gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
blobfa5dc2993520e6b70b9568c63bb2104ea3171354
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Xilinx Axi Ethernet device driver
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
41 #include "xilinx_axienet.h"
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT 64
45 #define RX_BD_NUM_DEFAULT 1024
46 #define TX_BD_NUM_MAX 4096
47 #define RX_BD_NUM_MAX 4096
49 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
50 #define DRIVER_NAME "xaxienet"
51 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
52 #define DRIVER_VERSION "1.00a"
54 #define AXIENET_REGS_N 40
56 /* Match table for of_platform binding */
57 static const struct of_device_id axienet_of_match[] = {
58 { .compatible = "xlnx,axi-ethernet-1.00.a", },
59 { .compatible = "xlnx,axi-ethernet-1.01.a", },
60 { .compatible = "xlnx,axi-ethernet-2.01.a", },
61 {},
64 MODULE_DEVICE_TABLE(of, axienet_of_match);
66 /* Option table for setting up Axi Ethernet hardware options */
67 static struct axienet_option axienet_options[] = {
68 /* Turn on jumbo packet support for both Rx and Tx */
70 .opt = XAE_OPTION_JUMBO,
71 .reg = XAE_TC_OFFSET,
72 .m_or = XAE_TC_JUM_MASK,
73 }, {
74 .opt = XAE_OPTION_JUMBO,
75 .reg = XAE_RCW1_OFFSET,
76 .m_or = XAE_RCW1_JUM_MASK,
77 }, { /* Turn on VLAN packet support for both Rx and Tx */
78 .opt = XAE_OPTION_VLAN,
79 .reg = XAE_TC_OFFSET,
80 .m_or = XAE_TC_VLAN_MASK,
81 }, {
82 .opt = XAE_OPTION_VLAN,
83 .reg = XAE_RCW1_OFFSET,
84 .m_or = XAE_RCW1_VLAN_MASK,
85 }, { /* Turn on FCS stripping on receive packets */
86 .opt = XAE_OPTION_FCS_STRIP,
87 .reg = XAE_RCW1_OFFSET,
88 .m_or = XAE_RCW1_FCS_MASK,
89 }, { /* Turn on FCS insertion on transmit packets */
90 .opt = XAE_OPTION_FCS_INSERT,
91 .reg = XAE_TC_OFFSET,
92 .m_or = XAE_TC_FCS_MASK,
93 }, { /* Turn off length/type field checking on receive packets */
94 .opt = XAE_OPTION_LENTYPE_ERR,
95 .reg = XAE_RCW1_OFFSET,
96 .m_or = XAE_RCW1_LT_DIS_MASK,
97 }, { /* Turn on Rx flow control */
98 .opt = XAE_OPTION_FLOW_CONTROL,
99 .reg = XAE_FCC_OFFSET,
100 .m_or = XAE_FCC_FCRX_MASK,
101 }, { /* Turn on Tx flow control */
102 .opt = XAE_OPTION_FLOW_CONTROL,
103 .reg = XAE_FCC_OFFSET,
104 .m_or = XAE_FCC_FCTX_MASK,
105 }, { /* Turn on promiscuous frame filtering */
106 .opt = XAE_OPTION_PROMISC,
107 .reg = XAE_FMI_OFFSET,
108 .m_or = XAE_FMI_PM_MASK,
109 }, { /* Enable transmitter */
110 .opt = XAE_OPTION_TXEN,
111 .reg = XAE_TC_OFFSET,
112 .m_or = XAE_TC_TX_MASK,
113 }, { /* Enable receiver */
114 .opt = XAE_OPTION_RXEN,
115 .reg = XAE_RCW1_OFFSET,
116 .m_or = XAE_RCW1_RX_MASK,
122 * axienet_dma_in32 - Memory mapped Axi DMA register read
123 * @lp: Pointer to axienet local structure
124 * @reg: Address offset from the base address of the Axi DMA core
126 * Return: The contents of the Axi DMA register
128 * This function returns the contents of the corresponding Axi DMA register.
130 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132 return ioread32(lp->dma_regs + reg);
136 * axienet_dma_out32 - Memory mapped Axi DMA register write.
137 * @lp: Pointer to axienet local structure
138 * @reg: Address offset from the base address of the Axi DMA core
139 * @value: Value to be written into the Axi DMA register
141 * This function writes the desired value into the corresponding Axi DMA
142 * register.
144 static inline void axienet_dma_out32(struct axienet_local *lp,
145 off_t reg, u32 value)
147 iowrite32(value, lp->dma_regs + reg);
150 static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
151 dma_addr_t addr)
153 axienet_dma_out32(lp, reg, lower_32_bits(addr));
155 if (lp->features & XAE_FEATURE_DMA_64BIT)
156 axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
159 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
160 struct axidma_bd *desc)
162 desc->phys = lower_32_bits(addr);
163 if (lp->features & XAE_FEATURE_DMA_64BIT)
164 desc->phys_msb = upper_32_bits(addr);
167 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
168 struct axidma_bd *desc)
170 dma_addr_t ret = desc->phys;
172 if (lp->features & XAE_FEATURE_DMA_64BIT)
173 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
175 return ret;
179 * axienet_dma_bd_release - Release buffer descriptor rings
180 * @ndev: Pointer to the net_device structure
182 * This function is used to release the descriptors allocated in
183 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
184 * driver stop api is called.
186 static void axienet_dma_bd_release(struct net_device *ndev)
188 int i;
189 struct axienet_local *lp = netdev_priv(ndev);
191 /* If we end up here, tx_bd_v must have been DMA allocated. */
192 dma_free_coherent(ndev->dev.parent,
193 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
194 lp->tx_bd_v,
195 lp->tx_bd_p);
197 if (!lp->rx_bd_v)
198 return;
200 for (i = 0; i < lp->rx_bd_num; i++) {
201 dma_addr_t phys;
203 /* A NULL skb means this descriptor has not been initialised
204 * at all.
