gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / rx_common.c
blobe10c238335152edc8366ad1553c562133872ea07
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include "efx.h"
15 #include "nic.h"
16 #include "rx_common.h"
18 /* This is the percentage fill level below which new RX descriptors
19 * will be added to the RX descriptor ring.
21 static unsigned int rx_refill_threshold;
22 module_param(rx_refill_threshold, uint, 0444);
23 MODULE_PARM_DESC(rx_refill_threshold,
24 "RX descriptor ring refill threshold (%)");
26 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
27 * ring, this number is divided by the number of buffers per page to calculate
28 * the number of pages to store in the RX page recycle ring.
30 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
31 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
33 /* RX maximum head room required.
35 * This must be at least 1 to prevent overflow, plus one packet-worth
36 * to allow pipelined receives.
38 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
40 /* Check the RX page recycle ring for a page that can be reused. */
41 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
43 struct efx_nic *efx = rx_queue->efx;
44 struct efx_rx_page_state *state;
45 unsigned int index;
46 struct page *page;
48 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
49 page = rx_queue->page_ring[index];
50 if (page == NULL)
51 return NULL;
53 rx_queue->page_ring[index] = NULL;
54 /* page_remove cannot exceed page_add. */
55 if (rx_queue->page_remove != rx_queue->page_add)
56 ++rx_queue->page_remove;
58 /* If page_count is 1 then we hold the only reference to this page. */
59 if (page_count(page) == 1) {
60 ++rx_queue->page_recycle_count;
61 return page;
62 } else {
63 state = page_address(page);
64 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
65 PAGE_SIZE << efx->rx_buffer_order,
66 DMA_FROM_DEVICE);
67 put_page(page);
68 ++rx_queue->page_recycle_failed;
71 return NULL;
74 /* Attempt to recycle the page if there is an RX recycle ring; the page can
75 * only be added if this is the final RX buffer, to prevent pages being used in
76 * the descriptor ring and appearing in the recycle ring simultaneously.
78 static void efx_recycle_rx_page(struct efx_channel *channel,
79 struct efx_rx_buffer *rx_buf)
81 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
82 struct efx_nic *efx = rx_queue->efx;
83 struct page *page = rx_buf->page;
84 unsigned int index;
86 /* Only recycle the page after processing the final buffer. */
87 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
88 return;
90 index = rx_queue->page_add & rx_queue->page_ptr_mask;
91 if (rx_queue->page_ring[index] == NULL) {
92 unsigned int read_index = rx_queue->page_remove &
93 rx_queue->page_ptr_mask;
95 /* The next slot in the recycle ring is available, but
96 * increment page_remove if the read pointer currently
97 * points here.
99 if (read_index == index)
100 ++rx_queue->page_remove;
101 rx_queue->page_ring[index] = page;
102 ++rx_queue->page_add;
103 return;
105 ++rx_queue->page_recycle_full;
106 efx_unmap_rx_buffer(efx, rx_buf);
107 put_page(rx_buf->page);
110 /* Recycle the pages that are used by buffers that have just been received. */
111 void efx_recycle_rx_pages(struct efx_channel *channel,
112 struct efx_rx_buffer *rx_buf,
113 unsigned int n_frags)
115 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
117 do {
118 efx_recycle_rx_page(channel, rx_buf);
119 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
120 } while (--n_frags);
123 void efx_discard_rx_packet(struct efx_channel *channel,
124 struct efx_rx_buffer *rx_buf,
125 unsigned int n_frags)
127 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
129 efx_recycle_rx_pages(channel, rx_buf, n_frags);
131 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
134 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
136 unsigned int bufs_in_recycle_ring, page_ring_size;
137 struct efx_nic *efx = rx_queue->efx;
139 /* Set the RX recycle ring size */
140 #ifdef CONFIG_PPC64
141 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
142 #else
143 if (iommu_present(&pci_bus_type))
144 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
145 else
146 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
147 #endif /* CONFIG_PPC64 */
149 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
150 efx->rx_bufs_per_page);
151 rx_queue->page_ring = kcalloc(page_ring_size,
152 sizeof(*rx_queue->page_ring), GFP_KERNEL);
153 rx_queue->page_ptr_mask = page_ring_size - 1;
156 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
158 struct efx_nic *efx = rx_queue->efx;
159 int i;
161 /* Unmap and release the pages in the recycle ring. Remove the ring. */
162 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
163 struct page *page = rx_queue->page_ring[i];
164 struct efx_rx_page_state *state;
166 if (page == NULL)
167 continue;
169 state = page_address(page);
170 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
171 PAGE_SIZE << efx->rx_buffer_order,
172 DMA_FROM_DEVICE);
173 put_page(page);
175 kfree(rx_queue->page_ring);
176 rx_queue->page_ring = NULL;
179 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
