gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / efx.c
blob256807c28ff7c596631f4d09fdf536d33ff32821
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "rx_common.h"
29 #include "tx_common.h"
30 #include "nic.h"
31 #include "io.h"
32 #include "selftest.h"
33 #include "sriov.h"
35 #include "mcdi.h"
36 #include "mcdi_pcol.h"
37 #include "workarounds.h"
39 /**************************************************************************
41 * Type name strings
43 **************************************************************************
46 /* UDP tunnel type names */
47 static const char *const efx_udp_tunnel_type_names[] = {
48 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
49 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
52 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
54 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
55 efx_udp_tunnel_type_names[type] != NULL)
56 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
57 else
58 snprintf(buf, buflen, "type %d", type);
61 /**************************************************************************
63 * Configurable values
65 *************************************************************************/
68 * Use separate channels for TX and RX events
70 * Set this to 1 to use separate channels for TX and RX. It allows us
71 * to control interrupt affinity separately for TX and RX.
73 * This is only used in MSI-X interrupt mode
75 bool efx_separate_tx_channels;
76 module_param(efx_separate_tx_channels, bool, 0444);
77 MODULE_PARM_DESC(efx_separate_tx_channels,
78 "Use separate channels for TX and RX");
80 /* Initial interrupt moderation settings. They can be modified after
81 * module load with ethtool.
83 * The default for RX should strike a balance between increasing the
84 * round-trip latency and reducing overhead.
86 static unsigned int rx_irq_mod_usec = 60;
88 /* Initial interrupt moderation settings. They can be modified after
89 * module load with ethtool.
91 * This default is chosen to ensure that a 10G link does not go idle
92 * while a TX queue is stopped after it has become full. A queue is
93 * restarted when it drops below half full. The time this takes (assuming
94 * worst case 3 descriptors per packet and 1024 descriptors) is
95 * 512 / 3 * 1.2 = 205 usec.
97 static unsigned int tx_irq_mod_usec = 150;
99 static bool phy_flash_cfg;
100 module_param(phy_flash_cfg, bool, 0644);
101 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
103 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
105 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
106 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
107 module_param(debug, uint, 0);
108 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
110 /**************************************************************************
112 * Utility functions and prototypes
114 *************************************************************************/
116 static void efx_remove_port(struct efx_nic *efx);
117 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
118 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
119 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
120 u32 flags);
122 #define EFX_ASSERT_RESET_SERIALISED(efx) \
123 do { \
124 if ((efx->state == STATE_READY) || \
125 (efx->state == STATE_RECOVERY) || \
126 (efx->state == STATE_DISABLED)) \
127 ASSERT_RTNL(); \
128 } while (0)
130 /**************************************************************************
132 * Port handling
134 **************************************************************************/
136 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
137 * force the Autoneg bit on.
139 void efx_link_clear_advertising(struct efx_nic *efx)
141 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
142 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
145 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
147 efx->wanted_fc = wanted_fc;
148 if (efx->link_advertising[0]) {
149 if (wanted_fc & EFX_FC_RX)
150 efx->link_advertising[0] |= (ADVERTISED_Pause |
151 ADVERTISED_Asym_Pause);
152 else
153 efx->link_advertising[0] &= ~(ADVERTISED_Pause |
154 ADVERTISED_Asym_Pause);
155 if (wanted_fc & EFX_FC_TX)
156 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
160 static void efx_fini_port(struct efx_nic *efx);
162 static int efx_probe_port(struct efx_nic *efx)
164 int rc;
166 netif_dbg(efx, probe, efx->net_dev, "create port\n");
168 if (phy_flash_cfg)
169 efx->phy_mode = PHY_MODE_SPECIAL;
171 /* Connect up MAC/PHY operations table */
172 rc = efx->type->probe_port(efx);
173 if (rc)
174 return rc;
176 /* Initialise MAC address to permanent address */
177 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
179 return 0;
182 static int efx_init_port(struct efx_nic *efx)
184 int rc;
186 netif_dbg(efx, drv, efx->net_dev, "init port\n");
188 mutex_lock(&efx->mac_lock);
190 rc = efx->phy_op->init(efx);
191 if (rc)
192 goto fail1;
194 efx->port_initialized = true;
196 /* Reconfigure the MAC before creating dma queues (required for
197 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
198 efx_mac_reconfigure(efx);
200 /* Ensure the PHY advertises the correct flow control settings */
201 rc = efx->phy_op->reconfigure(efx);
202 if (rc && rc != -EPERM)
203 goto fail2;
205 mutex_unlock(&efx->mac_lock);
206 return 0;
208 fail2:
209 efx->phy_op->fini(efx);
210 fail1:
211 mutex_unlock(&efx->mac_lock);
212 return rc;
215 static void efx_fini_port(struct efx_nic *efx)
217 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
219 if (!efx->port_initialized)
220 return;
222 efx->phy_op->fini(efx);
223 efx->port_initialized = false;
225 efx->link_state.up = false;
226 efx_link_status_changed(efx);
229 static void efx_remove_port(struct efx_nic *efx)
231 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
233 efx->type->remove_port(efx);
236 /**************************************************************************
238 * NIC handling
