1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
42 #include <linux/gfp.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
50 #include <asm/idprom.h>
54 #ifdef CONFIG_PPC_PMAC
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
60 #include <linux/sungem_phy.h>
65 #define DEFAULT_MSG (NETIF_MSG_DRV | \
69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 #define DRV_NAME "sungem"
75 #define DRV_VERSION "1.0"
76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
78 static char version
[] =
79 DRV_NAME
".c:v" DRV_VERSION
" " DRV_AUTHOR
"\n";
81 MODULE_AUTHOR(DRV_AUTHOR
);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
85 #define GEM_MODULE_NAME "gem"
87 static const struct pci_device_id gem_pci_tbl
[] = {
88 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
89 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
98 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
99 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
101 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
103 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
105 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
107 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
109 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
111 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
115 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
117 static u16
__sungem_phy_read(struct gem
*gp
, int phy_addr
, int reg
)
124 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
125 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
126 cmd
|= (MIF_FRAME_TAMSB
);
127 writel(cmd
, gp
->regs
+ MIF_FRAME
);
130 cmd
= readl(gp
->regs
+ MIF_FRAME
);
131 if (cmd
& MIF_FRAME_TALSB
)
140 return cmd
& MIF_FRAME_DATA
;
143 static inline int _sungem_phy_read(struct net_device
*dev
, int mii_id
, int reg
)
145 struct gem
*gp
= netdev_priv(dev
);
146 return __sungem_phy_read(gp
, mii_id
, reg
);
149 static inline u16
sungem_phy_read(struct gem
*gp
, int reg
)
151 return __sungem_phy_read(gp
, gp
->mii_phy_addr
, reg
);
154 static void __sungem_phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
161 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
162 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
163 cmd
|= (MIF_FRAME_TAMSB
);
164 cmd
|= (val
& MIF_FRAME_DATA
);
165 writel(cmd
, gp
->regs
+ MIF_FRAME
);
168 cmd
= readl(gp
->regs
+ MIF_FRAME
);
169 if (cmd
& MIF_FRAME_TALSB
)
176 static inline void _sungem_phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
178 struct gem
*gp
= netdev_priv(dev
);
179 __sungem_phy_write(gp
, mii_id
, reg
, val
& 0xffff);
182 static inline void sungem_phy_write(struct gem
*gp
, int reg
, u16 val
)
184 __sungem_phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
187 static inline void gem_enable_ints(struct gem
*gp
)
189 /* Enable all interrupts but TXDONE */
190 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
193 static inline void gem_disable_ints(struct gem
*gp
)
195 /* Disable all interrupts, including TXDONE */
196 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
197 (void)readl(gp
->regs
+ GREG_IMASK
); /* write posting */
200 static void gem_get_cell(struct gem
*gp
)
202 BUG_ON(gp
->cell_enabled
< 0);
204 #ifdef CONFIG_PPC_PMAC
205 if (gp
->cell_enabled
== 1) {
207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
210 #endif /* CONFIG_PPC_PMAC */
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem
*gp
)
216 BUG_ON(gp
->cell_enabled
<= 0);
218 #ifdef CONFIG_PPC_PMAC
219 if (gp
->cell_enabled
== 0) {
221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
224 #endif /* CONFIG_PPC_PMAC */
227 static inline void gem_netif_stop(struct gem
*gp
)
229 netif_trans_update(gp
->dev
); /* prevent tx timeout */
230 napi_disable(&gp
->napi
);
231 netif_tx_disable(gp
->dev
);
234 static inline void gem_netif_start(struct gem
*gp
)
236 /* NOTE: unconditional netif_wake_queue is only
237 * appropriate so long as all callers are assured to
238 * have free tx slots.
240 netif_wake_queue(gp
->dev
);
241 napi_enable(&gp
->napi
);
244 static void gem_schedule_reset(struct gem
*gp
)
246 gp
->reset_task_pending
= 1;
247 schedule_work(&gp
->reset_task
);
250 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
252 if (netif_msg_intr(gp
))
253 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
256 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
258 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
261 if (netif_msg_intr(gp
))
262 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp
->dev
->name
, pcs_istat
);
265 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
266 netdev_err(dev
, "PCS irq but no link status change???\n");
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
275 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
277 (readl(gp
->regs
+ PCS_MIISTAT
) &
280 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat
& PCS_MIISTAT_RF
)
285 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
287 netdev_info(dev
, "PCS AutoNEG complete\n");
290 if (pcs_miistat
& PCS_MIISTAT_LS
) {
291 netdev_info(dev
, "PCS link is now up\n");
292 netif_carrier_on(gp
->dev
);
294 netdev_info(dev
, "PCS link is now down\n");
295 netif_carrier_off(gp
->dev
);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp
->link_timer
))
306 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
308 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
310 if (netif_msg_intr(gp
))
311 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp
->dev
->name
, txmac_stat
);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
318 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
321 if (txmac_stat
& MAC_TXSTAT_URUN
) {
322 netdev_err(dev
, "TX MAC xmit underrun\n");
323 dev
->stats
.tx_fifo_errors
++;
326 if (txmac_stat
& MAC_TXSTAT_MPE
) {
327 netdev_err(dev
, "TX MAC max packet size error\n");
328 dev
->stats
.tx_errors
++;
331 /* The rest are all cases of one of the 16-bit TX
334 if (txmac_stat
& MAC_TXSTAT_NCE
)
335 dev
->stats
.collisions
+= 0x10000;
337 if (txmac_stat
& MAC_TXSTAT_ECE
) {
338 dev
->stats
.tx_aborted_errors
+= 0x10000;
339 dev
->stats
.collisions
+= 0x10000;
342 if (txmac_stat
& MAC_TXSTAT_LCE
) {
343 dev
->stats
.tx_aborted_errors
+= 0x10000;
344 dev
->stats
.collisions
+= 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem
*gp
)
361 struct net_device
*dev
= gp
->dev
;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
368 for (limit
= 0; limit
< 5000; limit
++) {
369 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
374 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
378 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
379 gp
->regs
+ MAC_RXCFG
);
380 for (limit
= 0; limit
< 5000; limit
++) {
381 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
386 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
390 /* Second, disable RX DMA. */
391 writel(0, gp
->regs
+ RXDMA_CFG
);
392 for (limit
= 0; limit
< 5000; limit
++) {
393 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
398 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
404 /* Execute RX reset command. */
405 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
406 gp
->regs
+ GREG_SWRST
);
407 for (limit
= 0; limit
< 5000; limit
++) {
408 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
413 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
417 /* Refresh the RX ring. */
418 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
419 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
421 if (gp
->rx_skbs
[i
] == NULL
) {
422 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
426 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
428 gp
->rx_new
= gp
->rx_old
= 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma
= (u64
) gp
->gblock_dvma
;
432 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
433 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
434 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
435 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
436 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
437 (ETH_HLEN
<< 13) | RXDMA_CFG_FTHRESH_128
);
438 writel(val
, gp
->regs
+ RXDMA_CFG
);
439 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
440 writel(((5 & RXDMA_BLANK_IPKTS
) |
441 ((8 << 12) & RXDMA_BLANK_ITIME
)),
442 gp
->regs
+ RXDMA_BLANK
);
444 writel(((5 & RXDMA_BLANK_IPKTS
) |
445 ((4 << 12) & RXDMA_BLANK_ITIME
)),
446 gp
->regs
+ RXDMA_BLANK
);
447 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
448 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
449 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
450 val
= readl(gp
->regs
+ RXDMA_CFG
);
451 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
452 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
453 val
= readl(gp
->regs
+ MAC_RXCFG
);
454 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
459 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
461 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
464 if (netif_msg_intr(gp
))
465 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp
->dev
->name
, rxmac_stat
);
468 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
469 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
471 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
472 dev
->stats
.rx_over_errors
++;
473 dev
->stats
.rx_fifo_errors
++;
475 ret
= gem_rxmac_reset(gp
);
478 if (rxmac_stat
& MAC_RXSTAT_ACE
)
479 dev
->stats
.rx_frame_errors
+= 0x10000;
481 if (rxmac_stat
& MAC_RXSTAT_CCE
)
482 dev
->stats
.rx_crc_errors
+= 0x10000;
484 if (rxmac_stat
& MAC_RXSTAT_LCE
)
485 dev
->stats
.rx_length_errors
+= 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
493 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
495 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
497 if (netif_msg_intr(gp
))
498 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp
->dev
->name
, mac_cstat
);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat
& MAC_CSTAT_PS
)
508 if (mac_cstat
& MAC_CSTAT_PRCV
)
509 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
514 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
516 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
517 u32 reg_val
, changed_bits
;
519 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
520 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
522 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
527 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
529 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
531 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
532 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
533 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
535 if (pci_estat
& GREG_PCIESTAT_BADACK
)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat
& GREG_PCIESTAT_OTHER
)
543 pci_estat
|= GREG_PCIESTAT_OTHER
;
544 netdev_err(dev
, "PCI error\n");
547 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
550 /* Interrogate PCI config space for the
553 pci_errs
= pci_status_get_and_clear_errors(gp
->pdev
);
554 netdev_err(dev
, "PCI status errors[%04x]\n", pci_errs
);
555 if (pci_errs
& PCI_STATUS_PARITY
)
556 netdev_err(dev
, "PCI parity error detected\n");
557 if (pci_errs
& PCI_STATUS_SIG_TARGET_ABORT
)
558 netdev_err(dev
, "PCI target abort\n");
559 if (pci_errs
& PCI_STATUS_REC_TARGET_ABORT
)
560 netdev_err(dev
, "PCI master acks target abort\n");
561 if (pci_errs
& PCI_STATUS_REC_MASTER_ABORT
)
562 netdev_err(dev
, "PCI master abort\n");
563 if (pci_errs
& PCI_STATUS_SIG_SYSTEM_ERROR
)
564 netdev_err(dev
, "PCI system error SERR#\n");
565 if (pci_errs
& PCI_STATUS_DETECTED_PARITY
)
566 netdev_err(dev
, "PCI parity error\n");
569 /* For all PCI errors, we should reset the chip. */
573 /* All non-normal interrupt conditions get serviced here.