206 if (!lp->rx_bd_v[i].skb)
207 break;
209 dev_kfree_skb(lp->rx_bd_v[i].skb);
211 /* For each descriptor, we programmed cntrl with the (non-zero)
212 * descriptor size, after it had been successfully allocated.
213 * So a non-zero value in there means we need to unmap it.
215 if (lp->rx_bd_v[i].cntrl) {
216 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
217 dma_unmap_single(ndev->dev.parent, phys,
218 lp->max_frm_size, DMA_FROM_DEVICE);
222 dma_free_coherent(ndev->dev.parent,
223 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
224 lp->rx_bd_v,
225 lp->rx_bd_p);
229 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
230 * @ndev: Pointer to the net_device structure
232 * Return: 0, on success -ENOMEM, on failure
234 * This function is called to initialize the Rx and Tx DMA descriptor
235 * rings. This initializes the descriptors with required default values
236 * and is called when Axi Ethernet driver reset is called.
238 static int axienet_dma_bd_init(struct net_device *ndev)
240 u32 cr;
241 int i;
242 struct sk_buff *skb;
243 struct axienet_local *lp = netdev_priv(ndev);
245 /* Reset the indexes which are used for accessing the BDs */
246 lp->tx_bd_ci = 0;
247 lp->tx_bd_tail = 0;
248 lp->rx_bd_ci = 0;
250 /* Allocate the Tx and Rx buffer descriptors. */
251 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
252 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
253 &lp->tx_bd_p, GFP_KERNEL);
254 if (!lp->tx_bd_v)
255 return -ENOMEM;
257 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
258 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
259 &lp->rx_bd_p, GFP_KERNEL);
260 if (!lp->rx_bd_v)
261 goto out;
263 for (i = 0; i < lp->tx_bd_num; i++) {
264 dma_addr_t addr = lp->tx_bd_p +
265 sizeof(*lp->tx_bd_v) *
266 ((i + 1) % lp->tx_bd_num);
268 lp->tx_bd_v[i].next = lower_32_bits(addr);
269 if (lp->features & XAE_FEATURE_DMA_64BIT)
270 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
273 for (i = 0; i < lp->rx_bd_num; i++) {
274 dma_addr_t addr;
276 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
277 ((i + 1) % lp->rx_bd_num);
278 lp->rx_bd_v[i].next = lower_32_bits(addr);
279 if (lp->features & XAE_FEATURE_DMA_64BIT)
280 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
282 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
283 if (!skb)
284 goto out;
286 lp->rx_bd_v[i].skb = skb;
287 addr = dma_map_single(ndev->dev.parent, skb->data,
288 lp->max_frm_size, DMA_FROM_DEVICE);
289 if (dma_mapping_error(ndev->dev.parent, addr)) {
290 netdev_err(ndev, "DMA mapping error\n");
291 goto out;
293 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
295 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
298 /* Start updating the Rx channel control register */
299 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
300 /* Update the interrupt coalesce count */
301 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
302 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
303 /* Update the delay timer count */
304 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
305 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
306 /* Enable coalesce, delay timer and error interrupts */
307 cr |= XAXIDMA_IRQ_ALL_MASK;
308 /* Write to the Rx channel control register */
309 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
311 /* Start updating the Tx channel control register */
312 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
313 /* Update the interrupt coalesce count */
314 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
315 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
316 /* Update the delay timer count */
317 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
318 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
319 /* Enable coalesce, delay timer and error interrupts */
320 cr |= XAXIDMA_IRQ_ALL_MASK;
321 /* Write to the Tx channel control register */
322 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
324 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
325 * halted state. This will make the Rx side ready for reception.
327 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
328 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
329 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
330 cr | XAXIDMA_CR_RUNSTOP_MASK);
331 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
332 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
334 /* Write to the RS (Run-stop) bit in the Tx channel control register.
335 * Tx channel is now ready to run. But only after we write to the
336 * tail pointer register that the Tx channel will start transmitting.
338 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
339 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
340 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
341 cr | XAXIDMA_CR_RUNSTOP_MASK);
343 return 0;
344 out:
345 axienet_dma_bd_release(ndev);
346 return -ENOMEM;
350 * axienet_set_mac_address - Write the MAC address
351 * @ndev: Pointer to the net_device structure
352 * @address: 6 byte Address to be written as MAC address
354 * This function is called to initialize the MAC address of the Axi Ethernet
355 * core. It writes to the UAW0 and UAW1 registers of the core.
357 static void axienet_set_mac_address(struct net_device *ndev,
358 const void *address)
360 struct axienet_local *lp = netdev_priv(ndev);
362 if (address)
363 memcpy(ndev->dev_addr, address, ETH_ALEN);
364 if (!is_valid_ether_addr(ndev->dev_addr))
365 eth_hw_addr_random(ndev);
367 /* Set up unicast MAC address filter set its mac address */
368 axienet_iow(lp, XAE_UAW0_OFFSET,
369 (ndev->dev_addr[0]) |
370 (ndev->dev_addr[1] << 8) |
371 (ndev->dev_addr[2] << 16) |
372 (ndev->dev_addr[3] << 24));
373 axienet_iow(lp, XAE_UAW1_OFFSET,
374 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
375 ~XAE_UAW1_UNICASTADDR_MASK) |
376 (ndev->dev_addr[4] |
377 (ndev->dev_addr[5] << 8))));
381 * netdev_set_mac_address - Write the MAC address (from outside the driver)
382 * @ndev: Pointer to the net_device structure
383 * @p: 6 byte Address to be written as MAC address
385 * Return: 0 for all conditions. Presently, there is no failure case.
387 * This function is called to initialize the MAC address of the Axi Ethernet
388 * core. It calls the core specific axienet_set_mac_address. This is the
389 * function that goes into net_device_ops structure entry ndo_set_mac_address.
