efx_rx_queue
*rx_queue
;
2688 if (unlikely(READ_ONCE(efx
->reset_pending
)))
2691 /* Basic packet information */
2692 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
2693 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
2694 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
2695 rx_l3_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L3_CLASS
);
2696 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_FZ_RX_L4_CLASS
);
2697 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
2699 nic_data
->datapath_caps
&
2700 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
) ?
2701 EFX_QWORD_FIELD(*event
, ESF_EZ_RX_ENCAP_HDR
) :
2702 ESE_EZ_ENCAP_HDR_NONE
;
2704 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
2705 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
2707 EFX_QWORD_VAL(*event
));
2709 rx_queue
= efx_channel_get_rx_queue(channel
);
2711 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
2712 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
2714 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
2715 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2717 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
2718 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2720 /* detect rx abort */
2721 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
2722 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
2723 netdev_WARN(efx
->net_dev
,
2724 "invalid RX abort: scatter_n=%u event="
2726 rx_queue
->scatter_n
,
2727 EFX_QWORD_VAL(*event
));
2728 efx_ef10_handle_rx_abort(rx_queue
);
2732 /* Check that RX completion merging is valid, i.e.
2733 * the current firmware supports it and this is a
2734 * non-scattered packet.
2736 if (!(nic_data
->datapath_caps
&
2737 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
2738 rx_queue
->scatter_n
!= 0 || rx_cont
) {
2739 efx_ef10_handle_rx_bad_lbits(
2740 rx_queue
, next_ptr_lbits
,
2741 (rx_queue
->removed_count
+
2742 rx_queue
->scatter_n
+ 1) &
2743 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2747 /* Merged completion for multiple non-scattered packets */
2748 rx_queue
->scatter_n
= 1;
2749 rx_queue
->scatter_len
= 0;
2750 n_packets
= n_descs
;
2751 ++channel
->n_rx_merge_events
;
2752 channel
->n_rx_merge_packets
+= n_packets
;
2753 flags
|= EFX_RX_PKT_PREFIX_LEN
;
2755 ++rx_queue
->scatter_n
;
2756 rx_queue
->scatter_len
+= rx_bytes
;
2762 EFX_POPULATE_QWORD_5(errors
, ESF_DZ_RX_ECRC_ERR
, 1,
2763 ESF_DZ_RX_IPCKSUM_ERR
, 1,
2764 ESF_DZ_RX_TCPUDP_CKSUM_ERR
, 1,
2765 ESF_EZ_RX_IP_INNER_CHKSUM_ERR
, 1,
2766 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
, 1);
2767 EFX_AND_QWORD(errors
, *event
, errors
);
2768 if (unlikely(!EFX_QWORD_IS_ZERO(errors
))) {
2769 flags
|= efx_ef10_handle_rx_event_errors(channel
, n_packets
,
2771 rx_l3_class
, rx_l4_class
,
2774 bool tcpudp
= rx_l4_class
== ESE_FZ_L4_CLASS_TCP
||
2775 rx_l4_class
== ESE_FZ_L4_CLASS_UDP
;
2777 switch (rx_encap_hdr
) {
2778 case ESE_EZ_ENCAP_HDR_VXLAN
: /* VxLAN or GENEVE */
2779 flags
|= EFX_RX_PKT_CSUMMED
; /* outer UDP csum */
2781 flags
|= EFX_RX_PKT_CSUM_LEVEL
; /* inner L4 */
2783 case ESE_EZ_ENCAP_HDR_GRE
:
2784 case ESE_EZ_ENCAP_HDR_NONE
:
2786 flags
|= EFX_RX_PKT_CSUMMED
;
2789 netdev_WARN(efx
->net_dev
,
2790 "unknown encapsulation type: event="
2792 EFX_QWORD_VAL(*event
));
2796 if (rx_l4_class
== ESE_FZ_L4_CLASS_TCP
)
2797 flags
|= EFX_RX_PKT_TCP
;
2799 channel
->irq_mod_score
+= 2 * n_packets
;
2801 /* Handle received packet(s) */
2802 for (i
= 0; i
< n_packets
; i
++) {
2803 efx_rx_packet(rx_queue
,
2804 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
2805 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
2807 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2810 rx_queue
->scatter_n
= 0;
2811 rx_queue
->scatter_len
= 0;
2816 static u32
efx_ef10_extract_event_ts(efx_qword_t
*event
)
2820 tstamp
= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI
);
2822 tstamp
|= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO
);
2828 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2830 struct efx_nic
*efx
= channel
->efx
;
2831 struct efx_tx_queue
*tx_queue
;
2832 unsigned int tx_ev_desc_ptr
;
2833 unsigned int tx_ev_q_label
;
2834 unsigned int tx_ev_type
;
2837 if (unlikely(READ_ONCE(efx
->reset_pending
)))
2840 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
2843 /* Get the transmit queue */
2844 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
2845 tx_queue
= efx_channel_get_tx_queue(channel
,
2846 tx_ev_q_label
% EFX_TXQ_TYPES
);
2848 if (!tx_queue
->timestamping
) {
2849 /* Transmit completion */
2850 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
2851 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
2855 /* Transmit timestamps are only available for 8XXX series. They result
2856 * in up to three events per packet. These occur in order, and are:
2857 * - the normal completion event (may be omitted)
2858 * - the low part of the timestamp
2859 * - the high part of the timestamp
2861 * It's possible for multiple completion events to appear before the
2862 * corresponding timestamps. So we can for example get:
2870 * In addition it's also possible for the adjacent completions to be
2871 * merged, so we may not see COMP N above. As such, the completion
2872 * events are not very useful here.
2874 * Each part of the timestamp is itself split across two 16 bit
2875 * fields in the event.