574 * Returns non-zero if we should just exit the interrupt
575 * handler right now (ie. if we reset the card which invalidates
576 * all of the other original irq status bits).
578 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
580 if (gem_status
& GREG_STAT_RXNOBUF
) {
581 /* Frame arrived, no free RX buffers available. */
582 if (netif_msg_rx_err(gp
))
583 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
585 dev
->stats
.rx_dropped
++;
588 if (gem_status
& GREG_STAT_RXTAGERR
) {
589 /* corrupt RX tag framing */
590 if (netif_msg_rx_err(gp
))
591 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
593 dev
->stats
.rx_errors
++;
598 if (gem_status
& GREG_STAT_PCS
) {
599 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
603 if (gem_status
& GREG_STAT_TXMAC
) {
604 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
608 if (gem_status
& GREG_STAT_RXMAC
) {
609 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
613 if (gem_status
& GREG_STAT_MAC
) {
614 if (gem_mac_interrupt(dev
, gp
, gem_status
))
618 if (gem_status
& GREG_STAT_MIF
) {
619 if (gem_mif_interrupt(dev
, gp
, gem_status
))
623 if (gem_status
& GREG_STAT_PCIERR
) {
624 if (gem_pci_interrupt(dev
, gp
, gem_status
))
631 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
636 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
637 while (entry
!= limit
) {
644 if (netif_msg_tx_done(gp
))
645 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
646 gp
->dev
->name
, entry
);
647 skb
= gp
->tx_skbs
[entry
];
648 if (skb_shinfo(skb
)->nr_frags
) {
649 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
653 last
&= (TX_RING_SIZE
- 1);
655 walk
= NEXT_TX(walk
);
664 gp
->tx_skbs
[entry
] = NULL
;
665 dev
->stats
.tx_bytes
+= skb
->len
;
667 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
668 txd
= &gp
->init_block
->txd
[entry
];
670 dma_addr
= le64_to_cpu(txd
->buffer
);
671 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
673 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
674 entry
= NEXT_TX(entry
);
677 dev
->stats
.tx_packets
++;
678 dev_consume_skb_any(skb
);
682 /* Need to make the tx_old update visible to gem_start_xmit()
683 * before checking for netif_queue_stopped(). Without the
684 * memory barrier, there is a small possibility that gem_start_xmit()
685 * will miss it and cause the queue to be stopped forever.
689 if (unlikely(netif_queue_stopped(dev
) &&
690 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))) {
691 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
693 __netif_tx_lock(txq
, smp_processor_id());
694 if (netif_queue_stopped(dev
) &&
695 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
696 netif_wake_queue(dev
);
697 __netif_tx_unlock(txq
);
701 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
703 int cluster_start
, curr
, count
, kick
;
705 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
709 while (curr
!= limit
) {
710 curr
= NEXT_RX(curr
);
712 struct gem_rxd
*rxd
=
713 &gp
->init_block
->rxd
[cluster_start
];
715 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
717 cluster_start
= NEXT_RX(cluster_start
);
718 if (cluster_start
== curr
)
727 writel(kick
, gp
->regs
+ RXDMA_KICK
);
731 #define ALIGNED_RX_SKB_ADDR(addr) \
732 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
733 static __inline__
struct sk_buff
*gem_alloc_skb(struct net_device
*dev
, int size
,
736 struct sk_buff
*skb
= alloc_skb(size
+ 64, gfp_flags
);
739 unsigned long offset
= ALIGNED_RX_SKB_ADDR(skb
->data
);
740 skb_reserve(skb
, offset
);
745 static int gem_rx(struct gem
*gp
, int work_to_do
)
747 struct net_device
*dev
= gp
->dev
;
748 int entry
, drops
, work_done
= 0;
751 if (netif_msg_rx_status(gp
))
752 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
753 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
757 done
= readl(gp
->regs
+ RXDMA_DONE
);
759 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
761 u64 status
= le64_to_cpu(rxd
->status_word
);
765 if ((status
& RXDCTRL_OWN
) != 0)
768 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
771 /* When writing back RX descriptor, GEM writes status
772 * then buffer address, possibly in separate transactions.
773 * If we don't wait for the chip to write both, we could
774 * post a new buffer to this descriptor then have GEM spam
775 * on the buffer address. We sync on the RX completion
776 * register to prevent this from happening.
779 done
= readl(gp
->regs
+ RXDMA_DONE
);
784 /* We can now account for the work we're about to do */
787 skb
= gp
->rx_skbs
[entry
];
789 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
790 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
791 dev
->stats
.rx_errors
++;
793 dev
->stats
.rx_length_errors
++;
794 if (len
& RXDCTRL_BAD
)
795 dev
->stats
.rx_crc_errors
++;
797 /* We'll just return it to GEM. */
799 dev
->stats
.rx_dropped
++;
803 dma_addr
= le64_to_cpu(rxd
->buffer
);
804 if (len
> RX_COPY_THRESHOLD
) {
805 struct sk_buff
*new_skb
;
807 new_skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
808 if (new_skb
== NULL
) {
812 pci_unmap_page(gp
->pdev
, dma_addr
,
813 RX_BUF_ALLOC_SIZE(gp
),
815 gp
->rx_skbs
[entry
] = new_skb
;
816 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
817 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
818 virt_to_page(new_skb
->data
),
819 offset_in_page(new_skb
->data
),
820 RX_BUF_ALLOC_SIZE(gp
),
821 PCI_DMA_FROMDEVICE
));
822 skb_reserve(new_skb
, RX_OFFSET
);
824 /* Trim the original skb for the netif. */
827 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
829 if (copy_skb
== NULL
) {
834 skb_reserve(copy_skb
, 2);
835 skb_put(copy_skb
, len
);
836 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
837 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
838 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
840 /* We'll reuse the original ring buffer. */
844 if (likely(dev
->features
& NETIF_F_RXCSUM
)) {
847 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
848 skb
->csum
= csum_unfold(csum
);
849 skb
->ip_summed
= CHECKSUM_COMPLETE
;
851 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
853 napi_gro_receive(&gp
->napi
, skb
);
855 dev
->stats
.rx_packets
++;
856 dev
->stats
.rx_bytes
+= len
;
859 entry
= NEXT_RX(entry
);
862 gem_post_rxds(gp
, entry
);
867 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
872 static int gem_poll(struct napi_struct
*napi
, int budget
)
874 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
875 struct net_device
*dev
= gp
->dev
;
880 /* Handle anomalies */
881 if (unlikely(gp
->status
& GREG_STAT_ABNORMAL
)) {
882 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
885 /* We run the abnormal interrupt handling code with
886 * the Tx lock. It only resets the Rx portion of the
887 * chip, but we need to guard it against DMA being
888 * restarted by the link poll timer
890 __netif_tx_lock(txq
, smp_processor_id());
891 reset
= gem_abnormal_irq(dev
, gp
, gp
->status
);
892 __netif_tx_unlock(txq
);
894 gem_schedule_reset(gp
);
900 /* Run TX completion thread */
901 gem_tx(dev
, gp
, gp
->status
);
903 /* Run RX thread. We don't use any locking here,
904 * code willing to do bad things - like cleaning the
905 * rx ring - must call napi_disable(), which
906 * schedule_timeout()'s if polling is already disabled.