240 **************************************************************************/
242 static LIST_HEAD(efx_primary_list);
243 static LIST_HEAD(efx_unassociated_list);
245 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
247 return left->type == right->type &&
248 left->vpd_sn && right->vpd_sn &&
249 !strcmp(left->vpd_sn, right->vpd_sn);
252 static void efx_associate(struct efx_nic *efx)
254 struct efx_nic *other, *next;
256 if (efx->primary == efx) {
257 /* Adding primary function; look for secondaries */
259 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
260 list_add_tail(&efx->node, &efx_primary_list);
262 list_for_each_entry_safe(other, next, &efx_unassociated_list,
263 node) {
264 if (efx_same_controller(efx, other)) {
265 list_del(&other->node);
266 netif_dbg(other, probe, other->net_dev,
267 "moving to secondary list of %s %s\n",
268 pci_name(efx->pci_dev),
269 efx->net_dev->name);
270 list_add_tail(&other->node,
271 &efx->secondary_list);
272 other->primary = efx;
275 } else {
276 /* Adding secondary function; look for primary */
278 list_for_each_entry(other, &efx_primary_list, node) {
279 if (efx_same_controller(efx, other)) {
280 netif_dbg(efx, probe, efx->net_dev,
281 "adding to secondary list of %s %s\n",
282 pci_name(other->pci_dev),
283 other->net_dev->name);
284 list_add_tail(&efx->node,
285 &other->secondary_list);
286 efx->primary = other;
287 return;
291 netif_dbg(efx, probe, efx->net_dev,
292 "adding to unassociated list\n");
293 list_add_tail(&efx->node, &efx_unassociated_list);
297 static void efx_dissociate(struct efx_nic *efx)
299 struct efx_nic *other, *next;
301 list_del(&efx->node);
302 efx->primary = NULL;
304 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
305 list_del(&other->node);
306 netif_dbg(other, probe, other->net_dev,
307 "moving to unassociated list\n");
308 list_add_tail(&other->node, &efx_unassociated_list);
309 other->primary = NULL;
313 static int efx_probe_nic(struct efx_nic *efx)
315 int rc;
317 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
319 /* Carry out hardware-type specific initialisation */
320 rc = efx->type->probe(efx);
321 if (rc)
322 return rc;
324 do {
325 if (!efx->max_channels || !efx->max_tx_channels) {
326 netif_err(efx, drv, efx->net_dev,
327 "Insufficient resources to allocate"
328 " any channels\n");
329 rc = -ENOSPC;
330 goto fail1;
333 /* Determine the number of channels and queues by trying
334 * to hook in MSI-X interrupts.
336 rc = efx_probe_interrupts(efx);
337 if (rc)
338 goto fail1;
340 rc = efx_set_channels(efx);
341 if (rc)
342 goto fail1;
344 /* dimension_resources can fail with EAGAIN */
345 rc = efx->type->dimension_resources(efx);
346 if (rc != 0 && rc != -EAGAIN)
347 goto fail2;
349 if (rc == -EAGAIN)
350 /* try again with new max_channels */
351 efx_remove_interrupts(efx);
353 } while (rc == -EAGAIN);
355 if (efx->n_channels > 1)
356 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
357 sizeof(efx->rss_context.rx_hash_key));
358 efx_set_default_rx_indir_table(efx, &efx->rss_context);
360 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
361 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
363 /* Initialise the interrupt moderation settings */
364 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
365 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
366 true);
368 return 0;
370 fail2:
371 efx_remove_interrupts(efx);
372 fail1:
373 efx->type->remove(efx);
374 return rc;
377 static void efx_remove_nic(struct efx_nic *efx)
379 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
381 efx_remove_interrupts(efx);
382 efx->type->remove(efx);
385 /**************************************************************************
387 * NIC startup/shutdown
389 *************************************************************************/
391 static int efx_probe_all(struct efx_nic *efx)
393 int rc;
395 rc = efx_probe_nic(efx);
396 if (rc) {
397 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
398 goto fail1;
401 rc = efx_probe_port(efx);
402 if (rc) {
403 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
404 goto fail2;
407 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
408 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
409 rc = -EINVAL;
410 goto fail3;
412 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
414 #ifdef CONFIG_SFC_SRIOV
415 rc = efx->type->vswitching_probe(efx);
416 if (rc) /* not fatal; the PF will still work fine */
417 netif_warn(efx, probe, efx->net_dev,
418 "failed to setup vswitching rc=%d;"
419 " VFs may not function\n", rc);
420 #endif
422 rc = efx_probe_filters(efx);
423 if (rc) {
424 netif_err(efx, probe, efx->net_dev,
425 "failed to create filter tables\n");
426 goto fail4;
429 rc = efx_probe_channels(efx);
430 if (rc)
431 goto fail5;
433 return 0;
435 fail5:
436 efx_remove_filters(efx);
437 fail4:
438 #ifdef CONFIG_SFC_SRIOV
439 efx->type->vswitching_remove(efx);
440 #endif
441 fail3:
442 efx_remove_port(efx);
443 fail2:
444 efx_remove_nic(efx);
445 fail1:
446 return rc;
449 static void efx_remove_all(struct efx_nic *efx)
451 rtnl_lock();
452 efx_xdp_setup_prog(efx, NULL);
453 rtnl_unlock();
455 efx_remove_channels(efx);
456 efx_remove_filters(efx);
457 #ifdef CONFIG_SFC_SRIOV
458 efx->type->vswitching_remove(efx);
459 #endif
460 efx_remove_port(efx);
461 efx_remove_nic(efx);
464 /**************************************************************************
466 * Interrupt moderation
468 **************************************************************************/
469 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
471 if (usecs == 0)
472 return 0;
473 if (usecs * 1000 < efx->timer_quantum_ns)
474 return 1; /* never round down to 0 */
475 return usecs * 1000 / efx->timer_quantum_ns;
478 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
480 /* We must round up when converting ticks to microseconds
481 * because we round down when converting the other way.