2877 tx_ev_type
= EFX_QWORD_FIELD(*event
, ESF_EZ_TX_SOFT1
);
2879 switch (tx_ev_type
) {
2880 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION
:
2881 /* Ignore this event - see above. */
2884 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO
:
2885 ts_part
= efx_ef10_extract_event_ts(event
);
2886 tx_queue
->completed_timestamp_minor
= ts_part
;
2889 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI
:
2890 ts_part
= efx_ef10_extract_event_ts(event
);
2891 tx_queue
->completed_timestamp_major
= ts_part
;
2893 efx_xmit_done_single(tx_queue
);
2897 netif_err(efx
, hw
, efx
->net_dev
,
2898 "channel %d unknown tx event type %d (data "
2899 EFX_QWORD_FMT
")\n",
2900 channel
->channel
, tx_ev_type
,
2901 EFX_QWORD_VAL(*event
));
2907 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2909 struct efx_nic
*efx
= channel
->efx
;
2912 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
2915 case ESE_DZ_DRV_TIMER_EV
:
2916 case ESE_DZ_DRV_WAKE_UP_EV
:
2918 case ESE_DZ_DRV_START_UP_EV
:
2919 /* event queue init complete. ok. */
2922 netif_err(efx
, hw
, efx
->net_dev
,
2923 "channel %d unknown driver event type %d"
2924 " (data " EFX_QWORD_FMT
")\n",
2925 channel
->channel
, subcode
,
2926 EFX_QWORD_VAL(*event
));
2931 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
2934 struct efx_nic
*efx
= channel
->efx
;
2937 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
2941 channel
->event_test_cpu
= raw_smp_processor_id();
2943 case EFX_EF10_REFILL
:
2944 /* The queue must be empty, so we won't receive any rx
2945 * events, so efx_process_channel() won't refill the
2946 * queue. Refill it here
2948 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
2951 netif_err(efx
, hw
, efx
->net_dev
,
2952 "channel %d unknown driver event type %u"
2953 " (data " EFX_QWORD_FMT
")\n",
2954 channel
->channel
, (unsigned) subcode
,
2955 EFX_QWORD_VAL(*event
));
2959 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
2961 struct efx_nic
*efx
= channel
->efx
;
2962 efx_qword_t event
, *p_event
;
2963 unsigned int read_ptr
;
2970 read_ptr
= channel
->eventq_read_ptr
;
2973 p_event
= efx_event(channel
, read_ptr
);
2976 if (!efx_event_present(&event
))
2979 EFX_SET_QWORD(*p_event
);
2983 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
2985 netif_vdbg(efx
, drv
, efx
->net_dev
,
2986 "processing event on %d " EFX_QWORD_FMT
"\n",
2987 channel
->channel
, EFX_QWORD_VAL(event
));
2990 case ESE_DZ_EV_CODE_MCDI_EV
:
2991 efx_mcdi_process_event(channel
, &event
);
2993 case ESE_DZ_EV_CODE_RX_EV
:
2994 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
2995 if (spent
>= quota
) {
2996 /* XXX can we split a merged event to
2997 * avoid going over-quota?
3003 case ESE_DZ_EV_CODE_TX_EV
:
3004 efx_ef10_handle_tx_event(channel
, &event
);
3006 case ESE_DZ_EV_CODE_DRIVER_EV
:
3007 efx_ef10_handle_driver_event(channel
, &event
);
3008 if (++spent
== quota
)
3011 case EFX_EF10_DRVGEN_EV
:
3012 efx_ef10_handle_driver_generated_event(channel
, &event
);
3015 netif_err(efx
, hw
, efx
->net_dev
,
3016 "channel %d unknown event type %d"
3017 " (data " EFX_QWORD_FMT
")\n",
3018 channel
->channel
, ev_code
,
3019 EFX_QWORD_VAL(event
));
3024 channel
->eventq_read_ptr
= read_ptr
;
3028 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
3030 struct efx_nic
*efx
= channel
->efx
;
3033 if (EFX_EF10_WORKAROUND_35388(efx
)) {
3034 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
3035 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
3036 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
3037 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
3039 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3040 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
3041 ERF_DD_EVQ_IND_RPTR
,
3042 (channel
->eventq_read_ptr
&
3043 channel
->eventq_mask
) >>
3044 ERF_DD_EVQ_IND_RPTR_WIDTH
);
3045 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3047 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3048 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
3049 ERF_DD_EVQ_IND_RPTR
,
3050 channel
->eventq_read_ptr
&
3051 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
3052 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3055 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
3056 channel
->eventq_read_ptr
&
3057 channel
->eventq_mask
);
3058 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
3062 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
3064 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
3065 struct efx_nic
*efx
= channel
->efx
;
3069 EFX_POPULATE_QWORD_2(event
,
3070 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
3071 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
3073 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
3075 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3076 * already swapped the data to little-endian order.
3078 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
3079 sizeof(efx_qword_t
));
3081 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
3090 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
3093 void efx_ef10_handle_drain_event(struct efx_nic
*efx
)
3095 if (atomic_dec_and_test(&efx
->active_queues
))
3096 wake_up(&efx
->flush_wq
);
3098 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
3101 static int efx_ef10_fini_dmaq(struct efx_nic
*efx
)
3103 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3104 struct efx_channel
*channel
;
3105 struct efx_tx_queue
*tx_queue
;
3106 struct efx_rx_queue
*rx_queue
;
3109 /* If the MC has just rebooted, the TX/RX queues will have already been
3110 * torn down, but efx->active_queues needs to be set to zero.