908 work_done
+= gem_rx(gp
, budget
- work_done
);
910 if (work_done
>= budget
)
913 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
914 } while (gp
->status
& GREG_STAT_NAPI
);
916 napi_complete_done(napi
, work_done
);
922 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
924 struct net_device
*dev
= dev_id
;
925 struct gem
*gp
= netdev_priv(dev
);
927 if (napi_schedule_prep(&gp
->napi
)) {
928 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
930 if (unlikely(gem_status
== 0)) {
931 napi_enable(&gp
->napi
);
934 if (netif_msg_intr(gp
))
935 printk(KERN_DEBUG
"%s: gem_interrupt() gem_status: 0x%x\n",
936 gp
->dev
->name
, gem_status
);
938 gp
->status
= gem_status
;
939 gem_disable_ints(gp
);
940 __napi_schedule(&gp
->napi
);
943 /* If polling was disabled at the time we received that
944 * interrupt, we may return IRQ_HANDLED here while we
945 * should return IRQ_NONE. No big deal...
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951 static void gem_poll_controller(struct net_device
*dev
)
953 struct gem
*gp
= netdev_priv(dev
);
955 disable_irq(gp
->pdev
->irq
);
956 gem_interrupt(gp
->pdev
->irq
, dev
);
957 enable_irq(gp
->pdev
->irq
);
961 static void gem_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
963 struct gem
*gp
= netdev_priv(dev
);
965 netdev_err(dev
, "transmit timed out, resetting\n");
967 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
968 readl(gp
->regs
+ TXDMA_CFG
),
969 readl(gp
->regs
+ MAC_TXSTAT
),
970 readl(gp
->regs
+ MAC_TXCFG
));
971 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
972 readl(gp
->regs
+ RXDMA_CFG
),
973 readl(gp
->regs
+ MAC_RXSTAT
),
974 readl(gp
->regs
+ MAC_RXCFG
));
976 gem_schedule_reset(gp
);
979 static __inline__
int gem_intme(int entry
)
981 /* Algorithm: IRQ every 1/2 of descriptors. */
982 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
988 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
989 struct net_device
*dev
)
991 struct gem
*gp
= netdev_priv(dev
);
996 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
997 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
998 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1000 ctrl
= (TXDCTRL_CENAB
|
1001 (csum_start_off
<< 15) |
1002 (csum_stuff_off
<< 21));
1005 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1))) {
1006 /* This is a hard error, log it. */
1007 if (!netif_queue_stopped(dev
)) {
1008 netif_stop_queue(dev
);
1009 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1011 return NETDEV_TX_BUSY
;
1015 gp
->tx_skbs
[entry
] = skb
;
1017 if (skb_shinfo(skb
)->nr_frags
== 0) {
1018 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1023 mapping
= pci_map_page(gp
->pdev
,
1024 virt_to_page(skb
->data
),
1025 offset_in_page(skb
->data
),
1026 len
, PCI_DMA_TODEVICE
);
1027 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1028 if (gem_intme(entry
))
1029 ctrl
|= TXDCTRL_INTME
;
1030 txd
->buffer
= cpu_to_le64(mapping
);
1032 txd
->control_word
= cpu_to_le64(ctrl
);
1033 entry
= NEXT_TX(entry
);
1035 struct gem_txd
*txd
;
1038 dma_addr_t first_mapping
;
1039 int frag
, first_entry
= entry
;
1042 if (gem_intme(entry
))
1043 intme
|= TXDCTRL_INTME
;
1045 /* We must give this initial chunk to the device last.
1046 * Otherwise we could race with the device.
1048 first_len
= skb_headlen(skb
);
1049 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1050 offset_in_page(skb
->data
),
1051 first_len
, PCI_DMA_TODEVICE
);
1052 entry
= NEXT_TX(entry
);
1054 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1055 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1060 len
= skb_frag_size(this_frag
);
1061 mapping
= skb_frag_dma_map(&gp
->pdev
->dev
, this_frag
,
1062 0, len
, DMA_TO_DEVICE
);
1064 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1065 this_ctrl
|= TXDCTRL_EOF
;
1067 txd
= &gp
->init_block
->txd
[entry
];
1068 txd
->buffer
= cpu_to_le64(mapping
);
1070 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1072 if (gem_intme(entry
))
1073 intme
|= TXDCTRL_INTME
;
1075 entry
= NEXT_TX(entry
);
1077 txd
= &gp
->init_block
->txd
[first_entry
];
1078 txd
->buffer
= cpu_to_le64(first_mapping
);
1081 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1085 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))) {
1086 netif_stop_queue(dev
);
1088 /* netif_stop_queue() must be done before checking
1089 * checking tx index in TX_BUFFS_AVAIL() below, because
1090 * in gem_tx(), we update tx_old before checking for
1091 * netif_queue_stopped().
1094 if (TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
1095 netif_wake_queue(dev
);
1097 if (netif_msg_tx_queued(gp
))
1098 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1099 dev
->name
, entry
, skb
->len
);
1101 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1103 return NETDEV_TX_OK
;
1106 static void gem_pcs_reset(struct gem
*gp
)
1111 /* Reset PCS unit. */
1112 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1113 val
|= PCS_MIICTRL_RST
;
1114 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1117 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1123 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1126 static void gem_pcs_reinit_adv(struct gem
*gp
)
1130 /* Make sure PCS is disabled while changing advertisement
1133 val
= readl(gp
->regs
+ PCS_CFG
);
1134 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1135 writel(val
, gp
->regs
+ PCS_CFG
);
1137 /* Advertise all capabilities except asymmetric
1140 val
= readl(gp
->regs
+ PCS_MIIADV
);
1141 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1142 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1143 writel(val
, gp
->regs
+ PCS_MIIADV
);
1145 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1146 * and re-enable PCS.
1148 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1149 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1150 val
&= ~PCS_MIICTRL_WB
;
1151 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1153 val
= readl(gp
->regs
+ PCS_CFG
);
1154 val
|= PCS_CFG_ENABLE
;
1155 writel(val
, gp
->regs
+ PCS_CFG
);
1157 /* Make sure serialink loopback is off. The meaning
1158 * of this bit is logically inverted based upon whether
1159 * you are in Serialink or SERDES mode.
1161 val
= readl(gp
->regs
+ PCS_SCTRL
);
1162 if (gp
->phy_type
== phy_serialink
)
1163 val
&= ~PCS_SCTRL_LOOP
;
1165 val
|= PCS_SCTRL_LOOP
;
1166 writel(val
, gp
->regs
+ PCS_SCTRL
);
1169 #define STOP_TRIES 32
1171 static void gem_reset(struct gem
*gp
)
1176 /* Make sure we won't get any more interrupts */
1177 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1179 /* Reset the chip */
1180 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1181 gp
->regs
+ GREG_SWRST
);
1187 val
= readl(gp
->regs
+ GREG_SWRST
);
1190 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1193 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1195 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1196 gem_pcs_reinit_adv(gp
);
1199 static void gem_start_dma(struct gem
*gp
)
1203 /* We are ready to rock, turn everything on. */
1204 val
= readl(gp
->regs
+ TXDMA_CFG
);
1205 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1206 val
= readl(gp
->regs
+ RXDMA_CFG
);
1207 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1208 val
= readl(gp
->regs
+ MAC_TXCFG
);
1209 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1210 val
= readl(gp
->regs
+ MAC_RXCFG
);
1211 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1213 (void) readl(gp
->regs
+ MAC_RXCFG
);
1216 gem_enable_ints(gp
);
1218 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1221 /* DMA won't be actually stopped before about 4ms tho ...
