gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / tx.c
blob19b58563cb782086671543363db3b2cebfd1e620
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
27 #ifdef EFX_USE_PIO
29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
32 #endif /* EFX_USE_PIO */
34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35 struct efx_tx_buffer *buffer)
37 unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38 struct efx_buffer *page_buf =
39 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40 unsigned int offset =
41 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
43 if (unlikely(!page_buf->addr) &&
44 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45 GFP_ATOMIC))
46 return NULL;
47 buffer->dma_addr = page_buf->dma_addr + offset;
48 buffer->unmap_len = 0;
49 return (u8 *)page_buf->addr + offset;
52 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53 struct efx_tx_buffer *buffer, size_t len)
55 if (len > EFX_TX_CB_SIZE)
56 return NULL;
57 return efx_tx_get_copy_buffer(tx_queue, buffer);
60 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
62 /* We need to consider both queues that the net core sees as one */
63 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
64 struct efx_nic *efx = txq1->efx;
65 unsigned int fill_level;
67 fill_level = max(txq1->insert_count - txq1->old_read_count,
68 txq2->insert_count - txq2->old_read_count);
69 if (likely(fill_level < efx->txq_stop_thresh))
70 return;
72 /* We used the stale old_read_count above, which gives us a
73 * pessimistic estimate of the fill level (which may even
74 * validly be >= efx->txq_entries). Now try again using
75 * read_count (more likely to be a cache miss).
77 * If we read read_count and then conditionally stop the
78 * queue, it is possible for the completion path to race with
79 * us and complete all outstanding descriptors in the middle,
80 * after which there will be no more completions to wake it.
81 * Therefore we stop the queue first, then read read_count
82 * (with a memory barrier to ensure the ordering), then
83 * restart the queue if the fill level turns out to be low
84 * enough.
86 netif_tx_stop_queue(txq1->core_txq);
87 smp_mb();
88 txq1->old_read_count = READ_ONCE(txq1->read_count);
89 txq2->old_read_count = READ_ONCE(txq2->read_count);
91 fill_level = max(txq1->insert_count - txq1->old_read_count,
92 txq2->insert_count - txq2->old_read_count);
93 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
94 if (likely(fill_level < efx->txq_stop_thresh)) {
95 smp_mb();
96 if (likely(!efx->loopback_selftest))
97 netif_tx_start_queue(txq1->core_txq);
101 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
102 struct sk_buff *skb)
104 unsigned int copy_len = skb->len;
105 struct efx_tx_buffer *buffer;
106 u8 *copy_buffer;
107 int rc;
109 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
111 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
113 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
114 if (unlikely(!copy_buffer))
115 return -ENOMEM;
117 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
118 EFX_WARN_ON_PARANOID(rc);
119 buffer->len = copy_len;
121 buffer->skb = skb;
122 buffer->flags = EFX_TX_BUF_SKB;
124 ++tx_queue->insert_count;
125 return rc;
128 #ifdef EFX_USE_PIO
130 struct efx_short_copy_buffer {
131 int used;
132 u8 buf[L1_CACHE_BYTES];
135 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
136 * Advances piobuf pointer. Leaves additional data in the copy buffer.
138 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
139 u8 *data, int len,
140 struct efx_short_copy_buffer *copy_buf)
142 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
144 __iowrite64_copy(*piobuf, data, block_len >> 3);
145 *piobuf += block_len;
146 len -= block_len;
148 if (len) {
149 data += block_len;
150 BUG_ON(copy_buf->used);
151 BUG_ON(len > sizeof(copy_buf->buf));
152 memcpy(copy_buf->buf, data, len);
153 copy_buf->used = len;
157 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
158 * Advances piobuf pointer. Leaves additional data in the copy buffer.
160 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
161 u8 *data, int len,
162 struct efx_short_copy_buffer *copy_buf)
164 if (copy_buf->used) {
165 /* if the copy buffer is partially full, fill it up and write */
166 int copy_to_buf =
167 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
169 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
170 copy_buf->used += copy_to_buf;
172 /* if we didn't fill it up then we're done for now */
173 if (copy_buf->used < sizeof(copy_buf->buf))
174 return;
176 __iowrite64_copy(*piobuf, copy_buf->buf,
177 sizeof(copy_buf->buf) >> 3);
178 *piobuf += sizeof(copy_buf->buf);
179 data += copy_to_buf;
180 len -= copy_to_buf;
181 copy_buf->used = 0;
184 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
187 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
188 struct efx_short_copy_buffer *copy_buf)
190 /* if there's anything in it, write the whole buffer, including junk */
191 if (copy_buf->used)
192 __iowrite64_copy(piobuf, copy_buf->buf,
193 sizeof(copy_buf->buf) >> 3);
196 /* Traverse skb structure and copy fragments in to PIO buffer.