180 struct efx_rx_buffer *rx_buf)
182 /* Release the page reference we hold for the buffer. */
183 if (rx_buf->page)
184 put_page(rx_buf->page);
186 /* If this is the last buffer in a page, unmap and free it. */
187 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
188 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
189 efx_free_rx_buffers(rx_queue, rx_buf, 1);
191 rx_buf->page = NULL;
194 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
196 struct efx_nic *efx = rx_queue->efx;
197 unsigned int entries;
198 int rc;
200 /* Create the smallest power-of-two aligned ring */
201 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
202 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
203 rx_queue->ptr_mask = entries - 1;
205 netif_dbg(efx, probe, efx->net_dev,
206 "creating RX queue %d size %#x mask %#x\n",
207 efx_rx_queue_index(rx_queue), efx->rxq_entries,
208 rx_queue->ptr_mask);
210 /* Allocate RX buffers */
211 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
212 GFP_KERNEL);
213 if (!rx_queue->buffer)
214 return -ENOMEM;
216 rc = efx_nic_probe_rx(rx_queue);
217 if (rc) {
218 kfree(rx_queue->buffer);
219 rx_queue->buffer = NULL;
222 return rc;
225 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
227 unsigned int max_fill, trigger, max_trigger;
228 struct efx_nic *efx = rx_queue->efx;
229 int rc = 0;
231 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
232 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
234 /* Initialise ptr fields */
235 rx_queue->added_count = 0;
236 rx_queue->notified_count = 0;
237 rx_queue->removed_count = 0;
238 rx_queue->min_fill = -1U;
239 efx_init_rx_recycle_ring(rx_queue);
241 rx_queue->page_remove = 0;
242 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
243 rx_queue->page_recycle_count = 0;
244 rx_queue->page_recycle_failed = 0;
245 rx_queue->page_recycle_full = 0;
247 /* Initialise limit fields */
248 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
249 max_trigger =
250 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
251 if (rx_refill_threshold != 0) {
252 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
253 if (trigger > max_trigger)
254 trigger = max_trigger;
255 } else {
256 trigger = max_trigger;
259 rx_queue->max_fill = max_fill;
260 rx_queue->fast_fill_trigger = trigger;
261 rx_queue->refill_enabled = true;
263 /* Initialise XDP queue information */
264 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
265 rx_queue->core_index);
267 if (rc) {
268 netif_err(efx, rx_err, efx->net_dev,
269 "Failure to initialise XDP queue information rc=%d\n",
270 rc);
271 efx->xdp_rxq_info_failed = true;
272 } else {
273 rx_queue->xdp_rxq_info_valid = true;
276 /* Set up RX descriptor ring */
277 efx_nic_init_rx(rx_queue);
280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
282 struct efx_rx_buffer *rx_buf;
283 int i;
285 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
286 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
288 del_timer_sync(&rx_queue->slow_fill);
290 /* Release RX buffers from the current read ptr to the write ptr */
291 if (rx_queue->buffer) {
292 for (i = rx_queue->removed_count; i < rx_queue->added_count;
293 i++) {
294 unsigned int index = i & rx_queue->ptr_mask;
296 rx_buf = efx_rx_buffer(rx_queue, index);
297 efx_fini_rx_buffer(rx_queue, rx_buf);
301 efx_fini_rx_recycle_ring(rx_queue);
303 if (rx_queue->xdp_rxq_info_valid)
304 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
306 rx_queue->xdp_rxq_info_valid = false;
309 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
311 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
312 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
314 efx_nic_remove_rx(rx_queue);
316 kfree(rx_queue->buffer);
317 rx_queue->buffer = NULL;
320 /* Unmap a DMA-mapped page. This function is only called for the final RX
321 * buffer in a page.
323 void efx_unmap_rx_buffer(struct efx_nic *efx,
324 struct efx_rx_buffer *rx_buf)
326 struct page *page = rx_buf->page;
328 if (page) {
329 struct efx_rx_page_state *state = page_address(page);
331 dma_unmap_page(&efx->pci_dev->dev,
332 state->dma_addr,
333 PAGE_SIZE << efx->rx_buffer_order,
334 DMA_FROM_DEVICE);
338 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
339 struct efx_rx_buffer *rx_buf,
340 unsigned int num_bufs)
342 do {
343 if (rx_buf->page) {
344 put_page(rx_buf->page);
345 rx_buf->page = NULL;
347 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
348 } while (--num_bufs);
351 void efx_rx_slow_fill(struct timer_list *t)
353 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
355 /* Post an event to cause NAPI to run and refill the queue */
356 efx_nic_generate_fill_event(rx_queue);
357 ++rx_queue->slow_fill_count;
360 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
362 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
365 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
367 * @rx_queue: Efx RX queue
369 * This allocates a batch of pages, maps them for DMA, and populates
370 * struct efx_rx_buffers for each one. Return a negative error code or
371 * 0 on success. If a single page can be used for multiple buffers,
372 * then the page will either be inserted fully, or not at all.
