gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / sun / sungem.c
blob2d392a7b179a0311e1f19c4bd01f91112398d85f
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
63 #define STRIP_FCS
65 #define DEFAULT_MSG (NETIF_MSG_DRV | \
66 NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK)
69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 #define DRV_NAME "sungem"
75 #define DRV_VERSION "1.0"
76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
78 static char version[] =
79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
85 #define GEM_MODULE_NAME "gem"
87 static const struct pci_device_id gem_pci_tbl[] = {
88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 {0, }
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
119 u32 cmd;
120 int limit = 10000;
122 cmd = (1 << 30);
123 cmd |= (2 << 28);
124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 cmd |= (MIF_FRAME_TAMSB);
127 writel(cmd, gp->regs + MIF_FRAME);
129 while (--limit) {
130 cmd = readl(gp->regs + MIF_FRAME);
131 if (cmd & MIF_FRAME_TALSB)
132 break;
134 udelay(10);
137 if (!limit)
138 cmd = 0xffff;
140 return cmd & MIF_FRAME_DATA;
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
145 struct gem *gp = netdev_priv(dev);
146 return __sungem_phy_read(gp, mii_id, reg);
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
156 u32 cmd;
157 int limit = 10000;
159 cmd = (1 << 30);
160 cmd |= (1 << 28);
161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 cmd |= (MIF_FRAME_TAMSB);
164 cmd |= (val & MIF_FRAME_DATA);
165 writel(cmd, gp->regs + MIF_FRAME);
167 while (limit--) {
168 cmd = readl(gp->regs + MIF_FRAME);
169 if (cmd & MIF_FRAME_TALSB)
170 break;
172 udelay(10);
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
178 struct gem *gp = netdev_priv(dev);
179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
187 static inline void gem_enable_ints(struct gem *gp)
189 /* Enable all interrupts but TXDONE */
190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 static inline void gem_disable_ints(struct gem *gp)
195 /* Disable all interrupts, including TXDONE */
196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 (void)readl(gp->regs + GREG_IMASK); /* write posting */
200 static void gem_get_cell(struct gem *gp)
202 BUG_ON(gp->cell_enabled < 0);
203 gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 if (gp->cell_enabled == 1) {
206 mb();
207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 udelay(10);
210 #endif /* CONFIG_PPC_PMAC */
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
216 BUG_ON(gp->cell_enabled <= 0);
217 gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 if (gp->cell_enabled == 0) {
220 mb();
221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 udelay(10);
224 #endif /* CONFIG_PPC_PMAC */
227 static inline void gem_netif_stop(struct gem *gp)
229 netif_trans_update(gp->dev); /* prevent tx timeout */
230 napi_disable(&gp->napi);
231 netif_tx_disable(gp->dev);
234 static inline void gem_netif_start(struct gem *gp)
236 /* NOTE: unconditional netif_wake_queue is only
237 * appropriate so long as all callers are assured to
238 * have free tx slots.
240 netif_wake_queue(gp->dev);
241 napi_enable(&gp->napi);
244 static void gem_schedule_reset(struct gem *gp)
246 gp->reset_task_pending = 1;
247 schedule_work(&gp->reset_task);
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 u32 pcs_miistat;
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 netdev_err(dev, "PCS irq but no link status change???\n");
267 return 0;
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
276 pcs_miistat |=
277 (readl(gp->regs + PCS_MIISTAT) &
278 PCS_MIISTAT_LS);
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 else
287 netdev_info(dev, "PCS AutoNEG complete\n");
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 netdev_info(dev, "PCS link is now up\n");
292 netif_carrier_on(gp->dev);
293 } else {
294 netdev_info(dev, "PCS link is now down\n");
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp->link_timer))
300 return 1;
303 return 0;
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
319 return 0;
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 netdev_err(dev, "TX MAC xmit underrun\n");
323 dev->stats.tx_fifo_errors++;
326 if (txmac_stat & MAC_TXSTAT_MPE) {
327 netdev_err(dev, "TX MAC max packet size error\n");
328 dev->stats.tx_errors++;
331 /* The rest are all cases of one of the 16-bit TX
332 * counters expiring.
334 if (txmac_stat & MAC_TXSTAT_NCE)
335 dev->stats.collisions += 0x10000;
337 if (txmac_stat & MAC_TXSTAT_ECE) {
338 dev->stats.tx_aborted_errors += 0x10000;
339 dev->stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_LCE) {
343 dev->stats.tx_aborted_errors += 0x10000;
344 dev->stats.collisions += 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
350 return 0;
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem *gp)
361 struct net_device *dev = gp->dev;
362 int limit, i;
363 u64 desc_dma;
364 u32 val;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 for (limit = 0; limit < 5000; limit++) {
369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 break;
371 udelay(10);
373 if (limit == 5000) {
374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 return 1;
378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 gp->regs + MAC_RXCFG);
380 for (limit = 0; limit < 5000; limit++) {
381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 break;
383 udelay(10);
385 if (limit == 5000) {
386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 return 1;
390 /* Second, disable RX DMA. */
391 writel(0, gp->regs + RXDMA_CFG);
392 for (limit = 0; limit < 5000; limit++) {
393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 break;
395 udelay(10);
397 if (limit == 5000) {
398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 return 1;
402 mdelay(5);
404 /* Execute RX reset command. */
405 writel(gp->swrst_base | GREG_SWRST_RXRST,
406 gp->regs + GREG_SWRST);
407 for (limit = 0; limit < 5000; limit++) {
408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 break;
410 udelay(10);
412 if (limit == 5000) {
413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 return 1;
417 /* Refresh the RX ring. */
418 for (i = 0; i < RX_RING_SIZE; i++) {
419 struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 if (gp->rx_skbs[i] == NULL) {
422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 return 1;
426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 gp->rx_new = gp->rx_old = 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma = (u64) gp->gblock_dvma;
432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 writel(val, gp->regs + RXDMA_CFG);
439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 writel(((5 & RXDMA_BLANK_IPKTS) |
441 ((8 << 12) & RXDMA_BLANK_ITIME)),
442 gp->regs + RXDMA_BLANK);
443 else
444 writel(((5 & RXDMA_BLANK_IPKTS) |
445 ((4 << 12) & RXDMA_BLANK_ITIME)),
446 gp->regs + RXDMA_BLANK);
447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 writel(val, gp->regs + RXDMA_PTHRESH);
450 val = readl(gp->regs + RXDMA_CFG);
451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 val = readl(gp->regs + MAC_RXCFG);
454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
456 return 0;
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 int ret = 0;
464 if (netif_msg_intr(gp))
465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp->dev->name, rxmac_stat);
468 if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 u32 smac = readl(gp->regs + MAC_SMACHINE);
471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 dev->stats.rx_over_errors++;
473 dev->stats.rx_fifo_errors++;
475 ret = gem_rxmac_reset(gp);
478 if (rxmac_stat & MAC_RXSTAT_ACE)
479 dev->stats.rx_frame_errors += 0x10000;
481 if (rxmac_stat & MAC_RXSTAT_CCE)
482 dev->stats.rx_crc_errors += 0x10000;
484 if (rxmac_stat & MAC_RXSTAT_LCE)
485 dev->stats.rx_length_errors += 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 * events.
490 return ret;
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 if (netif_msg_intr(gp))
498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp->dev->name, mac_cstat);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat & MAC_CSTAT_PS)
506 gp->pause_entered++;
508 if (mac_cstat & MAC_CSTAT_PRCV)
509 gp->pause_last_time_recvd = (mac_cstat >> 16);
511 return 0;
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 u32 mif_status = readl(gp->regs + MIF_STATUS);
517 u32 reg_val, changed_bits;
519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 changed_bits = (mif_status & MIF_STATUS_STAT);
522 gem_handle_mif_event(gp, reg_val, changed_bits);
524 return 0;
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 netdev_err(dev, "PCI error [%04x]", pci_estat);
535 if (pci_estat & GREG_PCIESTAT_BADACK)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat & GREG_PCIESTAT_DTRTO)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat & GREG_PCIESTAT_OTHER)
540 pr_cont(" <other>");
541 pr_cont("\n");
542 } else {
543 pci_estat |= GREG_PCIESTAT_OTHER;
544 netdev_err(dev, "PCI error\n");
547 if (pci_estat & GREG_PCIESTAT_OTHER) {
548 int pci_errs;
550 /* Interrogate PCI config space for the
551 * true cause.
553 pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555 if (pci_errs & PCI_STATUS_PARITY)
556 netdev_err(dev, "PCI parity error detected\n");
557 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558 netdev_err(dev, "PCI target abort\n");
559 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560 netdev_err(dev, "PCI master acks target abort\n");
561 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562 netdev_err(dev, "PCI master abort\n");
563 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564 netdev_err(dev, "PCI system error SERR#\n");
565 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566 netdev_err(dev, "PCI parity error\n");
569 /* For all PCI errors, we should reset the chip. */
570 return 1;
573 /* All non-normal interrupt conditions get serviced here.
574 * Returns non-zero if we should just exit the interrupt
575 * handler right now (ie. if we reset the card which invalidates
576 * all of the other original irq status bits).
