1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
11 #include <linux/net_tstamp.h>
12 #include "net_driver.h"
14 #include "efx_common.h"
18 /* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
19 * They are not supported by this driver but these revision numbers
20 * form part of the ethtool API for register dumping.
26 static inline int efx_nic_rev(struct efx_nic
*efx
)
28 return efx
->type
->revision
;
31 u32
efx_farch_fpga_ver(struct efx_nic
*efx
);
33 /* Read the current event from the event queue */
34 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
37 return ((efx_qword_t
*) (channel
->eventq
.buf
.addr
)) +
38 (index
& channel
->eventq_mask
);
41 /* See if an event is present
43 * We check both the high and low dword of the event for all ones. We
44 * wrote all ones when we cleared the event, and no valid event can
45 * have all ones in either its high or low dwords. This approach is
46 * robust against reordering.
48 * Note that using a single 64-bit comparison is incorrect; even
49 * though the CPU read will be atomic, the DMA write may not be.
51 static inline int efx_event_present(efx_qword_t
*event
)
53 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
54 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
57 /* Returns a pointer to the specified transmit descriptor in the TX
58 * descriptor queue belonging to the specified channel.
60 static inline efx_qword_t
*
61 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
63 return ((efx_qword_t
*) (tx_queue
->txd
.buf
.addr
)) + index
;
66 /* Get partner of a TX queue, seen as part of the same net core queue */
67 static struct efx_tx_queue
*efx_tx_queue_partner(struct efx_tx_queue
*tx_queue
)
69 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
70 return tx_queue
- EFX_TXQ_TYPE_OFFLOAD
;
72 return tx_queue
+ EFX_TXQ_TYPE_OFFLOAD
;
75 /* Report whether this TX queue would be empty for the given write_count.
76 * May return false negative.
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue
*tx_queue
,
79 unsigned int write_count
)
81 unsigned int empty_read_count
= READ_ONCE(tx_queue
->empty_read_count
);
83 if (empty_read_count
== 0)
86 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
89 /* Report whether the NIC considers this TX queue empty, using
90 * packet_write_count (the write count recorded for the last completable
91 * doorbell push). May return false negative. EF10 only, which is OK
92 * because only EF10 supports PIO.
94 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue
*tx_queue
)
96 EFX_WARN_ON_ONCE_PARANOID(!tx_queue
->efx
->type
->option_descriptors
);
97 return __efx_nic_tx_is_empty(tx_queue
, tx_queue
->packet_write_count
);
100 /* Decide whether we can use TX PIO, ie. write packet data directly into
101 * a buffer on the device. This can reduce latency at the expense of
102 * throughput, so we only do this if both hardware and software TX rings
103 * are empty. This also ensures that only one packet at a time can be
104 * using the PIO buffer.
106 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue
*tx_queue
)
108 struct efx_tx_queue
*partner
= efx_tx_queue_partner(tx_queue
);
110 return tx_queue
->piobuf
&& efx_nic_tx_is_empty(tx_queue
) &&
111 efx_nic_tx_is_empty(partner
);
114 /* Decide whether to push a TX descriptor to the NIC vs merely writing
115 * the doorbell. This can reduce latency when we are adding a single
116 * descriptor to an empty queue, but is otherwise pointless. Further,
117 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
118 * triggered if we don't check this.
119 * We use the write_count used for the last doorbell push, to get the
120 * NIC's view of the tx queue.