374 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
376 unsigned int page_offset, index, count;
377 struct efx_nic *efx = rx_queue->efx;
378 struct efx_rx_page_state *state;
379 struct efx_rx_buffer *rx_buf;
380 dma_addr_t dma_addr;
381 struct page *page;
383 count = 0;
384 do {
385 page = efx_reuse_page(rx_queue);
386 if (page == NULL) {
387 page = alloc_pages(__GFP_COMP |
388 (atomic ? GFP_ATOMIC : GFP_KERNEL),
389 efx->rx_buffer_order);
390 if (unlikely(page == NULL))
391 return -ENOMEM;
392 dma_addr =
393 dma_map_page(&efx->pci_dev->dev, page, 0,
394 PAGE_SIZE << efx->rx_buffer_order,
395 DMA_FROM_DEVICE);
396 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
397 dma_addr))) {
398 __free_pages(page, efx->rx_buffer_order);
399 return -EIO;
401 state = page_address(page);
402 state->dma_addr = dma_addr;
403 } else {
404 state = page_address(page);
405 dma_addr = state->dma_addr;
408 dma_addr += sizeof(struct efx_rx_page_state);
409 page_offset = sizeof(struct efx_rx_page_state);
411 do {
412 index = rx_queue->added_count & rx_queue->ptr_mask;
413 rx_buf = efx_rx_buffer(rx_queue, index);
414 rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
415 EFX_XDP_HEADROOM;
416 rx_buf->page = page;
417 rx_buf->page_offset = page_offset + efx->rx_ip_align +
418 EFX_XDP_HEADROOM;
419 rx_buf->len = efx->rx_dma_len;
420 rx_buf->flags = 0;
421 ++rx_queue->added_count;
422 get_page(page);
423 dma_addr += efx->rx_page_buf_step;
424 page_offset += efx->rx_page_buf_step;
425 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
427 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
428 } while (++count < efx->rx_pages_per_batch);
430 return 0;
433 void efx_rx_config_page_split(struct efx_nic *efx)
435 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
436 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
437 EFX_RX_BUF_ALIGNMENT);
438 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
439 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
440 efx->rx_page_buf_step);
441 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
442 efx->rx_bufs_per_page;
443 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
444 efx->rx_bufs_per_page);
447 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
448 * @rx_queue: RX descriptor queue
450 * This will aim to fill the RX descriptor queue up to
451 * @rx_queue->@max_fill. If there is insufficient atomic
452 * memory to do so, a slow fill will be scheduled.
454 * The caller must provide serialisation (none is used here). In practise,
455 * this means this function must run from the NAPI handler, or be called
456 * when NAPI is disabled.
458 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
460 struct efx_nic *efx = rx_queue->efx;
461 unsigned int fill_level, batch_size;
462 int space, rc = 0;
464 if (!rx_queue->refill_enabled)
465 return;
467 /* Calculate current fill level, and exit if we don't need to fill */
468 fill_level = (rx_queue->added_count - rx_queue->removed_count);
469 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
470 if (fill_level >= rx_queue->fast_fill_trigger)
471 goto out;
473 /* Record minimum fill level */
474 if (unlikely(fill_level < rx_queue->min_fill)) {
475 if (fill_level)
476 rx_queue->min_fill = fill_level;
479 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
480 space = rx_queue->max_fill - fill_level;
481 EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
483 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
484 "RX queue %d fast-filling descriptor ring from"
485 " level %d to level %d\n",
486 efx_rx_queue_index(rx_queue), fill_level,
487 rx_queue->max_fill);
489 do {
490 rc = efx_init_rx_buffers(rx_queue, atomic);
491 if (unlikely(rc)) {
492 /* Ensure that we don't leave the rx queue empty */
493 efx_schedule_slow_fill(rx_queue);
494 goto out;
496 } while ((space -= batch_size) >= batch_size);
498 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
499 "RX queue %d fast-filled descriptor ring "
500 "to level %d\n", efx_rx_queue_index(rx_queue),
501 rx_queue->added_count - rx_queue->removed_count);
503 out:
504 if (rx_queue->notified_count != rx_queue->added_count)
505 efx_nic_notify_rx_desc(rx_queue);
508 /* Pass a received packet up through GRO. GRO can handle pages
509 * regardless of checksum state and skbs with a good checksum.