197 * Advances piobuf pointer.
199 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
200 u8 __iomem **piobuf,
201 struct efx_short_copy_buffer *copy_buf)
203 int i;
205 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
206 copy_buf);
208 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
209 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
210 u8 *vaddr;
212 vaddr = kmap_atomic(skb_frag_page(f));
214 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
215 skb_frag_size(f), copy_buf);
216 kunmap_atomic(vaddr);
219 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
222 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
223 struct sk_buff *skb)
225 struct efx_tx_buffer *buffer =
226 efx_tx_queue_get_insert_buffer(tx_queue);
227 u8 __iomem *piobuf = tx_queue->piobuf;
229 /* Copy to PIO buffer. Ensure the writes are padded to the end
230 * of a cache line, as this is required for write-combining to be
231 * effective on at least x86.
234 if (skb_shinfo(skb)->nr_frags) {
235 /* The size of the copy buffer will ensure all writes
236 * are the size of a cache line.
238 struct efx_short_copy_buffer copy_buf;
240 copy_buf.used = 0;
242 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
243 &piobuf, &copy_buf);
244 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
245 } else {
246 /* Pad the write to the size of a cache line.
247 * We can do this because we know the skb_shared_info struct is
248 * after the source, and the destination buffer is big enough.
250 BUILD_BUG_ON(L1_CACHE_BYTES >
251 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
252 __iowrite64_copy(tx_queue->piobuf, skb->data,
253 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
256 buffer->skb = skb;
257 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
259 EFX_POPULATE_QWORD_5(buffer->option,
260 ESF_DZ_TX_DESC_IS_OPT, 1,
261 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
262 ESF_DZ_TX_PIO_CONT, 0,
263 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
264 ESF_DZ_TX_PIO_BUF_ADDR,
265 tx_queue->piobuf_offset);
266 ++tx_queue->insert_count;
267 return 0;
269 #endif /* EFX_USE_PIO */
272 * Fallback to software TSO.
274 * This is used if we are unable to send a GSO packet through hardware TSO.
275 * This should only ever happen due to per-queue restrictions - unsupported
276 * packets should first be filtered by the feature flags.
278 * Returns 0 on success, error code otherwise.
280 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
281 struct sk_buff *skb)
283 struct sk_buff *segments, *next;
285 segments = skb_gso_segment(skb, 0);
286 if (IS_ERR(segments))
287 return PTR_ERR(segments);
289 dev_consume_skb_any(skb);
291 skb_list_walk_safe(segments, skb, next) {
292 skb_mark_not_on_list(skb);
293 efx_enqueue_skb(tx_queue, skb);
296 return 0;
300 * Add a socket buffer to a TX queue
302 * This maps all fragments of a socket buffer for DMA and adds them to
303 * the TX queue. The queue's insert pointer will be incremented by
304 * the number of fragments in the socket buffer.
306 * If any DMA mapping fails, any mapped fragments will be unmapped,
307 * the queue's insert pointer will be restored to its original value.
309 * This function is split out from efx_hard_start_xmit to allow the
310 * loopback test to direct packets via specific TX queues.
312 * Returns NETDEV_TX_OK.
313 * You must hold netif_tx_lock() to call this function.
315 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
317 unsigned int old_insert_count = tx_queue->insert_count;
318 bool xmit_more = netdev_xmit_more();
319 bool data_mapped = false;
320 unsigned int segments;
321 unsigned int skb_len;
322 int rc;
324 skb_len = skb->len;
325 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
326 if (segments == 1)
327 segments = 0; /* Don't use TSO for a single segment. */
329 /* Handle TSO first - it's *possible* (although unlikely) that we might
330 * be passed a packet to segment that's smaller than the copybreak/PIO
331 * size limit.