391 static int netdev_set_mac_address(struct net_device *ndev, void *p)
393 struct sockaddr *addr = p;
394 axienet_set_mac_address(ndev, addr->sa_data);
395 return 0;
399 * axienet_set_multicast_list - Prepare the multicast table
400 * @ndev: Pointer to the net_device structure
402 * This function is called to initialize the multicast table during
403 * initialization. The Axi Ethernet basic multicast support has a four-entry
404 * multicast table which is initialized here. Additionally this function
405 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
406 * means whenever the multicast table entries need to be updated this
407 * function gets called.
409 static void axienet_set_multicast_list(struct net_device *ndev)
411 int i;
412 u32 reg, af0reg, af1reg;
413 struct axienet_local *lp = netdev_priv(ndev);
415 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
416 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
417 /* We must make the kernel realize we had to move into
418 * promiscuous mode. If it was a promiscuous mode request
419 * the flag is already set. If not we set it.
421 ndev->flags |= IFF_PROMISC;
422 reg = axienet_ior(lp, XAE_FMI_OFFSET);
423 reg |= XAE_FMI_PM_MASK;
424 axienet_iow(lp, XAE_FMI_OFFSET, reg);
425 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
426 } else if (!netdev_mc_empty(ndev)) {
427 struct netdev_hw_addr *ha;
429 i = 0;
430 netdev_for_each_mc_addr(ha, ndev) {
431 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
432 break;
434 af0reg = (ha->addr[0]);
435 af0reg |= (ha->addr[1] << 8);
436 af0reg |= (ha->addr[2] << 16);
437 af0reg |= (ha->addr[3] << 24);
439 af1reg = (ha->addr[4]);
440 af1reg |= (ha->addr[5] << 8);
442 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
443 reg |= i;
445 axienet_iow(lp, XAE_FMI_OFFSET, reg);
446 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
447 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
448 i++;
450 } else {
451 reg = axienet_ior(lp, XAE_FMI_OFFSET);
452 reg &= ~XAE_FMI_PM_MASK;
454 axienet_iow(lp, XAE_FMI_OFFSET, reg);
456 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
457 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
458 reg |= i;
460 axienet_iow(lp, XAE_FMI_OFFSET, reg);
461 axienet_iow(lp, XAE_AF0_OFFSET, 0);
462 axienet_iow(lp, XAE_AF1_OFFSET, 0);
465 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
470 * axienet_setoptions - Set an Axi Ethernet option
471 * @ndev: Pointer to the net_device structure
472 * @options: Option to be enabled/disabled
474 * The Axi Ethernet core has multiple features which can be selectively turned
475 * on or off. The typical options could be jumbo frame option, basic VLAN
476 * option, promiscuous mode option etc. This function is used to set or clear
477 * these options in the Axi Ethernet hardware. This is done through
478 * axienet_option structure .
480 static void axienet_setoptions(struct net_device *ndev, u32 options)
482 int reg;
483 struct axienet_local *lp = netdev_priv(ndev);
484 struct axienet_option *tp = &axienet_options[0];
486 while (tp->opt) {
487 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
488 if (options & tp->opt)
489 reg |= tp->m_or;
490 axienet_iow(lp, tp->reg, reg);
491 tp++;
494 lp->options |= options;
497 static int __axienet_device_reset(struct axienet_local *lp)
499 u32 timeout;
501 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
502 * process of Axi DMA takes a while to complete as all pending
503 * commands/transfers will be flushed or completed during this
504 * reset process.
505 * Note that even though both TX and RX have their own reset register,
506 * they both reset the entire DMA core, so only one needs to be used.
508 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
509 timeout = DELAY_OF_ONE_MILLISEC;
510 while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
511 XAXIDMA_CR_RESET_MASK) {
512 udelay(1);
513 if (--timeout == 0) {
514 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
515 __func__);
516 return -ETIMEDOUT;
520 return 0;
524 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
525 * @ndev: Pointer to the net_device structure
527 * This function is called to reset and initialize the Axi Ethernet core. This
528 * is typically called during initialization. It does a reset of the Axi DMA
529 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
530 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
531 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
532 * core.
533 * Returns 0 on success or a negative error number otherwise.
535 static int axienet_device_reset(struct net_device *ndev)
537 u32 axienet_status;
538 struct axienet_local *lp = netdev_priv(ndev);
539 int ret;
541 ret = __axienet_device_reset(lp);
542 if (ret)
543 return ret;
545 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
546 lp->options |= XAE_OPTION_VLAN;
547 lp->options &= (~XAE_OPTION_JUMBO);
549 if ((ndev->mtu > XAE_MTU) &&
550 (ndev->mtu <= XAE_JUMBO_MTU)) {
551 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
552 XAE_TRL_SIZE;
554 if (lp->max_frm_size <= lp->rxmem)
555 lp->options |= XAE_OPTION_JUMBO;
558 ret = axienet_dma_bd_init(ndev);
559 if (ret) {
560 netdev_err(ndev, "%s: descriptor allocation failed\n",
561 __func__);
562 return ret;
565 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
566 axienet_status &= ~XAE_RCW1_RX_MASK;
567 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
569 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
570 if (axienet_status & XAE_INT_RXRJECT_MASK)
571 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
572 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
573 XAE_INT_RECV_ERROR_MASK : 0);
575 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
577 /* Sync default options with HW but leave receiver and
578 * transmitter disabled.
580 axienet_setoptions(ndev, lp->options &
581 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
582 axienet_set_mac_address(ndev, NULL);
583 axienet_set_multicast_list(ndev);
584 axienet_setoptions(ndev, lp->options);
586 netif_trans_update(ndev);
588 return 0;
592 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
593 * @ndev: Pointer to the net_device structure
594 * @first_bd: Index of first descriptor to clean up
595 * @nr_bds: Number of descriptors to clean up, can be -1 if unknown.
596 * @sizep: Pointer to a u32 filled with the total sum of all bytes
597 * in all cleaned-up descriptors. Ignored if NULL.