511 void
512 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
513 unsigned int n_frags, u8 *eh)
515 struct napi_struct *napi = &channel->napi_str;
516 struct efx_nic *efx = channel->efx;
517 struct sk_buff *skb;
519 skb = napi_get_frags(napi);
520 if (unlikely(!skb)) {
521 struct efx_rx_queue *rx_queue;
523 rx_queue = efx_channel_get_rx_queue(channel);
524 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
525 return;
528 if (efx->net_dev->features & NETIF_F_RXHASH)
529 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
530 PKT_HASH_TYPE_L3);
531 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
532 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
533 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
535 for (;;) {
536 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
537 rx_buf->page, rx_buf->page_offset,
538 rx_buf->len);
539 rx_buf->page = NULL;
540 skb->len += rx_buf->len;
541 if (skb_shinfo(skb)->nr_frags == n_frags)
542 break;
544 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
547 skb->data_len = skb->len;
548 skb->truesize += n_frags * efx->rx_buffer_truesize;
550 skb_record_rx_queue(skb, channel->rx_queue.core_index);
552 napi_gro_frags(napi);
555 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because
556 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
558 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
560 struct list_head *head = &efx->rss_context.list;
561 struct efx_rss_context *ctx, *new;
562 u32 id = 1; /* Don't use zero, that refers to the master RSS context */
564 WARN_ON(!mutex_is_locked(&efx->rss_lock));
566 /* Search for first gap in the numbering */
567 list_for_each_entry(ctx, head, list) {
568 if (ctx->user_id != id)
569 break;
570 id++;
571 /* Check for wrap. If this happens, we have nearly 2^32
572 * allocated RSS contexts, which seems unlikely.
574 if (WARN_ON_ONCE(!id))
575 return NULL;
578 /* Create the new entry */
579 new = kmalloc(sizeof(*new), GFP_KERNEL);
580 if (!new)
581 return NULL;
582 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
583 new->rx_hash_udp_4tuple = false;
585 /* Insert the new entry into the gap */
586 new->user_id = id;
587 list_add_tail(&new->list, &ctx->list);
588 return new;
591 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
593 struct list_head *head = &efx->rss_context.list;
594 struct efx_rss_context *ctx;
596 WARN_ON(!mutex_is_locked(&efx->rss_lock));
598 list_for_each_entry(ctx, head, list)
599 if (ctx->user_id == id)
600 return ctx;
601 return NULL;
604 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
606 list_del(&ctx->list);
607 kfree(ctx);
610 void efx_set_default_rx_indir_table(struct efx_nic *efx,
611 struct efx_rss_context *ctx)
613 size_t i;
615 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
616 ctx->rx_indir_table[i] =
617 ethtool_rxfh_indir_default(i, efx->rss_spread);
621 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
622 * @spec: Specification to test
624 * Return: %true if the specification is a non-drop RX filter that
625 * matches a local MAC address I/G bit value of 1 or matches a local
626 * IPv4 or IPv6 address value in the respective multicast address
627 * range. Otherwise %false.
629 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
631 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
632 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
633 return false;
635 if (spec->match_flags &
636 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
637 is_multicast_ether_addr(spec->loc_mac))
638 return true;
640 if ((spec->match_flags &
641 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
642 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
643 if (spec->ether_type == htons(ETH_P_IP) &&
644 ipv4_is_multicast(spec->loc_host[0]))
645 return true;
646 if (spec->ether_type == htons(ETH_P_IPV6) &&
647 ((const u8 *)spec->loc_host)[0] == 0xff)
648 return true;
651 return false;
654 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
655 const struct efx_filter_spec *right)
657 if ((left->match_flags ^ right->match_flags) |
658 ((left->flags ^ right->flags) &
659 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
660 return false;
662 return memcmp(&left->outer_vid, &right->outer_vid,
663 sizeof(struct efx_filter_spec) -
664 offsetof(struct efx_filter_spec, outer_vid)) == 0;
667 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
669 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
670 return jhash2((const u32 *)&spec->outer_vid,
671 (sizeof(struct efx_filter_spec) -
672 offsetof(struct efx_filter_spec, outer_vid)) / 4,
676 #ifdef CONFIG_RFS_ACCEL
677 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
678 bool *force)
680 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
681 /* ARFS is currently updating this entry, leave it */
682 return false;
684 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
685 /* ARFS tried and failed to update this, so it's probably out
686 * of date. Remove the filter and the ARFS rule entry.