3112 if (nic_data
->must_realloc_vis
) {
3113 atomic_set(&efx
->active_queues
, 0);
3117 /* Do not attempt to write to the NIC during EEH recovery */
3118 if (efx
->state
!= STATE_RECOVERY
) {
3119 efx_for_each_channel(channel
, efx
) {
3120 efx_for_each_channel_rx_queue(rx_queue
, channel
)
3121 efx_mcdi_rx_fini(rx_queue
);
3122 efx_for_each_channel_tx_queue(tx_queue
, channel
)
3123 efx_mcdi_tx_fini(tx_queue
);
3126 wait_event_timeout(efx
->flush_wq
,
3127 atomic_read(&efx
->active_queues
) == 0,
3128 msecs_to_jiffies(EFX_MAX_FLUSH_TIME
));
3129 pending
= atomic_read(&efx
->active_queues
);
3131 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues\n",
3140 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
3142 atomic_set(&efx
->active_queues
, 0);
3145 static int efx_ef10_vport_set_mac_address(struct efx_nic
*efx
)
3147 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3148 u8 mac_old
[ETH_ALEN
];
3151 /* Only reconfigure a PF-created vport */
3152 if (is_zero_ether_addr(nic_data
->vport_mac
))
3155 efx_device_detach_sync(efx
);
3156 efx_net_stop(efx
->net_dev
);
3157 down_write(&efx
->filter_sem
);
3158 efx_mcdi_filter_table_remove(efx
);
3159 up_write(&efx
->filter_sem
);
3161 rc
= efx_ef10_vadaptor_free(efx
, nic_data
->vport_id
);
3163 goto restore_filters
;
3165 ether_addr_copy(mac_old
, nic_data
->vport_mac
);
3166 rc
= efx_ef10_vport_del_mac(efx
, nic_data
->vport_id
,
3167 nic_data
->vport_mac
);
3169 goto restore_vadaptor
;
3171 rc
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
,
3172 efx
->net_dev
->dev_addr
);
3174 ether_addr_copy(nic_data
->vport_mac
, efx
->net_dev
->dev_addr
);
3176 rc2
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
, mac_old
);
3178 /* Failed to add original MAC, so clear vport_mac */
3179 eth_zero_addr(nic_data
->vport_mac
);
3185 rc2
= efx_ef10_vadaptor_alloc(efx
, nic_data
->vport_id
);
3189 down_write(&efx
->filter_sem
);
3190 rc2
= efx_mcdi_filter_table_probe(efx
);
3191 up_write(&efx
->filter_sem
);
3195 rc2
= efx_net_open(efx
->net_dev
);
3199 efx_device_attach_if_not_resetting(efx
);
3204 netif_err(efx
, drv
, efx
->net_dev
,
3205 "Failed to restore when changing MAC address - scheduling reset\n");
3206 efx_schedule_reset(efx
, RESET_TYPE_DATAPATH
);
3208 return rc
? rc
: rc2
;
3211 static int efx_ef10_set_mac_address(struct efx_nic
*efx
)
3213 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_SET_MAC_IN_LEN
);
3214 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3215 bool was_enabled
= efx
->port_enabled
;
3218 efx_device_detach_sync(efx
);
3219 efx_net_stop(efx
->net_dev
);
3221 mutex_lock(&efx
->mac_lock
);
3222 down_write(&efx
->filter_sem
);
3223 efx_mcdi_filter_table_remove(efx
);
3225 ether_addr_copy(MCDI_PTR(inbuf
, VADAPTOR_SET_MAC_IN_MACADDR
),
3226 efx
->net_dev
->dev_addr
);
3227 MCDI_SET_DWORD(inbuf
, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID
,
3228 nic_data
->vport_id
);
3229 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_VADAPTOR_SET_MAC
, inbuf
,
3230 sizeof(inbuf
), NULL
, 0, NULL
);
3232 efx_mcdi_filter_table_probe(efx
);
3233 up_write(&efx
->filter_sem
);
3234 mutex_unlock(&efx
->mac_lock
);
3237 efx_net_open(efx
->net_dev
);
3238 efx_device_attach_if_not_resetting(efx
);
3240 #ifdef CONFIG_SFC_SRIOV
3241 if (efx
->pci_dev
->is_virtfn
&& efx
->pci_dev
->physfn
) {
3242 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
3245 struct efx_nic
*efx_pf
;
3247 /* Switch to PF and change MAC address on vport */
3248 efx_pf
= pci_get_drvdata(pci_dev_pf
);
3250 rc
= efx_ef10_sriov_set_vf_mac(efx_pf
,
3252 efx
->net_dev
->dev_addr
);
3254 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
3255 struct efx_ef10_nic_data
*nic_data
= efx_pf
->nic_data
;
3258 /* MAC address successfully changed by VF (with MAC
3259 * spoofing) so update the parent PF if possible.
3261 for (i
= 0; i
< efx_pf
->vf_count
; ++i
) {
3262 struct ef10_vf
*vf
= nic_data
->vf
+ i
;
3264 if (vf
->efx
== efx
) {
3265 ether_addr_copy(vf
->mac
,
3266 efx
->net_dev
->dev_addr
);
3274 netif_err(efx
, drv
, efx
->net_dev
,
3275 "Cannot change MAC address; use sfboot to enable"
3276 " mac-spoofing on this interface\n");
3277 } else if (rc
== -ENOSYS
&& !efx_ef10_is_vf(efx
)) {
3278 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3279 * fall-back to the method of changing the MAC address on the
3280 * vport. This only applies to PFs because such versions of
3281 * MCFW do not support VFs.
3283 rc
= efx_ef10_vport_set_mac_address(efx
);
3285 efx_mcdi_display_error(efx
, MC_CMD_VADAPTOR_SET_MAC
,
3286 sizeof(inbuf
), NULL
, 0, rc
);
3292 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
)
3294 efx_mcdi_filter_sync_rx_mode(efx
);
3296 return efx_mcdi_set_mac(efx
);
3299 static int efx_ef10_mac_reconfigure_vf(struct efx_nic
*efx
)
3301 efx_mcdi_filter_sync_rx_mode(efx
);
3306 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
3308 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
3310 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
3311 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
3315 /* MC BISTs follow a different poll mechanism to phy BISTs.