333 if (segments) {
334 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
335 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
336 if (rc == -EINVAL) {
337 rc = efx_tx_tso_fallback(tx_queue, skb);
338 tx_queue->tso_fallbacks++;
339 if (rc == 0)
340 return 0;
342 if (rc)
343 goto err;
344 #ifdef EFX_USE_PIO
345 } else if (skb_len <= efx_piobuf_size && !xmit_more &&
346 efx_nic_may_tx_pio(tx_queue)) {
347 /* Use PIO for short packets with an empty queue. */
348 if (efx_enqueue_skb_pio(tx_queue, skb))
349 goto err;
350 tx_queue->pio_packets++;
351 data_mapped = true;
352 #endif
353 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
354 /* Pad short packets or coalesce short fragmented packets. */
355 if (efx_enqueue_skb_copy(tx_queue, skb))
356 goto err;
357 tx_queue->cb_packets++;
358 data_mapped = true;
361 /* Map for DMA and create descriptors if we haven't done so already. */
362 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
363 goto err;
365 efx_tx_maybe_stop_queue(tx_queue);
367 /* Pass off to hardware */
368 if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
369 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
371 /* There could be packets left on the partner queue if
372 * xmit_more was set. If we do not push those they
373 * could be left for a long time and cause a netdev watchdog.
375 if (txq2->xmit_more_available)
376 efx_nic_push_buffers(txq2);
378 efx_nic_push_buffers(tx_queue);
379 } else {
380 tx_queue->xmit_more_available = xmit_more;
383 if (segments) {
384 tx_queue->tso_bursts++;
385 tx_queue->tso_packets += segments;
386 tx_queue->tx_packets += segments;
387 } else {
388 tx_queue->tx_packets++;
391 return NETDEV_TX_OK;
394 err:
395 efx_enqueue_unwind(tx_queue, old_insert_count);
396 dev_kfree_skb_any(skb);
398 /* If we're not expecting another transmit and we had something to push
399 * on this queue or a partner queue then we need to push here to get the
400 * previous packets out.
402 if (!xmit_more) {
403 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
405 if (txq2->xmit_more_available)
406 efx_nic_push_buffers(txq2);
408 efx_nic_push_buffers(tx_queue);
411 return NETDEV_TX_OK;
414 static void efx_xdp_return_frames(int n, struct xdp_frame **xdpfs)
416 int i;
418 for (i = 0; i < n; i++)
419 xdp_return_frame_rx_napi(xdpfs[i]);
422 /* Transmit a packet from an XDP buffer
424 * Returns number of packets sent on success, error code otherwise.
425 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
426 * (for XDP redirect).
428 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
429 bool flush)
431 struct efx_tx_buffer *tx_buffer;
432 struct efx_tx_queue *tx_queue;
433 struct xdp_frame *xdpf;
434 dma_addr_t dma_addr;
435 unsigned int len;
436 int space;
437 int cpu;
438 int i;
440 cpu = raw_smp_processor_id();
442 if (!efx->xdp_tx_queue_count ||
443 unlikely(cpu >= efx->xdp_tx_queue_count))
444 return -EINVAL;
446 tx_queue = efx->xdp_tx_queues[cpu];
447 if (unlikely(!tx_queue))
448 return -EINVAL;
450 if (unlikely(n && !xdpfs))
451 return -EINVAL;
453 if (!n)
454 return 0;
456 /* Check for available space. We should never need multiple
457 * descriptors per frame.
459 space = efx->txq_entries +
460 tx_queue->read_count - tx_queue->insert_count;
462 for (i = 0; i < n; i++) {
463 xdpf = xdpfs[i];
465 if (i >= space)
466 break;
468 /* We'll want a descriptor for this tx. */
469 prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
471 len = xdpf->len;
473 /* Map for DMA. */
474 dma_addr = dma_map_single(&efx->pci_dev->dev,
475 xdpf->data, len,
476 DMA_TO_DEVICE);
477 if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
478 break;
480 /* Create descriptor and set up for unmapping DMA. */
481 tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
482 tx_buffer->xdpf = xdpf;
483 tx_buffer->flags = EFX_TX_BUF_XDP |
484 EFX_TX_BUF_MAP_SINGLE;
485 tx_buffer->dma_offset = 0;
486 tx_buffer->unmap_len = len;
487 tx_queue->tx_packets++;
490 /* Pass mapped frames to hardware. */
491 if (flush && i > 0)
492 efx_nic_push_buffers(tx_queue);
494 if (i == 0)
495 return -EIO;
497 efx_xdp_return_frames(n - i, xdpfs + i);
499 return i;
502 /* Initiate a packet transmission. We use one channel per CPU
503 * (sharing when we have more CPUs than channels). On Falcon, the TX
504 * completion events will be directed back to the CPU that transmitted
505 * the packet, which should be cache-efficient.