483 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
486 /* Set interrupt moderation parameters */
487 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
488 unsigned int rx_usecs, bool rx_adaptive,
489 bool rx_may_override_tx)
491 struct efx_channel *channel;
492 unsigned int timer_max_us;
494 EFX_ASSERT_RESET_SERIALISED(efx);
496 timer_max_us = efx->timer_max_ns / 1000;
498 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
499 return -EINVAL;
501 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
502 !rx_may_override_tx) {
503 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
504 "RX and TX IRQ moderation must be equal\n");
505 return -EINVAL;
508 efx->irq_rx_adaptive = rx_adaptive;
509 efx->irq_rx_moderation_us = rx_usecs;
510 efx_for_each_channel(channel, efx) {
511 if (efx_channel_has_rx_queue(channel))
512 channel->irq_moderation_us = rx_usecs;
513 else if (efx_channel_has_tx_queues(channel))
514 channel->irq_moderation_us = tx_usecs;
515 else if (efx_channel_is_xdp_tx(channel))
516 channel->irq_moderation_us = tx_usecs;
519 return 0;
522 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
523 unsigned int *rx_usecs, bool *rx_adaptive)
525 *rx_adaptive = efx->irq_rx_adaptive;
526 *rx_usecs = efx->irq_rx_moderation_us;
528 /* If channels are shared between RX and TX, so is IRQ
529 * moderation. Otherwise, IRQ moderation is the same for all
530 * TX channels and is not adaptive.
532 if (efx->tx_channel_offset == 0) {
533 *tx_usecs = *rx_usecs;
534 } else {
535 struct efx_channel *tx_channel;
537 tx_channel = efx->channel[efx->tx_channel_offset];
538 *tx_usecs = tx_channel->irq_moderation_us;
542 /**************************************************************************
544 * ioctls
546 *************************************************************************/
548 /* Net device ioctl
549 * Context: process, rtnl_lock() held.
551 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
553 struct efx_nic *efx = netdev_priv(net_dev);
554 struct mii_ioctl_data *data = if_mii(ifr);
556 if (cmd == SIOCSHWTSTAMP)
557 return efx_ptp_set_ts_config(efx, ifr);
558 if (cmd == SIOCGHWTSTAMP)
559 return efx_ptp_get_ts_config(efx, ifr);
561 /* Convert phy_id from older PRTAD/DEVAD format */
562 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
563 (data->phy_id & 0xfc00) == 0x0400)
564 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
566 return mdio_mii_ioctl(&efx->mdio, data, cmd);
569 /**************************************************************************
571 * Kernel net device interface
573 *************************************************************************/
575 /* Context: process, rtnl_lock() held. */
576 int efx_net_open(struct net_device *net_dev)
578 struct efx_nic *efx = netdev_priv(net_dev);
579 int rc;
581 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
582 raw_smp_processor_id());
584 rc = efx_check_disabled(efx);
585 if (rc)
586 return rc;
587 if (efx->phy_mode & PHY_MODE_SPECIAL)
588 return -EBUSY;
589 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
590 return -EIO;
592 /* Notify the kernel of the link state polled during driver load,
593 * before the monitor starts running */
594 efx_link_status_changed(efx);
596 efx_start_all(efx);
597 if (efx->state == STATE_DISABLED || efx->reset_pending)
598 netif_device_detach(efx->net_dev);
599 efx_selftest_async_start(efx);
600 return 0;
603 /* Context: process, rtnl_lock() held.
604 * Note that the kernel will ignore our return code; this method
605 * should really be a void.
607 int efx_net_stop(struct net_device *net_dev)
609 struct efx_nic *efx = netdev_priv(net_dev);
611 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
612 raw_smp_processor_id());
614 /* Stop the device and flush all the channels */
615 efx_stop_all(efx);
617 return 0;
620 /* Context: netif_tx_lock held, BHs disabled. */
621 static void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
623 struct efx_nic *efx = netdev_priv(net_dev);
625 netif_err(efx, tx_err, efx->net_dev,
626 "TX stuck with port_enabled=%d: resetting channels\n",
627 efx->port_enabled);
629 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
632 static int efx_set_mac_address(struct net_device *net_dev, void *data)
634 struct efx_nic *efx = netdev_priv(net_dev);
635 struct sockaddr *addr = data;
636 u8 *new_addr = addr->sa_data;
637 u8 old_addr[6];
638 int rc;
640 if (!is_valid_ether_addr(new_addr)) {
641 netif_err(efx, drv, efx->net_dev,
642 "invalid ethernet MAC address requested: %pM\n",
643 new_addr);
644 return -EADDRNOTAVAIL;
647 /* save old address */
648 ether_addr_copy(old_addr, net_dev->dev_addr);
649 ether_addr_copy(net_dev->dev_addr, new_addr);
650 if (efx->type->set_mac_address) {
651 rc = efx->type->set_mac_address(efx);
652 if (rc) {
653 ether_addr_copy(net_dev->dev_addr, old_addr);
654 return rc;
658 /* Reconfigure the MAC */
659 mutex_lock(&efx->mac_lock);
660 efx_mac_reconfigure(efx);
661 mutex_unlock(&efx->mac_lock);
663 return 0;
666 /* Context: netif_addr_lock held, BHs disabled. */
667 static void efx_set_rx_mode(struct net_device *net_dev)
669 struct efx_nic *efx = netdev_priv(net_dev);
671 if (efx->port_enabled)
672 queue_work(efx->workqueue, &efx->mac_work);
673 /* Otherwise efx_start_port() will do this */
676 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
678 struct efx_nic *efx = netdev_priv(net_dev);
679 int rc;
681 /* If disabling RX n-tuple filtering, clear existing filters */
682 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
683 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
684 if (rc)
685 return rc;
688 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
689 * If rx-fcs is changed, mac_reconfigure updates that too.