3316 * The BIST is done in the poll handler on the MC, and the MCDI command
3317 * will block until the BIST is done.
3319 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
3322 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
3326 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
3327 outbuf
, sizeof(outbuf
), &outlen
);
3331 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
3334 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
3336 case MC_CMD_POLL_BIST_PASSED
:
3337 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
3339 case MC_CMD_POLL_BIST_TIMEOUT
:
3340 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
3342 case MC_CMD_POLL_BIST_FAILED
:
3343 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
3346 netif_err(efx
, hw
, efx
->net_dev
,
3347 "BIST returned unknown result %u", result
);
3352 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
3356 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
3358 rc
= efx_ef10_start_bist(efx
, bist_type
);
3362 return efx_ef10_poll_bist(efx
);
3366 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
3370 efx_reset_down(efx
, RESET_TYPE_WORLD
);
3372 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
3373 NULL
, 0, NULL
, 0, NULL
);
3377 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
3378 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
3380 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
3385 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
3386 return rc
? rc
: rc2
;
3389 #ifdef CONFIG_SFC_MTD
3391 struct efx_ef10_nvram_type_info
{
3392 u16 type
, type_mask
;
3397 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
3398 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
3399 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
3400 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
3401 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
3402 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
3403 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
3404 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
3405 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
3406 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
3407 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
3408 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
3409 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE
, 0, 0, "sfc_mumfw" },
3410 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI
, 0, 0, "sfc_uefi" },
3411 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS
, 0, 0, "sfc_dynamic_cfg_dflt" },
3412 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS
, 0, 0, "sfc_exp_rom_cfg_dflt" },
3413 { NVRAM_PARTITION_TYPE_STATUS
, 0, 0, "sfc_status" },
3414 { NVRAM_PARTITION_TYPE_BUNDLE
, 0, 0, "sfc_bundle" },
3415 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA
, 0, 0, "sfc_bundle_metadata" },
3417 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3419 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
3420 struct efx_mcdi_mtd_partition
*part
,
3422 unsigned long *found
)
3424 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
3425 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
3426 const struct efx_ef10_nvram_type_info
*info
;
3427 size_t size
, erase_size
, outlen
;
3432 for (type_idx
= 0; ; type_idx
++) {
3433 if (type_idx
== EF10_NVRAM_PARTITION_COUNT
)
3435 info
= efx_ef10_nvram_types
+ type_idx
;
3436 if ((type
& ~info
->type_mask
) == info
->type
)
3439 if (info
->port
!= efx_port_num(efx
))
3442 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
3446 (type
!= NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS
&&
3447 type
!= NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS
))
3448 /* Hide protected partitions that don't provide defaults. */
3452 /* Protected partitions are read only. */
3455 /* If we've already exposed a partition of this type, hide this
3456 * duplicate. All operations on MTDs are keyed by the type anyway,
3457 * so we can't act on the duplicate.
3459 if (__test_and_set_bit(type_idx
, found
))
3462 part
->nvram_type
= type
;
3464 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
3465 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
3466 outbuf
, sizeof(outbuf
), &outlen
);
3469 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
3471 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
3472 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
3473 part
->fw_subtype
= MCDI_DWORD(outbuf
,
3474 NVRAM_METADATA_OUT_SUBTYPE
);
3476 part
->common
.dev_type_name
= "EF10 NVRAM manager";
3477 part
->common
.type_name
= info
->name
;
3479 part
->common
.mtd
.type
= MTD_NORFLASH
;
3480 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
3481 part
->common
.mtd
.size
= size
;
3482 part
->common
.mtd
.erasesize
= erase_size
;
3483 /* sfc_status is read-only */
3485 part
->common
.mtd
.flags
|= MTD_NO_ERASE
;
3490 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
3492 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
3493 DECLARE_BITMAP(found
, EF10_NVRAM_PARTITION_COUNT
) = { 0 };
3494 struct efx_mcdi_mtd_partition
*parts
;
3495 size_t outlen
, n_parts_total
, i
, n_parts
;
3501 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
3502 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
3503 outbuf
, sizeof(outbuf
), &outlen
);
3506 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
3509 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
3511 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
3514 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
3519 for (i
= 0; i
< n_parts_total
; i
++) {
3520 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
3522 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
,
3524 if (rc
== -EEXIST
|| rc
== -ENODEV
)
3531 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
3538 #endif /* CONFIG_SFC_MTD */
3540 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
3542 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
3545 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic
*efx
,
3548 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
3551 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
3554 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
3555 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
3556 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
3558 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
3560 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
3561 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3562 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
3565 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3566 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3569 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3570 SYNC_EVENTS_DISABLED
;
3575 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
3578 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
3581 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
3582 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
3584 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
3585 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
3588 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3589 SYNC_EVENTS_DISABLED
;
3591 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
3592 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3593 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
3594 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
3595 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
3598 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3599 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3604 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
3607 int (*set
)(struct efx_channel
*channel
, bool temp
);
3608 struct efx_channel
*channel
;
3611 efx_ef10_rx_enable_timestamping
:
3612 efx_ef10_rx_disable_timestamping
;
3614 channel
= efx_ptp_channel(efx
);
3616 int rc
= set(channel
, temp
);
3617 if (en
&& rc
!= 0) {
3618 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
3626 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic
*efx
,
3627 struct hwtstamp_config
*init
)
3632 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
3633 struct hwtstamp_config
*init
)
3637 switch (init
->rx_filter
) {
3638 case HWTSTAMP_FILTER_NONE
:
3639 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
3640 /* if TX timestamping is still requested then leave PTP on */
3641 return efx_ptp_change_mode(efx
,
3642 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
3643 case HWTSTAMP_FILTER_ALL
:
3644 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3645 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3646 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3647 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3648 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3649 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3650 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3651 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3652 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3653 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3654 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3655 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3656 case HWTSTAMP_FILTER_NTP_ALL
:
3657 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3658 rc
= efx_ptp_change_mode(efx
, true, 0);
3660 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
3662 efx_ptp_change_mode(efx
, false, 0);
3669 static int efx_ef10_get_phys_port_id(struct efx_nic
*efx
,
3670 struct netdev_phys_item_id
*ppid
)
3672 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3674 if (!is_valid_ether_addr(nic_data
->port_id
))
3677 ppid
->id_len
= ETH_ALEN
;
3678 memcpy(ppid
->id
, nic_data
->port_id
, ppid
->id_len
);
3683 static int efx_ef10_vlan_rx_add_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
3685 if (proto
!= htons(ETH_P_8021Q
))
3688 return efx_ef10_add_vlan(efx
, vid
);
3691 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
3693 if (proto
!= htons(ETH_P_8021Q
))
3696 return efx_ef10_del_vlan(efx
, vid
);
3699 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3700 * ports table, ensuring that any TSO descriptors that were made on a now-
3701 * removed tunnel port will be blown away and won't break things when we try
3702 * to transmit them using the new ports table.