507 * Context: non-blocking.
508 * Note that returning anything other than NETDEV_TX_OK will cause the
509 * OS to free the skb.
511 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
512 struct net_device *net_dev)
514 struct efx_nic *efx = netdev_priv(net_dev);
515 struct efx_tx_queue *tx_queue;
516 unsigned index, type;
518 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
520 /* PTP "event" packet */
521 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
522 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
523 return efx_ptp_tx(efx, skb);
526 index = skb_get_queue_mapping(skb);
527 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
528 if (index >= efx->n_tx_channels) {
529 index -= efx->n_tx_channels;
530 type |= EFX_TXQ_TYPE_HIGHPRI;
532 tx_queue = efx_get_tx_queue(efx, index, type);
534 return efx_enqueue_skb(tx_queue, skb);
537 void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
539 unsigned int pkts_compl = 0, bytes_compl = 0;
540 unsigned int read_ptr;
541 bool finished = false;
543 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
545 while (!finished) {
546 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
548 if (!efx_tx_buffer_in_use(buffer)) {
549 struct efx_nic *efx = tx_queue->efx;
551 netif_err(efx, hw, efx->net_dev,
552 "TX queue %d spurious single TX completion\n",
553 tx_queue->queue);
554 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
555 return;
558 /* Need to check the flag before dequeueing. */
559 if (buffer->flags & EFX_TX_BUF_SKB)
560 finished = true;
561 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
563 ++tx_queue->read_count;
564 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
567 tx_queue->pkts_compl += pkts_compl;
568 tx_queue->bytes_compl += bytes_compl;
570 EFX_WARN_ON_PARANOID(pkts_compl != 1);
572 efx_xmit_done_check_empty(tx_queue);
575 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
577 struct efx_nic *efx = tx_queue->efx;
579 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
580 tx_queue->core_txq =
581 netdev_get_tx_queue(efx->net_dev,
582 tx_queue->queue / EFX_TXQ_TYPES +
583 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
584 efx->n_tx_channels : 0));
587 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
588 void *type_data)
590 struct efx_nic *efx = netdev_priv(net_dev);
591 struct tc_mqprio_qopt *mqprio = type_data;
592 struct efx_channel *channel;
593 struct efx_tx_queue *tx_queue;
594 unsigned tc, num_tc;
595 int rc;
597 if (type != TC_SETUP_QDISC_MQPRIO)
598 return -EOPNOTSUPP;
600 num_tc = mqprio->num_tc;
602 if (num_tc > EFX_MAX_TX_TC)
603 return -EINVAL;
605 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
607 if (num_tc == net_dev->num_tc)
608 return 0;
610 for (tc = 0; tc < num_tc; tc++) {
611 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
612 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
615 if (num_tc > net_dev->num_tc) {
616 /* Initialise high-priority queues as necessary */
617 efx_for_each_channel(channel, efx) {
618 efx_for_each_possible_channel_tx_queue(tx_queue,
619 channel) {
620 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
621 continue;
622 if (!tx_queue->buffer) {
623 rc = efx_probe_tx_queue(tx_queue);
624 if (rc)
625 return rc;
627 if (!tx_queue->initialised)
628 efx_init_tx_queue(tx_queue);
629 efx_init_tx_queue_core_txq(tx_queue);
632 } else {
633 /* Reduce number of classes before number of queues */
634 net_dev->num_tc = num_tc;
637 rc = netif_set_real_num_tx_queues(net_dev,
638 max_t(int, num_tc, 1) *
639 efx->n_tx_channels);
640 if (rc)
641 return rc;
643 /* Do not destroy high-priority queues when they become
644 * unused. We would have to flush them first, and it is
645 * fairly difficult to flush a subset of TX queues. Leave
646 * it to efx_fini_channels().
649 net_dev->num_tc = num_tc;
650 return 0;