691 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
692 NETIF_F_RXFCS)) {
693 /* efx_set_rx_mode() will schedule MAC work to update filters
694 * when a new features are finally set in net_dev.
696 efx_set_rx_mode(net_dev);
699 return 0;
702 static int efx_get_phys_port_id(struct net_device *net_dev,
703 struct netdev_phys_item_id *ppid)
705 struct efx_nic *efx = netdev_priv(net_dev);
707 if (efx->type->get_phys_port_id)
708 return efx->type->get_phys_port_id(efx, ppid);
709 else
710 return -EOPNOTSUPP;
713 static int efx_get_phys_port_name(struct net_device *net_dev,
714 char *name, size_t len)
716 struct efx_nic *efx = netdev_priv(net_dev);
718 if (snprintf(name, len, "p%u", efx->port_num) >= len)
719 return -EINVAL;
720 return 0;
723 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
725 struct efx_nic *efx = netdev_priv(net_dev);
727 if (efx->type->vlan_rx_add_vid)
728 return efx->type->vlan_rx_add_vid(efx, proto, vid);
729 else
730 return -EOPNOTSUPP;
733 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
735 struct efx_nic *efx = netdev_priv(net_dev);
737 if (efx->type->vlan_rx_kill_vid)
738 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
739 else
740 return -EOPNOTSUPP;
743 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
745 switch (in) {
746 case UDP_TUNNEL_TYPE_VXLAN:
747 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
748 case UDP_TUNNEL_TYPE_GENEVE:
749 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
750 default:
751 return -1;
755 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
757 struct efx_nic *efx = netdev_priv(dev);
758 struct efx_udp_tunnel tnl;
759 int efx_tunnel_type;
761 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
762 if (efx_tunnel_type < 0)
763 return;
765 tnl.type = (u16)efx_tunnel_type;
766 tnl.port = ti->port;
768 if (efx->type->udp_tnl_add_port)
769 (void)efx->type->udp_tnl_add_port(efx, tnl);
772 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
774 struct efx_nic *efx = netdev_priv(dev);
775 struct efx_udp_tunnel tnl;
776 int efx_tunnel_type;
778 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
779 if (efx_tunnel_type < 0)
780 return;
782 tnl.type = (u16)efx_tunnel_type;
783 tnl.port = ti->port;
785 if (efx->type->udp_tnl_del_port)
786 (void)efx->type->udp_tnl_del_port(efx, tnl);
789 static const struct net_device_ops efx_netdev_ops = {
790 .ndo_open = efx_net_open,
791 .ndo_stop = efx_net_stop,
792 .ndo_get_stats64 = efx_net_stats,
793 .ndo_tx_timeout = efx_watchdog,
794 .ndo_start_xmit = efx_hard_start_xmit,
795 .ndo_validate_addr = eth_validate_addr,
796 .ndo_do_ioctl = efx_ioctl,
797 .ndo_change_mtu = efx_change_mtu,
798 .ndo_set_mac_address = efx_set_mac_address,
799 .ndo_set_rx_mode = efx_set_rx_mode,
800 .ndo_set_features = efx_set_features,
801 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
802 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
803 #ifdef CONFIG_SFC_SRIOV
804 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
805 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
806 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
807 .ndo_get_vf_config = efx_sriov_get_vf_config,
808 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
809 #endif
810 .ndo_get_phys_port_id = efx_get_phys_port_id,
811 .ndo_get_phys_port_name = efx_get_phys_port_name,
812 .ndo_setup_tc = efx_setup_tc,
813 #ifdef CONFIG_RFS_ACCEL
814 .ndo_rx_flow_steer = efx_filter_rfs,
815 #endif
816 .ndo_udp_tunnel_add = efx_udp_tunnel_add,
817 .ndo_udp_tunnel_del = efx_udp_tunnel_del,
818 .ndo_xdp_xmit = efx_xdp_xmit,
819 .ndo_bpf = efx_xdp
822 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
824 struct bpf_prog *old_prog;
826 if (efx->xdp_rxq_info_failed) {
827 netif_err(efx, drv, efx->net_dev,
828 "Unable to bind XDP program due to previous failure of rxq_info\n");
829 return -EINVAL;
832 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
833 netif_err(efx, drv, efx->net_dev,
834 "Unable to configure XDP with MTU of %d (max: %d)\n",
835 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
836 return -EINVAL;
839 old_prog = rtnl_dereference(efx->xdp_prog);
840 rcu_assign_pointer(efx->xdp_prog, prog);
841 /* Release the reference that was originally passed by the caller. */
842 if (old_prog)
843 bpf_prog_put(old_prog);
845 return 0;
848 /* Context: process, rtnl_lock() held. */
849 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
851 struct efx_nic *efx = netdev_priv(dev);
852 struct bpf_prog *xdp_prog;
854 switch (xdp->command) {
855 case XDP_SETUP_PROG:
856 return efx_xdp_setup_prog(efx, xdp->prog);
857 case XDP_QUERY_PROG:
858 xdp_prog = rtnl_dereference(efx->xdp_prog);
859 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0;
860 return 0;
861 default:
862 return -EINVAL;
866 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
867 u32 flags)
869 struct efx_nic *efx = netdev_priv(dev);
871 if (!netif_running(dev))
872 return -EINVAL;
874 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
877 static void efx_update_name(struct efx_nic *efx)
879 strcpy(efx->name, efx->net_dev->name);
880 efx_mtd_rename(efx);
881 efx_set_channel_names(efx);
884 static int efx_netdev_event(struct notifier_block *this,
885 unsigned long event, void *ptr)
887 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
889 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
890 event == NETDEV_CHANGENAME)
891 efx_update_name(netdev_priv(net_dev));
893 return NOTIFY_DONE;
896 static struct notifier_block efx_netdev_notifier = {
897 .notifier_call = efx_netdev_event,
900 static ssize_t
901 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
903 struct efx_nic *efx = dev_get_drvdata(dev);
904 return sprintf(buf, "%d\n", efx->phy_type);
906 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
908 static int efx_register_netdev(struct efx_nic *efx)
910 struct net_device *net_dev = efx->net_dev;
911 struct efx_channel *channel;
912 int rc;
914 net_dev->watchdog_timeo = 5 * HZ;
915 net_dev->irq = efx->pci_dev->irq;
916 net_dev->netdev_ops = &efx_netdev_ops;
917 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
918 net_dev->priv_flags |= IFF_UNICAST_FLT;
919 net_dev->ethtool_ops = &efx_ethtool_ops;
920 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
921 net_dev->min_mtu = EFX_MIN_MTU;
922 net_dev->max_mtu = EFX_MAX_MTU;
924 rtnl_lock();
926 /* Enable resets to be scheduled and check whether any were
927 * already requested. If so, the NIC is probably hosed so we
928 * abort.