122 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue
*tx_queue
,
123 unsigned int write_count
)
125 bool was_empty
= __efx_nic_tx_is_empty(tx_queue
, write_count
);
127 tx_queue
->empty_read_count
= 0;
128 return was_empty
&& tx_queue
->write_count
- write_count
== 1;
131 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
132 static inline efx_qword_t
*
133 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
135 return ((efx_qword_t
*) (rx_queue
->rxd
.buf
.addr
)) + index
;
140 PHY_TYPE_TXC43128
= 1,
141 PHY_TYPE_88E1111
= 2,
142 PHY_TYPE_SFX7101
= 3,
143 PHY_TYPE_QT2022C2
= 4,
145 PHY_TYPE_SFT9001A
= 8,
146 PHY_TYPE_QT2025C
= 9,
147 PHY_TYPE_SFT9001B
= 10,
150 /* Alignment of PCIe DMA boundaries (4KB) */
151 #define EFX_PAGE_SIZE 4096
152 /* Size and alignment of buffer table entries (same) */
153 #define EFX_BUF_SIZE EFX_PAGE_SIZE
155 /* NIC-generic software stats */
157 GENERIC_STAT_rx_noskb_drops
,
158 GENERIC_STAT_rx_nodesc_trunc
,
163 SIENA_STAT_tx_bytes
= GENERIC_STAT_COUNT
,
164 SIENA_STAT_tx_good_bytes
,
165 SIENA_STAT_tx_bad_bytes
,
166 SIENA_STAT_tx_packets
,
169 SIENA_STAT_tx_control
,
170 SIENA_STAT_tx_unicast
,
171 SIENA_STAT_tx_multicast
,
172 SIENA_STAT_tx_broadcast
,
175 SIENA_STAT_tx_65_to_127
,
176 SIENA_STAT_tx_128_to_255
,
177 SIENA_STAT_tx_256_to_511
,
178 SIENA_STAT_tx_512_to_1023
,
179 SIENA_STAT_tx_1024_to_15xx
,
180 SIENA_STAT_tx_15xx_to_jumbo
,
181 SIENA_STAT_tx_gtjumbo
,
182 SIENA_STAT_tx_collision
,
183 SIENA_STAT_tx_single_collision
,
184 SIENA_STAT_tx_multiple_collision
,
185 SIENA_STAT_tx_excessive_collision
,
186 SIENA_STAT_tx_deferred
,
187 SIENA_STAT_tx_late_collision
,
188 SIENA_STAT_tx_excessive_deferred
,
189 SIENA_STAT_tx_non_tcpudp
,
190 SIENA_STAT_tx_mac_src_error
,
191 SIENA_STAT_tx_ip_src_error
,
193 SIENA_STAT_rx_good_bytes
,
194 SIENA_STAT_rx_bad_bytes
,
195 SIENA_STAT_rx_packets
,
199 SIENA_STAT_rx_control
,
200 SIENA_STAT_rx_unicast
,
201 SIENA_STAT_rx_multicast
,
202 SIENA_STAT_rx_broadcast
,
205 SIENA_STAT_rx_65_to_127
,
206 SIENA_STAT_rx_128_to_255
,
207 SIENA_STAT_rx_256_to_511
,
208 SIENA_STAT_rx_512_to_1023
,
209 SIENA_STAT_rx_1024_to_15xx
,
210 SIENA_STAT_rx_15xx_to_jumbo
,
211 SIENA_STAT_rx_gtjumbo
,
212 SIENA_STAT_rx_bad_gtjumbo
,
213 SIENA_STAT_rx_overflow
,
214 SIENA_STAT_rx_false_carrier
,
215 SIENA_STAT_rx_symbol_error
,
216 SIENA_STAT_rx_align_error
,
217 SIENA_STAT_rx_length_error
,
218 SIENA_STAT_rx_internal_error
,
219 SIENA_STAT_rx_nodesc_drop_cnt
,
224 * struct siena_nic_data - Siena NIC state
225 * @efx: Pointer back to main interface structure
226 * @wol_filter_id: Wake-on-LAN packet filter id
227 * @stats: Hardware statistics
228 * @vf: Array of &struct siena_vf objects
229 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
230 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
231 * @local_addr_list: List of local addresses. Protected by %local_lock.
232 * @local_page_list: List of DMA addressable pages used to broadcast
233 * %local_addr_list. Protected by %local_lock.
234 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
235 * @peer_work: Work item to broadcast peer addresses to VMs.