578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
580 if (gem_status & GREG_STAT_RXNOBUF) {
581 /* Frame arrived, no free RX buffers available. */
582 if (netif_msg_rx_err(gp))
583 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
584 gp->dev->name);
585 dev->stats.rx_dropped++;
588 if (gem_status & GREG_STAT_RXTAGERR) {
589 /* corrupt RX tag framing */
590 if (netif_msg_rx_err(gp))
591 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
592 gp->dev->name);
593 dev->stats.rx_errors++;
595 return 1;
598 if (gem_status & GREG_STAT_PCS) {
599 if (gem_pcs_interrupt(dev, gp, gem_status))
600 return 1;
603 if (gem_status & GREG_STAT_TXMAC) {
604 if (gem_txmac_interrupt(dev, gp, gem_status))
605 return 1;
608 if (gem_status & GREG_STAT_RXMAC) {
609 if (gem_rxmac_interrupt(dev, gp, gem_status))
610 return 1;
613 if (gem_status & GREG_STAT_MAC) {
614 if (gem_mac_interrupt(dev, gp, gem_status))
615 return 1;
618 if (gem_status & GREG_STAT_MIF) {
619 if (gem_mif_interrupt(dev, gp, gem_status))
620 return 1;
623 if (gem_status & GREG_STAT_PCIERR) {
624 if (gem_pci_interrupt(dev, gp, gem_status))
625 return 1;
628 return 0;
631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
633 int entry, limit;
635 entry = gp->tx_old;
636 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637 while (entry != limit) {
638 struct sk_buff *skb;
639 struct gem_txd *txd;
640 dma_addr_t dma_addr;
641 u32 dma_len;
642 int frag;
644 if (netif_msg_tx_done(gp))
645 printk(KERN_DEBUG "%s: tx done, slot %d\n",
646 gp->dev->name, entry);
647 skb = gp->tx_skbs[entry];
648 if (skb_shinfo(skb)->nr_frags) {
649 int last = entry + skb_shinfo(skb)->nr_frags;
650 int walk = entry;
651 int incomplete = 0;
653 last &= (TX_RING_SIZE - 1);
654 for (;;) {
655 walk = NEXT_TX(walk);
656 if (walk == limit)
657 incomplete = 1;
658 if (walk == last)
659 break;
661 if (incomplete)
662 break;
664 gp->tx_skbs[entry] = NULL;
665 dev->stats.tx_bytes += skb->len;
667 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668 txd = &gp->init_block->txd[entry];
670 dma_addr = le64_to_cpu(txd->buffer);
671 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
673 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
674 entry = NEXT_TX(entry);
677 dev->stats.tx_packets++;
678 dev_consume_skb_any(skb);
680 gp->tx_old = entry;
682 /* Need to make the tx_old update visible to gem_start_xmit()
683 * before checking for netif_queue_stopped(). Without the
684 * memory barrier, there is a small possibility that gem_start_xmit()
685 * will miss it and cause the queue to be stopped forever.
687 smp_mb();
689 if (unlikely(netif_queue_stopped(dev) &&
690 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
691 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
693 __netif_tx_lock(txq, smp_processor_id());
694 if (netif_queue_stopped(dev) &&
695 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
696 netif_wake_queue(dev);
697 __netif_tx_unlock(txq);
701 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
703 int cluster_start, curr, count, kick;
705 cluster_start = curr = (gp->rx_new & ~(4 - 1));
706 count = 0;
707 kick = -1;
708 dma_wmb();
709 while (curr != limit) {
710 curr = NEXT_RX(curr);
711 if (++count == 4) {
712 struct gem_rxd *rxd =
713 &gp->init_block->rxd[cluster_start];
714 for (;;) {
715 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
716 rxd++;
717 cluster_start = NEXT_RX(cluster_start);
718 if (cluster_start == curr)
719 break;
721 kick = curr;
722 count = 0;
725 if (kick >= 0) {
726 mb();
727 writel(kick, gp->regs + RXDMA_KICK);
731 #define ALIGNED_RX_SKB_ADDR(addr) \
732 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
733 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
734 gfp_t gfp_flags)
736 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
738 if (likely(skb)) {
739 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
740 skb_reserve(skb, offset);
742 return skb;
745 static int gem_rx(struct gem *gp, int work_to_do)
747 struct net_device *dev = gp->dev;
748 int entry, drops, work_done = 0;
749 u32 done;
751 if (netif_msg_rx_status(gp))
752 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
753 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
755 entry = gp->rx_new;
756 drops = 0;
757 done = readl(gp->regs + RXDMA_DONE);
758 for (;;) {
759 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
760 struct sk_buff *skb;
761 u64 status = le64_to_cpu(rxd->status_word);
762 dma_addr_t dma_addr;
763 int len;
765 if ((status & RXDCTRL_OWN) != 0)
766 break;
768 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
769 break;
771 /* When writing back RX descriptor, GEM writes status
772 * then buffer address, possibly in separate transactions.
773 * If we don't wait for the chip to write both, we could
774 * post a new buffer to this descriptor then have GEM spam
775 * on the buffer address. We sync on the RX completion
776 * register to prevent this from happening.
778 if (entry == done) {
779 done = readl(gp->regs + RXDMA_DONE);
780 if (entry == done)
781 break;
784 /* We can now account for the work we're about to do */
785 work_done++;
787 skb = gp->rx_skbs[entry];
789 len = (status & RXDCTRL_BUFSZ) >> 16;
790 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
791 dev->stats.rx_errors++;
792 if (len < ETH_ZLEN)
793 dev->stats.rx_length_errors++;
794 if (len & RXDCTRL_BAD)
795 dev->stats.rx_crc_errors++;
797 /* We'll just return it to GEM. */
798 drop_it:
799 dev->stats.rx_dropped++;
800 goto next;
803 dma_addr = le64_to_cpu(rxd->buffer);
804 if (len > RX_COPY_THRESHOLD) {
805 struct sk_buff *new_skb;
807 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
808 if (new_skb == NULL) {
809 drops++;
810 goto drop_it;
812 pci_unmap_page(gp->pdev, dma_addr,
813 RX_BUF_ALLOC_SIZE(gp),
814 PCI_DMA_FROMDEVICE);
815 gp->rx_skbs[entry] = new_skb;
816 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
818 virt_to_page(new_skb->data),
819 offset_in_page(new_skb->data),
820 RX_BUF_ALLOC_SIZE(gp),
821 PCI_DMA_FROMDEVICE));
822 skb_reserve(new_skb, RX_OFFSET);
824 /* Trim the original skb for the netif. */
825 skb_trim(skb, len);
826 } else {
827 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
829 if (copy_skb == NULL) {
830 drops++;
831 goto drop_it;
834 skb_reserve(copy_skb, 2);
835 skb_put(copy_skb, len);
836 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
837 skb_copy_from_linear_data(skb, copy_skb->data, len);
838 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
840 /* We'll reuse the original ring buffer. */
841 skb = copy_skb;
844 if (likely(dev->features & NETIF_F_RXCSUM)) {
845 __sum16 csum;
847 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
848 skb->csum = csum_unfold(csum);
849 skb->ip_summed = CHECKSUM_COMPLETE;
851 skb->protocol = eth_type_trans(skb, gp->dev);
853 napi_gro_receive(&gp->napi, skb);
855 dev->stats.rx_packets++;
856 dev->stats.rx_bytes += len;
858 next:
859 entry = NEXT_RX(entry);
862 gem_post_rxds(gp, entry);
864 gp->rx_new = entry;
866 if (drops)
867 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
869 return work_done;
872 static int gem_poll(struct napi_struct *napi, int budget)
874 struct gem *gp = container_of(napi, struct gem, napi);
875 struct net_device *dev = gp->dev;
876 int work_done;
878 work_done = 0;
879 do {
880 /* Handle anomalies */
881 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
882 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
883 int reset;
885 /* We run the abnormal interrupt handling code with
886 * the Tx lock. It only resets the Rx portion of the
887 * chip, but we need to guard it against DMA being
888 * restarted by the link poll timer
890 __netif_tx_lock(txq, smp_processor_id());
891 reset = gem_abnormal_irq(dev, gp, gp->status);
892 __netif_tx_unlock(txq);
893 if (reset) {
894 gem_schedule_reset(gp);
895 napi_complete(napi);
896 return work_done;
900 /* Run TX completion thread */
901 gem_tx(dev, gp, gp->status);
903 /* Run RX thread. We don't use any locking here,
904 * code willing to do bad things - like cleaning the
905 * rx ring - must call napi_disable(), which
906 * schedule_timeout()'s if polling is already disabled.
908 work_done += gem_rx(gp, budget - work_done);
910 if (work_done >= budget)
911 return work_done;
913 gp->status = readl(gp->regs + GREG_STAT);
914 } while (gp->status & GREG_STAT_NAPI);
916 napi_complete_done(napi, work_done);
917 gem_enable_ints(gp);
919 return work_done;
922 static irqreturn_t gem_interrupt(int irq, void *dev_id)
924 struct net_device *dev = dev_id;
925 struct gem *gp = netdev_priv(dev);
927 if (napi_schedule_prep(&gp->napi)) {
928 u32 gem_status = readl(gp->regs + GREG_STAT);
930 if (unlikely(gem_status == 0)) {
931 napi_enable(&gp->napi);
932 return IRQ_NONE;
934 if (netif_msg_intr(gp))
935 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
936 gp->dev->name, gem_status);
938 gp->status = gem_status;
939 gem_disable_ints(gp);
940 __napi_schedule(&gp->napi);
943 /* If polling was disabled at the time we received that
944 * interrupt, we may return IRQ_HANDLED here while we
945 * should return IRQ_NONE. No big deal...