1223 static void gem_stop_dma(struct gem
*gp
)
1227 /* We are done rocking, turn everything off. */
1228 val
= readl(gp
->regs
+ TXDMA_CFG
);
1229 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1230 val
= readl(gp
->regs
+ RXDMA_CFG
);
1231 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1232 val
= readl(gp
->regs
+ MAC_TXCFG
);
1233 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1234 val
= readl(gp
->regs
+ MAC_RXCFG
);
1235 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1237 (void) readl(gp
->regs
+ MAC_RXCFG
);
1239 /* Need to wait a bit ... done by the caller */
1243 // XXX dbl check what that function should do when called on PCS PHY
1244 static void gem_begin_auto_negotiation(struct gem
*gp
,
1245 const struct ethtool_link_ksettings
*ep
)
1247 u32 advertise
, features
;
1254 ethtool_convert_link_mode_to_legacy_u32(
1255 &advertising
, ep
->link_modes
.advertising
);
1257 if (gp
->phy_type
!= phy_mii_mdio0
&&
1258 gp
->phy_type
!= phy_mii_mdio1
)
1261 /* Setup advertise */
1262 if (found_mii_phy(gp
))
1263 features
= gp
->phy_mii
.def
->features
;
1267 advertise
= features
& ADVERTISE_MASK
;
1268 if (gp
->phy_mii
.advertising
!= 0)
1269 advertise
&= gp
->phy_mii
.advertising
;
1271 autoneg
= gp
->want_autoneg
;
1272 speed
= gp
->phy_mii
.speed
;
1273 duplex
= gp
->phy_mii
.duplex
;
1275 /* Setup link parameters */
1278 if (ep
->base
.autoneg
== AUTONEG_ENABLE
) {
1279 advertise
= advertising
;
1283 speed
= ep
->base
.speed
;
1284 duplex
= ep
->base
.duplex
;
1288 /* Sanitize settings based on PHY capabilities */
1289 if ((features
& SUPPORTED_Autoneg
) == 0)
1291 if (speed
== SPEED_1000
&&
1292 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1294 if (speed
== SPEED_100
&&
1295 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1297 if (duplex
== DUPLEX_FULL
&&
1298 !(features
& (SUPPORTED_1000baseT_Full
|
1299 SUPPORTED_100baseT_Full
|
1300 SUPPORTED_10baseT_Full
)))
1301 duplex
= DUPLEX_HALF
;
1305 /* If we are asleep, we don't try to actually setup the PHY, we
1306 * just store the settings
1308 if (!netif_device_present(gp
->dev
)) {
1309 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1310 gp
->phy_mii
.speed
= speed
;
1311 gp
->phy_mii
.duplex
= duplex
;
1315 /* Configure PHY & start aneg */
1316 gp
->want_autoneg
= autoneg
;
1318 if (found_mii_phy(gp
))
1319 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1320 gp
->lstate
= link_aneg
;
1322 if (found_mii_phy(gp
))
1323 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1324 gp
->lstate
= link_force_ok
;
1328 gp
->timer_ticks
= 0;
1329 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1332 /* A link-up condition has occurred, initialize and enable the
1335 static int gem_set_link_modes(struct gem
*gp
)
1337 struct netdev_queue
*txq
= netdev_get_tx_queue(gp
->dev
, 0);
1338 int full_duplex
, speed
, pause
;
1345 if (found_mii_phy(gp
)) {
1346 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1348 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1349 speed
= gp
->phy_mii
.speed
;
1350 pause
= gp
->phy_mii
.pause
;
1351 } else if (gp
->phy_type
== phy_serialink
||
1352 gp
->phy_type
== phy_serdes
) {
1353 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1355 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1360 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1361 speed
, (full_duplex
? "full" : "half"));
1364 /* We take the tx queue lock to avoid collisions between
1365 * this code, the tx path and the NAPI-driven error path
1367 __netif_tx_lock(txq
, smp_processor_id());
1369 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1371 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1373 /* MAC_TXCFG_NBO must be zero. */
1375 writel(val
, gp
->regs
+ MAC_TXCFG
);
1377 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1379 (gp
->phy_type
== phy_mii_mdio0
||
1380 gp
->phy_type
== phy_mii_mdio1
)) {
1381 val
|= MAC_XIFCFG_DISE
;
1382 } else if (full_duplex
) {
1383 val
|= MAC_XIFCFG_FLED
;
1386 if (speed
== SPEED_1000
)
1387 val
|= (MAC_XIFCFG_GMII
);
1389 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1391 /* If gigabit and half-duplex, enable carrier extension
1392 * mode. Else, disable it.
1394 if (speed
== SPEED_1000
&& !full_duplex
) {
1395 val
= readl(gp
->regs
+ MAC_TXCFG
);
1396 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1398 val
= readl(gp
->regs
+ MAC_RXCFG
);
1399 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1401 val
= readl(gp
->regs
+ MAC_TXCFG
);
1402 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1404 val
= readl(gp
->regs
+ MAC_RXCFG
);
1405 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1408 if (gp
->phy_type
== phy_serialink
||
1409 gp
->phy_type
== phy_serdes
) {
1410 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1412 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1417 writel(512, gp
->regs
+ MAC_STIME
);
1419 writel(64, gp
->regs
+ MAC_STIME
);
1420 val
= readl(gp
->regs
+ MAC_MCCFG
);
1422 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1424 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1425 writel(val
, gp
->regs
+ MAC_MCCFG
);
1429 __netif_tx_unlock(txq
);
1431 if (netif_msg_link(gp
)) {
1433 netdev_info(gp
->dev
,
1434 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1439 netdev_info(gp
->dev
, "Pause is disabled\n");
1446 static int gem_mdio_link_not_up(struct gem
*gp
)
1448 switch (gp
->lstate
) {
1449 case link_force_ret
:
1450 netif_info(gp
, link
, gp
->dev
,
1451 "Autoneg failed again, keeping forced mode\n");
1452 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1453 gp
->last_forced_speed
, DUPLEX_HALF
);
1454 gp
->timer_ticks
= 5;
1455 gp
->lstate
= link_force_ok
;
1458 /* We try forced modes after a failed aneg only on PHYs that don't
1459 * have "magic_aneg" bit set, which means they internally do the
1460 * while forced-mode thingy. On these, we just restart aneg
1462 if (gp
->phy_mii
.def
->magic_aneg
)
1464 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1465 /* Try forced modes. */
1466 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1468 gp
->timer_ticks
= 5;
1469 gp
->lstate
= link_force_try
;
1471 case link_force_try
:
1472 /* Downgrade from 100 to 10 Mbps if necessary.
1473 * If already at 10Mbps, warn user about the
1474 * situation every 10 ticks.
1476 if (gp
->phy_mii
.speed
== SPEED_100
) {
1477 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1479 gp
->timer_ticks
= 5;
1480 netif_info(gp
, link
, gp
->dev
,
1481 "switching to forced 10bt\n");
1490 static void gem_link_timer(struct timer_list
*t
)
1492 struct gem
*gp
= from_timer(gp
, t
, link_timer
);
1493 struct net_device
*dev
= gp
->dev
;
1494 int restart_aneg
= 0;
1496 /* There's no point doing anything if we're going to be reset */
1497 if (gp
->reset_task_pending
)
1500 if (gp
->phy_type
== phy_serialink
||
1501 gp
->phy_type
== phy_serdes
) {
1502 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1504 if (!(val
& PCS_MIISTAT_LS
))
1505 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1507 if ((val
& PCS_MIISTAT_LS
) != 0) {
1508 if (gp
->lstate
== link_up
)
1511 gp
->lstate
= link_up
;
1512 netif_carrier_on(dev
);
1513 (void)gem_set_link_modes(gp
);
1517 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1518 /* Ok, here we got a link. If we had it due to a forced
1519 * fallback, and we were configured for autoneg, we do
1520 * retry a short autoneg pass. If you know your hub is
1521 * broken, use ethtool ;)
1523 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1524 gp
->lstate
= link_force_ret
;
1525 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1526 gp
->timer_ticks
= 5;
1527 if (netif_msg_link(gp
))
1529 "Got link after fallback, retrying autoneg once...\n");
1530 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1531 } else if (gp
->lstate
!= link_up
) {
1532 gp
->lstate
= link_up
;
1533 netif_carrier_on(dev
);
1534 if (gem_set_link_modes(gp
))
1538 /* If the link was previously up, we restart the
1541 if (gp
->lstate
== link_up
) {
1542 gp
->lstate
= link_down
;
1543 netif_info(gp
, link
, dev
, "Link down\n");
1544 netif_carrier_off(dev
);
1545 gem_schedule_reset(gp
);
1546 /* The reset task will restart the timer */
1548 } else if (++gp
->timer_ticks
> 10) {
1549 if (found_mii_phy(gp
))
1550 restart_aneg
= gem_mdio_link_not_up(gp
);
1556 gem_begin_auto_negotiation(gp
, NULL
);
1560 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1563 static void gem_clean_rings(struct gem
*gp
)
1565 struct gem_init_block
*gb
= gp
->init_block
;
1566 struct sk_buff
*skb
;
1568 dma_addr_t dma_addr
;
1570 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1571 struct gem_rxd
*rxd
;
1574 if (gp
->rx_skbs
[i
] != NULL
) {
1575 skb
= gp
->rx_skbs
[i
];
1576 dma_addr
= le64_to_cpu(rxd
->buffer
);
1577 pci_unmap_page(gp
->pdev
, dma_addr
,
1578 RX_BUF_ALLOC_SIZE(gp
),
1579 PCI_DMA_FROMDEVICE
);
1580 dev_kfree_skb_any(skb
);
1581 gp
->rx_skbs
[i
] = NULL
;
1583 rxd
->status_word
= 0;
1588 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1589 if (gp
->tx_skbs
[i
] != NULL
) {
1590 struct gem_txd
*txd
;
1593 skb
= gp
->tx_skbs
[i
];
1594 gp
->tx_skbs
[i
] = NULL
;
1596 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1597 int ent
= i
& (TX_RING_SIZE
- 1);
1599 txd
= &gb
->txd
[ent
];
1600 dma_addr
= le64_to_cpu(txd
->buffer
);
1601 pci_unmap_page(gp
->pdev
, dma_addr
,
1602 le64_to_cpu(txd
->control_word
) &
1603 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1605 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1608 dev_kfree_skb_any(skb
);
1613 static void gem_init_rings(struct gem
*gp
)
1615 struct gem_init_block
*gb
= gp
->init_block
;
1616 struct net_device
*dev
= gp
->dev
;
1618 dma_addr_t dma_addr
;
1620 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1622 gem_clean_rings(gp
);
1624 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1625 (unsigned)VLAN_ETH_FRAME_LEN
);
1627 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1628 struct sk_buff