237 struct siena_nic_data
{
240 u64 stats
[SIENA_STAT_COUNT
];
241 #ifdef CONFIG_SFC_SRIOV
243 struct efx_channel
*vfdi_channel
;
244 unsigned vf_buftbl_base
;
245 struct efx_buffer vfdi_status
;
246 struct list_head local_addr_list
;
247 struct list_head local_page_list
;
248 struct mutex local_lock
;
249 struct work_struct peer_work
;
254 EF10_STAT_port_tx_bytes
= GENERIC_STAT_COUNT
,
255 EF10_STAT_port_tx_packets
,
256 EF10_STAT_port_tx_pause
,
257 EF10_STAT_port_tx_control
,
258 EF10_STAT_port_tx_unicast
,
259 EF10_STAT_port_tx_multicast
,
260 EF10_STAT_port_tx_broadcast
,
261 EF10_STAT_port_tx_lt64
,
262 EF10_STAT_port_tx_64
,
263 EF10_STAT_port_tx_65_to_127
,
264 EF10_STAT_port_tx_128_to_255
,
265 EF10_STAT_port_tx_256_to_511
,
266 EF10_STAT_port_tx_512_to_1023
,
267 EF10_STAT_port_tx_1024_to_15xx
,
268 EF10_STAT_port_tx_15xx_to_jumbo
,
269 EF10_STAT_port_rx_bytes
,
270 EF10_STAT_port_rx_bytes_minus_good_bytes
,
271 EF10_STAT_port_rx_good_bytes
,
272 EF10_STAT_port_rx_bad_bytes
,
273 EF10_STAT_port_rx_packets
,
274 EF10_STAT_port_rx_good
,
275 EF10_STAT_port_rx_bad
,
276 EF10_STAT_port_rx_pause
,
277 EF10_STAT_port_rx_control
,
278 EF10_STAT_port_rx_unicast
,
279 EF10_STAT_port_rx_multicast
,
280 EF10_STAT_port_rx_broadcast
,
281 EF10_STAT_port_rx_lt64
,
282 EF10_STAT_port_rx_64
,
283 EF10_STAT_port_rx_65_to_127
,
284 EF10_STAT_port_rx_128_to_255
,
285 EF10_STAT_port_rx_256_to_511
,
286 EF10_STAT_port_rx_512_to_1023
,
287 EF10_STAT_port_rx_1024_to_15xx
,
288 EF10_STAT_port_rx_15xx_to_jumbo
,
289 EF10_STAT_port_rx_gtjumbo
,
290 EF10_STAT_port_rx_bad_gtjumbo
,
291 EF10_STAT_port_rx_overflow
,
292 EF10_STAT_port_rx_align_error
,
293 EF10_STAT_port_rx_length_error
,
294 EF10_STAT_port_rx_nodesc_drops
,
295 EF10_STAT_port_rx_pm_trunc_bb_overflow
,
296 EF10_STAT_port_rx_pm_discard_bb_overflow
,
297 EF10_STAT_port_rx_pm_trunc_vfifo_full
,
298 EF10_STAT_port_rx_pm_discard_vfifo_full
,
299 EF10_STAT_port_rx_pm_trunc_qbb
,
300 EF10_STAT_port_rx_pm_discard_qbb
,
301 EF10_STAT_port_rx_pm_discard_mapping
,
302 EF10_STAT_port_rx_dp_q_disabled_packets
,
303 EF10_STAT_port_rx_dp_di_dropped_packets
,
304 EF10_STAT_port_rx_dp_streaming_packets
,
305 EF10_STAT_port_rx_dp_hlb_fetch
,
306 EF10_STAT_port_rx_dp_hlb_wait
,
307 EF10_STAT_rx_unicast
,
308 EF10_STAT_rx_unicast_bytes
,
309 EF10_STAT_rx_multicast
,
310 EF10_STAT_rx_multicast_bytes
,
311 EF10_STAT_rx_broadcast
,
312 EF10_STAT_rx_broadcast_bytes
,
314 EF10_STAT_rx_bad_bytes
,
315 EF10_STAT_rx_overflow
,
316 EF10_STAT_tx_unicast
,
317 EF10_STAT_tx_unicast_bytes
,
318 EF10_STAT_tx_multicast
,
319 EF10_STAT_tx_multicast_bytes
,
320 EF10_STAT_tx_broadcast
,
321 EF10_STAT_tx_broadcast_bytes
,
323 EF10_STAT_tx_bad_bytes
,
324 EF10_STAT_tx_overflow
,
326 EF10_STAT_fec_uncorrected_errors
= EF10_STAT_V1_COUNT
,
327 EF10_STAT_fec_corrected_errors
,
328 EF10_STAT_fec_corrected_symbols_lane0
,
329 EF10_STAT_fec_corrected_symbols_lane1
,
330 EF10_STAT_fec_corrected_symbols_lane2
,
331 EF10_STAT_fec_corrected_symbols_lane3
,
332 EF10_STAT_ctpio_vi_busy_fallback
,
333 EF10_STAT_ctpio_long_write_success
,
334 EF10_STAT_ctpio_missing_dbell_fail
,
335 EF10_STAT_ctpio_overflow_fail
,
336 EF10_STAT_ctpio_underflow_fail
,
337 EF10_STAT_ctpio_timeout_fail
,
338 EF10_STAT_ctpio_noncontig_wr_fail
,
339 EF10_STAT_ctpio_frm_clobber_fail
,
340 EF10_STAT_ctpio_invalid_wr_fail
,
341 EF10_STAT_ctpio_vi_clobber_fallback
,
342 EF10_STAT_ctpio_unqualified_fallback
,
343 EF10_STAT_ctpio_runt_fallback
,
344 EF10_STAT_ctpio_success
,
345 EF10_STAT_ctpio_fallback
,
346 EF10_STAT_ctpio_poison
,
347 EF10_STAT_ctpio_erase
,
351 /* Maximum number of TX PIO buffers we may allocate to a function.