947 return IRQ_HANDLED;
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951 static void gem_poll_controller(struct net_device *dev)
953 struct gem *gp = netdev_priv(dev);
955 disable_irq(gp->pdev->irq);
956 gem_interrupt(gp->pdev->irq, dev);
957 enable_irq(gp->pdev->irq);
959 #endif
961 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
963 struct gem *gp = netdev_priv(dev);
965 netdev_err(dev, "transmit timed out, resetting\n");
967 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
968 readl(gp->regs + TXDMA_CFG),
969 readl(gp->regs + MAC_TXSTAT),
970 readl(gp->regs + MAC_TXCFG));
971 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
972 readl(gp->regs + RXDMA_CFG),
973 readl(gp->regs + MAC_RXSTAT),
974 readl(gp->regs + MAC_RXCFG));
976 gem_schedule_reset(gp);
979 static __inline__ int gem_intme(int entry)
981 /* Algorithm: IRQ every 1/2 of descriptors. */
982 if (!(entry & ((TX_RING_SIZE>>1)-1)))
983 return 1;
985 return 0;
988 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
989 struct net_device *dev)
991 struct gem *gp = netdev_priv(dev);
992 int entry;
993 u64 ctrl;
995 ctrl = 0;
996 if (skb->ip_summed == CHECKSUM_PARTIAL) {
997 const u64 csum_start_off = skb_checksum_start_offset(skb);
998 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1000 ctrl = (TXDCTRL_CENAB |
1001 (csum_start_off << 15) |
1002 (csum_stuff_off << 21));
1005 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1006 /* This is a hard error, log it. */
1007 if (!netif_queue_stopped(dev)) {
1008 netif_stop_queue(dev);
1009 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1011 return NETDEV_TX_BUSY;
1014 entry = gp->tx_new;
1015 gp->tx_skbs[entry] = skb;
1017 if (skb_shinfo(skb)->nr_frags == 0) {
1018 struct gem_txd *txd = &gp->init_block->txd[entry];
1019 dma_addr_t mapping;
1020 u32 len;
1022 len = skb->len;
1023 mapping = pci_map_page(gp->pdev,
1024 virt_to_page(skb->data),
1025 offset_in_page(skb->data),
1026 len, PCI_DMA_TODEVICE);
1027 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1028 if (gem_intme(entry))
1029 ctrl |= TXDCTRL_INTME;
1030 txd->buffer = cpu_to_le64(mapping);
1031 dma_wmb();
1032 txd->control_word = cpu_to_le64(ctrl);
1033 entry = NEXT_TX(entry);
1034 } else {
1035 struct gem_txd *txd;
1036 u32 first_len;
1037 u64 intme;
1038 dma_addr_t first_mapping;
1039 int frag, first_entry = entry;
1041 intme = 0;
1042 if (gem_intme(entry))
1043 intme |= TXDCTRL_INTME;
1045 /* We must give this initial chunk to the device last.
1046 * Otherwise we could race with the device.
1048 first_len = skb_headlen(skb);
1049 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1050 offset_in_page(skb->data),
1051 first_len, PCI_DMA_TODEVICE);
1052 entry = NEXT_TX(entry);
1054 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1055 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1056 u32 len;
1057 dma_addr_t mapping;
1058 u64 this_ctrl;
1060 len = skb_frag_size(this_frag);
1061 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1062 0, len, DMA_TO_DEVICE);
1063 this_ctrl = ctrl;
1064 if (frag == skb_shinfo(skb)->nr_frags - 1)
1065 this_ctrl |= TXDCTRL_EOF;
1067 txd = &gp->init_block->txd[entry];
1068 txd->buffer = cpu_to_le64(mapping);
1069 dma_wmb();
1070 txd->control_word = cpu_to_le64(this_ctrl | len);
1072 if (gem_intme(entry))
1073 intme |= TXDCTRL_INTME;
1075 entry = NEXT_TX(entry);
1077 txd = &gp->init_block->txd[first_entry];
1078 txd->buffer = cpu_to_le64(first_mapping);
1079 dma_wmb();
1080 txd->control_word =
1081 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1084 gp->tx_new = entry;
1085 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1086 netif_stop_queue(dev);
1088 /* netif_stop_queue() must be done before checking
1089 * checking tx index in TX_BUFFS_AVAIL() below, because
1090 * in gem_tx(), we update tx_old before checking for
1091 * netif_queue_stopped().
1093 smp_mb();
1094 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1095 netif_wake_queue(dev);
1097 if (netif_msg_tx_queued(gp))
1098 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1099 dev->name, entry, skb->len);
1100 mb();
1101 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1103 return NETDEV_TX_OK;
1106 static void gem_pcs_reset(struct gem *gp)
1108 int limit;
1109 u32 val;
1111 /* Reset PCS unit. */
1112 val = readl(gp->regs + PCS_MIICTRL);
1113 val |= PCS_MIICTRL_RST;
1114 writel(val, gp->regs + PCS_MIICTRL);
1116 limit = 32;
1117 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1118 udelay(100);
1119 if (limit-- <= 0)
1120 break;
1122 if (limit < 0)
1123 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1126 static void gem_pcs_reinit_adv(struct gem *gp)
1128 u32 val;
1130 /* Make sure PCS is disabled while changing advertisement
1131 * configuration.
1133 val = readl(gp->regs + PCS_CFG);
1134 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1135 writel(val, gp->regs + PCS_CFG);
1137 /* Advertise all capabilities except asymmetric
1138 * pause.
1140 val = readl(gp->regs + PCS_MIIADV);
1141 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1142 PCS_MIIADV_SP | PCS_MIIADV_AP);
1143 writel(val, gp->regs + PCS_MIIADV);
1145 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1146 * and re-enable PCS.
1148 val = readl(gp->regs + PCS_MIICTRL);
1149 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1150 val &= ~PCS_MIICTRL_WB;
1151 writel(val, gp->regs + PCS_MIICTRL);
1153 val = readl(gp->regs + PCS_CFG);
1154 val |= PCS_CFG_ENABLE;
1155 writel(val, gp->regs + PCS_CFG);
1157 /* Make sure serialink loopback is off. The meaning
1158 * of this bit is logically inverted based upon whether
1159 * you are in Serialink or SERDES mode.
1161 val = readl(gp->regs + PCS_SCTRL);
1162 if (gp->phy_type == phy_serialink)
1163 val &= ~PCS_SCTRL_LOOP;
1164 else
1165 val |= PCS_SCTRL_LOOP;
1166 writel(val, gp->regs + PCS_SCTRL);
1169 #define STOP_TRIES 32
1171 static void gem_reset(struct gem *gp)
1173 int limit;
1174 u32 val;
1176 /* Make sure we won't get any more interrupts */
1177 writel(0xffffffff, gp->regs + GREG_IMASK);
1179 /* Reset the chip */
1180 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1181 gp->regs + GREG_SWRST);
1183 limit = STOP_TRIES;
1185 do {
1186 udelay(20);
1187 val = readl(gp->regs + GREG_SWRST);
1188 if (limit-- <= 0)
1189 break;
1190 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1192 if (limit < 0)
1193 netdev_err(gp->dev, "SW reset is ghetto\n");
1195 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1196 gem_pcs_reinit_adv(gp);
1199 static void gem_start_dma(struct gem *gp)
1201 u32 val;
1203 /* We are ready to rock, turn everything on. */
1204 val = readl(gp->regs + TXDMA_CFG);
1205 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1206 val = readl(gp->regs + RXDMA_CFG);
1207 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1208 val = readl(gp->regs + MAC_TXCFG);
1209 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1210 val = readl(gp->regs + MAC_RXCFG);
1211 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1213 (void) readl(gp->regs + MAC_RXCFG);
1214 udelay(100);
1216 gem_enable_ints(gp);
1218 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1221 /* DMA won't be actually stopped before about 4ms tho ...
1223 static void gem_stop_dma(struct gem *gp)
1225 u32 val;
1227 /* We are done rocking, turn everything off. */
1228 val = readl(gp->regs + TXDMA_CFG);
1229 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1230 val = readl(gp->regs + RXDMA_CFG);
1231 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1232 val = readl(gp->regs + MAC_TXCFG);
1233 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1234 val = readl(gp->regs + MAC_RXCFG);
1235 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1237 (void) readl(gp->regs + MAC_RXCFG);
1239 /* Need to wait a bit ... done by the caller */
1243 // XXX dbl check what that function should do when called on PCS PHY
1244 static void gem_begin_auto_negotiation(struct gem *gp,
1245 const struct ethtool_link_ksettings *ep)
1247 u32 advertise, features;
1248 int autoneg;
1249 int speed;
1250 int duplex;
1251 u32 advertising;
1253 if (ep)
1254 ethtool_convert_link_mode_to_legacy_u32(
1255 &advertising, ep->link_modes.advertising);
1257 if (gp->phy_type != phy_mii_mdio0 &&
1258 gp->phy_type != phy_mii_mdio1)
1259 goto non_mii;
1261 /* Setup advertise */
1262 if (found_mii_phy(gp))
1263 features = gp->phy_mii.def->features;
1264 else
1265 features = 0;
1267 advertise = features & ADVERTISE_MASK;
1268 if (gp->phy_mii.advertising != 0)
1269 advertise &= gp->phy_mii.advertising;
1271 autoneg = gp->want_autoneg;
1272 speed = gp->phy_mii.speed;
1273 duplex = gp->phy_mii.duplex;
1275 /* Setup link parameters */
1276 if (!ep)
1277 goto start_aneg;
1278 if (ep->base.autoneg == AUTONEG_ENABLE) {
1279 advertise = advertising;
1280 autoneg = 1;
1281 } else {
1282 autoneg = 0;
1283 speed = ep->base.speed;
1284 duplex = ep->base.duplex;
1287 start_aneg:
1288 /* Sanitize settings based on PHY capabilities */
1289 if ((features & SUPPORTED_Autoneg) == 0)
1290 autoneg = 0;
1291 if (speed == SPEED_1000 &&
1292 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1293 speed = SPEED_100;
1294 if (speed == SPEED_100 &&
1295 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1296 speed = SPEED_10;
1297 if (duplex == DUPLEX_FULL &&
1298 !(features & (SUPPORTED_1000baseT_Full |
1299 SUPPORTED_100baseT_Full |
1300 SUPPORTED_10baseT_Full)))
1301 duplex = DUPLEX_HALF;
1302 if (speed == 0)
1303 speed = SPEED_10;
1305 /* If we are asleep, we don't try to actually setup the PHY, we
1306 * just store the settings
1308 if (!netif_device_present(gp->dev)) {
1309 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1310 gp->phy_mii.speed = speed;
1311 gp->phy_mii.duplex = duplex;
1312 return;
1315 /* Configure PHY & start aneg */
1316 gp->want_autoneg = autoneg;
1317 if (autoneg) {
1318 if (found_mii_phy(gp))
1319 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1320 gp->lstate = link_aneg;
1321 } else {
1322 if (found_mii_phy(gp))
1323 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1324 gp->lstate = link_force_ok;
1327 non_mii:
1328 gp->timer_ticks = 0;
1329 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1332 /* A link-up condition has occurred, initialize and enable the
1333 * rest of the chip.