3704 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
)
3706 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3707 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX
);
3708 MCDI_DECLARE_BUF(outbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN
);
3709 bool will_reset
= false;
3710 size_t num_entries
= 0;
3711 size_t inlen
, outlen
;
3714 efx_dword_t flags_and_num_entries
;
3716 WARN_ON(!mutex_is_locked(&nic_data
->udp_tunnels_lock
));
3718 nic_data
->udp_tunnels_dirty
= false;
3720 if (!(nic_data
->datapath_caps
&
3721 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))) {
3722 efx_device_attach_if_not_resetting(efx
);
3726 BUILD_BUG_ON(ARRAY_SIZE(nic_data
->udp_tunnels
) >
3727 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM
);
3729 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
) {
3730 if (nic_data
->udp_tunnels
[i
].count
&&
3731 nic_data
->udp_tunnels
[i
].port
) {
3734 EFX_POPULATE_DWORD_2(entry
,
3735 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT
,
3736 ntohs(nic_data
->udp_tunnels
[i
].port
),
3737 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL
,
3738 nic_data
->udp_tunnels
[i
].type
);
3739 *_MCDI_ARRAY_DWORD(inbuf
,
3740 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES
,
3741 num_entries
++) = entry
;
3745 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST
-
3746 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST
) * 8 !=
3748 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN
* 8 !=
3750 EFX_POPULATE_DWORD_2(flags_and_num_entries
,
3751 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING
,
3753 EFX_WORD_1
, num_entries
);
3754 *_MCDI_DWORD(inbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS
) =
3755 flags_and_num_entries
;
3757 inlen
= MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries
);
3759 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS
,
3760 inbuf
, inlen
, outbuf
, sizeof(outbuf
), &outlen
);
3762 /* Most likely the MC rebooted due to another function also
3763 * setting its tunnel port list. Mark the tunnel port list as
3764 * dirty, so it will be pushed upon coming up from the reboot.
3766 nic_data
->udp_tunnels_dirty
= true;
3771 /* expected not available on unprivileged functions */
3773 netif_warn(efx
, drv
, efx
->net_dev
,
3774 "Unable to set UDP tunnel ports; rc=%d.\n", rc
);
3775 } else if (MCDI_DWORD(outbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS
) &
3776 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN
)) {
3777 netif_info(efx
, drv
, efx
->net_dev
,
3778 "Rebooting MC due to UDP tunnel port list change\n");
3781 /* Delay for the MC reset to complete. This will make
3782 * unloading other functions a bit smoother. This is a
3783 * race, but the other unload will work whichever way
3784 * it goes, this just avoids an unnecessary error
3789 if (!will_reset
&& !unloading
) {
3790 /* The caller will have detached, relying on the MC reset to
3791 * trigger a re-attach. Since there won't be an MC reset, we
3792 * have to do the attach ourselves.
3794 efx_device_attach_if_not_resetting(efx
);
3800 static int efx_ef10_udp_tnl_push_ports(struct efx_nic
*efx
)
3802 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3805 mutex_lock(&nic_data
->udp_tunnels_lock
);
3806 if (nic_data
->udp_tunnels_dirty
) {
3807 /* Make sure all TX are stopped while we modify the table, else
3808 * we might race against an efx_features_check().
3810 efx_device_detach_sync(efx
);
3811 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3813 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3817 static struct efx_udp_tunnel
*__efx_ef10_udp_tnl_lookup_port(struct efx_nic
*efx
,
3820 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3823 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
) {
3824 if (!nic_data
->udp_tunnels
[i
].count
)
3826 if (nic_data
->udp_tunnels
[i
].port
== port
)
3827 return &nic_data
->udp_tunnels
[i
];
3832 static int efx_ef10_udp_tnl_add_port(struct efx_nic
*efx
,
3833 struct efx_udp_tunnel tnl
)
3835 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3836 struct efx_udp_tunnel
*match
;
3841 if (!(nic_data
->datapath_caps
&
3842 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
3845 efx_get_udp_tunnel_type_name(tnl
.type
, typebuf
, sizeof(typebuf
));
3846 netif_dbg(efx
, drv
, efx
->net_dev
, "Adding UDP tunnel (%s) port %d\n",
3847 typebuf
, ntohs(tnl
.port
));
3849 mutex_lock(&nic_data
->udp_tunnels_lock
);
3850 /* Make sure all TX are stopped while we add to the table, else we
3851 * might race against an efx_features_check().
