1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include "efx_common.h"
15 #include "efx_channels.h"
19 #include "rx_common.h"
20 #include "tx_common.h"
23 #include "mcdi_pcol.h"
25 static unsigned int debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
26 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
27 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
28 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
29 module_param(debug
, uint
, 0);
30 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
32 /* This is the time (in jiffies) between invocations of the hardware
34 * On Falcon-based NICs, this will:
35 * - Check the on-board hardware monitor;
36 * - Poll the link state and reconfigure the hardware as necessary.
37 * On Siena-based NICs for power systems with EEH support, this will give EEH a
40 static unsigned int efx_monitor_interval
= 1 * HZ
;
42 /* How often and how many times to poll for a reset while waiting for a
43 * BIST that another function started to complete.
45 #define BIST_WAIT_DELAY_MS 100
46 #define BIST_WAIT_DELAY_COUNT 100
48 /* Default stats update time */
49 #define STATS_PERIOD_MS_DEFAULT 1000
51 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
52 const char *const efx_reset_type_names
[] = {
53 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
54 [RESET_TYPE_ALL
] = "ALL",
55 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
56 [RESET_TYPE_WORLD
] = "WORLD",
57 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
58 [RESET_TYPE_DATAPATH
] = "DATAPATH",
59 [RESET_TYPE_MC_BIST
] = "MC_BIST",
60 [RESET_TYPE_DISABLE
] = "DISABLE",
61 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
62 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
63 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
64 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
65 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
66 [RESET_TYPE_MCDI_TIMEOUT
] = "MCDI_TIMEOUT (FLR)",
69 #define RESET_TYPE(type) \
70 STRING_TABLE_LOOKUP(type, efx_reset_type)
72 /* Loopback mode names (see LOOPBACK_MODE()) */
73 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
74 const char *const efx_loopback_mode_names
[] = {
75 [LOOPBACK_NONE
] = "NONE",
76 [LOOPBACK_DATA
] = "DATAPATH",
77 [LOOPBACK_GMAC
] = "GMAC",
78 [LOOPBACK_XGMII
] = "XGMII",
79 [LOOPBACK_XGXS
] = "XGXS",
80 [LOOPBACK_XAUI
] = "XAUI",
81 [LOOPBACK_GMII
] = "GMII",
82 [LOOPBACK_SGMII
] = "SGMII",
83 [LOOPBACK_XGBR
] = "XGBR",
84 [LOOPBACK_XFI
] = "XFI",
85 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
86 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
87 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
88 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
89 [LOOPBACK_GPHY
] = "GPHY",
90 [LOOPBACK_PHYXS
] = "PHYXS",
91 [LOOPBACK_PCS
] = "PCS",
92 [LOOPBACK_PMAPMD
] = "PMA/PMD",
93 [LOOPBACK_XPORT
] = "XPORT",
94 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
95 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
96 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
97 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
98 [LOOPBACK_GMII_WS
] = "GMII_WS",
99 [LOOPBACK_XFI_WS
] = "XFI_WS",
100 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
101 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
104 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
105 * queued onto this work queue. This is not a per-nic work queue, because
106 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
108 static struct workqueue_struct
*reset_workqueue
;
110 int efx_create_reset_workqueue(void)
112 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
113 if (!reset_workqueue
) {
114 printk(KERN_ERR
"Failed to create reset workqueue\n");
121 void efx_queue_reset_work(struct efx_nic
*efx
)
123 queue_work(reset_workqueue
, &efx
->reset_work
);
126 void efx_flush_reset_workqueue(struct efx_nic
*efx
)
128 cancel_work_sync(&efx
->reset_work
);
131 void efx_destroy_reset_workqueue(void)
133 if (reset_workqueue
) {
134 destroy_workqueue(reset_workqueue
);
135 reset_workqueue
= NULL
;
139 /* We assume that efx->type->reconfigure_mac will always try to sync RX
140 * filters and therefore needs to read-lock the filter table against freeing
142 void efx_mac_reconfigure(struct efx_nic
*efx
)
144 if (efx
->type
->reconfigure_mac
) {
145 down_read(&efx
->filter_sem
);
146 efx
->type
->reconfigure_mac(efx
);
147 up_read(&efx
->filter_sem
);
151 /* Asynchronous work item for changing MAC promiscuity and multicast
152 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
155 static void efx_mac_work(struct work_struct
*data
)
157 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
159 mutex_lock(&efx
->mac_lock
);
160 if (efx
->port_enabled
)
161 efx_mac_reconfigure(efx
);
162 mutex_unlock(&efx
->mac_lock
);
165 /* This ensures that the kernel is kept informed (via
166 * netif_carrier_on/off) of the link status, and also maintains the
167 * link status's stop on the port's TX queue.