599 * Would either be called after a successful transmit operation, or after
600 * there was an error when setting up the chain.
601 * Returns the number of descriptors handled.
603 static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
604 int nr_bds, u32 *sizep)
606 struct axienet_local *lp = netdev_priv(ndev);
607 struct axidma_bd *cur_p;
608 int max_bds = nr_bds;
609 unsigned int status;
610 dma_addr_t phys;
611 int i;
613 if (max_bds == -1)
614 max_bds = lp->tx_bd_num;
616 for (i = 0; i < max_bds; i++) {
617 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
618 status = cur_p->status;
620 /* If no number is given, clean up *all* descriptors that have
621 * been completed by the MAC.
623 if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
624 break;
626 phys = desc_get_phys_addr(lp, cur_p);
627 dma_unmap_single(ndev->dev.parent, phys,
628 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
629 DMA_TO_DEVICE);
631 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
632 dev_consume_skb_irq(cur_p->skb);
634 cur_p->cntrl = 0;
635 cur_p->app0 = 0;
636 cur_p->app1 = 0;
637 cur_p->app2 = 0;
638 cur_p->app4 = 0;
639 cur_p->status = 0;
640 cur_p->skb = NULL;
642 if (sizep)
643 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
646 return i;
650 * axienet_start_xmit_done - Invoked once a transmit is completed by the
651 * Axi DMA Tx channel.
652 * @ndev: Pointer to the net_device structure
654 * This function is invoked from the Axi DMA Tx isr to notify the completion
655 * of transmit operation. It clears fields in the corresponding Tx BDs and
656 * unmaps the corresponding buffer so that CPU can regain ownership of the
657 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
658 * required.
660 static void axienet_start_xmit_done(struct net_device *ndev)
662 struct axienet_local *lp = netdev_priv(ndev);
663 u32 packets = 0;
664 u32 size = 0;
666 packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
668 lp->tx_bd_ci += packets;
669 if (lp->tx_bd_ci >= lp->tx_bd_num)
670 lp->tx_bd_ci -= lp->tx_bd_num;
672 ndev->stats.tx_packets += packets;
673 ndev->stats.tx_bytes += size;
675 /* Matches barrier in axienet_start_xmit */
676 smp_mb();
678 netif_wake_queue(ndev);
682 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
683 * @lp: Pointer to the axienet_local structure
684 * @num_frag: The number of BDs to check for
686 * Return: 0, on success
687 * NETDEV_TX_BUSY, if any of the descriptors are not free
689 * This function is invoked before BDs are allocated and transmission starts.
690 * This function returns 0 if a BD or group of BDs can be allocated for
691 * transmission. If the BD or any of the BDs are not free the function
692 * returns a busy status. This is invoked from axienet_start_xmit.
694 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
695 int num_frag)
697 struct axidma_bd *cur_p;
698 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
699 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
700 return NETDEV_TX_BUSY;
701 return 0;
705 * axienet_start_xmit - Starts the transmission.
706 * @skb: sk_buff pointer that contains data to be Txed.
707 * @ndev: Pointer to net_device structure.
709 * Return: NETDEV_TX_OK, on success
710 * NETDEV_TX_BUSY, if any of the descriptors are not free
712 * This function is invoked from upper layers to initiate transmission. The
713 * function uses the next available free BDs and populates their fields to
714 * start the transmission. Additionally if checksum offloading is supported,
715 * it populates AXI Stream Control fields with appropriate values.
717 static netdev_tx_t
718 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
720 u32 ii;
721 u32 num_frag;
722 u32 csum_start_off;
723 u32 csum_index_off;
724 skb_frag_t *frag;
725 dma_addr_t tail_p, phys;
726 struct axienet_local *lp = netdev_priv(ndev);
727 struct axidma_bd *cur_p;
728 u32 orig_tail_ptr = lp->tx_bd_tail;
730 num_frag = skb_shinfo(skb)->nr_frags;
731 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
733 if (axienet_check_tx_bd_space(lp, num_frag)) {
734 if (netif_queue_stopped(ndev))
735 return NETDEV_TX_BUSY;
737 netif_stop_queue(ndev);
739 /* Matches barrier in axienet_start_xmit_done */
740 smp_mb();
742 /* Space might have just been freed - check again */
743 if (axienet_check_tx_bd_space(lp, num_frag))
744 return NETDEV_TX_BUSY;
746 netif_wake_queue(ndev);
749 if (skb->ip_summed == CHECKSUM_PARTIAL) {
750 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
751 /* Tx Full Checksum Offload Enabled */
752 cur_p->app0 |= 2;
753 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
754 csum_start_off = skb_transport_offset(skb);
755 csum_index_off = csum_start_off + skb->csum_offset;
756 /* Tx Partial Checksum Offload Enabled */
757 cur_p->app0 |= 1;
758 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
760 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
761 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
764 phys = dma_map_single(ndev->dev.parent, skb->data,
765 skb_headlen(skb), DMA_TO_DEVICE);
766 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
767 if (net_ratelimit())
768 netdev_err(ndev, "TX DMA mapping error\n");
769 ndev->stats.tx_dropped++;
770 return NETDEV_TX_OK;
772 desc_set_phys_addr(lp, phys, cur_p);
773 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
775 for (ii = 0; ii < num_frag; ii++) {
776 if (++lp->tx_bd_tail >= lp->tx_bd_num)
777 lp->tx_bd_tail = 0;
778 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
779 frag = &skb_shinfo(skb)->frags[ii];
780 phys = dma_map_single(ndev->dev.parent,
781 skb_frag_address(frag),
782 skb_frag_size(frag),
783 DMA_TO_DEVICE);
784 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
785 if (net_ratelimit())
786 netdev_err(ndev, "TX DMA mapping error\n");
787 ndev->stats.tx_dropped++;
788 axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
789 NULL);
790 lp->tx_bd_tail = orig_tail_ptr;
792 return NETDEV_TX_OK;
794 desc_set_phys_addr(lp, phys, cur_p);
795 cur_p->cntrl = skb_frag_size(frag);
798 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
799 cur_p->skb = skb;
801 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
802 /* Start the transfer */
803 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
804 if (++lp->tx_bd_tail >= lp->tx_bd_num)
805 lp->tx_bd_tail = 0;
807 return NETDEV_TX_OK;
811 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
812 * BD processing.