3853 efx_device_detach_sync(efx
);
3855 match
= __efx_ef10_udp_tnl_lookup_port(efx
, tnl
.port
);
3856 if (match
!= NULL
) {
3857 if (match
->type
== tnl
.type
) {
3858 netif_dbg(efx
, drv
, efx
->net_dev
,
3859 "Referencing existing tunnel entry\n");
3861 /* No need to cause an MCDI update */
3865 efx_get_udp_tunnel_type_name(match
->type
,
3866 typebuf
, sizeof(typebuf
));
3867 netif_dbg(efx
, drv
, efx
->net_dev
,
3868 "UDP port %d is already in use by %s\n",
3869 ntohs(tnl
.port
), typebuf
);
3874 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
)
3875 if (!nic_data
->udp_tunnels
[i
].count
) {
3876 nic_data
->udp_tunnels
[i
] = tnl
;
3877 nic_data
->udp_tunnels
[i
].count
= 1;
3878 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3882 netif_dbg(efx
, drv
, efx
->net_dev
,
3883 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
3884 typebuf
, ntohs(tnl
.port
));
3889 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3893 /* Called under the TX lock with the TX queue running, hence no-one can be
3894 * in the middle of updating the UDP tunnels table. However, they could
3895 * have tried and failed the MCDI, in which case they'll have set the dirty
3896 * flag before dropping their locks.
3898 static bool efx_ef10_udp_tnl_has_port(struct efx_nic
*efx
, __be16 port
)
3900 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3902 if (!(nic_data
->datapath_caps
&
3903 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
3906 if (nic_data
->udp_tunnels_dirty
)
3907 /* SW table may not match HW state, so just assume we can't
3908 * use any UDP tunnel offloads.
3912 return __efx_ef10_udp_tnl_lookup_port(efx
, port
) != NULL
;
3915 static int efx_ef10_udp_tnl_del_port(struct efx_nic
*efx
,
3916 struct efx_udp_tunnel tnl
)
3918 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3919 struct efx_udp_tunnel
*match
;
3923 if (!(nic_data
->datapath_caps
&
3924 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
3927 efx_get_udp_tunnel_type_name(tnl
.type
, typebuf
, sizeof(typebuf
));
3928 netif_dbg(efx
, drv
, efx
->net_dev
, "Removing UDP tunnel (%s) port %d\n",
3929 typebuf
, ntohs(tnl
.port
));
3931 mutex_lock(&nic_data
->udp_tunnels_lock
);
3932 /* Make sure all TX are stopped while we remove from the table, else we
3933 * might race against an efx_features_check().
3935 efx_device_detach_sync(efx
);
3937 match
= __efx_ef10_udp_tnl_lookup_port(efx
, tnl
.port
);
3938 if (match
!= NULL
) {
3939 if (match
->type
== tnl
.type
) {
3940 if (--match
->count
) {
3941 /* Port is still in use, so nothing to do */
3942 netif_dbg(efx
, drv
, efx
->net_dev
,
3943 "UDP tunnel port %d remains active\n",
3948 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3951 efx_get_udp_tunnel_type_name(match
->type
,
3952 typebuf
, sizeof(typebuf
));
3953 netif_warn(efx
, drv
, efx
->net_dev
,
3954 "UDP port %d is actually in use by %s, not removing\n",
3955 ntohs(tnl
.port
), typebuf
);
3960 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3964 #define EF10_OFFLOAD_FEATURES \
3965 (NETIF_F_IP_CSUM | \
3966 NETIF_F_HW_VLAN_CTAG_FILTER | \
3967 NETIF_F_IPV6_CSUM | \
3971 const struct efx_nic_type efx_hunt_a0_vf_nic_type
= {
3973 .mem_bar
= efx_ef10_vf_mem_bar
,
3974 .mem_map_size
= efx_ef10_mem_map_size
,
3975 .probe
= efx_ef10_probe_vf
,
3976 .remove
= efx_ef10_remove
,
3977 .dimension_resources
= efx_ef10_dimension_resources
,
3978 .init
= efx_ef10_init_nic
,
3979 .fini
= efx_port_dummy_op_void
,
3980 .map_reset_reason
= efx_ef10_map_reset_reason
,
3981 .map_reset_flags
= efx_ef10_map_reset_flags
,
3982 .reset
= efx_ef10_reset
,
3983 .probe_port
= efx_mcdi_port_probe
,
3984 .remove_port
= efx_mcdi_port_remove
,
3985 .fini_dmaq
= efx_ef10_fini_dmaq
,
3986 .prepare_flr
= efx_ef10_prepare_flr
,
3987 .finish_flr
= efx_port_dummy_op_void
,
3988 .describe_stats
= efx_ef10_describe_stats
,
3989 .update_stats
= efx_ef10_update_stats_vf
,
3990 .start_stats
= efx_port_dummy_op_void
,
3991 .pull_stats
= efx_port_dummy_op_void
,
3992 .stop_stats
= efx_port_dummy_op_void
,
3993 .set_id_led
= efx_mcdi_set_id_led
,
3994 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
3995 .reconfigure_mac
= efx_ef10_mac_reconfigure_vf
,
3996 .check_mac_fault
= efx_mcdi_mac_check_fault
,
3997 .reconfigure_port
= efx_mcdi_port_reconfigure
,
3998 .get_wol
= efx_ef10_get_wol_vf
,
3999 .set_wol
= efx_ef10_set_wol_vf
,
4000 .resume_wol
= efx_port_dummy_op_void
,
4001 .mcdi_request
= efx_ef10_mcdi_request
,
4002 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4003 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4004 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4005 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4006 .irq_enable_master