*skb
;
1629 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1631 skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_KERNEL
);
1634 rxd
->status_word
= 0;
1638 gp
->rx_skbs
[i
] = skb
;
1639 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1640 dma_addr
= pci_map_page(gp
->pdev
,
1641 virt_to_page(skb
->data
),
1642 offset_in_page(skb
->data
),
1643 RX_BUF_ALLOC_SIZE(gp
),
1644 PCI_DMA_FROMDEVICE
);
1645 rxd
->buffer
= cpu_to_le64(dma_addr
);
1647 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1648 skb_reserve(skb
, RX_OFFSET
);
1651 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1652 struct gem_txd
*txd
= &gb
->txd
[i
];
1654 txd
->control_word
= 0;
1661 /* Init PHY interface and start link poll state machine */
1662 static void gem_init_phy(struct gem
*gp
)
1666 /* Revert MIF CFG setting done on stop_phy */
1667 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1668 mifcfg
&= ~MIF_CFG_BBMODE
;
1669 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1671 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1674 /* Those delay sucks, the HW seem to love them though, I'll
1675 * serisouly consider breaking some locks here to be able
1676 * to schedule instead
1678 for (i
= 0; i
< 3; i
++) {
1679 #ifdef CONFIG_PPC_PMAC
1680 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1683 /* Some PHYs used by apple have problem getting back to us,
1684 * we do an additional reset here
1686 sungem_phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1688 if (sungem_phy_read(gp
, MII_BMCR
) != 0xffff)
1691 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1695 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1696 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1699 /* Init datapath mode register. */
1700 if (gp
->phy_type
== phy_mii_mdio0
||
1701 gp
->phy_type
== phy_mii_mdio1
) {
1702 val
= PCS_DMODE_MGM
;
1703 } else if (gp
->phy_type
== phy_serialink
) {
1704 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1706 val
= PCS_DMODE_ESM
;
1709 writel(val
, gp
->regs
+ PCS_DMODE
);
1712 if (gp
->phy_type
== phy_mii_mdio0
||
1713 gp
->phy_type
== phy_mii_mdio1
) {
1714 /* Reset and detect MII PHY */
1715 sungem_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1718 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1719 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1722 gem_pcs_reinit_adv(gp
);
1725 /* Default aneg parameters */
1726 gp
->timer_ticks
= 0;
1727 gp
->lstate
= link_down
;
1728 netif_carrier_off(gp
->dev
);
1730 /* Print things out */
1731 if (gp
->phy_type
== phy_mii_mdio0
||
1732 gp
->phy_type
== phy_mii_mdio1
)
1733 netdev_info(gp
->dev
, "Found %s PHY\n",
1734 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
1736 gem_begin_auto_negotiation(gp
, NULL
);
1739 static void gem_init_dma(struct gem
*gp
)
1741 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1744 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1745 writel(val
, gp
->regs
+ TXDMA_CFG
);
1747 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1748 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1749 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1751 writel(0, gp
->regs
+ TXDMA_KICK
);
1753 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1754 (ETH_HLEN
<< 13) | RXDMA_CFG_FTHRESH_128
);
1755 writel(val
, gp
->regs
+ RXDMA_CFG
);
1757 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1758 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1760 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1762 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1763 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1764 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1766 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1767 writel(((5 & RXDMA_BLANK_IPKTS
) |
1768 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1769 gp
->regs
+ RXDMA_BLANK
);
1771 writel(((5 & RXDMA_BLANK_IPKTS
) |
1772 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1773 gp
->regs
+ RXDMA_BLANK
);
1776 static u32
gem_setup_multicast(struct gem
*gp
)
1781 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1782 (netdev_mc_count(gp
->dev
) > 256)) {
1783 for (i
=0; i
<16; i
++)
1784 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1785 rxcfg
|= MAC_RXCFG_HFE
;
1786 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1787 rxcfg
|= MAC_RXCFG_PROM
;
1791 struct netdev_hw_addr
*ha
;
1794 memset(hash_table
, 0, sizeof(hash_table
));
1795 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1796 crc
= ether_crc_le(6, ha
->addr
);
1798 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1800 for (i
=0; i
<16; i
++)
1801 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1802 rxcfg
|= MAC_RXCFG_HFE
;
1808 static void gem_init_mac(struct gem
*gp
)
1810 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1812 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1814 writel(0x00, gp
->regs
+ MAC_IPG0
);
1815 writel(0x08, gp
->regs
+ MAC_IPG1
);
1816 writel(0x04, gp
->regs
+ MAC_IPG2
);
1817 writel(0x40, gp
->regs
+ MAC_STIME
);
1818 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1820 /* Ethernet payload + header + FCS + optional VLAN tag. */
1821 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1823 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1824 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1825 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1826 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1828 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1830 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1831 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1832 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1834 writel(0, gp
->regs
+ MAC_ADDR3
);
1835 writel(0, gp
->regs
+ MAC_ADDR4
);
1836 writel(0, gp
->regs
+ MAC_ADDR5
);
1838 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1839 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1840 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1842 writel(0, gp
->regs
+ MAC_AFILT0
);
1843 writel(0, gp
->regs
+ MAC_AFILT1
);
1844 writel(0, gp
->regs
+ MAC_AFILT2
);
1845 writel(0, gp
->regs
+ MAC_AF21MSK
);
1846 writel(0, gp
->regs
+ MAC_AF0MSK
);
1848 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1850 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1852 writel(0, gp
->regs
+ MAC_NCOLL
);
1853 writel(0, gp
->regs
+ MAC_FASUCC
);
1854 writel(0, gp
->regs
+ MAC_ECOLL
);
1855 writel(0, gp
->regs
+ MAC_LCOLL
);
1856 writel(0, gp
->regs
+ MAC_DTIMER
);
1857 writel(0, gp
->regs
+ MAC_PATMPS
);
1858 writel(0, gp
->regs
+ MAC_RFCTR
);
1859 writel(0, gp
->regs
+ MAC_LERR
);
1860 writel(0, gp
->regs
+ MAC_AERR
);
1861 writel(0, gp
->regs
+ MAC_FCSERR
);
1862 writel(0, gp
->regs
+ MAC_RXCVERR
);
1864 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1865 * them once a link is established.
1867 writel(0, gp
->regs
+ MAC_TXCFG
);
1868 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1869 writel(0, gp
->regs
+ MAC_MCCFG
);
1870 writel(0, gp
->regs
+ MAC_XIFCFG
);
1872 /* Setup MAC interrupts. We want to get all of the interesting
1873 * counter expiration events, but we do not want to hear about
1874 * normal rx/tx as the DMA engine tells us that.
1876 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1877 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1879 /* Don't enable even the PAUSE interrupts for now, we
1880 * make no use of those events other than to record them.
1882 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1884 /* Don't enable GEM's WOL in normal operations
1887 writel(0, gp
->regs
+ WOL_WAKECSR
);
1890 static void gem_init_pause_thresholds(struct gem
*gp
)
1894 /* Calculate pause thresholds. Setting the OFF threshold to the
1895 * full RX fifo size effectively disables PAUSE generation which
1896 * is what we do for 10/100 only GEMs which have FIFOs too small
1897 * to make real gains from PAUSE.
1899 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1900 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1902 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1903 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1904 int on
= off
- max_frame
;
1906 gp
->rx_pause_off
= off
;
1907 gp
->rx_pause_on
= on
;
1911 /* Configure the chip "burst" DMA mode & enable some
1912 * HW bug fixes on Apple version
1915 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1916 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1917 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1918 cfg
|= GREG_CFG_IBURST
;
1920 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1921 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1922 writel(cfg
, gp
->regs
+ GREG_CFG
);
1924 /* If Infinite Burst didn't stick, then use different
1925 * thresholds (and Apple bug fixes don't exist)
1927 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1928 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1929 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1930 writel(cfg
, gp
->regs
+ GREG_CFG
);
1934 static int gem_check_invariants(struct gem
*gp
)
1936 struct pci_dev
*pdev
= gp
->pdev
;
1939 /* On Apple's sungem, we can't rely on registers as the chip
1940 * was been powered down by the firmware. The PHY is looked
1943 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1944 gp
->phy_type
= phy_mii_mdio0
;
1945 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1946 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1949 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1950 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1951 mif_cfg
|= MIF_CFG_MDI0
;
1952 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1953 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1954 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1956 /* We hard-code the PHY address so we can properly bring it out of
1957 * reset later on, we can't really probe it at this point, though
1958 * that isn't an issue.