813 * @ndev: Pointer to net_device structure.
815 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
816 * does minimal processing and invokes "netif_rx" to complete further
817 * processing.
819 static void axienet_recv(struct net_device *ndev)
821 u32 length;
822 u32 csumstatus;
823 u32 size = 0;
824 u32 packets = 0;
825 dma_addr_t tail_p = 0;
826 struct axienet_local *lp = netdev_priv(ndev);
827 struct sk_buff *skb, *new_skb;
828 struct axidma_bd *cur_p;
830 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
832 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
833 dma_addr_t phys;
835 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
837 phys = desc_get_phys_addr(lp, cur_p);
838 dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
839 DMA_FROM_DEVICE);
841 skb = cur_p->skb;
842 cur_p->skb = NULL;
843 length = cur_p->app4 & 0x0000FFFF;
845 skb_put(skb, length);
846 skb->protocol = eth_type_trans(skb, ndev);
847 /*skb_checksum_none_assert(skb);*/
848 skb->ip_summed = CHECKSUM_NONE;
850 /* if we're doing Rx csum offload, set it up */
851 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
852 csumstatus = (cur_p->app2 &
853 XAE_FULL_CSUM_STATUS_MASK) >> 3;
854 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
855 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
856 skb->ip_summed = CHECKSUM_UNNECESSARY;
858 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
859 skb->protocol == htons(ETH_P_IP) &&
860 skb->len > 64) {
861 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
862 skb->ip_summed = CHECKSUM_COMPLETE;
865 netif_rx(skb);
867 size += length;
868 packets++;
870 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
871 if (!new_skb)
872 return;
874 phys = dma_map_single(ndev->dev.parent, new_skb->data,
875 lp->max_frm_size,
876 DMA_FROM_DEVICE);
877 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
878 if (net_ratelimit())
879 netdev_err(ndev, "RX DMA mapping error\n");
880 dev_kfree_skb(new_skb);
881 return;
883 desc_set_phys_addr(lp, phys, cur_p);
885 cur_p->cntrl = lp->max_frm_size;
886 cur_p->status = 0;
887 cur_p->skb = new_skb;
889 if (++lp->rx_bd_ci >= lp->rx_bd_num)
890 lp->rx_bd_ci = 0;
891 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
894 ndev->stats.rx_packets += packets;
895 ndev->stats.rx_bytes += size;
897 if (tail_p)
898 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
902 * axienet_tx_irq - Tx Done Isr.
903 * @irq: irq number
904 * @_ndev: net_device pointer
906 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
908 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
909 * to complete the BD processing.
911 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
913 u32 cr;
914 unsigned int status;
915 struct net_device *ndev = _ndev;
916 struct axienet_local *lp = netdev_priv(ndev);
918 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
919 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
920 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
921 axienet_start_xmit_done(lp->ndev);
922 goto out;
924 if (!(status & XAXIDMA_IRQ_ALL_MASK))
925 return IRQ_NONE;
926 if (status & XAXIDMA_IRQ_ERROR_MASK) {
927 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
928 dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
929 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
930 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
932 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
933 /* Disable coalesce, delay timer and error interrupts */
934 cr &= (~XAXIDMA_IRQ_ALL_MASK);
935 /* Write to the Tx channel control register */
936 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
938 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
939 /* Disable coalesce, delay timer and error interrupts */
940 cr &= (~XAXIDMA_IRQ_ALL_MASK);
941 /* Write to the Rx channel control register */
942 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
944 schedule_work(&lp->dma_err_task);
945 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
947 out:
948 return IRQ_HANDLED;
952 * axienet_rx_irq - Rx Isr.
953 * @irq: irq number
954 * @_ndev: net_device pointer
956 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
958 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
959 * processing.
961 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
963 u32 cr;
964 unsigned int status;
965 struct net_device *ndev = _ndev;
966 struct axienet_local *lp = netdev_priv(ndev);
968 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
969 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
970 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
971 axienet_recv(lp->ndev);
972 goto out;
974 if (!(status & XAXIDMA_IRQ_ALL_MASK))
975 return IRQ_NONE;
976 if (status & XAXIDMA_IRQ_ERROR_MASK) {
977 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
978 dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
979 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
980 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
982 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
983 /* Disable coalesce, delay timer and error interrupts */
984 cr &= (~XAXIDMA_IRQ_ALL_MASK);
985 /* Finally write to the Tx channel control register */
986 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
988 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
989 /* Disable coalesce, delay timer and error interrupts */
990 cr &= (~XAXIDMA_IRQ_ALL_MASK);
991 /* write to the Rx channel control register */
992 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
994 schedule_work(&lp->dma_err_task);
995 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
997 out:
998 return IRQ_HANDLED;
1002 * axienet_eth_irq - Ethernet core Isr.
1003 * @irq: irq number
1004 * @_ndev: net_device pointer
1006 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1008 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1010 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1012 struct net_device *ndev = _ndev;
1013 struct axienet_local *lp = netdev_priv(ndev);
1014 unsigned int pending;
1016 pending = axienet_ior(lp, XAE_IP_OFFSET);
1017 if (!pending)
1018 return IRQ_NONE;
1020 if (pending & XAE_INT_RXFIFOOVR_MASK)
1021 ndev->stats.rx_missed_errors++;
1023 if (pending & XAE_INT_RXRJECT_MASK)
1024 ndev->stats.rx_frame_errors++;
1026 axienet_iow(lp, XAE_IS_OFFSET, pending);
1027 return IRQ_HANDLED;
1030 static void axienet_dma_err_handler(struct work_struct *work);
1033 * axienet_open - Driver open routine.