169 void efx_link_status_changed(struct efx_nic
*efx
)
171 struct efx_link_state
*link_state
= &efx
->link_state
;
173 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
174 * that no events are triggered between unregister_netdev() and the
175 * driver unloading. A more general condition is that NETDEV_CHANGE
176 * can only be generated between NETDEV_UP and NETDEV_DOWN
178 if (!netif_running(efx
->net_dev
))
181 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
182 efx
->n_link_state_changes
++;
185 netif_carrier_on(efx
->net_dev
);
187 netif_carrier_off(efx
->net_dev
);
190 /* Status message for kernel log */
192 netif_info(efx
, link
, efx
->net_dev
,
193 "link up at %uMbps %s-duplex (MTU %d)\n",
194 link_state
->speed
, link_state
->fd
? "full" : "half",
197 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
200 unsigned int efx_xdp_max_mtu(struct efx_nic
*efx
)
202 /* The maximum MTU that we can fit in a single page, allowing for
203 * framing, overhead and XDP headroom + tailroom.
205 int overhead
= EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state
) +
206 efx
->rx_prefix_size
+ efx
->type
->rx_buffer_padding
+
207 efx
->rx_ip_align
+ EFX_XDP_HEADROOM
+ EFX_XDP_TAILROOM
;
209 return PAGE_SIZE
- overhead
;
212 /* Context: process, rtnl_lock() held. */
213 int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
215 struct efx_nic
*efx
= netdev_priv(net_dev
);
218 rc
= efx_check_disabled(efx
);
222 if (rtnl_dereference(efx
->xdp_prog
) &&
223 new_mtu
> efx_xdp_max_mtu(efx
)) {
224 netif_err(efx
, drv
, efx
->net_dev
,
225 "Requested MTU of %d too big for XDP (max: %d)\n",
226 new_mtu
, efx_xdp_max_mtu(efx
));
230 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
232 efx_device_detach_sync(efx
);
235 mutex_lock(&efx
->mac_lock
);
236 net_dev
->mtu
= new_mtu
;
237 efx_mac_reconfigure(efx
);
238 mutex_unlock(&efx
->mac_lock
);
241 efx_device_attach_if_not_resetting(efx
);
245 /**************************************************************************
249 **************************************************************************/
251 /* Run periodically off the general workqueue */
252 static void efx_monitor(struct work_struct
*data
)
254 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
257 netif_vdbg(efx
, timer
, efx
->net_dev
,
258 "hardware monitor executing on CPU %d\n",
259 raw_smp_processor_id());
260 BUG_ON(efx
->type
->monitor
== NULL
);
262 /* If the mac_lock is already held then it is likely a port
263 * reconfiguration is already in place, which will likely do
264 * most of the work of monitor() anyway.