1960 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1961 gp
->mii_phy_addr
= 1;
1963 gp
->mii_phy_addr
= 0;
1968 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1970 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1971 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1972 /* One of the MII PHYs _must_ be present
1973 * as this chip has no gigabit PHY.
1975 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1976 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1982 /* Determine initial PHY interface type guess. MDIO1 is the
1983 * external PHY and thus takes precedence over MDIO0.
1986 if (mif_cfg
& MIF_CFG_MDI1
) {
1987 gp
->phy_type
= phy_mii_mdio1
;
1988 mif_cfg
|= MIF_CFG_PSELECT
;
1989 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1990 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1991 gp
->phy_type
= phy_mii_mdio0
;
1992 mif_cfg
&= ~MIF_CFG_PSELECT
;
1993 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1998 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
1999 if (p
&& !strcmp(p
, "serdes"))
2000 gp
->phy_type
= phy_serdes
;
2003 gp
->phy_type
= phy_serialink
;
2005 if (gp
->phy_type
== phy_mii_mdio1
||
2006 gp
->phy_type
== phy_mii_mdio0
) {
2009 for (i
= 0; i
< 32; i
++) {
2010 gp
->mii_phy_addr
= i
;
2011 if (sungem_phy_read(gp
, MII_BMCR
) != 0xffff)
2015 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2016 pr_err("RIO MII phy will not respond\n");
2019 gp
->phy_type
= phy_serdes
;
2023 /* Fetch the FIFO configurations now too. */
2024 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2025 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2027 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2028 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2029 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2030 gp
->rx_fifo_sz
!= (20 * 1024)) {
2031 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2032 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2037 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2038 gp
->rx_fifo_sz
!= (2 * 1024)) {
2039 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2040 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2043 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2050 static void gem_reinit_chip(struct gem
*gp
)
2052 /* Reset the chip */
2055 /* Make sure ints are disabled */
2056 gem_disable_ints(gp
);
2058 /* Allocate & setup ring buffers */
2061 /* Configure pause thresholds */
2062 gem_init_pause_thresholds(gp
);
2064 /* Init DMA & MAC engines */
2070 static void gem_stop_phy(struct gem
*gp
, int wol
)
2074 /* Let the chip settle down a bit, it seems that helps
2075 * for sleep mode on some models
2079 /* Make sure we aren't polling PHY status change. We
2080 * don't currently use that feature though
2082 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2083 mifcfg
&= ~MIF_CFG_POLL
;
2084 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2086 if (wol
&& gp
->has_wol
) {
2087 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2090 /* Setup wake-on-lan for MAGIC packet */
2091 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2092 gp
->regs
+ MAC_RXCFG
);
2093 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2094 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2095 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2097 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2098 csr
= WOL_WAKECSR_ENABLE
;
2099 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2100 csr
|= WOL_WAKECSR_MII
;
2101 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2103 writel(0, gp
->regs
+ MAC_RXCFG
);
2104 (void)readl(gp
->regs
+ MAC_RXCFG
);
2105 /* Machine sleep will die in strange ways if we
2106 * dont wait a bit here, looks like the chip takes
2107 * some time to really shut down
2112 writel(0, gp
->regs
+ MAC_TXCFG
);
2113 writel(0, gp
->regs
+ MAC_XIFCFG
);
2114 writel(0, gp
->regs
+ TXDMA_CFG
);
2115 writel(0, gp
->regs
+ RXDMA_CFG
);
2119 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2120 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2122 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2123 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2125 /* According to Apple, we must set the MDIO pins to this begnign
2126 * state or we may 1) eat more current, 2) damage some PHYs
2128 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2129 writel(0, gp
->regs
+ MIF_BBCLK
);
2130 writel(0, gp
->regs
+ MIF_BBDATA
);
2131 writel(0, gp
->regs
+ MIF_BBOENAB
);
2132 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2133 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2137 static int gem_do_start(struct net_device
*dev
)
2139 struct gem
*gp
= netdev_priv(dev
);
2142 /* Enable the cell */
2145 /* Make sure PCI access and bus master are enabled */
2146 rc
= pci_enable_device(gp
->pdev
);
2148 netdev_err(dev
, "Failed to enable chip on PCI bus !\n");
2150 /* Put cell and forget it for now, it will be considered as
2151 * still asleep, a new sleep cycle may bring it back
2156 pci_set_master(gp
->pdev
);
2158 /* Init & setup chip hardware */
2159 gem_reinit_chip(gp
);
2161 /* An interrupt might come in handy */
2162 rc
= request_irq(gp
->pdev
->irq
, gem_interrupt
,
2163 IRQF_SHARED
, dev
->name
, (void *)dev
);
2165 netdev_err(dev
, "failed to request irq !\n");
2168 gem_clean_rings(gp
);
2173 /* Mark us as attached again if we come from resume(), this has
2174 * no effect if we weren't detached and needs to be done now.
2176 netif_device_attach(dev
);
2178 /* Restart NAPI & queues */
2179 gem_netif_start(gp
);
2181 /* Detect & init PHY, start autoneg etc... this will
2182 * eventually result in starting DMA operations when
2190 static void gem_do_stop(struct net_device
*dev
, int wol
)
2192 struct gem
*gp
= netdev_priv(dev
);
2194 /* Stop NAPI and stop tx queue */
2197 /* Make sure ints are disabled. We don't care about
2198 * synchronizing as NAPI is disabled, thus a stray
2199 * interrupt will do nothing bad (our irq handler
2200 * just schedules NAPI)
2202 gem_disable_ints(gp
);
2204 /* Stop the link timer */
2205 del_timer_sync(&gp
->link_timer
);
2207 /* We cannot cancel the reset task while holding the
2208 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2209 * if we did. This is not an issue however as the reset
2210 * task is synchronized vs. us (rtnl_lock) and will do
2211 * nothing if the device is down or suspended. We do
2212 * still clear reset_task_pending to avoid a spurrious
2213 * reset later on in case we do resume before it gets
2216 gp
->reset_task_pending
= 0;
2218 /* If we are going to sleep with WOL */
2225 /* Get rid of rings */
2226 gem_clean_rings(gp
);
2228 /* No irq needed anymore */
2229 free_irq(gp
->pdev
->irq
, (void *) dev
);
2231 /* Shut the PHY down eventually and setup WOL */
2232 gem_stop_phy(gp
, wol
);
2234 /* Make sure bus master is disabled */
2235 pci_disable_device(gp
->pdev
);
2237 /* Cell not needed neither if no WOL */
2242 static void gem_reset_task(struct work_struct
*work
)
2244 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2246 /* Lock out the network stack (essentially shield ourselves
2247 * against a racing open, close, control call, or suspend
2251 /* Skip the reset task if suspended or closed, or if it's
2252 * been cancelled by gem_do_stop (see comment there)
2254 if (!netif_device_present(gp
->dev
) ||
2255 !netif_running(gp
->dev
) ||
2256 !gp
->reset_task_pending
) {
2261 /* Stop the link timer */
2262 del_timer_sync(&gp
->link_timer
);
2264 /* Stop NAPI and tx */
2267 /* Reset the chip & rings */
2268 gem_reinit_chip(gp
);
2269 if (gp
->lstate
== link_up
)
2270 gem_set_link_modes(gp
);
2272 /* Restart NAPI and Tx */
2273 gem_netif_start(gp
);
2276 gp
->reset_task_pending
= 0;
2278 /* If the link is not up, restart autoneg, else restart the
2281 if (gp
->lstate
!= link_up
)
2282 gem_begin_auto_negotiation(gp
, NULL
);
2284 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
2289 static int gem_open(struct net_device
*dev
)
2291 /* We allow open while suspended, we just do nothing,
2292 * the chip will be initialized in resume()
2294 if (netif_device_present(dev
))
2295 return gem_do_start(dev
);
2299 static int gem_close(struct net_device
*dev
)
2301 if (netif_device_present(dev
))
2302 gem_do_stop(dev
, 0);
2308 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2310 struct net_device
*dev
= pci_get_drvdata(pdev
);
2311 struct gem
*gp
= netdev_priv(dev
);
2313 /* Lock the network stack first to avoid racing with open/close,
2314 * reset task and setting calls
2318 /* Not running, mark ourselves non-present, no need for
2321 if (!netif_running(dev
)) {
2322 netif_device_detach(dev
);
2326 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2327 (gp
->wake_on_lan
&& netif_running(dev
)) ?
2328 "enabled" : "disabled");
2330 /* Tell the network stack we're gone. gem_do_stop() below will
2331 * synchronize with TX, stop NAPI etc...