1335 static int gem_set_link_modes(struct gem *gp)
1337 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1338 int full_duplex, speed, pause;
1339 u32 val;
1341 full_duplex = 0;
1342 speed = SPEED_10;
1343 pause = 0;
1345 if (found_mii_phy(gp)) {
1346 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1347 return 1;
1348 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1349 speed = gp->phy_mii.speed;
1350 pause = gp->phy_mii.pause;
1351 } else if (gp->phy_type == phy_serialink ||
1352 gp->phy_type == phy_serdes) {
1353 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1355 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1356 full_duplex = 1;
1357 speed = SPEED_1000;
1360 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1361 speed, (full_duplex ? "full" : "half"));
1364 /* We take the tx queue lock to avoid collisions between
1365 * this code, the tx path and the NAPI-driven error path
1367 __netif_tx_lock(txq, smp_processor_id());
1369 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1370 if (full_duplex) {
1371 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1372 } else {
1373 /* MAC_TXCFG_NBO must be zero. */
1375 writel(val, gp->regs + MAC_TXCFG);
1377 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1378 if (!full_duplex &&
1379 (gp->phy_type == phy_mii_mdio0 ||
1380 gp->phy_type == phy_mii_mdio1)) {
1381 val |= MAC_XIFCFG_DISE;
1382 } else if (full_duplex) {
1383 val |= MAC_XIFCFG_FLED;
1386 if (speed == SPEED_1000)
1387 val |= (MAC_XIFCFG_GMII);
1389 writel(val, gp->regs + MAC_XIFCFG);
1391 /* If gigabit and half-duplex, enable carrier extension
1392 * mode. Else, disable it.
1394 if (speed == SPEED_1000 && !full_duplex) {
1395 val = readl(gp->regs + MAC_TXCFG);
1396 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1398 val = readl(gp->regs + MAC_RXCFG);
1399 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1400 } else {
1401 val = readl(gp->regs + MAC_TXCFG);
1402 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1404 val = readl(gp->regs + MAC_RXCFG);
1405 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408 if (gp->phy_type == phy_serialink ||
1409 gp->phy_type == phy_serdes) {
1410 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1412 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1413 pause = 1;
1416 if (!full_duplex)
1417 writel(512, gp->regs + MAC_STIME);
1418 else
1419 writel(64, gp->regs + MAC_STIME);
1420 val = readl(gp->regs + MAC_MCCFG);
1421 if (pause)
1422 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1423 else
1424 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1425 writel(val, gp->regs + MAC_MCCFG);
1427 gem_start_dma(gp);
1429 __netif_tx_unlock(txq);
1431 if (netif_msg_link(gp)) {
1432 if (pause) {
1433 netdev_info(gp->dev,
1434 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1435 gp->rx_fifo_sz,
1436 gp->rx_pause_off,
1437 gp->rx_pause_on);
1438 } else {
1439 netdev_info(gp->dev, "Pause is disabled\n");
1443 return 0;
1446 static int gem_mdio_link_not_up(struct gem *gp)
1448 switch (gp->lstate) {
1449 case link_force_ret:
1450 netif_info(gp, link, gp->dev,
1451 "Autoneg failed again, keeping forced mode\n");
1452 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1453 gp->last_forced_speed, DUPLEX_HALF);
1454 gp->timer_ticks = 5;
1455 gp->lstate = link_force_ok;
1456 return 0;
1457 case link_aneg:
1458 /* We try forced modes after a failed aneg only on PHYs that don't
1459 * have "magic_aneg" bit set, which means they internally do the
1460 * while forced-mode thingy. On these, we just restart aneg
1462 if (gp->phy_mii.def->magic_aneg)
1463 return 1;
1464 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1465 /* Try forced modes. */
1466 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1467 DUPLEX_HALF);
1468 gp->timer_ticks = 5;
1469 gp->lstate = link_force_try;
1470 return 0;
1471 case link_force_try:
1472 /* Downgrade from 100 to 10 Mbps if necessary.
1473 * If already at 10Mbps, warn user about the
1474 * situation every 10 ticks.
1476 if (gp->phy_mii.speed == SPEED_100) {
1477 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1478 DUPLEX_HALF);
1479 gp->timer_ticks = 5;
1480 netif_info(gp, link, gp->dev,
1481 "switching to forced 10bt\n");
1482 return 0;
1483 } else
1484 return 1;
1485 default:
1486 return 0;
1490 static void gem_link_timer(struct timer_list *t)
1492 struct gem *gp = from_timer(gp, t, link_timer);
1493 struct net_device *dev = gp->dev;
1494 int restart_aneg = 0;
1496 /* There's no point doing anything if we're going to be reset */
1497 if (gp->reset_task_pending)
1498 return;
1500 if (gp->phy_type == phy_serialink ||
1501 gp->phy_type == phy_serdes) {
1502 u32 val = readl(gp->regs + PCS_MIISTAT);
1504 if (!(val & PCS_MIISTAT_LS))
1505 val = readl(gp->regs + PCS_MIISTAT);
1507 if ((val & PCS_MIISTAT_LS) != 0) {
1508 if (gp->lstate == link_up)
1509 goto restart;
1511 gp->lstate = link_up;
1512 netif_carrier_on(dev);
1513 (void)gem_set_link_modes(gp);
1515 goto restart;
1517 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1518 /* Ok, here we got a link. If we had it due to a forced
1519 * fallback, and we were configured for autoneg, we do
1520 * retry a short autoneg pass. If you know your hub is
1521 * broken, use ethtool ;)
1523 if (gp->lstate == link_force_try && gp->want_autoneg) {
1524 gp->lstate = link_force_ret;
1525 gp->last_forced_speed = gp->phy_mii.speed;
1526 gp->timer_ticks = 5;
1527 if (netif_msg_link(gp))
1528 netdev_info(dev,
1529 "Got link after fallback, retrying autoneg once...\n");
1530 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1531 } else if (gp->lstate != link_up) {
1532 gp->lstate = link_up;
1533 netif_carrier_on(dev);
1534 if (gem_set_link_modes(gp))
1535 restart_aneg = 1;
1537 } else {
1538 /* If the link was previously up, we restart the
1539 * whole process
1541 if (gp->lstate == link_up) {
1542 gp->lstate = link_down;
1543 netif_info(gp, link, dev, "Link down\n");
1544 netif_carrier_off(dev);
1545 gem_schedule_reset(gp);
1546 /* The reset task will restart the timer */
1547 return;
1548 } else if (++gp->timer_ticks > 10) {
1549 if (found_mii_phy(gp))
1550 restart_aneg = gem_mdio_link_not_up(gp);
1551 else
1552 restart_aneg = 1;
1555 if (restart_aneg) {
1556 gem_begin_auto_negotiation(gp, NULL);
1557 return;
1559 restart:
1560 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1563 static void gem_clean_rings(struct gem *gp)
1565 struct gem_init_block *gb = gp->init_block;
1566 struct sk_buff *skb;
1567 int i;
1568 dma_addr_t dma_addr;
1570 for (i = 0; i < RX_RING_SIZE; i++) {
1571 struct gem_rxd *rxd;
1573 rxd = &gb->rxd[i];
1574 if (gp->rx_skbs[i] != NULL) {
1575 skb = gp->rx_skbs[i];
1576 dma_addr = le64_to_cpu(rxd->buffer);
1577 pci_unmap_page(gp->pdev, dma_addr,
1578 RX_BUF_ALLOC_SIZE(gp),
1579 PCI_DMA_FROMDEVICE);
1580 dev_kfree_skb_any(skb);
1581 gp->rx_skbs[i] = NULL;
1583 rxd->status_word = 0;
1584 dma_wmb();
1585 rxd->buffer = 0;
1588 for (i = 0; i < TX_RING_SIZE; i++) {
1589 if (gp->tx_skbs[i] != NULL) {
1590 struct gem_txd *txd;
1591 int frag;
1593 skb = gp->tx_skbs[i];
1594 gp->tx_skbs[i] = NULL;
1596 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1597 int ent = i & (TX_RING_SIZE - 1);
1599 txd = &gb->txd[ent];
1600 dma_addr = le64_to_cpu(txd->buffer);
1601 pci_unmap_page(gp->pdev, dma_addr,
1602 le64_to_cpu(txd->control_word) &
1603 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1605 if (frag != skb_shinfo(skb)->nr_frags)
1606 i++;
1608 dev_kfree_skb_any(skb);
1613 static void gem_init_rings(struct gem *gp)
1615 struct gem_init_block *gb = gp->init_block;
1616 struct net_device *dev = gp->dev;
1617 int i;
1618 dma_addr_t dma_addr;
1620 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1622 gem_clean_rings(gp);
1624 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1625 (unsigned)VLAN_ETH_FRAME_LEN);
1627 for (i = 0; i < RX_RING_SIZE; i++) {
1628 struct sk_buff *skb;
1629 struct gem_rxd *rxd = &gb->rxd[i];
1631 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1632 if (!skb) {
1633 rxd->buffer = 0;
1634 rxd->status_word = 0;
1635 continue;
1638 gp->rx_skbs[i] = skb;
1639 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1640 dma_addr = pci_map_page(gp->pdev,
1641 virt_to_page(skb->data),
1642 offset_in_page(skb->data),
1643 RX_BUF_ALLOC_SIZE(gp),
1644 PCI_DMA_FROMDEVICE);
1645 rxd->buffer = cpu_to_le64(dma_addr);
1646 dma_wmb();
1647 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1648 skb_reserve(skb, RX_OFFSET);
1651 for (i = 0; i < TX_RING_SIZE; i++) {
1652 struct gem_txd *txd = &gb->txd[i];
1654 txd->control_word = 0;
1655 dma_wmb();
1656 txd->buffer = 0;
1658 wmb();
1661 /* Init PHY interface and start link poll state machine */
1662 static void gem_init_phy(struct gem *gp)
1664 u32 mifcfg;
1666 /* Revert MIF CFG setting done on stop_phy */
1667 mifcfg = readl(gp->regs + MIF_CFG);
1668 mifcfg &= ~MIF_CFG_BBMODE;
1669 writel(mifcfg, gp->regs + MIF_CFG);
1671 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1672 int i;
1674 /* Those delay sucks, the HW seem to love them though, I'll
1675 * serisouly consider breaking some locks here to be able
1676 * to schedule instead
1678 for (i = 0; i < 3; i++) {
1679 #ifdef CONFIG_PPC_PMAC
1680 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1681 msleep(20);