266 if (mutex_trylock(&efx
->mac_lock
)) {
267 if (efx
->port_enabled
&& efx
->type
->monitor
)
268 efx
->type
->monitor(efx
);
269 mutex_unlock(&efx
->mac_lock
);
272 efx_start_monitor(efx
);
275 void efx_start_monitor(struct efx_nic
*efx
)
277 if (efx
->type
->monitor
)
278 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
279 efx_monitor_interval
);
282 /**************************************************************************
284 * Event queue processing
286 *************************************************************************/
288 /* Channels are shutdown and reinitialised whilst the NIC is running
289 * to propagate configuration changes (mtu, checksum offload), or
290 * to clear hardware error conditions
292 static void efx_start_datapath(struct efx_nic
*efx
)
294 netdev_features_t old_features
= efx
->net_dev
->features
;
295 bool old_rx_scatter
= efx
->rx_scatter
;
298 /* Calculate the rx buffer allocation parameters required to
299 * support the current MTU, including padding for header
300 * alignment and overruns.
302 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
303 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
304 efx
->type
->rx_buffer_padding
);
305 rx_buf_len
= (sizeof(struct efx_rx_page_state
) + EFX_XDP_HEADROOM
+
306 efx
->rx_ip_align
+ efx
->rx_dma_len
+ EFX_XDP_TAILROOM
);
308 if (rx_buf_len
<= PAGE_SIZE
) {
309 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
310 efx
->rx_buffer_order
= 0;
311 } else if (efx
->type
->can_rx_scatter
) {
312 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
313 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
314 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
315 EFX_RX_BUF_ALIGNMENT
) >
317 efx
->rx_scatter
= true;
318 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
319 efx
->rx_buffer_order
= 0;
321 efx
->rx_scatter
= false;
322 efx
->rx_buffer_order
= get_order(rx_buf_len
);
325 efx_rx_config_page_split(efx
);
326 if (efx
->rx_buffer_order
)
327 netif_dbg(efx
, drv
, efx
->net_dev
,
328 "RX buf len=%u; page order=%u batch=%u\n",
329 efx
->rx_dma_len
, efx
->rx_buffer_order
,
330 efx
->rx_pages_per_batch
);
332 netif_dbg(efx
, drv
, efx
->net_dev
,
333 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
334 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
335 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
337 /* Restore previously fixed features in hw_features and remove
338 * features which are fixed now
340 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
341 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
342 efx
->net_dev
->features
|= efx
->fixed_features
;
343 if (efx
->net_dev
->features
!= old_features
)
344 netdev_features_change(efx
->net_dev
);
346 /* RX filters may also have scatter-enabled flags */
347 if ((efx
->rx_scatter
!= old_rx_scatter
) &&
348 efx
->type
->filter_update_rx_scatter
)
349 efx
->type
->filter_update_rx_scatter(efx
);
351 /* We must keep at least one descriptor in a TX ring empty.
352 * We could avoid this when the queue size does not exactly
353 * match the hardware ring size, but it's not that important.
354 * Therefore we stop the queue when one more skb might fill
355 * the ring completely. We wake it when half way back to
358 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_tx_max_skb_descs(efx
);
359 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
361 /* Initialise the channels */
362 efx_start_channels(efx
);
364 efx_ptp_start_datapath(efx
);
366 if (netif_device_present(efx
->net_dev
))
367 netif_tx_wake_all_queues(efx
->net_dev
);
370 static void efx_stop_datapath(struct efx_nic
*efx
)
372 EFX_ASSERT_RESET_SERIALISED(efx
);
373 BUG_ON(efx
->port_enabled
);
375 efx_ptp_stop_datapath(efx
);
377 efx_stop_channels(efx
);
380 /**************************************************************************
384 **************************************************************************/
386 static void efx_start_port(struct efx_nic
*efx
)
388 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
389 BUG_ON(efx
->port_enabled
);
391 mutex_lock(&efx
->mac_lock
);
392 efx
->port_enabled
= true;
394 /* Ensure MAC ingress/egress is enabled */
395 efx_mac_reconfigure(efx
);
397 mutex_unlock(&efx
->mac_lock
);
400 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
401 * and the async self-test, wait for them to finish and prevent them
402 * being scheduled again. This doesn't cover online resets, which
403 * should only be cancelled when removing the device.