= efx_port_dummy_op_void
,
4007 .irq_test_generate
= efx_ef10_irq_test_generate
,
4008 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4009 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4010 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4011 .tx_probe
= efx_ef10_tx_probe
,
4012 .tx_init
= efx_ef10_tx_init
,
4013 .tx_remove
= efx_mcdi_tx_remove
,
4014 .tx_write
= efx_ef10_tx_write
,
4015 .tx_limit_len
= efx_ef10_tx_limit_len
,
4016 .rx_push_rss_config
= efx_mcdi_vf_rx_push_rss_config
,
4017 .rx_pull_rss_config
= efx_mcdi_rx_pull_rss_config
,
4018 .rx_probe
= efx_mcdi_rx_probe
,
4019 .rx_init
= efx_mcdi_rx_init
,
4020 .rx_remove
= efx_mcdi_rx_remove
,
4021 .rx_write
= efx_ef10_rx_write
,
4022 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4023 .ev_probe
= efx_mcdi_ev_probe
,
4024 .ev_init
= efx_ef10_ev_init
,
4025 .ev_fini
= efx_mcdi_ev_fini
,
4026 .ev_remove
= efx_mcdi_ev_remove
,
4027 .ev_process
= efx_ef10_ev_process
,
4028 .ev_read_ack
= efx_ef10_ev_read_ack
,
4029 .ev_test_generate
= efx_ef10_ev_test_generate
,
4030 .filter_table_probe
= efx_mcdi_filter_table_probe
,
4031 .filter_table_restore
= efx_mcdi_filter_table_restore
,
4032 .filter_table_remove
= efx_mcdi_filter_table_remove
,
4033 .filter_update_rx_scatter
= efx_mcdi_update_rx_scatter
,
4034 .filter_insert
= efx_mcdi_filter_insert
,
4035 .filter_remove_safe
= efx_mcdi_filter_remove_safe
,
4036 .filter_get_safe
= efx_mcdi_filter_get_safe
,
4037 .filter_clear_rx
= efx_mcdi_filter_clear_rx
,
4038 .filter_count_rx_used
= efx_mcdi_filter_count_rx_used
,
4039 .filter_get_rx_id_limit
= efx_mcdi_filter_get_rx_id_limit
,
4040 .filter_get_rx_ids
= efx_mcdi_filter_get_rx_ids
,
4041 #ifdef CONFIG_RFS_ACCEL
4042 .filter_rfs_expire_one
= efx_mcdi_filter_rfs_expire_one
,
4044 #ifdef CONFIG_SFC_MTD
4045 .mtd_probe
= efx_port_dummy_op_int
,
4047 .ptp_write_host_time
= efx_ef10_ptp_write_host_time_vf
,
4048 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config_vf
,
4049 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
4050 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
4051 #ifdef CONFIG_SFC_SRIOV
4052 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
4053 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
4054 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
4056 .get_mac_address
= efx_ef10_get_mac_address_vf
,
4057 .set_mac_address
= efx_ef10_set_mac_address
,
4059 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
4060 .revision
= EFX_REV_HUNT_A0
,
4061 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4062 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4063 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4064 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4065 .can_rx_scatter
= true,
4066 .always_rx_scatter
= true,
4067 .min_interrupt_mode
= EFX_INT_MODE_MSIX
,
4068 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4069 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4070 .offload_features
= EF10_OFFLOAD_FEATURES
,
4072 .max_rx_ip_filters
= EFX_MCDI_FILTER_TBL_ROWS
,
4073 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4074 1 << HWTSTAMP_FILTER_ALL
,
4075 .rx_hash_key_size
= 40,
4078 const struct efx_nic_type efx_hunt_a0_nic_type
= {
4080 .mem_bar
= efx_ef10_pf_mem_bar
,
4081 .mem_map_size
= efx_ef10_mem_map_size
,
4082 .probe
= efx_ef10_probe_pf
,
4083 .remove
= efx_ef10_remove
,
4084 .dimension_resources
= efx_ef10_dimension_resources
,
4085 .init
= efx_ef10_init_nic
,
4086 .fini
= efx_port_dummy_op_void
,
4087 .map_reset_reason
= efx_ef10_map_reset_reason
,
4088 .map_reset_flags
= efx_ef10_map_reset_flags
,
4089 .reset
= efx_ef10_reset
,
4090 .probe_port
= efx_mcdi_port_probe
,
4091 .remove_port
= efx_mcdi_port_remove
,
4092 .fini_dmaq
= efx_ef10_fini_dmaq
,
4093 .prepare_flr
= efx_ef10_prepare_flr
,
4094 .finish_flr
= efx_port_dummy_op_void
,
4095 .describe_stats
= efx_ef10_describe_stats
,
4096 .update_stats
= efx_ef10_update_stats_pf
,
4097 .start_stats
= efx_mcdi_mac_start_stats
,
4098 .pull_stats
= efx_mcdi_mac_pull_stats
,
4099 .stop_stats
= efx_mcdi_mac_stop_stats
,
4100 .set_id_led
= efx_mcdi_set_id_led
,
4101 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4102 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4103 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4104 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4105 .get_wol
= efx_ef10_get_wol
,
4106 .set_wol
= efx_ef10_set_wol
,
4107 .resume_wol
= efx_port_dummy_op_void
,
4108 .test_chip
= efx_ef10_test_chip
,
4109 .test_nvram
= efx_mcdi_nvram_test_all
,
4110 .mcdi_request
= efx_ef10_mcdi_request
,