1682 #endif
1683 /* Some PHYs used by apple have problem getting back to us,
1684 * we do an additional reset here
1686 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1687 msleep(20);
1688 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1689 break;
1690 if (i == 2)
1691 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1696 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1697 u32 val;
1699 /* Init datapath mode register. */
1700 if (gp->phy_type == phy_mii_mdio0 ||
1701 gp->phy_type == phy_mii_mdio1) {
1702 val = PCS_DMODE_MGM;
1703 } else if (gp->phy_type == phy_serialink) {
1704 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1705 } else {
1706 val = PCS_DMODE_ESM;
1709 writel(val, gp->regs + PCS_DMODE);
1712 if (gp->phy_type == phy_mii_mdio0 ||
1713 gp->phy_type == phy_mii_mdio1) {
1714 /* Reset and detect MII PHY */
1715 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1717 /* Init PHY */
1718 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1719 gp->phy_mii.def->ops->init(&gp->phy_mii);
1720 } else {
1721 gem_pcs_reset(gp);
1722 gem_pcs_reinit_adv(gp);
1725 /* Default aneg parameters */
1726 gp->timer_ticks = 0;
1727 gp->lstate = link_down;
1728 netif_carrier_off(gp->dev);
1730 /* Print things out */
1731 if (gp->phy_type == phy_mii_mdio0 ||
1732 gp->phy_type == phy_mii_mdio1)
1733 netdev_info(gp->dev, "Found %s PHY\n",
1734 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1736 gem_begin_auto_negotiation(gp, NULL);
1739 static void gem_init_dma(struct gem *gp)
1741 u64 desc_dma = (u64) gp->gblock_dvma;
1742 u32 val;
1744 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1745 writel(val, gp->regs + TXDMA_CFG);
1747 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1748 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1749 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1751 writel(0, gp->regs + TXDMA_KICK);
1753 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1754 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1755 writel(val, gp->regs + RXDMA_CFG);
1757 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1758 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1760 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1762 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1763 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1764 writel(val, gp->regs + RXDMA_PTHRESH);
1766 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1767 writel(((5 & RXDMA_BLANK_IPKTS) |
1768 ((8 << 12) & RXDMA_BLANK_ITIME)),
1769 gp->regs + RXDMA_BLANK);
1770 else
1771 writel(((5 & RXDMA_BLANK_IPKTS) |
1772 ((4 << 12) & RXDMA_BLANK_ITIME)),
1773 gp->regs + RXDMA_BLANK);
1776 static u32 gem_setup_multicast(struct gem *gp)
1778 u32 rxcfg = 0;
1779 int i;
1781 if ((gp->dev->flags & IFF_ALLMULTI) ||
1782 (netdev_mc_count(gp->dev) > 256)) {
1783 for (i=0; i<16; i++)
1784 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1785 rxcfg |= MAC_RXCFG_HFE;
1786 } else if (gp->dev->flags & IFF_PROMISC) {
1787 rxcfg |= MAC_RXCFG_PROM;
1788 } else {
1789 u16 hash_table[16];
1790 u32 crc;
1791 struct netdev_hw_addr *ha;
1792 int i;
1794 memset(hash_table, 0, sizeof(hash_table));
1795 netdev_for_each_mc_addr(ha, gp->dev) {
1796 crc = ether_crc_le(6, ha->addr);
1797 crc >>= 24;
1798 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1800 for (i=0; i<16; i++)
1801 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1802 rxcfg |= MAC_RXCFG_HFE;
1805 return rxcfg;
1808 static void gem_init_mac(struct gem *gp)
1810 unsigned char *e = &gp->dev->dev_addr[0];
1812 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1814 writel(0x00, gp->regs + MAC_IPG0);
1815 writel(0x08, gp->regs + MAC_IPG1);
1816 writel(0x04, gp->regs + MAC_IPG2);
1817 writel(0x40, gp->regs + MAC_STIME);
1818 writel(0x40, gp->regs + MAC_MINFSZ);
1820 /* Ethernet payload + header + FCS + optional VLAN tag. */
1821 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1823 writel(0x07, gp->regs + MAC_PASIZE);
1824 writel(0x04, gp->regs + MAC_JAMSIZE);
1825 writel(0x10, gp->regs + MAC_ATTLIM);
1826 writel(0x8808, gp->regs + MAC_MCTYPE);
1828 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1830 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1831 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1832 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1834 writel(0, gp->regs + MAC_ADDR3);
1835 writel(0, gp->regs + MAC_ADDR4);
1836 writel(0, gp->regs + MAC_ADDR5);
1838 writel(0x0001, gp->regs + MAC_ADDR6);
1839 writel(0xc200, gp->regs + MAC_ADDR7);
1840 writel(0x0180, gp->regs + MAC_ADDR8);
1842 writel(0, gp->regs + MAC_AFILT0);
1843 writel(0, gp->regs + MAC_AFILT1);
1844 writel(0, gp->regs + MAC_AFILT2);
1845 writel(0, gp->regs + MAC_AF21MSK);
1846 writel(0, gp->regs + MAC_AF0MSK);
1848 gp->mac_rx_cfg = gem_setup_multicast(gp);
1849 #ifdef STRIP_FCS
1850 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1851 #endif
1852 writel(0, gp->regs + MAC_NCOLL);
1853 writel(0, gp->regs + MAC_FASUCC);
1854 writel(0, gp->regs + MAC_ECOLL);
1855 writel(0, gp->regs + MAC_LCOLL);
1856 writel(0, gp->regs + MAC_DTIMER);
1857 writel(0, gp->regs + MAC_PATMPS);
1858 writel(0, gp->regs + MAC_RFCTR);
1859 writel(0, gp->regs + MAC_LERR);
1860 writel(0, gp->regs + MAC_AERR);
1861 writel(0, gp->regs + MAC_FCSERR);
1862 writel(0, gp->regs + MAC_RXCVERR);
1864 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1865 * them once a link is established.
1867 writel(0, gp->regs + MAC_TXCFG);
1868 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1869 writel(0, gp->regs + MAC_MCCFG);
1870 writel(0, gp->regs + MAC_XIFCFG);
1872 /* Setup MAC interrupts. We want to get all of the interesting
1873 * counter expiration events, but we do not want to hear about
1874 * normal rx/tx as the DMA engine tells us that.
1876 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1877 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1879 /* Don't enable even the PAUSE interrupts for now, we
1880 * make no use of those events other than to record them.
1882 writel(0xffffffff, gp->regs + MAC_MCMASK);
1884 /* Don't enable GEM's WOL in normal operations
1886 if (gp->has_wol)
1887 writel(0, gp->regs + WOL_WAKECSR);
1890 static void gem_init_pause_thresholds(struct gem *gp)
1892 u32 cfg;
1894 /* Calculate pause thresholds. Setting the OFF threshold to the
1895 * full RX fifo size effectively disables PAUSE generation which
1896 * is what we do for 10/100 only GEMs which have FIFOs too small
1897 * to make real gains from PAUSE.
1899 if (gp->rx_fifo_sz <= (2 * 1024)) {
1900 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1901 } else {
1902 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1903 int off = (gp->rx_fifo_sz - (max_frame * 2));
1904 int on = off - max_frame;
1906 gp->rx_pause_off = off;
1907 gp->rx_pause_on = on;
1911 /* Configure the chip "burst" DMA mode & enable some
1912 * HW bug fixes on Apple version
1914 cfg = 0;
1915 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1916 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1917 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1918 cfg |= GREG_CFG_IBURST;
1919 #endif
1920 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1921 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1922 writel(cfg, gp->regs + GREG_CFG);
1924 /* If Infinite Burst didn't stick, then use different
1925 * thresholds (and Apple bug fixes don't exist)
1927 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1928 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1929 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1930 writel(cfg, gp->regs + GREG_CFG);
1934 static int gem_check_invariants(struct gem *gp)
1936 struct pci_dev *pdev = gp->pdev;
1937 u32 mif_cfg;
1939 /* On Apple's sungem, we can't rely on registers as the chip
1940 * was been powered down by the firmware. The PHY is looked
1941 * up later on.
1943 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1944 gp->phy_type = phy_mii_mdio0;
1945 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1946 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1947 gp->swrst_base = 0;
1949 mif_cfg = readl(gp->regs + MIF_CFG);
1950 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1951 mif_cfg |= MIF_CFG_MDI0;
1952 writel(mif_cfg, gp->regs + MIF_CFG);
1953 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1954 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1956 /* We hard-code the PHY address so we can properly bring it out of
1957 * reset later on, we can't really probe it at this point, though
1958 * that isn't an issue.
1960 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1961 gp->mii_phy_addr = 1;
1962 else
1963 gp->mii_phy_addr = 0;
1965 return 0;
1968 mif_cfg = readl(gp->regs + MIF_CFG);
1970 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1971 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1972 /* One of the MII PHYs _must_ be present
1973 * as this chip has no gigabit PHY.
1975 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1976 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1977 mif_cfg);
1978 return -1;
1982 /* Determine initial PHY interface type guess. MDIO1 is the
1983 * external PHY and thus takes precedence over MDIO0.