930 efx->state = STATE_READY;
931 smp_mb(); /* ensure we change state before checking reset_pending */
932 if (efx->reset_pending) {
933 netif_err(efx, probe, efx->net_dev,
934 "aborting probe due to scheduled reset\n");
935 rc = -EIO;
936 goto fail_locked;
939 rc = dev_alloc_name(net_dev, net_dev->name);
940 if (rc < 0)
941 goto fail_locked;
942 efx_update_name(efx);
944 /* Always start with carrier off; PHY events will detect the link */
945 netif_carrier_off(net_dev);
947 rc = register_netdevice(net_dev);
948 if (rc)
949 goto fail_locked;
951 efx_for_each_channel(channel, efx) {
952 struct efx_tx_queue *tx_queue;
953 efx_for_each_channel_tx_queue(tx_queue, channel)
954 efx_init_tx_queue_core_txq(tx_queue);
957 efx_associate(efx);
959 rtnl_unlock();
961 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
962 if (rc) {
963 netif_err(efx, drv, efx->net_dev,
964 "failed to init net dev attributes\n");
965 goto fail_registered;
968 efx_init_mcdi_logging(efx);
970 return 0;
972 fail_registered:
973 rtnl_lock();
974 efx_dissociate(efx);
975 unregister_netdevice(net_dev);
976 fail_locked:
977 efx->state = STATE_UNINIT;
978 rtnl_unlock();
979 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
980 return rc;
983 static void efx_unregister_netdev(struct efx_nic *efx)
985 if (!efx->net_dev)
986 return;
988 BUG_ON(netdev_priv(efx->net_dev) != efx);
990 if (efx_dev_registered(efx)) {
991 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
992 efx_fini_mcdi_logging(efx);
993 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
994 unregister_netdev(efx->net_dev);
998 /**************************************************************************
1000 * List of NICs we support
1002 **************************************************************************/
1004 /* PCI device ID table */
1005 static const struct pci_device_id efx_pci_table[] = {
1006 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
1007 .driver_data = (unsigned long) &siena_a0_nic_type},
1008 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
1009 .driver_data = (unsigned long) &siena_a0_nic_type},
1010 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
1011 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
1012 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
1013 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
1014 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
1015 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
1016 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
1017 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
1018 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
1019 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
1020 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
1021 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
1022 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
1023 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
1024 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
1025 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
1026 {0} /* end of list */
1029 /**************************************************************************
1031 * Data housekeeping
1033 **************************************************************************/
1035 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
1037 u64 n_rx_nodesc_trunc = 0;
1038 struct efx_channel *channel;
1040 efx_for_each_channel(channel, efx)
1041 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
1042 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
1043 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
1046 /**************************************************************************
1048 * PCI interface
1050 **************************************************************************/
1052 /* Main body of final NIC shutdown code
1053 * This is called only at module unload (or hotplug removal).
1055 static void efx_pci_remove_main(struct efx_nic *efx)
1057 /* Flush reset_work. It can no longer be scheduled since we
1058 * are not READY.
1060 BUG_ON(efx->state == STATE_READY);
1061 efx_flush_reset_workqueue(efx);
1063 efx_disable_interrupts(efx);
1064 efx_clear_interrupt_affinity(efx);
1065 efx_nic_fini_interrupt(efx);
1066 efx_fini_port(efx);
1067 efx->type->fini(efx);
1068 efx_fini_napi(efx);
1069 efx_remove_all(efx);
1072 /* Final NIC shutdown
1073 * This is called only at module unload (or hotplug removal). A PF can call
1074 * this on its VFs to ensure they are unbound first.