352 * This matches the total number of buffers on each SFC9100-family
355 #define EF10_TX_PIOBUF_COUNT 16
358 * struct efx_ef10_nic_data - EF10 architecture NIC state
359 * @mcdi_buf: DMA buffer for MCDI
360 * @warm_boot_count: Last seen MC warm boot count
361 * @vi_base: Absolute index of first VI in this function
362 * @n_allocated_vis: Number of VIs allocated to this function
363 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
364 * @must_restore_rss_contexts: Flag: RSS contexts have yet to be restored after
366 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
367 * @n_piobufs: Number of PIO buffers allocated to this function
368 * @wc_membase: Base address of write-combining mapping of the memory BAR
369 * @pio_write_base: Base address for writing PIO buffers
370 * @pio_write_vi_base: Relative VI number for @pio_write_base
371 * @piobuf_handle: Handle of each PIO buffer allocated
372 * @piobuf_size: size of a single PIO buffer
373 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
375 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
376 * @stats: Hardware statistics
377 * @workaround_35388: Flag: firmware supports workaround for bug 35388
378 * @workaround_26807: Flag: firmware supports workaround for bug 26807
379 * @workaround_61265: Flag: firmware supports workaround for bug 61265
380 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
382 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
383 * %MC_CMD_GET_CAPABILITIES response)
384 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
385 * %MC_CMD_GET_CAPABILITIES response)
386 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
387 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
388 * @vport_id: The function's vport ID, only relevant for PFs
389 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
390 * @pf_index: The number for this PF, or the parent PF if this is a VF
391 #ifdef CONFIG_SFC_SRIOV
392 * @vf: Pointer to VF data structure
394 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
395 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
396 * @vlan_lock: Lock to serialize access to vlan_list.
397 * @udp_tunnels: UDP tunnel port numbers and types.
398 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
399 * @udp_tunnels to hardware and thus the push must be re-done.
400 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
402 struct efx_ef10_nic_data
{
403 struct efx_buffer mcdi_buf
;
405 unsigned int vi_base
;
406 unsigned int n_allocated_vis
;
407 bool must_realloc_vis
;
408 bool must_restore_rss_contexts
;
409 bool must_restore_filters
;
410 unsigned int n_piobufs
;
411 void __iomem
*wc_membase
, *pio_write_base
;
412 unsigned int pio_write_vi_base
;
413 unsigned int piobuf_handle
[EF10_TX_PIOBUF_COUNT
];
415 bool must_restore_piobufs
;
416 bool rx_rss_context_exclusive
;
417 u64 stats
[EF10_STAT_COUNT
];
418 bool workaround_35388
;
419 bool workaround_26807
;
420 bool workaround_61265
;
421 bool must_check_datapath_caps
;
424 unsigned int rx_dpcpu_fw_id
;
425 unsigned int tx_dpcpu_fw_id
;
426 unsigned int vport_id
;
427 bool must_probe_vswitching
;
428 unsigned int pf_index
;
429 u8 port_id
[ETH_ALEN
];
430 #ifdef CONFIG_SFC_SRIOV
431 unsigned int vf_index
;
434 u8 vport_mac
[ETH_ALEN
];
435 struct list_head vlan_list
;
436 struct mutex vlan_lock
;
437 struct efx_udp_tunnel udp_tunnels
[16];
438 bool udp_tunnels_dirty
;
439 struct mutex udp_tunnels_lock
;
440 u64 licensed_features
;
443 int efx_init_sriov(void);
444 void efx_fini_sriov(void);
446 struct ethtool_ts_info
;
447 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
);
448 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
);
449 struct efx_channel
*efx_ptp_channel(struct efx_nic
*efx
);
450 void efx_ptp_remove(struct efx_nic
*efx
);
451 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
);
452 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
);
453 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
);
454 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
);
455 int efx_ptp_get_mode(struct efx_nic
*efx
);
456 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
457 unsigned int new_mode
);
458 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
);
459 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
);
460 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
);
461 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