1986 if (mif_cfg & MIF_CFG_MDI1) {
1987 gp->phy_type = phy_mii_mdio1;
1988 mif_cfg |= MIF_CFG_PSELECT;
1989 writel(mif_cfg, gp->regs + MIF_CFG);
1990 } else if (mif_cfg & MIF_CFG_MDI0) {
1991 gp->phy_type = phy_mii_mdio0;
1992 mif_cfg &= ~MIF_CFG_PSELECT;
1993 writel(mif_cfg, gp->regs + MIF_CFG);
1994 } else {
1995 #ifdef CONFIG_SPARC
1996 const char *p;
1998 p = of_get_property(gp->of_node, "shared-pins", NULL);
1999 if (p && !strcmp(p, "serdes"))
2000 gp->phy_type = phy_serdes;
2001 else
2002 #endif
2003 gp->phy_type = phy_serialink;
2005 if (gp->phy_type == phy_mii_mdio1 ||
2006 gp->phy_type == phy_mii_mdio0) {
2007 int i;
2009 for (i = 0; i < 32; i++) {
2010 gp->mii_phy_addr = i;
2011 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2012 break;
2014 if (i == 32) {
2015 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2016 pr_err("RIO MII phy will not respond\n");
2017 return -1;
2019 gp->phy_type = phy_serdes;
2023 /* Fetch the FIFO configurations now too. */
2024 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2025 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2027 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2028 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2029 if (gp->tx_fifo_sz != (9 * 1024) ||
2030 gp->rx_fifo_sz != (20 * 1024)) {
2031 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2032 gp->tx_fifo_sz, gp->rx_fifo_sz);
2033 return -1;
2035 gp->swrst_base = 0;
2036 } else {
2037 if (gp->tx_fifo_sz != (2 * 1024) ||
2038 gp->rx_fifo_sz != (2 * 1024)) {
2039 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2040 gp->tx_fifo_sz, gp->rx_fifo_sz);
2041 return -1;
2043 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047 return 0;
2050 static void gem_reinit_chip(struct gem *gp)
2052 /* Reset the chip */
2053 gem_reset(gp);
2055 /* Make sure ints are disabled */
2056 gem_disable_ints(gp);
2058 /* Allocate & setup ring buffers */
2059 gem_init_rings(gp);
2061 /* Configure pause thresholds */
2062 gem_init_pause_thresholds(gp);
2064 /* Init DMA & MAC engines */
2065 gem_init_dma(gp);
2066 gem_init_mac(gp);
2070 static void gem_stop_phy(struct gem *gp, int wol)
2072 u32 mifcfg;
2074 /* Let the chip settle down a bit, it seems that helps
2075 * for sleep mode on some models
2077 msleep(10);
2079 /* Make sure we aren't polling PHY status change. We
2080 * don't currently use that feature though
2082 mifcfg = readl(gp->regs + MIF_CFG);
2083 mifcfg &= ~MIF_CFG_POLL;
2084 writel(mifcfg, gp->regs + MIF_CFG);
2086 if (wol && gp->has_wol) {
2087 unsigned char *e = &gp->dev->dev_addr[0];
2088 u32 csr;
2090 /* Setup wake-on-lan for MAGIC packet */
2091 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2092 gp->regs + MAC_RXCFG);
2093 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2094 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2095 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2097 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2098 csr = WOL_WAKECSR_ENABLE;
2099 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2100 csr |= WOL_WAKECSR_MII;
2101 writel(csr, gp->regs + WOL_WAKECSR);
2102 } else {
2103 writel(0, gp->regs + MAC_RXCFG);
2104 (void)readl(gp->regs + MAC_RXCFG);
2105 /* Machine sleep will die in strange ways if we
2106 * dont wait a bit here, looks like the chip takes
2107 * some time to really shut down
2109 msleep(10);
2112 writel(0, gp->regs + MAC_TXCFG);
2113 writel(0, gp->regs + MAC_XIFCFG);
2114 writel(0, gp->regs + TXDMA_CFG);
2115 writel(0, gp->regs + RXDMA_CFG);
2117 if (!wol) {
2118 gem_reset(gp);
2119 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2120 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2122 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2123 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2125 /* According to Apple, we must set the MDIO pins to this begnign
2126 * state or we may 1) eat more current, 2) damage some PHYs
2128 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2129 writel(0, gp->regs + MIF_BBCLK);
2130 writel(0, gp->regs + MIF_BBDATA);
2131 writel(0, gp->regs + MIF_BBOENAB);
2132 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2133 (void) readl(gp->regs + MAC_XIFCFG);
2137 static int gem_do_start(struct net_device *dev)
2139 struct gem *gp = netdev_priv(dev);
2140 int rc;
2142 /* Enable the cell */
2143 gem_get_cell(gp);
2145 /* Make sure PCI access and bus master are enabled */
2146 rc = pci_enable_device(gp->pdev);
2147 if (rc) {
2148 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2150 /* Put cell and forget it for now, it will be considered as
2151 * still asleep, a new sleep cycle may bring it back
2153 gem_put_cell(gp);
2154 return -ENXIO;
2156 pci_set_master(gp->pdev);
2158 /* Init & setup chip hardware */
2159 gem_reinit_chip(gp);
2161 /* An interrupt might come in handy */
2162 rc = request_irq(gp->pdev->irq, gem_interrupt,
2163 IRQF_SHARED, dev->name, (void *)dev);
2164 if (rc) {
2165 netdev_err(dev, "failed to request irq !\n");
2167 gem_reset(gp);
2168 gem_clean_rings(gp);
2169 gem_put_cell(gp);
2170 return rc;
2173 /* Mark us as attached again if we come from resume(), this has
2174 * no effect if we weren't detached and needs to be done now.
2176 netif_device_attach(dev);
2178 /* Restart NAPI & queues */
2179 gem_netif_start(gp);
2181 /* Detect & init PHY, start autoneg etc... this will
2182 * eventually result in starting DMA operations when
2183 * the link is up
2185 gem_init_phy(gp);
2187 return 0;
2190 static void gem_do_stop(struct net_device *dev, int wol)
2192 struct gem *gp = netdev_priv(dev);
2194 /* Stop NAPI and stop tx queue */
2195 gem_netif_stop(gp);
2197 /* Make sure ints are disabled. We don't care about
2198 * synchronizing as NAPI is disabled, thus a stray
2199 * interrupt will do nothing bad (our irq handler
2200 * just schedules NAPI)
2202 gem_disable_ints(gp);
2204 /* Stop the link timer */
2205 del_timer_sync(&gp->link_timer);
2207 /* We cannot cancel the reset task while holding the
2208 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2209 * if we did. This is not an issue however as the reset
2210 * task is synchronized vs. us (rtnl_lock) and will do
2211 * nothing if the device is down or suspended. We do
2212 * still clear reset_task_pending to avoid a spurrious
2213 * reset later on in case we do resume before it gets
2214 * scheduled.
2216 gp->reset_task_pending = 0;
2218 /* If we are going to sleep with WOL */
2219 gem_stop_dma(gp);
2220 msleep(10);
2221 if (!wol)
2222 gem_reset(gp);
2223 msleep(10);
2225 /* Get rid of rings */
2226 gem_clean_rings(gp);
2228 /* No irq needed anymore */
2229 free_irq(gp->pdev->irq, (void *) dev);
2231 /* Shut the PHY down eventually and setup WOL */
2232 gem_stop_phy(gp, wol);
2234 /* Make sure bus master is disabled */
2235 pci_disable_device(gp->pdev);
2237 /* Cell not needed neither if no WOL */
2238 if (!wol)
2239 gem_put_cell(gp);
2242 static void gem_reset_task(struct work_struct *work)
2244 struct gem *gp = container_of(work, struct gem, reset_task);
2246 /* Lock out the network stack (essentially shield ourselves
2247 * against a racing open, close, control call, or suspend
2249 rtnl_lock();
2251 /* Skip the reset task if suspended or closed, or if it's
2252 * been cancelled by gem_do_stop (see comment there)
2254 if (!netif_device_present(gp->dev) ||
2255 !netif_running(gp->dev) ||
2256 !gp->reset_task_pending) {
2257 rtnl_unlock();
2258 return;
2261 /* Stop the link timer */
2262 del_timer_sync(&gp->link_timer);
2264 /* Stop NAPI and tx */
2265 gem_netif_stop(gp);
2267 /* Reset the chip & rings */
2268 gem_reinit_chip(gp);
2269 if (gp->lstate == link_up)
2270 gem_set_link_modes(gp);
2272 /* Restart NAPI and Tx */
2273 gem_netif_start(gp);
2275 /* We are back ! */
2276 gp->reset_task_pending = 0;
2278 /* If the link is not up, restart autoneg, else restart the
2279 * polling timer
2281 if (gp->lstate != link_up)
2282 gem_begin_auto_negotiation(gp, NULL);
2283 else
2284 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2286 rtnl_unlock();
2289 static int gem_open(struct net_device *dev)
2291 /* We allow open while suspended, we just do nothing,
2292 * the chip will be initialized in resume()
2294 if (netif_device_present(dev))
2295 return gem_do_start(dev);
2296 return 0;
2299 static int gem_close(struct net_device *dev)
2301 if (netif_device_present(dev))
2302 gem_do_stop(dev, 0);
2304 return 0;
2307 #ifdef CONFIG_PM
2308 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2310 struct net_device *dev = pci_get_drvdata(pdev);
2311 struct gem *gp = netdev_priv(dev);
2313 /* Lock the network stack first to avoid racing with open/close,
2314 * reset task and setting calls
2316 rtnl_lock();
2318 /* Not running, mark ourselves non-present, no need for
2319 * a lock here
2321 if (!netif_running(dev)) {
2322 netif_device_detach(dev);
2323 rtnl_unlock();
2324 return 0;
2326 netdev_info(dev, "suspending, WakeOnLan %s\n",
2327 (gp->wake_on_lan && netif_running(dev)) ?
2328 "enabled" : "disabled");
2330 /* Tell the network stack we're gone. gem_do_stop() below will
2331 * synchronize with TX, stop NAPI etc...