405 static void efx_stop_port(struct efx_nic
*efx
)
407 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
409 EFX_ASSERT_RESET_SERIALISED(efx
);
411 mutex_lock(&efx
->mac_lock
);
412 efx
->port_enabled
= false;
413 mutex_unlock(&efx
->mac_lock
);
415 /* Serialise against efx_set_multicast_list() */
416 netif_addr_lock_bh(efx
->net_dev
);
417 netif_addr_unlock_bh(efx
->net_dev
);
419 cancel_delayed_work_sync(&efx
->monitor_work
);
420 efx_selftest_async_cancel(efx
);
421 cancel_work_sync(&efx
->mac_work
);
424 /* If the interface is supposed to be running but is not, start
425 * the hardware and software data path, regular activity for the port
426 * (MAC statistics, link polling, etc.) and schedule the port to be
427 * reconfigured. Interrupts must already be enabled. This function
428 * is safe to call multiple times, so long as the NIC is not disabled.
429 * Requires the RTNL lock.
431 void efx_start_all(struct efx_nic
*efx
)
433 EFX_ASSERT_RESET_SERIALISED(efx
);
434 BUG_ON(efx
->state
== STATE_DISABLED
);
436 /* Check that it is appropriate to restart the interface. All
437 * of these flags are safe to read under just the rtnl lock
439 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
444 efx_start_datapath(efx
);
446 /* Start the hardware monitor if there is one */
447 efx_start_monitor(efx
);
449 /* Link state detection is normally event-driven; we have
450 * to poll now because we could have missed a change
452 mutex_lock(&efx
->mac_lock
);
453 if (efx
->phy_op
->poll(efx
))
454 efx_link_status_changed(efx
);
455 mutex_unlock(&efx
->mac_lock
);
457 if (efx
->type
->start_stats
) {
458 efx
->type
->start_stats(efx
);
459 efx
->type
->pull_stats(efx
);
460 spin_lock_bh(&efx
->stats_lock
);
461 efx
->type
->update_stats(efx
, NULL
, NULL
);
462 spin_unlock_bh(&efx
->stats_lock
);
466 /* Quiesce the hardware and software data path, and regular activity
467 * for the port without bringing the link down. Safe to call multiple
468 * times with the NIC in almost any state, but interrupts should be
469 * enabled. Requires the RTNL lock.
471 void efx_stop_all(struct efx_nic
*efx
)
473 EFX_ASSERT_RESET_SERIALISED(efx
);
475 /* port_enabled can be read safely under the rtnl lock */
476 if (!efx
->port_enabled
)
479 if (efx
->type
->update_stats
) {
480 /* update stats before we go down so we can accurately count
483 efx
->type
->pull_stats(efx
);
484 spin_lock_bh(&efx
->stats_lock
);
485 efx
->type
->update_stats(efx
, NULL
, NULL
);
486 spin_unlock_bh(&efx
->stats_lock
);
487 efx
->type
->stop_stats(efx
);
492 /* Stop the kernel transmit interface. This is only valid if
493 * the device is stopped or detached; otherwise the watchdog
494 * may fire immediately.
496 WARN_ON(netif_running(efx
->net_dev
) &&
497 netif_device_present(efx
->net_dev
));
498 netif_tx_disable(efx
->net_dev
);
500 efx_stop_datapath(efx
);
503 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
504 void efx_net_stats(struct net_device
*net_dev
, struct rtnl_link_stats64
*stats
)
506 struct efx_nic
*efx
= netdev_priv(net_dev
);
508 spin_lock_bh(&efx
->stats_lock
);
509 efx
->type
->update_stats(efx
, NULL
, stats
);
510 spin_unlock_bh(&efx
->stats_lock
);
513 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
514 * the MAC appropriately. All other PHY configuration changes are pushed
515 * through phy_op->set_settings(), and pushed asynchronously to the MAC
516 * through efx_monitor().