1034 * @ndev: Pointer to net_device structure
1036 * Return: 0, on success.
1037 * non-zero error value on failure
1039 * This is the driver open routine. It calls phylink_start to start the
1040 * PHY device.
1041 * It also allocates interrupt service routines, enables the interrupt lines
1042 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1043 * descriptors are initialized.
1045 static int axienet_open(struct net_device *ndev)
1047 int ret;
1048 struct axienet_local *lp = netdev_priv(ndev);
1050 dev_dbg(&ndev->dev, "axienet_open()\n");
1052 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1053 * When we do an Axi Ethernet reset, it resets the complete core
1054 * including the MDIO. MDIO must be disabled before resetting
1055 * and re-enabled afterwards.
1056 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1058 mutex_lock(&lp->mii_bus->mdio_lock);
1059 axienet_mdio_disable(lp);
1060 ret = axienet_device_reset(ndev);
1061 if (ret == 0)
1062 ret = axienet_mdio_enable(lp);
1063 mutex_unlock(&lp->mii_bus->mdio_lock);
1064 if (ret < 0)
1065 return ret;
1067 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1068 if (ret) {
1069 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1070 return ret;
1073 phylink_start(lp->phylink);
1075 /* Enable worker thread for Axi DMA error handling */
1076 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1078 /* Enable interrupts for Axi DMA Tx */
1079 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1080 ndev->name, ndev);
1081 if (ret)
1082 goto err_tx_irq;
1083 /* Enable interrupts for Axi DMA Rx */
1084 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1085 ndev->name, ndev);
1086 if (ret)
1087 goto err_rx_irq;
1088 /* Enable interrupts for Axi Ethernet core (if defined) */
1089 if (lp->eth_irq > 0) {
1090 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1091 ndev->name, ndev);
1092 if (ret)
1093 goto err_eth_irq;
1096 return 0;
1098 err_eth_irq:
1099 free_irq(lp->rx_irq, ndev);
1100 err_rx_irq:
1101 free_irq(lp->tx_irq, ndev);
1102 err_tx_irq:
1103 phylink_stop(lp->phylink);
1104 phylink_disconnect_phy(lp->phylink);
1105 cancel_work_sync(&lp->dma_err_task);
1106 dev_err(lp->dev, "request_irq() failed\n");
1107 return ret;
1111 * axienet_stop - Driver stop routine.
1112 * @ndev: Pointer to net_device structure
1114 * Return: 0, on success.
1116 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1117 * device. It also removes the interrupt handlers and disables the interrupts.
1118 * The Axi DMA Tx/Rx BDs are released.
1120 static int axienet_stop(struct net_device *ndev)
1122 u32 cr, sr;
1123 int count;
1124 struct axienet_local *lp = netdev_priv(ndev);
1126 dev_dbg(&ndev->dev, "axienet_close()\n");
1128 phylink_stop(lp->phylink);
1129 phylink_disconnect_phy(lp->phylink);
1131 axienet_setoptions(ndev, lp->options &
1132 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1134 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1135 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1136 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1138 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1139 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1140 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1142 axienet_iow(lp, XAE_IE_OFFSET, 0);
1144 /* Give DMAs a chance to halt gracefully */
1145 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1146 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1147 msleep(20);
1148 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1151 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1152 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1153 msleep(20);
1154 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1157 /* Do a reset to ensure DMA is really stopped */
1158 mutex_lock(&lp->mii_bus->mdio_lock);
1159 axienet_mdio_disable(lp);
1160 __axienet_device_reset(lp);
1161 axienet_mdio_enable(lp);
1162 mutex_unlock(&lp->mii_bus->mdio_lock);
1164 cancel_work_sync(&lp->dma_err_task);
1166 if (lp->eth_irq > 0)
1167 free_irq(lp->eth_irq, ndev);
1168 free_irq(lp->tx_irq, ndev);
1169 free_irq(lp->rx_irq, ndev);
1171 axienet_dma_bd_release(ndev);
1172 return 0;
1176 * axienet_change_mtu - Driver change mtu routine.
1177 * @ndev: Pointer to net_device structure
1178 * @new_mtu: New mtu value to be applied
1180 * Return: Always returns 0 (success).
1182 * This is the change mtu driver routine. It checks if the Axi Ethernet
1183 * hardware supports jumbo frames before changing the mtu. This can be
1184 * called only when the device is not up.
1186 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1188 struct axienet_local *lp = netdev_priv(ndev);
1190 if (netif_running(ndev))
1191 return -EBUSY;
1193 if ((new_mtu + VLAN_ETH_HLEN +
1194 XAE_TRL_SIZE) > lp->rxmem)
1195 return -EINVAL;
1197 ndev->mtu = new_mtu;
1199 return 0;
1202 #ifdef CONFIG_NET_POLL_CONTROLLER
1204 * axienet_poll_controller - Axi Ethernet poll mechanism.
1205 * @ndev: Pointer to net_device structure
1207 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1208 * to polling the ISRs and are enabled back after the polling is done.
1210 static void axienet_poll_controller(struct net_device *ndev)
1212 struct axienet_local *lp = netdev_priv(ndev);
1213 disable_irq(lp->tx_irq);
1214 disable_irq(lp->rx_irq);
1215 axienet_rx_irq(lp->tx_irq, ndev);
1216 axienet_tx_irq(lp->rx_irq, ndev);
1217 enable_irq(lp->tx_irq);
1218 enable_irq(lp->rx_irq);
1220 #endif
1222 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1224 struct axienet_local *lp = netdev_priv(dev);
1226 if (!netif_running(dev))
1227 return -EINVAL;
1229 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1232 static const struct net_device_ops axienet_netdev_ops = {
1233 .ndo_open = axienet_open,
1234 .ndo_stop = axienet_stop,
1235 .ndo_start_xmit = axienet_start_xmit,
1236 .ndo_change_mtu = axienet_change_mtu,
1237 .ndo_set_mac_address = netdev_set_mac_address,
1238 .ndo_validate_addr = eth_validate_addr,
1239 .ndo_do_ioctl = axienet_ioctl,
1240 .ndo_set_rx_mode = axienet_set_multicast_list,
1241 #ifdef CONFIG_NET_POLL_CONTROLLER
1242 .ndo_poll_controller = axienet_poll_controller,
1243 #endif
1247 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1248 * @ndev: Pointer to net_device structure
1249 * @ed: Pointer to ethtool_drvinfo structure
1251 * This implements ethtool command for getting the driver information.