688 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
689 *force = true;
690 return true;
691 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
692 /* ARFS has moved on, so old filter is not needed. Since we did
693 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
694 * not be removed by efx_rps_hash_del() subsequently.
696 *force = true;
697 return true;
699 /* Remove it iff ARFS wants to. */
700 return true;
703 static
704 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
705 const struct efx_filter_spec *spec)
707 u32 hash = efx_filter_spec_hash(spec);
709 lockdep_assert_held(&efx->rps_hash_lock);
710 if (!efx->rps_hash_table)
711 return NULL;
712 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
715 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
716 const struct efx_filter_spec *spec)
718 struct efx_arfs_rule *rule;
719 struct hlist_head *head;
720 struct hlist_node *node;
722 head = efx_rps_hash_bucket(efx, spec);
723 if (!head)
724 return NULL;
725 hlist_for_each(node, head) {
726 rule = container_of(node, struct efx_arfs_rule, node);
727 if (efx_filter_spec_equal(spec, &rule->spec))
728 return rule;
730 return NULL;
733 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
734 const struct efx_filter_spec *spec,
735 bool *new)
737 struct efx_arfs_rule *rule;
738 struct hlist_head *head;
739 struct hlist_node *node;
741 head = efx_rps_hash_bucket(efx, spec);
742 if (!head)
743 return NULL;
744 hlist_for_each(node, head) {
745 rule = container_of(node, struct efx_arfs_rule, node);
746 if (efx_filter_spec_equal(spec, &rule->spec)) {
747 *new = false;
748 return rule;
751 rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
752 *new = true;
753 if (rule) {
754 memcpy(&rule->spec, spec, sizeof(rule->spec));
755 hlist_add_head(&rule->node, head);
757 return rule;
760 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
762 struct efx_arfs_rule *rule;
763 struct hlist_head *head;
764 struct hlist_node *node;
766 head = efx_rps_hash_bucket(efx, spec);
767 if (WARN_ON(!head))
768 return;
769 hlist_for_each(node, head) {
770 rule = container_of(node, struct efx_arfs_rule, node);
771 if (efx_filter_spec_equal(spec, &rule->spec)) {
772 /* Someone already reused the entry. We know that if
773 * this check doesn't fire (i.e. filter_id == REMOVING)
774 * then the REMOVING mark was put there by our caller,
775 * because caller is holding a lock on filter table and
776 * only holders of that lock set REMOVING.
778 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
779 return;
780 hlist_del(node);
781 kfree(rule);
782 return;
785 /* We didn't find it. */
786 WARN_ON(1);
788 #endif
790 int efx_probe_filters(struct efx_nic *efx)
792 int rc;
794 init_rwsem(&efx->filter_sem);
795 mutex_lock(&efx->mac_lock);
796 down_write(&efx->filter_sem);
797 rc = efx->type->filter_table_probe(efx);
798 if (rc)
799 goto out_unlock;
801 #ifdef CONFIG_RFS_ACCEL
802 if (efx->type->offload_features & NETIF_F_NTUPLE) {
803 struct efx_channel *channel;
804 int i, success = 1;
806 efx_for_each_channel(channel, efx) {
807 channel->rps_flow_id =
808 kcalloc(efx->type->max_rx_ip_filters,
809 sizeof(*channel->rps_flow_id),
810 GFP_KERNEL);
811 if (!channel->rps_flow_id)
812 success = 0;
813 else
814 for (i = 0;
815 i < efx->type->max_rx_ip_filters;
816 ++i)
817 channel->rps_flow_id[i] =
818 RPS_FLOW_ID_INVALID;
819 channel->rfs_expire_index = 0;
820 channel->rfs_filter_count = 0;
823 if (!success) {
824 efx_for_each_channel(channel, efx)
825 kfree(channel->rps_flow_id);
826 efx->type->filter_table_remove(efx);
827 rc = -ENOMEM;
828 goto out_unlock;
831 #endif
832 out_unlock:
833 up_write(&efx->filter_sem);
834 mutex_unlock(&efx->mac_lock);
835 return rc;
838 void efx_remove_filters(struct efx_nic *efx)
840 #ifdef CONFIG_RFS_ACCEL
841 struct efx_channel *channel;
843 efx_for_each_channel(channel, efx) {
844 cancel_delayed_work_sync(&channel->filter_work);
845 kfree(channel->rps_flow_id);
847 #endif
848 down_write(&efx->filter_sem);
849 efx->type->filter_table_remove(efx);
850 up_write(&efx->filter_sem);