4111 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4112 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4113 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4114 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4115 .irq_enable_master
= efx_port_dummy_op_void
,
4116 .irq_test_generate
= efx_ef10_irq_test_generate
,
4117 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4118 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4119 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4120 .tx_probe
= efx_ef10_tx_probe
,
4121 .tx_init
= efx_ef10_tx_init
,
4122 .tx_remove
= efx_mcdi_tx_remove
,
4123 .tx_write
= efx_ef10_tx_write
,
4124 .tx_limit_len
= efx_ef10_tx_limit_len
,
4125 .rx_push_rss_config
= efx_mcdi_pf_rx_push_rss_config
,
4126 .rx_pull_rss_config
= efx_mcdi_rx_pull_rss_config
,
4127 .rx_push_rss_context_config
= efx_mcdi_rx_push_rss_context_config
,
4128 .rx_pull_rss_context_config
= efx_mcdi_rx_pull_rss_context_config
,
4129 .rx_restore_rss_contexts
= efx_mcdi_rx_restore_rss_contexts
,
4130 .rx_probe
= efx_mcdi_rx_probe
,
4131 .rx_init
= efx_mcdi_rx_init
,
4132 .rx_remove
= efx_mcdi_rx_remove
,
4133 .rx_write
= efx_ef10_rx_write
,
4134 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4135 .ev_probe
= efx_mcdi_ev_probe
,
4136 .ev_init
= efx_ef10_ev_init
,
4137 .ev_fini
= efx_mcdi_ev_fini
,
4138 .ev_remove
= efx_mcdi_ev_remove
,
4139 .ev_process
= efx_ef10_ev_process
,
4140 .ev_read_ack
= efx_ef10_ev_read_ack
,
4141 .ev_test_generate
= efx_ef10_ev_test_generate
,
4142 .filter_table_probe
= efx_mcdi_filter_table_probe
,
4143 .filter_table_restore
= efx_mcdi_filter_table_restore
,
4144 .filter_table_remove
= efx_mcdi_filter_table_remove
,
4145 .filter_update_rx_scatter
= efx_mcdi_update_rx_scatter
,
4146 .filter_insert
= efx_mcdi_filter_insert
,
4147 .filter_remove_safe
= efx_mcdi_filter_remove_safe
,
4148 .filter_get_safe
= efx_mcdi_filter_get_safe
,
4149 .filter_clear_rx
= efx_mcdi_filter_clear_rx
,
4150 .filter_count_rx_used
= efx_mcdi_filter_count_rx_used
,
4151 .filter_get_rx_id_limit
= efx_mcdi_filter_get_rx_id_limit
,
4152 .filter_get_rx_ids
= efx_mcdi_filter_get_rx_ids
,
4153 #ifdef CONFIG_RFS_ACCEL
4154 .filter_rfs_expire_one
= efx_mcdi_filter_rfs_expire_one
,
4156 #ifdef CONFIG_SFC_MTD
4157 .mtd_probe
= efx_ef10_mtd_probe
,
4158 .mtd_rename
= efx_mcdi_mtd_rename
,
4159 .mtd_read
= efx_mcdi_mtd_read
,
4160 .mtd_erase
= efx_mcdi_mtd_erase
,
4161 .mtd_write
= efx_mcdi_mtd_write
,
4162 .mtd_sync
= efx_mcdi_mtd_sync
,
4164 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
4165 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
4166 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
4167 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
4168 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
4169 .udp_tnl_push_ports
= efx_ef10_udp_tnl_push_ports
,
4170 .udp_tnl_add_port
= efx_ef10_udp_tnl_add_port
,
4171 .udp_tnl_has_port
= efx_ef10_udp_tnl_has_port
,
4172 .udp_tnl_del_port
= efx_ef10_udp_tnl_del_port
,
4173 #ifdef CONFIG_SFC_SRIOV
4174 .sriov_configure
= efx_ef10_sriov_configure
,
4175 .sriov_init
= efx_ef10_sriov_init
,
4176 .sriov_fini
= efx_ef10_sriov_fini
,
4177 .sriov_wanted
= efx_ef10_sriov_wanted
,
4178 .sriov_reset
= efx_ef10_sriov_reset
,
4179 .sriov_flr
= efx_ef10_sriov_flr
,
4180 .sriov_set_vf_mac
= efx_ef10_sriov_set_vf_mac
,
4181 .sriov_set_vf_vlan
= efx_ef10_sriov_set_vf_vlan
,
4182 .sriov_set_vf_spoofchk
= efx_ef10_sriov_set_vf_spoofchk
,
4183 .sriov_get_vf_config
= efx_ef10_sriov_get_vf_config
,
4184 .sriov_set_vf_link_state
= efx_ef10_sriov_set_vf_link_state
,
4185 .vswitching_probe
= efx_ef10_vswitching_probe_pf
,
4186 .vswitching_restore
= efx_ef10_vswitching_restore_pf
,
4187 .vswitching_remove
= efx_ef10_vswitching_remove_pf
,
4189 .get_mac_address
= efx_ef10_get_mac_address_pf
,
4190 .set_mac_address
= efx_ef10_set_mac_address
,
4191 .tso_versions
= efx_ef10_tso_versions
,
4193 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
4194 .revision
= EFX_REV_HUNT_A0
,
4195 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4196 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4197 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4198 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4199 .can_rx_scatter
= true,
4200 .always_rx_scatter
= true,
4201 .option_descriptors
= true,
4202 .min_interrupt_mode
= EFX_INT_MODE_LEGACY
,
4203 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4204 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4205 .offload_features
= EF10_OFFLOAD_FEATURES
,
4207 .max_rx_ip_filters
= EFX_MCDI_FILTER_TBL_ROWS
,
4208 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4209 1 << HWTSTAMP_FILTER_ALL
,
4210 .rx_hash_key_size
= 40,