2333 netif_device_detach(dev);
2335 /* Switch off chip, remember WOL setting */
2336 gp->asleep_wol = !!gp->wake_on_lan;
2337 gem_do_stop(dev, gp->asleep_wol);
2339 /* Unlock the network stack */
2340 rtnl_unlock();
2342 return 0;
2345 static int gem_resume(struct pci_dev *pdev)
2347 struct net_device *dev = pci_get_drvdata(pdev);
2348 struct gem *gp = netdev_priv(dev);
2350 /* See locking comment in gem_suspend */
2351 rtnl_lock();
2353 /* Not running, mark ourselves present, no need for
2354 * a lock here
2356 if (!netif_running(dev)) {
2357 netif_device_attach(dev);
2358 rtnl_unlock();
2359 return 0;
2362 /* Restart chip. If that fails there isn't much we can do, we
2363 * leave things stopped.
2365 gem_do_start(dev);
2367 /* If we had WOL enabled, the cell clock was never turned off during
2368 * sleep, so we end up beeing unbalanced. Fix that here
2370 if (gp->asleep_wol)
2371 gem_put_cell(gp);
2373 /* Unlock the network stack */
2374 rtnl_unlock();
2376 return 0;
2378 #endif /* CONFIG_PM */
2380 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2382 struct gem *gp = netdev_priv(dev);
2384 /* I have seen this being called while the PM was in progress,
2385 * so we shield against this. Let's also not poke at registers
2386 * while the reset task is going on.
2388 * TODO: Move stats collection elsewhere (link timer ?) and
2389 * make this a nop to avoid all those synchro issues
2391 if (!netif_device_present(dev) || !netif_running(dev))
2392 goto bail;
2394 /* Better safe than sorry... */
2395 if (WARN_ON(!gp->cell_enabled))
2396 goto bail;
2398 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2399 writel(0, gp->regs + MAC_FCSERR);
2401 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2402 writel(0, gp->regs + MAC_AERR);
2404 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2405 writel(0, gp->regs + MAC_LERR);
2407 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2408 dev->stats.collisions +=
2409 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2410 writel(0, gp->regs + MAC_ECOLL);
2411 writel(0, gp->regs + MAC_LCOLL);
2412 bail:
2413 return &dev->stats;
2416 static int gem_set_mac_address(struct net_device *dev, void *addr)
2418 struct sockaddr *macaddr = (struct sockaddr *) addr;
2419 struct gem *gp = netdev_priv(dev);
2420 unsigned char *e = &dev->dev_addr[0];
2422 if (!is_valid_ether_addr(macaddr->sa_data))
2423 return -EADDRNOTAVAIL;
2425 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2427 /* We'll just catch it later when the device is up'd or resumed */
2428 if (!netif_running(dev) || !netif_device_present(dev))
2429 return 0;
2431 /* Better safe than sorry... */
2432 if (WARN_ON(!gp->cell_enabled))
2433 return 0;
2435 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2436 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2437 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2439 return 0;
2442 static void gem_set_multicast(struct net_device *dev)
2444 struct gem *gp = netdev_priv(dev);
2445 u32 rxcfg, rxcfg_new;
2446 int limit = 10000;
2448 if (!netif_running(dev) || !netif_device_present(dev))
2449 return;
2451 /* Better safe than sorry... */
2452 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2453 return;
2455 rxcfg = readl(gp->regs + MAC_RXCFG);
2456 rxcfg_new = gem_setup_multicast(gp);
2457 #ifdef STRIP_FCS
2458 rxcfg_new |= MAC_RXCFG_SFCS;
2459 #endif
2460 gp->mac_rx_cfg = rxcfg_new;
2462 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2463 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2464 if (!limit--)
2465 break;
2466 udelay(10);
2469 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2470 rxcfg |= rxcfg_new;
2472 writel(rxcfg, gp->regs + MAC_RXCFG);
2475 /* Jumbo-grams don't seem to work :-( */
2476 #define GEM_MIN_MTU ETH_MIN_MTU
2477 #if 1
2478 #define GEM_MAX_MTU ETH_DATA_LEN
2479 #else
2480 #define GEM_MAX_MTU 9000
2481 #endif
2483 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2485 struct gem *gp = netdev_priv(dev);
2487 dev->mtu = new_mtu;
2489 /* We'll just catch it later when the device is up'd or resumed */
2490 if (!netif_running(dev) || !netif_device_present(dev))
2491 return 0;
2493 /* Better safe than sorry... */
2494 if (WARN_ON(!gp->cell_enabled))
2495 return 0;
2497 gem_netif_stop(gp);
2498 gem_reinit_chip(gp);
2499 if (gp->lstate == link_up)
2500 gem_set_link_modes(gp);
2501 gem_netif_start(gp);
2503 return 0;
2506 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2508 struct gem *gp = netdev_priv(dev);
2510 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2511 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2512 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2515 static int gem_get_link_ksettings(struct net_device *dev,
2516 struct ethtool_link_ksettings *cmd)
2518 struct gem *gp = netdev_priv(dev);
2519 u32 supported, advertising;
2521 if (gp->phy_type == phy_mii_mdio0 ||
2522 gp->phy_type == phy_mii_mdio1) {
2523 if (gp->phy_mii.def)
2524 supported = gp->phy_mii.def->features;
2525 else
2526 supported = (SUPPORTED_10baseT_Half |
2527 SUPPORTED_10baseT_Full);
2529 /* XXX hardcoded stuff for now */
2530 cmd->base.port = PORT_MII;
2531 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2533 /* Return current PHY settings */
2534 cmd->base.autoneg = gp->want_autoneg;
2535 cmd->base.speed = gp->phy_mii.speed;
2536 cmd->base.duplex = gp->phy_mii.duplex;
2537 advertising = gp->phy_mii.advertising;
2539 /* If we started with a forced mode, we don't have a default
2540 * advertise set, we need to return something sensible so
2541 * userland can re-enable autoneg properly.
2543 if (advertising == 0)
2544 advertising = supported;
2545 } else { // XXX PCS ?
2546 supported =
2547 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2548 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2549 SUPPORTED_Autoneg);
2550 advertising = supported;
2551 cmd->base.speed = 0;
2552 cmd->base.duplex = 0;
2553 cmd->base.port = 0;
2554 cmd->base.phy_address = 0;
2555 cmd->base.autoneg = 0;
2557 /* serdes means usually a Fibre connector, with most fixed */
2558 if (gp->phy_type == phy_serdes) {
2559 cmd->base.port = PORT_FIBRE;
2560 supported = (SUPPORTED_1000baseT_Half |
2561 SUPPORTED_1000baseT_Full |
2562 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2563 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2564 advertising = supported;
2565 if (gp->lstate == link_up)
2566 cmd->base.speed = SPEED_1000;
2567 cmd->base.duplex = DUPLEX_FULL;
2568 cmd->base.autoneg = 1;
2572 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2573 supported);
2574 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2575 advertising);
2577 return 0;
2580 static int gem_set_link_ksettings(struct net_device *dev,
2581 const struct ethtool_link_ksettings *cmd)
2583 struct gem *gp = netdev_priv(dev);
2584 u32 speed = cmd->base.speed;
2585 u32 advertising;
2587 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2588 cmd->link_modes.advertising);
2590 /* Verify the settings we care about. */
2591 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2592 cmd->base.autoneg != AUTONEG_DISABLE)
2593 return -EINVAL;
2595 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2596 advertising == 0)
2597 return -EINVAL;
2599 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2600 ((speed != SPEED_1000 &&
2601 speed != SPEED_100 &&
2602 speed != SPEED_10) ||
2603 (cmd->base.duplex != DUPLEX_HALF &&
2604 cmd->base.duplex != DUPLEX_FULL)))
2605 return -EINVAL;
2607 /* Apply settings and restart link process. */
2608 if (netif_device_present(gp->dev)) {
2609 del_timer_sync(&gp->link_timer);
2610 gem_begin_auto_negotiation(gp, cmd);
2613 return 0;
2616 static int gem_nway_reset(struct net_device *dev)
2618 struct gem *gp = netdev_priv(dev);
2620 if (!gp->want_autoneg)
2621 return -EINVAL;
2623 /* Restart link process */
2624 if (netif_device_present(gp->dev)) {
2625 del_timer_sync(&gp->link_timer);
2626 gem_begin_auto_negotiation(gp, NULL);
2629 return 0;
2632 static u32 gem_get_msglevel(struct net_device *dev)
2634 struct gem *gp = netdev_priv(dev);
2635 return gp->msg_enable;
2638 static void gem_set_msglevel(struct net_device *dev, u32 value)
2640 struct gem *gp = netdev_priv(dev);
2641 gp->msg_enable = value;
2645 /* Add more when I understand how to program the chip */
2646 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2648 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2650 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2652 struct gem *gp = netdev_priv(dev);
2654 /* Add more when I understand how to program the chip */
2655 if (gp->has_wol) {
2656 wol->supported = WOL_SUPPORTED_MASK;
2657 wol->wolopts = gp->wake_on_lan;
2658 } else {
2659 wol->supported = 0;
2660 wol->wolopts = 0;
2664 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666 struct gem *gp = netdev_priv(dev);
2668 if (!gp->has_wol)
2669 return -EOPNOTSUPP;
2670 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2671 return 0;
2674 static const struct ethtool_ops gem_ethtool_ops = {
2675 .get_drvinfo = gem_get_drvinfo,
2676 .get_link = ethtool_op_get_link,
2677 .nway_reset = gem_nway_reset,
2678 .get_msglevel = gem_get_msglevel,
2679 .set_msglevel = gem_set_msglevel,
2680 .get_wol = gem_get_wol,
2681 .set_wol = gem_set_wol,