1076 static void efx_pci_remove(struct pci_dev *pci_dev)
1078 struct efx_nic *efx;
1080 efx = pci_get_drvdata(pci_dev);
1081 if (!efx)
1082 return;
1084 /* Mark the NIC as fini, then stop the interface */
1085 rtnl_lock();
1086 efx_dissociate(efx);
1087 dev_close(efx->net_dev);
1088 efx_disable_interrupts(efx);
1089 efx->state = STATE_UNINIT;
1090 rtnl_unlock();
1092 if (efx->type->sriov_fini)
1093 efx->type->sriov_fini(efx);
1095 efx_unregister_netdev(efx);
1097 efx_mtd_remove(efx);
1099 efx_pci_remove_main(efx);
1101 efx_fini_io(efx, efx->type->mem_bar(efx));
1102 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
1104 efx_fini_struct(efx);
1105 free_netdev(efx->net_dev);
1107 pci_disable_pcie_error_reporting(pci_dev);
1110 /* NIC VPD information
1111 * Called during probe to display the part number of the
1112 * installed NIC. VPD is potentially very large but this should
1113 * always appear within the first 512 bytes.
1115 #define SFC_VPD_LEN 512
1116 static void efx_probe_vpd_strings(struct efx_nic *efx)
1118 struct pci_dev *dev = efx->pci_dev;
1119 char vpd_data[SFC_VPD_LEN];
1120 ssize_t vpd_size;
1121 int ro_start, ro_size, i, j;
1123 /* Get the vpd data from the device */
1124 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1125 if (vpd_size <= 0) {
1126 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
1127 return;
1130 /* Get the Read only section */
1131 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
1132 if (ro_start < 0) {
1133 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
1134 return;
1137 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1138 j = ro_size;
1139 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1140 if (i + j > vpd_size)
1141 j = vpd_size - i;
1143 /* Get the Part number */
1144 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
1145 if (i < 0) {
1146 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
1147 return;
1150 j = pci_vpd_info_field_size(&vpd_data[i]);
1151 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1152 if (i + j > vpd_size) {
1153 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
1154 return;
1157 netif_info(efx, drv, efx->net_dev,
1158 "Part Number : %.*s\n", j, &vpd_data[i]);
1160 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1161 j = ro_size;
1162 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
1163 if (i < 0) {
1164 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
1165 return;
1168 j = pci_vpd_info_field_size(&vpd_data[i]);
1169 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1170 if (i + j > vpd_size) {
1171 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
1172 return;
1175 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
1176 if (!efx->vpd_sn)
1177 return;
1179 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
1183 /* Main body of NIC initialisation
1184 * This is called at module load (or hotplug insertion, theoretically).
1186 static int efx_pci_probe_main(struct efx_nic *efx)
1188 int rc;
1190 /* Do start-of-day initialisation */
1191 rc = efx_probe_all(efx);
1192 if (rc)
1193 goto fail1;
1195 efx_init_napi(efx);
1197 down_write(&efx->filter_sem);
1198 rc = efx->type->init(efx);
1199 up_write(&efx->filter_sem);
1200 if (rc) {
1201 netif_err(efx, probe, efx->net_dev,
1202 "failed to initialise NIC\n");
1203 goto fail3;
1206 rc = efx_init_port(efx);
1207 if (rc) {
1208 netif_err(efx, probe, efx->net_dev,
1209 "failed to initialise port\n");
1210 goto fail4;
1213 rc = efx_nic_init_interrupt(efx);
1214 if (rc)
1215 goto fail5;
1217 efx_set_interrupt_affinity(efx);
1218 rc = efx_enable_interrupts(efx);
1219 if (rc)
1220 goto fail6;
1222 return 0;
1224 fail6:
1225 efx_clear_interrupt_affinity(efx);
1226 efx_nic_fini_interrupt(efx);
1227 fail5:
1228 efx_fini_port(efx);
1229 fail4:
1230 efx->type->fini(efx);
1231 fail3:
1232 efx_fini_napi(efx);
1233 efx_remove_all(efx);
1234 fail1:
1235 return rc;
1238 static int efx_pci_probe_post_io(struct efx_nic *efx)
1240 struct net_device *net_dev = efx->net_dev;
1241 int rc = efx_pci_probe_main(efx);
1243 if (rc)
1244 return rc;
1246 if (efx->type->sriov_init) {
1247 rc = efx->type->sriov_init(efx);
1248 if (rc)
1249 netif_err(efx, probe, efx->net_dev,
1250 "SR-IOV can't be enabled rc %d\n", rc);
1253 /* Determine netdevice features */
1254 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1255 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1256 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1257 net_dev->features |= NETIF_F_TSO6;
1258 /* Check whether device supports TSO */
1259 if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1260 net_dev->features &= ~NETIF_F_ALL_TSO;
1261 /* Mask for features that also apply to VLAN devices */
1262 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1263 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1264 NETIF_F_RXCSUM);
1266 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1268 /* Disable receiving frames with bad FCS, by default. */
1269 net_dev->features &= ~NETIF_F_RXALL;
1271 /* Disable VLAN filtering by default. It may be enforced if
1272 * the feature is fixed (i.e. VLAN filters are required to
1273 * receive VLAN tagged packets due to vPort restrictions).
1275 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1276 net_dev->features |= efx->fixed_features;
1278 rc = efx_register_netdev(efx);
1279 if (!rc)
1280 return 0;
1282 efx_pci_remove_main(efx);
1283 return rc;
1286 /* NIC initialisation
1288 * This is called at module load (or hotplug insertion,
1289 * theoretically). It sets up PCI mappings, resets the NIC,
1290 * sets up and registers the network devices with the kernel and hooks
1291 * the interrupt service routine. It does not prepare the device for
1292 * transmission; this is left to the first time one of the network
1293 * interfaces is brought up (i.e. efx_net_open).