);
462 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
);
463 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
464 struct sk_buff
*skb
);
465 static inline void efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
468 if (channel
->sync_events_state
== SYNC_EVENTS_VALID
)
469 __efx_rx_skb_attach_timestamp(channel
, skb
);
471 void efx_ptp_start_datapath(struct efx_nic
*efx
);
472 void efx_ptp_stop_datapath(struct efx_nic
*efx
);
473 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic
*efx
);
474 ktime_t
efx_ptp_nic_to_kernel_time(struct efx_tx_queue
*tx_queue
);
476 extern const struct efx_nic_type falcon_a1_nic_type
;
477 extern const struct efx_nic_type falcon_b0_nic_type
;
478 extern const struct efx_nic_type siena_a0_nic_type
;
479 extern const struct efx_nic_type efx_hunt_a0_nic_type
;
480 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type
;
482 /**************************************************************************
486 **************************************************************************
489 int falcon_probe_board(struct efx_nic
*efx
, u16 revision_info
);
492 static inline int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
494 return tx_queue
->efx
->type
->tx_probe(tx_queue
);
496 static inline void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
498 tx_queue
->efx
->type
->tx_init(tx_queue
);
500 static inline void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
502 tx_queue
->efx
->type
->tx_remove(tx_queue
);
504 static inline void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
506 tx_queue
->efx
->type
->tx_write(tx_queue
);
509 int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
,
513 static inline int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
515 return rx_queue
->efx
->type
->rx_probe(rx_queue
);
517 static inline void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
519 rx_queue
->efx
->type
->rx_init(rx_queue
);
521 static inline void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
523 rx_queue
->efx
->type
->rx_remove(rx_queue
);
525 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
527 rx_queue
->efx
->type
->rx_write(rx_queue
);
529 static inline void efx_nic_generate_fill_event(struct efx_rx_queue
*rx_queue
)
531 rx_queue
->efx
->type
->rx_defer_refill(rx_queue
);
534 /* Event data path */
535 static inline int efx_nic_probe_eventq(struct efx_channel
*channel
)
537 return channel
->efx
->type
->ev_probe(channel
);
539 static inline int efx_nic_init_eventq(struct efx_channel
*channel
)
541 return channel
->efx
->type
->ev_init(channel
);
543 static inline void efx_nic_fini_eventq(struct efx_channel
*channel
)
545 channel
->efx
->type
->ev_fini(channel
);
547 static inline void efx_nic_remove_eventq(struct efx_channel
*channel
)
549 channel
->efx
->type
->ev_remove(channel
);
552 efx_nic_process_eventq(struct efx_channel
*channel
, int quota
)
554 return channel
->efx
->type
->ev_process(channel
, quota
);
556 static inline void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
558 channel
->efx
->type
->ev_read_ack(channel
);
561 void efx_nic_event_test_start(struct efx_channel
*channel
);
563 /* Falcon/Siena queue operations */
564 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
);
565 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
);
566 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
);
567 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
);
568 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
);
569 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue
*tx_queue
,
570 dma_addr_t dma_addr
, unsigned int len
);
571 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
);
572 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
);
573 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
);
574 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
);
575 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
);
576 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
);
577 int efx_farch_ev_probe(struct efx_channel
*channel
);
578 int efx_farch_ev_init(struct efx_channel
*channel
);
579 void efx_farch_ev_fini(struct efx_channel
*channel
);
580 void efx_farch_ev_remove(struct efx_channel
*channel
);
581 int efx_farch_ev_process(struct efx_channel
*channel
, int quota
);
582 void efx_farch_ev_read_ack(struct efx_channel
*channel
);
583 void efx_farch_ev_test_generate(struct efx_channel