1252 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1254 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1255 struct ethtool_drvinfo *ed)
1257 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1258 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1262 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1263 * AxiEthernet core.
1264 * @ndev: Pointer to net_device structure
1266 * This implements ethtool command for getting the total register length
1267 * information.
1269 * Return: the total regs length
1271 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1273 return sizeof(u32) * AXIENET_REGS_N;
1277 * axienet_ethtools_get_regs - Dump the contents of all registers present
1278 * in AxiEthernet core.
1279 * @ndev: Pointer to net_device structure
1280 * @regs: Pointer to ethtool_regs structure
1281 * @ret: Void pointer used to return the contents of the registers.
1283 * This implements ethtool command for getting the Axi Ethernet register dump.
1284 * Issue "ethtool -d ethX" to execute this function.
1286 static void axienet_ethtools_get_regs(struct net_device *ndev,
1287 struct ethtool_regs *regs, void *ret)
1289 u32 *data = (u32 *) ret;
1290 size_t len = sizeof(u32) * AXIENET_REGS_N;
1291 struct axienet_local *lp = netdev_priv(ndev);
1293 regs->version = 0;
1294 regs->len = len;
1296 memset(data, 0, len);
1297 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1298 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1299 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1300 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1301 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1302 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1303 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1304 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1305 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1306 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1307 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1308 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1309 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1310 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1311 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1312 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1313 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1314 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1315 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1316 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1317 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1318 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1319 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1320 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1321 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1322 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1323 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1324 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1325 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1326 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1327 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1328 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1329 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1330 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1331 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1332 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1335 static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1336 struct ethtool_ringparam *ering)
1338 struct axienet_local *lp = netdev_priv(ndev);
1340 ering->rx_max_pending = RX_BD_NUM_MAX;
1341 ering->rx_mini_max_pending = 0;
1342 ering->rx_jumbo_max_pending = 0;
1343 ering->tx_max_pending = TX_BD_NUM_MAX;
1344 ering->rx_pending = lp->rx_bd_num;
1345 ering->rx_mini_pending = 0;
1346 ering->rx_jumbo_pending = 0;
1347 ering->tx_pending = lp->tx_bd_num;
1350 static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1351 struct ethtool_ringparam *ering)
1353 struct axienet_local *lp = netdev_priv(ndev);
1355 if (ering->rx_pending > RX_BD_NUM_MAX ||
1356 ering->rx_mini_pending ||
1357 ering->rx_jumbo_pending ||
1358 ering->rx_pending > TX_BD_NUM_MAX)
1359 return -EINVAL;
1361 if (netif_running(ndev))
1362 return -EBUSY;
1364 lp->rx_bd_num = ering->rx_pending;
1365 lp->tx_bd_num = ering->tx_pending;
1366 return 0;
1370 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1371 * Tx and Rx paths.
1372 * @ndev: Pointer to net_device structure
1373 * @epauseparm: Pointer to ethtool_pauseparam structure.
1375 * This implements ethtool command for getting axi ethernet pause frame
1376 * setting. Issue "ethtool -a ethX" to execute this function.
1378 static void
1379 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1380 struct ethtool_pauseparam *epauseparm)
1382 struct axienet_local *lp = netdev_priv(ndev);
1384 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1388 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1389 * settings.
1390 * @ndev: Pointer to net_device structure
1391 * @epauseparm:Pointer to ethtool_pauseparam structure
1393 * This implements ethtool command for enabling flow control on Rx and Tx
1394 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1395 * function.
1397 * Return: 0 on success, -EFAULT if device is running
1399 static int
1400 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1401 struct ethtool_pauseparam *epauseparm)
1403 struct axienet_local *lp = netdev_priv(ndev);
1405 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1409 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1410 * @ndev: Pointer to net_device structure
1411 * @ecoalesce: Pointer to ethtool_coalesce structure
1413 * This implements ethtool command for getting the DMA interrupt coalescing
1414 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1415 * execute this function.
1417 * Return: 0 always
1419 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1420 struct ethtool_coalesce *ecoalesce)
1422 u32 regval = 0;
1423 struct axienet_local *lp = netdev_priv(ndev);
1424 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1425 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1426 >> XAXIDMA_COALESCE_SHIFT;
1427 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1428 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1429 >> XAXIDMA_COALESCE_SHIFT;
1430 return 0;
1434 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1435 * @ndev: Pointer to net_device structure
1436 * @ecoalesce: Pointer to ethtool_coalesce structure
1438 * This implements ethtool command for setting the DMA interrupt coalescing
1439 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1440 * prompt to execute this function.
1442 * Return: 0, on success, Non-zero error value on failure.