1295 static int efx_pci_probe(struct pci_dev *pci_dev,
1296 const struct pci_device_id *entry)
1298 struct net_device *net_dev;
1299 struct efx_nic *efx;
1300 int rc;
1302 /* Allocate and initialise a struct net_device and struct efx_nic */
1303 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1304 EFX_MAX_RX_QUEUES);
1305 if (!net_dev)
1306 return -ENOMEM;
1307 efx = netdev_priv(net_dev);
1308 efx->type = (const struct efx_nic_type *) entry->driver_data;
1309 efx->fixed_features |= NETIF_F_HIGHDMA;
1311 pci_set_drvdata(pci_dev, efx);
1312 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1313 rc = efx_init_struct(efx, pci_dev, net_dev);
1314 if (rc)
1315 goto fail1;
1317 netif_info(efx, probe, efx->net_dev,
1318 "Solarflare NIC detected\n");
1320 if (!efx->type->is_vf)
1321 efx_probe_vpd_strings(efx);
1323 /* Set up basic I/O (BAR mappings etc) */
1324 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1325 efx->type->mem_map_size(efx));
1326 if (rc)
1327 goto fail2;
1329 rc = efx_pci_probe_post_io(efx);
1330 if (rc) {
1331 /* On failure, retry once immediately.
1332 * If we aborted probe due to a scheduled reset, dismiss it.
1334 efx->reset_pending = 0;
1335 rc = efx_pci_probe_post_io(efx);
1336 if (rc) {
1337 /* On another failure, retry once more
1338 * after a 50-305ms delay.
1340 unsigned char r;
1342 get_random_bytes(&r, 1);
1343 msleep((unsigned int)r + 50);
1344 efx->reset_pending = 0;
1345 rc = efx_pci_probe_post_io(efx);
1348 if (rc)
1349 goto fail3;
1351 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1353 /* Try to create MTDs, but allow this to fail */
1354 rtnl_lock();
1355 rc = efx_mtd_probe(efx);
1356 rtnl_unlock();
1357 if (rc && rc != -EPERM)
1358 netif_warn(efx, probe, efx->net_dev,
1359 "failed to create MTDs (%d)\n", rc);
1361 (void)pci_enable_pcie_error_reporting(pci_dev);
1363 if (efx->type->udp_tnl_push_ports)
1364 efx->type->udp_tnl_push_ports(efx);
1366 return 0;
1368 fail3:
1369 efx_fini_io(efx, efx->type->mem_bar(efx));
1370 fail2:
1371 efx_fini_struct(efx);
1372 fail1:
1373 WARN_ON(rc > 0);
1374 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1375 free_netdev(net_dev);
1376 return rc;
1379 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1380 * enabled on success
1382 #ifdef CONFIG_SFC_SRIOV
1383 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1385 int rc;
1386 struct efx_nic *efx = pci_get_drvdata(dev);
1388 if (efx->type->sriov_configure) {
1389 rc = efx->type->sriov_configure(efx, num_vfs);
1390 if (rc)
1391 return rc;
1392 else
1393 return num_vfs;
1394 } else
1395 return -EOPNOTSUPP;
1397 #endif
1399 static int efx_pm_freeze(struct device *dev)
1401 struct efx_nic *efx = dev_get_drvdata(dev);
1403 rtnl_lock();
1405 if (efx->state != STATE_DISABLED) {
1406 efx->state = STATE_UNINIT;
1408 efx_device_detach_sync(efx);
1410 efx_stop_all(efx);
1411 efx_disable_interrupts(efx);
1414 rtnl_unlock();
1416 return 0;
1419 static int efx_pm_thaw(struct device *dev)
1421 int rc;
1422 struct efx_nic *efx = dev_get_drvdata(dev);
1424 rtnl_lock();
1426 if (efx->state != STATE_DISABLED) {
1427 rc = efx_enable_interrupts(efx);
1428 if (rc)
1429 goto fail;
1431 mutex_lock(&efx->mac_lock);
1432 efx->phy_op->reconfigure(efx);
1433 mutex_unlock(&efx->mac_lock);
1435 efx_start_all(efx);
1437 efx_device_attach_if_not_resetting(efx);
1439 efx->state = STATE_READY;
1441 efx->type->resume_wol(efx);
1444 rtnl_unlock();
1446 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1447 efx_queue_reset_work(efx);
1449 return 0;
1451 fail:
1452 rtnl_unlock();
1454 return rc;
1457 static int efx_pm_poweroff(struct device *dev)
1459 struct pci_dev *pci_dev = to_pci_dev(dev);
1460 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1462 efx->type->fini(efx);
1464 efx->reset_pending = 0;
1466 pci_save_state(pci_dev);
1467 return pci_set_power_state(pci_dev, PCI_D3hot);
1470 /* Used for both resume and restore */
1471 static int efx_pm_resume(struct device *dev)
1473 struct pci_dev *pci_dev = to_pci_dev(dev);
1474 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1475 int rc;
1477 rc = pci_set_power_state(pci_dev, PCI_D0);
1478 if (rc)
1479 return rc;
1480 pci_restore_state(pci_dev);
1481 rc = pci_enable_device(pci_dev);
1482 if (rc)
1483 return rc;
1484 pci_set_master(efx->pci_dev);
1485 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1486 if (rc)
1487 return rc;
1488 down_write(&efx->filter_sem);
1489 rc = efx->type->init(efx);
1490 up_write(&efx->filter_sem);
1491 if (rc)
1492 return rc;
1493 rc = efx_pm_thaw(dev);
1494 return rc;
1497 static int efx_pm_suspend(struct device *dev)
1499 int rc;
1501 efx_pm_freeze(dev);
1502 rc = efx_pm_poweroff(dev);
1503 if (rc)
1504 efx_pm_resume(dev);
1505 return rc;
1508 static const struct dev_pm_ops efx_pm_ops = {
1509 .suspend = efx_pm_suspend,
1510 .resume = efx_pm_resume,
1511 .freeze = efx_pm_freeze,
1512 .thaw = efx_pm_thaw,
1513 .poweroff = efx_pm_poweroff,
1514 .restore = efx_pm_resume,
1517 /* A PCI error affecting this device was detected.