518 * Callers must hold the mac_lock
520 int __efx_reconfigure_port(struct efx_nic
*efx
)
522 enum efx_phy_mode phy_mode
;
525 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
527 /* Disable PHY transmit in mac level loopbacks */
528 phy_mode
= efx
->phy_mode
;
529 if (LOOPBACK_INTERNAL(efx
))
530 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
532 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
534 if (efx
->type
->reconfigure_port
)
535 rc
= efx
->type
->reconfigure_port(efx
);
538 efx
->phy_mode
= phy_mode
;
543 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
546 int efx_reconfigure_port(struct efx_nic
*efx
)
550 EFX_ASSERT_RESET_SERIALISED(efx
);
552 mutex_lock(&efx
->mac_lock
);
553 rc
= __efx_reconfigure_port(efx
);
554 mutex_unlock(&efx
->mac_lock
);
559 /**************************************************************************
561 * Device reset and suspend
563 **************************************************************************/
565 static void efx_wait_for_bist_end(struct efx_nic
*efx
)
569 for (i
= 0; i
< BIST_WAIT_DELAY_COUNT
; ++i
) {
570 if (efx_mcdi_poll_reboot(efx
))
572 msleep(BIST_WAIT_DELAY_MS
);
575 netif_err(efx
, drv
, efx
->net_dev
, "Warning: No MC reboot after BIST mode\n");
577 /* Either way unset the BIST flag. If we found no reboot we probably
578 * won't recover, but we should try.
580 efx
->mc_bist_for_other_fn
= false;
583 /* Try recovery mechanisms.
584 * For now only EEH is supported.
585 * Returns 0 if the recovery mechanisms are unsuccessful.
586 * Returns a non-zero value otherwise.
588 int efx_try_recovery(struct efx_nic
*efx
)
591 /* A PCI error can occur and not be seen by EEH because nothing
592 * happens on the PCI bus. In this case the driver may fail and
593 * schedule a 'recover or reset', leading to this recovery handler.
594 * Manually call the eeh failure check function.
596 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
597 if (eeh_dev_check_failure(eehdev
)) {
598 /* The EEH mechanisms will handle the error and reset the
599 * device if necessary.
607 /* Tears down the entire software state and most of the hardware state
610 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
612 EFX_ASSERT_RESET_SERIALISED(efx
);
614 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
615 efx
->type
->prepare_flr(efx
);
618 efx_disable_interrupts(efx
);
620 mutex_lock(&efx
->mac_lock
);
621 down_write(&efx
->filter_sem
);
622 mutex_lock(&efx
->rss_lock
);
623 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
624 method
!= RESET_TYPE_DATAPATH
)
625 efx
->phy_op
->fini(efx
);
626 efx
->type
->fini(efx
);
629 /* This function will always ensure that the locks acquired in
630 * efx_reset_down() are released. A failure return code indicates
631 * that we were unable to reinitialise the hardware, and the
632 * driver should be disabled. If ok is false, then the rx and tx
633 * engines are not restarted, pending a RESET_DISABLE.