2333 netif_device_detach(dev
);
2335 /* Switch off chip, remember WOL setting */
2336 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2337 gem_do_stop(dev
, gp
->asleep_wol
);
2339 /* Unlock the network stack */
2345 static int gem_resume(struct pci_dev
*pdev
)
2347 struct net_device
*dev
= pci_get_drvdata(pdev
);
2348 struct gem
*gp
= netdev_priv(dev
);
2350 /* See locking comment in gem_suspend */
2353 /* Not running, mark ourselves present, no need for
2356 if (!netif_running(dev
)) {
2357 netif_device_attach(dev
);
2362 /* Restart chip. If that fails there isn't much we can do, we
2363 * leave things stopped.
2367 /* If we had WOL enabled, the cell clock was never turned off during
2368 * sleep, so we end up beeing unbalanced. Fix that here
2373 /* Unlock the network stack */
2378 #endif /* CONFIG_PM */
2380 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2382 struct gem
*gp
= netdev_priv(dev
);
2384 /* I have seen this being called while the PM was in progress,
2385 * so we shield against this. Let's also not poke at registers
2386 * while the reset task is going on.
2388 * TODO: Move stats collection elsewhere (link timer ?) and
2389 * make this a nop to avoid all those synchro issues
2391 if (!netif_device_present(dev
) || !netif_running(dev
))
2394 /* Better safe than sorry... */
2395 if (WARN_ON(!gp
->cell_enabled
))
2398 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2399 writel(0, gp
->regs
+ MAC_FCSERR
);
2401 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2402 writel(0, gp
->regs
+ MAC_AERR
);
2404 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2405 writel(0, gp
->regs
+ MAC_LERR
);
2407 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2408 dev
->stats
.collisions
+=
2409 (readl(gp
->regs
+ MAC_ECOLL
) + readl(gp
->regs
+ MAC_LCOLL
));
2410 writel(0, gp
->regs
+ MAC_ECOLL
);
2411 writel(0, gp
->regs
+ MAC_LCOLL
);
2416 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2418 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2419 struct gem
*gp
= netdev_priv(dev
);
2420 unsigned char *e
= &dev
->dev_addr
[0];
2422 if (!is_valid_ether_addr(macaddr
->sa_data
))
2423 return -EADDRNOTAVAIL
;
2425 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2427 /* We'll just catch it later when the device is up'd or resumed */
2428 if (!netif_running(dev
) || !netif_device_present(dev
))
2431 /* Better safe than sorry... */
2432 if (WARN_ON(!gp
->cell_enabled
))
2435 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2436 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2437 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2442 static void gem_set_multicast(struct net_device
*dev
)
2444 struct gem
*gp
= netdev_priv(dev
);
2445 u32 rxcfg
, rxcfg_new
;
2448 if (!netif_running(dev
) || !netif_device_present(dev
))
2451 /* Better safe than sorry... */
2452 if (gp
->reset_task_pending
|| WARN_ON(!gp
->cell_enabled
))
2455 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2456 rxcfg_new
= gem_setup_multicast(gp
);
2458 rxcfg_new
|= MAC_RXCFG_SFCS
;
2460 gp
->mac_rx_cfg
= rxcfg_new
;
2462 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2463 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2469 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2472 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2475 /* Jumbo-grams don't seem to work :-( */
2476 #define GEM_MIN_MTU ETH_MIN_MTU
2478 #define GEM_MAX_MTU ETH_DATA_LEN
2480 #define GEM_MAX_MTU 9000
2483 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2485 struct gem
*gp
= netdev_priv(dev
);
2489 /* We'll just catch it later when the device is up'd or resumed */
2490 if (!netif_running(dev
) || !netif_device_present(dev
))
2493 /* Better safe than sorry... */
2494 if (WARN_ON(!gp
->cell_enabled
))
2498 gem_reinit_chip(gp
);
2499 if (gp
->lstate
== link_up
)
2500 gem_set_link_modes(gp
);
2501 gem_netif_start(gp
);
2506 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2508 struct gem
*gp
= netdev_priv(dev
);
2510 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2511 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2512 strlcpy(info
->bus_info
, pci_name(gp
->pdev
), sizeof(info
->bus_info
));
2515 static int gem_get_link_ksettings(struct net_device
*dev
,
2516 struct ethtool_link_ksettings
*cmd
)
2518 struct gem
*gp
= netdev_priv(dev
);
2519 u32 supported
, advertising
;
2521 if (gp
->phy_type
== phy_mii_mdio0
||
2522 gp
->phy_type
== phy_mii_mdio1
) {
2523 if (gp
->phy_mii
.def
)
2524 supported
= gp
->phy_mii
.def
->features
;
2526 supported
= (SUPPORTED_10baseT_Half
|
2527 SUPPORTED_10baseT_Full
);
2529 /* XXX hardcoded stuff for now */
2530 cmd
->base
.port
= PORT_MII
;
2531 cmd
->base
.phy_address
= 0; /* XXX fixed PHYAD */
2533 /* Return current PHY settings */
2534 cmd
->base
.autoneg
= gp
->want_autoneg
;
2535 cmd
->base
.speed
= gp
->phy_mii
.speed
;
2536 cmd
->base
.duplex
= gp
->phy_mii
.duplex
;
2537 advertising
= gp
->phy_mii
.advertising
;
2539 /* If we started with a forced mode, we don't have a default
2540 * advertise set, we need to return something sensible so
2541 * userland can re-enable autoneg properly.
2543 if (advertising
== 0)
2544 advertising
= supported
;
2545 } else { // XXX PCS ?
2547 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2548 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2550 advertising
= supported
;
2551 cmd
->base
.speed
= 0;
2552 cmd
->base
.duplex
= 0;
2554 cmd
->base
.phy_address
= 0;
2555 cmd
->base
.autoneg
= 0;
2557 /* serdes means usually a Fibre connector, with most fixed */
2558 if (gp
->phy_type
== phy_serdes
) {
2559 cmd
->base
.port
= PORT_FIBRE
;
2560 supported
= (SUPPORTED_1000baseT_Half
|
2561 SUPPORTED_1000baseT_Full
|
2562 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2563 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2564 advertising
= supported
;
2565 if (gp
->lstate
== link_up
)
2566 cmd
->base
.speed
= SPEED_1000
;
2567 cmd
->base
.duplex
= DUPLEX_FULL
;
2568 cmd
->base
.autoneg
= 1;
2572 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
2574 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
2580 static int gem_set_link_ksettings(struct net_device
*dev
,
2581 const struct ethtool_link_ksettings
*cmd
)
2583 struct gem
*gp
= netdev_priv(dev
);
2584 u32 speed
= cmd
->base
.speed
;
2587 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
2588 cmd
->link_modes
.advertising
);
2590 /* Verify the settings we care about. */
2591 if (cmd
->base
.autoneg
!= AUTONEG_ENABLE
&&
2592 cmd
->base
.autoneg
!= AUTONEG_DISABLE
)
2595 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
&&
2599 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
&&
2600 ((speed
!= SPEED_1000
&&
2601 speed
!= SPEED_100
&&
2602 speed
!= SPEED_10
) ||
2603 (cmd
->base
.duplex
!= DUPLEX_HALF
&&
2604 cmd
->base
.duplex
!= DUPLEX_FULL
)))
2607 /* Apply settings and restart link process. */
2608 if (netif_device_present(gp
->dev
)) {
2609 del_timer_sync(&gp
->link_timer
);
2610 gem_begin_auto_negotiation(gp
, cmd
);
2616 static int gem_nway_reset(struct net_device
*dev
)
2618 struct gem
*gp
= netdev_priv(dev
);
2620 if (!gp
->want_autoneg
)
2623 /* Restart link process */
2624 if (netif_device_present(gp
->dev
)) {
2625 del_timer_sync(&gp
->link_timer
);
2626 gem_begin_auto_negotiation(gp
, NULL
);
2632 static u32
gem_get_msglevel(struct net_device
*dev
)
2634 struct gem
*gp
= netdev_priv(dev
);
2635 return gp
->msg_enable
;
2638 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2640 struct gem
*gp
= netdev_priv(dev
);
2641 gp
->msg_enable
= value
;
2645 /* Add more when I understand how to program the chip */
2646 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2648 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2650 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2652 struct gem
*gp
= netdev_priv(dev
);
2654 /* Add more when I understand how to program the chip */
2656 wol
->supported
= WOL_SUPPORTED_MASK
;
2657 wol
->wolopts
= gp
->wake_on_lan
;
2664 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2666 struct gem
*gp
= netdev_priv(dev
);
2670 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2674 static const struct ethtool_ops gem_ethtool_ops
= {
2675 .get_drvinfo
= gem_get_drvinfo
,
2676 .get_link