1518 * At this point MMIO and DMA may be disabled.
1519 * Stop the software path and request a slot reset.
1521 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1522 enum pci_channel_state state)
1524 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1525 struct efx_nic *efx = pci_get_drvdata(pdev);
1527 if (state == pci_channel_io_perm_failure)
1528 return PCI_ERS_RESULT_DISCONNECT;
1530 rtnl_lock();
1532 if (efx->state != STATE_DISABLED) {
1533 efx->state = STATE_RECOVERY;
1534 efx->reset_pending = 0;
1536 efx_device_detach_sync(efx);
1538 efx_stop_all(efx);
1539 efx_disable_interrupts(efx);
1541 status = PCI_ERS_RESULT_NEED_RESET;
1542 } else {
1543 /* If the interface is disabled we don't want to do anything
1544 * with it.
1546 status = PCI_ERS_RESULT_RECOVERED;
1549 rtnl_unlock();
1551 pci_disable_device(pdev);
1553 return status;
1556 /* Fake a successful reset, which will be performed later in efx_io_resume. */
1557 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1559 struct efx_nic *efx = pci_get_drvdata(pdev);
1560 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1562 if (pci_enable_device(pdev)) {
1563 netif_err(efx, hw, efx->net_dev,
1564 "Cannot re-enable PCI device after reset.\n");
1565 status = PCI_ERS_RESULT_DISCONNECT;
1568 return status;
1571 /* Perform the actual reset and resume I/O operations. */
1572 static void efx_io_resume(struct pci_dev *pdev)
1574 struct efx_nic *efx = pci_get_drvdata(pdev);
1575 int rc;
1577 rtnl_lock();
1579 if (efx->state == STATE_DISABLED)
1580 goto out;
1582 rc = efx_reset(efx, RESET_TYPE_ALL);
1583 if (rc) {
1584 netif_err(efx, hw, efx->net_dev,
1585 "efx_reset failed after PCI error (%d)\n", rc);
1586 } else {
1587 efx->state = STATE_READY;
1588 netif_dbg(efx, hw, efx->net_dev,
1589 "Done resetting and resuming IO after PCI error.\n");
1592 out:
1593 rtnl_unlock();
1596 /* For simplicity and reliability, we always require a slot reset and try to
1597 * reset the hardware when a pci error affecting the device is detected.
1598 * We leave both the link_reset and mmio_enabled callback unimplemented:
1599 * with our request for slot reset the mmio_enabled callback will never be
1600 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1602 static const struct pci_error_handlers efx_err_handlers = {
1603 .error_detected = efx_io_error_detected,
1604 .slot_reset = efx_io_slot_reset,
1605 .resume = efx_io_resume,
1608 static struct pci_driver efx_pci_driver = {
1609 .name = KBUILD_MODNAME,
1610 .id_table = efx_pci_table,
1611 .probe = efx_pci_probe,
1612 .remove = efx_pci_remove,
1613 .driver.pm = &efx_pm_ops,
1614 .err_handler = &efx_err_handlers,
1615 #ifdef CONFIG_SFC_SRIOV
1616 .sriov_configure = efx_pci_sriov_configure,
1617 #endif
1620 /**************************************************************************
1622 * Kernel module interface
1624 *************************************************************************/
1626 static int __init efx_init_module(void)
1628 int rc;
1630 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
1632 rc = register_netdevice_notifier(&efx_netdev_notifier);
1633 if (rc)
1634 goto err_notifier;
1636 #ifdef CONFIG_SFC_SRIOV
1637 rc = efx_init_sriov();
1638 if (rc)
1639 goto err_sriov;
1640 #endif
1642 rc = efx_create_reset_workqueue();
1643 if (rc)
1644 goto err_reset;
1646 rc = pci_register_driver(&efx_pci_driver);
1647 if (rc < 0)
1648 goto err_pci;
1650 return 0;
1652 err_pci:
1653 efx_destroy_reset_workqueue();
1654 err_reset:
1655 #ifdef CONFIG_SFC_SRIOV
1656 efx_fini_sriov();
1657 err_sriov:
1658 #endif
1659 unregister_netdevice_notifier(&efx_netdev_notifier);
1660 err_notifier:
1661 return rc;
1664 static void __exit efx_exit_module(void)
1666 printk(KERN_INFO "Solarflare NET driver unloading\n");
1668 pci_unregister_driver(&efx_pci_driver);
1669 efx_destroy_reset_workqueue();
1670 #ifdef CONFIG_SFC_SRIOV
1671 efx_fini_sriov();
1672 #endif
1673 unregister_netdevice_notifier(&efx_netdev_notifier);
1677 module_init(efx_init_module);
1678 module_exit(efx_exit_module);
1680 MODULE_AUTHOR("Solarflare Communications and "
1681 "Michael Brown <mbrown@fensystems.co.uk>");
1682 MODULE_DESCRIPTION("Solarflare network driver");
1683 MODULE_LICENSE("GPL");
1684 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1685 MODULE_VERSION(EFX_DRIVER_VERSION);