635 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
639 EFX_ASSERT_RESET_SERIALISED(efx
);
641 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
642 efx
->type
->finish_flr(efx
);
644 /* Ensure that SRAM is initialised even if we're disabling the device */
645 rc
= efx
->type
->init(efx
);
647 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
654 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
655 method
!= RESET_TYPE_DATAPATH
) {
656 rc
= efx
->phy_op
->init(efx
);
659 rc
= efx
->phy_op
->reconfigure(efx
);
660 if (rc
&& rc
!= -EPERM
)
661 netif_err(efx
, drv
, efx
->net_dev
,
662 "could not restore PHY settings\n");
665 rc
= efx_enable_interrupts(efx
);
669 #ifdef CONFIG_SFC_SRIOV
670 rc
= efx
->type
->vswitching_restore(efx
);
671 if (rc
) /* not fatal; the PF will still work fine */
672 netif_warn(efx
, probe
, efx
->net_dev
,
673 "failed to restore vswitching rc=%d;"
674 " VFs may not function\n", rc
);
677 if (efx
->type
->rx_restore_rss_contexts
)
678 efx
->type
->rx_restore_rss_contexts(efx
);
679 mutex_unlock(&efx
->rss_lock
);
680 efx
->type
->filter_table_restore(efx
);
681 up_write(&efx
->filter_sem
);
682 if (efx
->type
->sriov_reset
)
683 efx
->type
->sriov_reset(efx
);
685 mutex_unlock(&efx
->mac_lock
);
689 if (efx
->type
->udp_tnl_push_ports
)
690 efx
->type
->udp_tnl_push_ports(efx
);
695 efx
->port_initialized
= false;
697 mutex_unlock(&efx
->rss_lock
);
698 up_write(&efx
->filter_sem
);
699 mutex_unlock(&efx
->mac_lock
);
704 /* Reset the NIC using the specified method. Note that the reset may
705 * fail, in which case the card will be left in an unusable state.
707 * Caller must hold the rtnl_lock.
709 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
714 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
717 efx_device_detach_sync(efx
);
718 efx_reset_down(efx
, method
);
720 rc
= efx
->type
->reset(efx
, method
);
722 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
726 /* Clear flags for the scopes we covered. We assume the NIC and
727 * driver are now quiescent so that there is no race here.
729 if (method
< RESET_TYPE_MAX_METHOD
)
730 efx
->reset_pending
&= -(1 << (method
+ 1));
731 else /* it doesn't fit into the well-ordered scope hierarchy */
732 __clear_bit(method
, &efx
->reset_pending
);
734 /* Reinitialise bus-mastering, which may have been turned off before
735 * the reset was scheduled. This is still appropriate, even in the
736 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
737 * can respond to requests.
739 pci_set_master(efx
->pci_dev
);
742 /* Leave device stopped if necessary */
744 method
== RESET_TYPE_DISABLE
||
745 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
746 rc2
= efx_reset_up(efx
, method
, !disabled
);
754 dev_close(efx
->net_dev
);
755 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
756 efx
->state
= STATE_DISABLED
;
758 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
759 efx_device_attach_if_not_resetting(efx
);
764 /* The worker thread exists so that code that cannot sleep can
765 * schedule a reset for later.
767 static void efx_reset_work(struct work_struct
*data
)
769 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
770 unsigned long pending
;
771 enum reset_type method
;
773 pending
= READ_ONCE(efx
->reset_pending
);
774 method
= fls(pending
) - 1;
776 if (method
== RESET_TYPE_MC_BIST
)
777 efx_wait_for_bist_end(efx
);
779 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
780 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
781 efx_try_recovery(efx
))
789 /* We checked the state in efx_schedule_reset() but it may
790 * have changed by now. Now that we have the RTNL lock,
791 * it cannot change again.
793 if (efx
->state
== STATE_READY
)
794 (void)efx_reset(efx
, method
);
799 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
801 enum reset_type method
;
803 if (efx
->state
== STATE_RECOVERY
) {
804 netif_dbg(efx
, drv
, efx
->net_dev
,
805 "recovering: skip scheduling %s reset\n",
811 case RESET_TYPE_INVISIBLE
:
813 case RESET_TYPE_RECOVER_OR_ALL
:
814 case RESET_TYPE_WORLD
:
815 case RESET_TYPE_DISABLE
:
816 case RESET_TYPE_RECOVER_OR_DISABLE
:
817 case RESET_TYPE_DATAPATH
:
818 case RESET_TYPE_MC_BIST
:
819 case RESET_TYPE_MCDI_TIMEOUT
:
821 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
825 method
= efx
->type
->map_reset_reason(type
);
826 netif_dbg(efx
, drv
, efx
->net_dev
,
827 "scheduling %s reset for %s\n",
828 RESET_TYPE(method
), RESET_TYPE(type
));
832 set_bit(method
, &efx
->reset_pending
);
833 smp_mb(); /* ensure we change reset_pending before checking state */
835 /* If we're not READY then just leave the flags set as the cue
836 * to abort probing or reschedule the reset later.