2682 .get_link_ksettings = gem_get_link_ksettings,
2683 .set_link_ksettings = gem_set_link_ksettings,
2686 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2688 struct gem *gp = netdev_priv(dev);
2689 struct mii_ioctl_data *data = if_mii(ifr);
2690 int rc = -EOPNOTSUPP;
2692 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2693 * netif_device_present() is true and holds rtnl_lock for us
2694 * so we have nothing to worry about
2697 switch (cmd) {
2698 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2699 data->phy_id = gp->mii_phy_addr;
2700 /* Fallthrough... */
2702 case SIOCGMIIREG: /* Read MII PHY register. */
2703 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2704 data->reg_num & 0x1f);
2705 rc = 0;
2706 break;
2708 case SIOCSMIIREG: /* Write MII PHY register. */
2709 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2710 data->val_in);
2711 rc = 0;
2712 break;
2714 return rc;
2717 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2718 /* Fetch MAC address from vital product data of PCI ROM. */
2719 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2721 int this_offset;
2723 for (this_offset = 0x20; this_offset < len; this_offset++) {
2724 void __iomem *p = rom_base + this_offset;
2725 int i;
2727 if (readb(p + 0) != 0x90 ||
2728 readb(p + 1) != 0x00 ||
2729 readb(p + 2) != 0x09 ||
2730 readb(p + 3) != 0x4e ||
2731 readb(p + 4) != 0x41 ||
2732 readb(p + 5) != 0x06)
2733 continue;
2735 this_offset += 6;
2736 p += 6;
2738 for (i = 0; i < 6; i++)
2739 dev_addr[i] = readb(p + i);
2740 return 1;
2742 return 0;
2745 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2747 size_t size;
2748 void __iomem *p = pci_map_rom(pdev, &size);
2750 if (p) {
2751 int found;
2753 found = readb(p) == 0x55 &&
2754 readb(p + 1) == 0xaa &&
2755 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2756 pci_unmap_rom(pdev, p);
2757 if (found)
2758 return;
2761 /* Sun MAC prefix then 3 random bytes. */
2762 dev_addr[0] = 0x08;
2763 dev_addr[1] = 0x00;
2764 dev_addr[2] = 0x20;
2765 get_random_bytes(dev_addr + 3, 3);
2767 #endif /* not Sparc and not PPC */
2769 static int gem_get_device_address(struct gem *gp)
2771 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2772 struct net_device *dev = gp->dev;
2773 const unsigned char *addr;
2775 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2776 if (addr == NULL) {
2777 #ifdef CONFIG_SPARC
2778 addr = idprom->id_ethaddr;
2779 #else
2780 printk("\n");
2781 pr_err("%s: can't get mac-address\n", dev->name);
2782 return -1;
2783 #endif
2785 memcpy(dev->dev_addr, addr, ETH_ALEN);
2786 #else
2787 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2788 #endif
2789 return 0;
2792 static void gem_remove_one(struct pci_dev *pdev)
2794 struct net_device *dev = pci_get_drvdata(pdev);
2796 if (dev) {
2797 struct gem *gp = netdev_priv(dev);
2799 unregister_netdev(dev);
2801 /* Ensure reset task is truly gone */
2802 cancel_work_sync(&gp->reset_task);
2804 /* Free resources */
2805 pci_free_consistent(pdev,
2806 sizeof(struct gem_init_block),
2807 gp->init_block,
2808 gp->gblock_dvma);
2809 iounmap(gp->regs);
2810 pci_release_regions(pdev);
2811 free_netdev(dev);
2815 static const struct net_device_ops gem_netdev_ops = {
2816 .ndo_open = gem_open,
2817 .ndo_stop = gem_close,
2818 .ndo_start_xmit = gem_start_xmit,
2819 .ndo_get_stats = gem_get_stats,
2820 .ndo_set_rx_mode = gem_set_multicast,
2821 .ndo_do_ioctl = gem_ioctl,
2822 .ndo_tx_timeout = gem_tx_timeout,
2823 .ndo_change_mtu = gem_change_mtu,
2824 .ndo_validate_addr = eth_validate_addr,
2825 .ndo_set_mac_address = gem_set_mac_address,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 .ndo_poll_controller = gem_poll_controller,
2828 #endif
2831 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2833 unsigned long gemreg_base, gemreg_len;
2834 struct net_device *dev;
2835 struct gem *gp;
2836 int err, pci_using_dac;
2838 printk_once(KERN_INFO "%s", version);
2840 /* Apple gmac note: during probe, the chip is powered up by
2841 * the arch code to allow the code below to work (and to let
2842 * the chip be probed on the config space. It won't stay powered
2843 * up until the interface is brought up however, so we can't rely
2844 * on register configuration done at this point.
2846 err = pci_enable_device(pdev);
2847 if (err) {
2848 pr_err("Cannot enable MMIO operation, aborting\n");
2849 return err;
2851 pci_set_master(pdev);
2853 /* Configure DMA attributes. */
2855 /* All of the GEM documentation states that 64-bit DMA addressing
2856 * is fully supported and should work just fine. However the
2857 * front end for RIO based GEMs is different and only supports
2858 * 32-bit addressing.
2860 * For now we assume the various PPC GEMs are 32-bit only as well.
2862 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2863 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2864 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2865 pci_using_dac = 1;
2866 } else {
2867 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2868 if (err) {
2869 pr_err("No usable DMA configuration, aborting\n");
2870 goto err_disable_device;
2872 pci_using_dac = 0;
2875 gemreg_base = pci_resource_start(pdev, 0);
2876 gemreg_len = pci_resource_len(pdev, 0);
2878 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2879 pr_err("Cannot find proper PCI device base address, aborting\n");
2880 err = -ENODEV;
2881 goto err_disable_device;
2884 dev = alloc_etherdev(sizeof(*gp));
2885 if (!dev) {
2886 err = -ENOMEM;
2887 goto err_disable_device;
2889 SET_NETDEV_DEV(dev, &pdev->dev);
2891 gp = netdev_priv(dev);
2893 err = pci_request_regions(pdev, DRV_NAME);
2894 if (err) {
2895 pr_err("Cannot obtain PCI resources, aborting\n");
2896 goto err_out_free_netdev;
2899 gp->pdev = pdev;
2900 gp->dev = dev;
2902 gp->msg_enable = DEFAULT_MSG;
2904 timer_setup(&gp->link_timer, gem_link_timer, 0);
2906 INIT_WORK(&gp->reset_task, gem_reset_task);
2908 gp->lstate = link_down;
2909 gp->timer_ticks = 0;
2910 netif_carrier_off(dev);
2912 gp->regs = ioremap(gemreg_base, gemreg_len);
2913 if (!gp->regs) {
2914 pr_err("Cannot map device registers, aborting\n");
2915 err = -EIO;
2916 goto err_out_free_res;
2919 /* On Apple, we want a reference to the Open Firmware device-tree
2920 * node. We use it for clock control.
2922 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2923 gp->of_node = pci_device_to_OF_node(pdev);
2924 #endif
2926 /* Only Apple version supports WOL afaik */
2927 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2928 gp->has_wol = 1;
2930 /* Make sure cell is enabled */
2931 gem_get_cell(gp);
2933 /* Make sure everything is stopped and in init state */
2934 gem_reset(gp);
2936 /* Fill up the mii_phy structure (even if we won't use it) */
2937 gp->phy_mii.dev = dev;
2938 gp->phy_mii.mdio_read = _sungem_phy_read;
2939 gp->phy_mii.mdio_write = _sungem_phy_write;
2940 #ifdef CONFIG_PPC_PMAC
2941 gp->phy_mii.platform_data = gp->of_node;
2942 #endif
2943 /* By default, we start with autoneg */
2944 gp->want_autoneg = 1;
2946 /* Check fifo sizes, PHY type, etc... */
2947 if (gem_check_invariants(gp)) {
2948 err = -ENODEV;
2949 goto err_out_iounmap;
2952 /* It is guaranteed that the returned buffer will be at least
2953 * PAGE_SIZE aligned.
2955 gp->init_block = (struct gem_init_block *)
2956 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2957 &gp->gblock_dvma);
2958 if (!gp->init_block) {
2959 pr_err("Cannot allocate init block, aborting\n");
2960 err = -ENOMEM;
2961 goto err_out_iounmap;
2964 err = gem_get_device_address(gp);
2965 if (err)
2966 goto err_out_free_consistent;
2968 dev->netdev_ops = &gem_netdev_ops;
2969 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2970 dev->ethtool_ops = &gem_ethtool_ops;
2971 dev->watchdog_timeo = 5 * HZ;
2972 dev->dma = 0;
2974 /* Set that now, in case PM kicks in now */
2975 pci_set_drvdata(pdev, dev);
2977 /* We can do scatter/gather and HW checksum */
2978 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2979 dev->features = dev->hw_features;
2980 if (pci_using_dac)
2981 dev->features |= NETIF_F_HIGHDMA;
2983 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2984 dev->min_mtu = GEM_MIN_MTU;
2985 dev->max_mtu = GEM_MAX_MTU;
2987 /* Register with kernel */
2988 if (register_netdev(dev)) {
2989 pr_err("Cannot register net device, aborting\n");
2990 err = -ENOMEM;
2991 goto err_out_free_consistent;
2994 /* Undo the get_cell with appropriate locking (we could use
2995 * ndo_init/uninit but that would be even more clumsy imho)
2997 rtnl_lock();
2998 gem_put_cell(gp);
2999 rtnl_unlock();
3001 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3002 dev->dev_addr);
3003 return 0;
3005 err_out_free_consistent:
3006 gem_remove_one(pdev);
3007 err_out_iounmap:
3008 gem_put_cell(gp);
3009 iounmap(gp->regs);
3011 err_out_free_res:
3012 pci_release_regions(pdev);
3014 err_out_free_netdev:
3015 free_netdev(dev);
3016 err_disable_device:
3017 pci_disable_device(pdev);
3018 return err;
3023 static struct pci_driver gem_driver = {
3024 .name = GEM_MODULE_NAME,
3025 .id_table = gem_pci_tbl,
3026 .probe = gem_init_one,
3027 .remove = gem_remove_one,
3028 #ifdef CONFIG_PM
3029 .suspend = gem_suspend,
3030 .resume = gem_resume,
3031 #endif /* CONFIG_PM */
3034 module_pci_driver(gem_driver);