*channel
);
585 /* Falcon/Siena filter operations */
586 int efx_farch_filter_table_probe(struct efx_nic
*efx
);
587 void efx_farch_filter_table_restore(struct efx_nic
*efx
);
588 void efx_farch_filter_table_remove(struct efx_nic
*efx
);
589 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
);
590 s32
efx_farch_filter_insert(struct efx_nic
*efx
, struct efx_filter_spec
*spec
,
592 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
593 enum efx_filter_priority priority
,
595 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
596 enum efx_filter_priority priority
, u32 filter_id
,
597 struct efx_filter_spec
*);
598 int efx_farch_filter_clear_rx(struct efx_nic
*efx
,
599 enum efx_filter_priority priority
);
600 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
601 enum efx_filter_priority priority
);
602 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
);
603 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
604 enum efx_filter_priority priority
, u32
*buf
,
606 #ifdef CONFIG_RFS_ACCEL
607 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
610 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
);
612 bool efx_nic_event_present(struct efx_channel
*channel
);
614 /* Some statistics are computed as A - B where A and B each increase
615 * linearly with some hardware counter(s) and the counters are read
616 * asynchronously. If the counters contributing to B are always read
617 * after those contributing to A, the computed value may be lower than
618 * the true value by some variable amount, and may decrease between
619 * subsequent computations.
621 * We should never allow statistics to decrease or to exceed the true
622 * value. Since the computed value will never be greater than the
623 * true value, we can achieve this by only storing the computed value
626 static inline void efx_update_diff_stat(u64
*stat
, u64 diff
)
628 if ((s64
)(diff
- *stat
) > 0)
633 int efx_nic_init_interrupt(struct efx_nic
*efx
);
634 int efx_nic_irq_test_start(struct efx_nic
*efx
);
635 void efx_nic_fini_interrupt(struct efx_nic
*efx
);
637 /* Falcon/Siena interrupts */
638 void efx_farch_irq_enable_master(struct efx_nic
*efx
);
639 int efx_farch_irq_test_generate(struct efx_nic
*efx
);
640 void efx_farch_irq_disable_master(struct efx_nic
*efx
);
641 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
);
642 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
);
643 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
);
645 static inline int efx_nic_event_test_irq_cpu(struct efx_channel
*channel
)
647 return READ_ONCE(channel
->event_test_cpu
);
649 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic
*efx
)
651 return READ_ONCE(efx
->last_irq_cpu
);
654 /* Global Resources */
655 int efx_nic_flush_queues(struct efx_nic
*efx
);
656 void siena_prepare_flush(struct efx_nic
*efx
);
657 int efx_farch_fini_dmaq(struct efx_nic
*efx
);
658 void efx_farch_finish_flr(struct efx_nic
*efx
);
659 void siena_finish_flush(struct efx_nic
*efx
);
660 void falcon_start_nic_stats(struct efx_nic
*efx
);
661 void falcon_stop_nic_stats(struct efx_nic
*efx
);
662 int falcon_reset_xaui(struct efx_nic
*efx
);
663 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
);
664 void efx_farch_init_common(struct efx_nic
*efx
);
665 void efx_ef10_handle_drain_event(struct efx_nic
*efx
);
666 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
);
667 void efx_farch_rx_pull_indir_table(struct efx_nic
*efx
);
669 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
670 unsigned int len
, gfp_t gfp_flags
);
671 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
);
674 struct efx_farch_register_test
{
679 int efx_farch_test_registers(struct efx_nic
*efx
,
680 const struct efx_farch_register_test
*regs
,
683 size_t efx_nic_get_regs_len(struct efx_nic
*efx
);
684 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
);
686 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc
*desc
, size_t count
,
687 const unsigned long *mask
, u8
*names
);
688 void efx_nic_update_stats(const struct efx_hw_stat_desc
*desc
, size_t count
,
689 const unsigned long *mask
, u64
*stats
,
690 const void *dma_buf
, bool accumulate
);
691 void efx_nic_fix_nodesc_drop_stat(struct efx_nic
*efx
, u64
*stat
);
693 #define EFX_MAX_FLUSH_TIME 5000
695 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
698 #endif /* EFX_NIC_H */