838 if (READ_ONCE(efx
->state
) != STATE_READY
)
841 /* efx_process_channel() will no longer read events once a
842 * reset is scheduled. So switch back to poll'd MCDI completions.
844 efx_mcdi_mode_poll(efx
);
846 efx_queue_reset_work(efx
);
849 /**************************************************************************
851 * Dummy PHY/MAC operations
853 * Can be used for some unimplemented operations
854 * Needed so all function pointers are valid and do not have to be tested
857 **************************************************************************/
858 int efx_port_dummy_op_int(struct efx_nic
*efx
)
862 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
864 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
869 static const struct efx_phy_operations efx_dummy_phy_operations
= {
870 .init
= efx_port_dummy_op_int
,
871 .reconfigure
= efx_port_dummy_op_int
,
872 .poll
= efx_port_dummy_op_poll
,
873 .fini
= efx_port_dummy_op_void
,
876 /**************************************************************************
880 **************************************************************************/
882 /* This zeroes out and then fills in the invariants in a struct
883 * efx_nic (including all sub-structures).
885 int efx_init_struct(struct efx_nic
*efx
,
886 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
890 /* Initialise common structures */
891 INIT_LIST_HEAD(&efx
->node
);
892 INIT_LIST_HEAD(&efx
->secondary_list
);
893 spin_lock_init(&efx
->biu_lock
);
894 #ifdef CONFIG_SFC_MTD
895 INIT_LIST_HEAD(&efx
->mtd_list
);
897 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
898 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
899 efx_selftest_async_init(efx
);
900 efx
->pci_dev
= pci_dev
;
901 efx
->msg_enable
= debug
;
902 efx
->state
= STATE_UNINIT
;
903 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
905 efx
->net_dev
= net_dev
;
906 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
908 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
909 efx
->rx_packet_hash_offset
=
910 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
911 efx
->rx_packet_ts_offset
=
912 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
913 INIT_LIST_HEAD(&efx
->rss_context
.list
);
914 mutex_init(&efx
->rss_lock
);
915 spin_lock_init(&efx
->stats_lock
);
916 efx
->vi_stride
= EFX_DEFAULT_VI_STRIDE
;
917 efx
->num_mac_stats
= MC_CMD_MAC_NSTATS
;
918 BUILD_BUG_ON(MC_CMD_MAC_NSTATS
- 1 != MC_CMD_MAC_GENERATION_END
);
919 mutex_init(&efx
->mac_lock
);
920 #ifdef CONFIG_RFS_ACCEL
921 mutex_init(&efx
->rps_mutex
);
922 spin_lock_init(&efx
->rps_hash_lock
);
923 /* Failure to allocate is not fatal, but may degrade ARFS performance */
924 efx
->rps_hash_table
= kcalloc(EFX_ARFS_HASH_TABLE_SIZE
,
925 sizeof(*efx
->rps_hash_table
), GFP_KERNEL
);
927 efx
->phy_op
= &efx_dummy_phy_operations
;
928 efx
->mdio
.dev
= net_dev
;
929 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
930 init_waitqueue_head(&efx
->flush_wq
);
932 rc
= efx_init_channels(efx
);
936 /* Would be good to use the net_dev name, but we're too early */
937 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
939 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
940 if (!efx
->workqueue
) {
948 efx_fini_struct(efx
);
952 void efx_fini_struct(struct efx_nic
*efx
)
954 #ifdef CONFIG_RFS_ACCEL
955 kfree(efx
->rps_hash_table
);
958 efx_fini_channels(efx
);
962 if (efx
->workqueue
) {
963 destroy_workqueue(efx
->workqueue
);
964 efx
->workqueue
= NULL
;
968 /* This configures the PCI device to enable I/O and DMA. */
969 int efx_init_io(struct efx_nic
*efx
, int bar
, dma_addr_t dma_mask
,
970 unsigned int mem_map_size
)
972 struct pci_dev
*pci_dev
= efx
->pci_dev
;
975 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
977 rc
= pci_enable_device(pci_dev
);
979 netif_err(efx
, probe
, efx
->net_dev
,
980 "failed to enable PCI device\n");
984 pci_set_master(pci_dev
);
986 /* Set the PCI DMA mask. Try all possibilities from our
987 * genuine mask down to 32 bits, because some architectures
988 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
989 * masks event though they reject 46 bit masks.