= ethtool_op_get_link
,
2677 .nway_reset
= gem_nway_reset
,
2678 .get_msglevel
= gem_get_msglevel
,
2679 .set_msglevel
= gem_set_msglevel
,
2680 .get_wol
= gem_get_wol
,
2681 .set_wol
= gem_set_wol
,
2682 .get_link_ksettings
= gem_get_link_ksettings
,
2683 .set_link_ksettings
= gem_set_link_ksettings
,
2686 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2688 struct gem
*gp
= netdev_priv(dev
);
2689 struct mii_ioctl_data
*data
= if_mii(ifr
);
2690 int rc
= -EOPNOTSUPP
;
2692 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2693 * netif_device_present() is true and holds rtnl_lock for us
2694 * so we have nothing to worry about
2698 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2699 data
->phy_id
= gp
->mii_phy_addr
;
2700 /* Fallthrough... */
2702 case SIOCGMIIREG
: /* Read MII PHY register. */
2703 data
->val_out
= __sungem_phy_read(gp
, data
->phy_id
& 0x1f,
2704 data
->reg_num
& 0x1f);
2708 case SIOCSMIIREG
: /* Write MII PHY register. */
2709 __sungem_phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2717 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2718 /* Fetch MAC address from vital product data of PCI ROM. */
2719 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2723 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2724 void __iomem
*p
= rom_base
+ this_offset
;
2727 if (readb(p
+ 0) != 0x90 ||
2728 readb(p
+ 1) != 0x00 ||
2729 readb(p
+ 2) != 0x09 ||
2730 readb(p
+ 3) != 0x4e ||
2731 readb(p
+ 4) != 0x41 ||
2732 readb(p
+ 5) != 0x06)
2738 for (i
= 0; i
< 6; i
++)
2739 dev_addr
[i
] = readb(p
+ i
);
2745 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2748 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2753 found
= readb(p
) == 0x55 &&
2754 readb(p
+ 1) == 0xaa &&
2755 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2756 pci_unmap_rom(pdev
, p
);
2761 /* Sun MAC prefix then 3 random bytes. */
2765 get_random_bytes(dev_addr
+ 3, 3);
2767 #endif /* not Sparc and not PPC */
2769 static int gem_get_device_address(struct gem
*gp
)
2771 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2772 struct net_device
*dev
= gp
->dev
;
2773 const unsigned char *addr
;
2775 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2778 addr
= idprom
->id_ethaddr
;
2781 pr_err("%s: can't get mac-address\n", dev
->name
);
2785 memcpy(dev
->dev_addr
, addr
, ETH_ALEN
);
2787 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2792 static void gem_remove_one(struct pci_dev
*pdev
)
2794 struct net_device
*dev
= pci_get_drvdata(pdev
);
2797 struct gem
*gp
= netdev_priv(dev
);
2799 unregister_netdev(dev
);
2801 /* Ensure reset task is truly gone */
2802 cancel_work_sync(&gp
->reset_task
);
2804 /* Free resources */
2805 pci_free_consistent(pdev
,
2806 sizeof(struct gem_init_block
),
2810 pci_release_regions(pdev
);
2815 static const struct net_device_ops gem_netdev_ops
= {
2816 .ndo_open
= gem_open
,
2817 .ndo_stop
= gem_close
,
2818 .ndo_start_xmit
= gem_start_xmit
,
2819 .ndo_get_stats
= gem_get_stats
,
2820 .ndo_set_rx_mode
= gem_set_multicast
,
2821 .ndo_do_ioctl
= gem_ioctl
,
2822 .ndo_tx_timeout
= gem_tx_timeout
,
2823 .ndo_change_mtu
= gem_change_mtu
,
2824 .ndo_validate_addr
= eth_validate_addr
,
2825 .ndo_set_mac_address
= gem_set_mac_address
,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 .ndo_poll_controller
= gem_poll_controller
,
2831 static int gem_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2833 unsigned long gemreg_base
, gemreg_len
;
2834 struct net_device
*dev
;
2836 int err
, pci_using_dac
;
2838 printk_once(KERN_INFO
"%s", version
);
2840 /* Apple gmac note: during probe, the chip is powered up by
2841 * the arch code to allow the code below to work (and to let
2842 * the chip be probed on the config space. It won't stay powered
2843 * up until the interface is brought up however, so we can't rely
2844 * on register configuration done at this point.
2846 err
= pci_enable_device(pdev
);
2848 pr_err("Cannot enable MMIO operation, aborting\n");
2851 pci_set_master(pdev
);
2853 /* Configure DMA attributes. */
2855 /* All of the GEM documentation states that 64-bit DMA addressing
2856 * is fully supported and should work just fine. However the
2857 * front end for RIO based GEMs is different and only supports
2858 * 32-bit addressing.
2860 * For now we assume the various PPC GEMs are 32-bit only as well.
2862 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2863 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2864 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2867 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2869 pr_err("No usable DMA configuration, aborting\n");
2870 goto err_disable_device
;
2875 gemreg_base
= pci_resource_start(pdev
, 0);
2876 gemreg_len
= pci_resource_len(pdev
, 0);
2878 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2879 pr_err("Cannot find proper PCI device base address, aborting\n");
2881 goto err_disable_device
;
2884 dev
= alloc_etherdev(sizeof(*gp
));
2887 goto err_disable_device
;
2889 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2891 gp
= netdev_priv(dev
);
2893 err
= pci_request_regions(pdev
, DRV_NAME
);
2895 pr_err("Cannot obtain PCI resources, aborting\n");
2896 goto err_out_free_netdev
;
2902 gp
->msg_enable
= DEFAULT_MSG
;
2904 timer_setup(&gp
->link_timer
, gem_link_timer
, 0);
2906 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
2908 gp
->lstate
= link_down
;
2909 gp
->timer_ticks
= 0;
2910 netif_carrier_off(dev
);
2912 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
2914 pr_err("Cannot map device registers, aborting\n");
2916 goto err_out_free_res
;
2919 /* On Apple, we want a reference to the Open Firmware device-tree
2920 * node. We use it for clock control.
2922 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2923 gp
->of_node
= pci_device_to_OF_node(pdev
);
2926 /* Only Apple version supports WOL afaik */
2927 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2930 /* Make sure cell is enabled */
2933 /* Make sure everything is stopped and in init state */
2936 /* Fill up the mii_phy structure (even if we won't use it) */
2937 gp
->phy_mii
.dev
= dev
;
2938 gp
->phy_mii
.mdio_read
= _sungem_phy_read
;
2939 gp
->phy_mii
.mdio_write
= _sungem_phy_write
;
2940 #ifdef CONFIG_PPC_PMAC
2941 gp
->phy_mii
.platform_data
= gp
->of_node
;
2943 /* By default, we start with autoneg */
2944 gp
->want_autoneg
= 1;
2946 /* Check fifo sizes, PHY type, etc... */
2947 if (gem_check_invariants(gp
)) {
2949 goto err_out_iounmap
;
2952 /* It is guaranteed that the returned buffer will be at least
2953 * PAGE_SIZE aligned.
2955 gp
->init_block
= (struct gem_init_block
*)
2956 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2958 if (!gp
->init_block
) {
2959 pr_err("Cannot allocate init block, aborting\n");
2961 goto err_out_iounmap
;
2964 err
= gem_get_device_address(gp
);
2966 goto err_out_free_consistent
;
2968 dev
->netdev_ops
= &gem_netdev_ops
;
2969 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
2970 dev
->ethtool_ops
= &gem_ethtool_ops
;
2971 dev
->watchdog_timeo
= 5 * HZ
;
2974 /* Set that now, in case PM kicks in now */
2975 pci_set_drvdata(pdev
, dev
);
2977 /* We can do scatter/gather and HW checksum */
2978 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_RXCSUM
;
2979 dev
->features
= dev
->hw_features
;
2981 dev
->features
|= NETIF_F_HIGHDMA
;
2983 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2984 dev
->min_mtu
= GEM_MIN_MTU
;
2985 dev
->max_mtu
= GEM_MAX_MTU
;
2987 /* Register with kernel */
2988 if (register_netdev(dev
)) {
2989 pr_err("Cannot register net device, aborting\n");
2991 goto err_out_free_consistent
;
2994 /* Undo the get_cell with appropriate locking (we could use
2995 * ndo_init/uninit but that would be even more clumsy imho)
3001 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3005 err_out_free_consistent
:
3006 gem_remove_one(pdev
);
3012 pci_release_regions(pdev
);
3014 err_out_free_netdev
:
3017 pci_disable_device(pdev
);
3023 static struct pci_driver gem_driver
= {
3024 .name
= GEM_MODULE_NAME
,
3025 .id_table
= gem_pci_tbl
,
3026 .probe
= gem_init_one
,
3027 .remove
= gem_remove_one
,
3029 .suspend
= gem_suspend
,
3030 .resume
= gem_resume
,
3031 #endif /* CONFIG_PM */
3034 module_pci_driver(gem_driver
);