991 while (dma_mask
> 0x7fffffffUL
) {
992 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
998 netif_err(efx
, probe
, efx
->net_dev
,
999 "could not find a suitable DMA mask\n");
1002 netif_dbg(efx
, probe
, efx
->net_dev
,
1003 "using DMA mask %llx\n", (unsigned long long)dma_mask
);
1005 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1006 if (!efx
->membase_phys
) {
1007 netif_err(efx
, probe
, efx
->net_dev
,
1008 "ERROR: No BAR%d mapping from the BIOS. "
1009 "Try pci=realloc on the kernel command line\n", bar
);
1014 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1016 netif_err(efx
, probe
, efx
->net_dev
,
1017 "request for memory BAR failed\n");
1022 efx
->membase
= ioremap(efx
->membase_phys
, mem_map_size
);
1023 if (!efx
->membase
) {
1024 netif_err(efx
, probe
, efx
->net_dev
,
1025 "could not map memory BAR at %llx+%x\n",
1026 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1030 netif_dbg(efx
, probe
, efx
->net_dev
,
1031 "memory BAR at %llx+%x (virtual %p)\n",
1032 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1038 pci_release_region(efx
->pci_dev
, bar
);
1040 efx
->membase_phys
= 0;
1042 pci_disable_device(efx
->pci_dev
);
1047 void efx_fini_io(struct efx_nic
*efx
, int bar
)
1049 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1052 iounmap(efx
->membase
);
1053 efx
->membase
= NULL
;
1056 if (efx
->membase_phys
) {
1057 pci_release_region(efx
->pci_dev
, bar
);
1058 efx
->membase_phys
= 0;
1061 /* Don't disable bus-mastering if VFs are assigned */
1062 if (!pci_vfs_assigned(efx
->pci_dev
))
1063 pci_disable_device(efx
->pci_dev
);
1066 #ifdef CONFIG_SFC_MCDI_LOGGING
1067 static ssize_t
show_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
1070 struct efx_nic
*efx
= dev_get_drvdata(dev
);
1071 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1073 return scnprintf(buf
, PAGE_SIZE
, "%d\n", mcdi
->logging_enabled
);
1076 static ssize_t
set_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
1077 const char *buf
, size_t count
)
1079 struct efx_nic
*efx
= dev_get_drvdata(dev
);
1080 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1081 bool enable
= count
> 0 && *buf
!= '0';
1083 mcdi
->logging_enabled
= enable
;
1087 static DEVICE_ATTR(mcdi_logging
, 0644, show_mcdi_log
, set_mcdi_log
);
1089 void efx_init_mcdi_logging(struct efx_nic
*efx
)
1091 int rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
1094 netif_warn(efx
, drv
, efx
->net_dev
,
1095 "failed to init net dev attributes\n");
1099 void efx_fini_mcdi_logging(struct efx_nic
*efx
)
1101 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);