1444 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1445 struct ethtool_coalesce *ecoalesce)
1447 struct axienet_local *lp = netdev_priv(ndev);
1449 if (netif_running(ndev)) {
1450 netdev_err(ndev,
1451 "Please stop netif before applying configuration\n");
1452 return -EFAULT;
1455 if (ecoalesce->rx_max_coalesced_frames)
1456 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1457 if (ecoalesce->tx_max_coalesced_frames)
1458 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1460 return 0;
1463 static int
1464 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1465 struct ethtool_link_ksettings *cmd)
1467 struct axienet_local *lp = netdev_priv(ndev);
1469 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1472 static int
1473 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1474 const struct ethtool_link_ksettings *cmd)
1476 struct axienet_local *lp = netdev_priv(ndev);
1478 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1481 static const struct ethtool_ops axienet_ethtool_ops = {
1482 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1483 .get_drvinfo = axienet_ethtools_get_drvinfo,
1484 .get_regs_len = axienet_ethtools_get_regs_len,
1485 .get_regs = axienet_ethtools_get_regs,
1486 .get_link = ethtool_op_get_link,
1487 .get_ringparam = axienet_ethtools_get_ringparam,
1488 .set_ringparam = axienet_ethtools_set_ringparam,
1489 .get_pauseparam = axienet_ethtools_get_pauseparam,
1490 .set_pauseparam = axienet_ethtools_set_pauseparam,
1491 .get_coalesce = axienet_ethtools_get_coalesce,
1492 .set_coalesce = axienet_ethtools_set_coalesce,
1493 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1494 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1497 static void axienet_validate(struct phylink_config *config,
1498 unsigned long *supported,
1499 struct phylink_link_state *state)
1501 struct net_device *ndev = to_net_dev(config->dev);
1502 struct axienet_local *lp = netdev_priv(ndev);
1503 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1505 /* Only support the mode we are configured for */
1506 if (state->interface != PHY_INTERFACE_MODE_NA &&
1507 state->interface != lp->phy_mode) {
1508 netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1509 phy_modes(state->interface),
1510 phy_modes(lp->phy_mode));
1511 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1512 return;
1515 phylink_set(mask, Autoneg);
1516 phylink_set_port_modes(mask);
1518 phylink_set(mask, Asym_Pause);
1519 phylink_set(mask, Pause);
1520 phylink_set(mask, 1000baseX_Full);
1521 phylink_set(mask, 10baseT_Full);
1522 phylink_set(mask, 100baseT_Full);
1523 phylink_set(mask, 1000baseT_Full);
1525 bitmap_and(supported, supported, mask,
1526 __ETHTOOL_LINK_MODE_MASK_NBITS);
1527 bitmap_and(state->advertising, state->advertising, mask,
1528 __ETHTOOL_LINK_MODE_MASK_NBITS);
1531 static void axienet_mac_pcs_get_state(struct phylink_config *config,
1532 struct phylink_link_state *state)
1534 struct net_device *ndev = to_net_dev(config->dev);
1535 struct axienet_local *lp = netdev_priv(ndev);
1536 u32 emmc_reg, fcc_reg;
1538 state->interface = lp->phy_mode;
1540 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1541 if (emmc_reg & XAE_EMMC_LINKSPD_1000)
1542 state->speed = SPEED_1000;
1543 else if (emmc_reg & XAE_EMMC_LINKSPD_100)
1544 state->speed = SPEED_100;
1545 else
1546 state->speed = SPEED_10;
1548 state->pause = 0;
1549 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1550 if (fcc_reg & XAE_FCC_FCTX_MASK)
1551 state->pause |= MLO_PAUSE_TX;
1552 if (fcc_reg & XAE_FCC_FCRX_MASK)
1553 state->pause |= MLO_PAUSE_RX;
1555 state->an_complete = 0;
1556 state->duplex = 1;
1559 static void axienet_mac_an_restart(struct phylink_config *config)
1561 /* Unsupported, do nothing */
1564 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1565 const struct phylink_link_state *state)
1567 /* nothing meaningful to do */
1570 static void axienet_mac_link_down(struct phylink_config *config,
1571 unsigned int mode,
1572 phy_interface_t interface)
1574 /* nothing meaningful to do */
1577 static void axienet_mac_link_up(struct phylink_config *config,
1578 struct phy_device *phy,
1579 unsigned int mode, phy_interface_t interface,
1580 int speed, int duplex,
1581 bool tx_pause, bool rx_pause)
1583 struct net_device *ndev = to_net_dev(config->dev);
1584 struct axienet_local *lp = netdev_priv(ndev);
1585 u32 emmc_reg, fcc_reg;
1587 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1588 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1590 switch (speed) {
1591 case SPEED_1000:
1592 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1593 break;
1594 case SPEED_100:
1595 emmc_reg |= XAE_EMMC_LINKSPD_100;
1596 break;
1597 case SPEED_10:
1598 emmc_reg |= XAE_EMMC_LINKSPD_10;
1599 break;
1600 default:
1601 dev_err(&ndev->dev,
1602 "Speed other than 10, 100 or 1Gbps is not supported\n");
1603 break;
1606 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1608 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1609 if (tx_pause)
1610 fcc_reg |= XAE_FCC_FCTX_MASK;
1611 else
1612 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1613 if (rx_pause)
1614 fcc_reg |= XAE_FCC_FCRX_MASK;
1615 else
1616 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1617 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1620 static const struct phylink_mac_ops axienet_phylink_ops = {
1621 .validate = axienet_validate,
1622 .mac_pcs_get_state = axienet_mac_pcs_get_state,
1623 .mac_an_restart = axienet_mac_an_restart,
1624 .mac_config = axienet_mac_config,
1625 .mac_link_down = axienet_mac_link_down,
1626 .mac_link_up = axienet_mac_link_up,
1630 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1631 * @work: pointer to work_struct
1633 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1634 * Tx/Rx BDs.
1636 static void axienet_dma_err_handler(struct work_struct *work)
1638 u32 axienet_status;
1639 u32 cr, i;
1640 struct axienet_local *lp = container_of(work, struct axienet_local,
1641 dma_err_task);
1642 struct net_device *ndev = lp->ndev;
1643 struct axidma_bd *cur_p;
1645 axienet_setoptions(ndev, lp->options &
1646 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1647 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1648 * When we do an Axi Ethernet reset, it resets the complete core
1649 * including the MDIO. MDIO must be disabled before resetting
1650 * and re-enabled afterwards.
1651 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1653 mutex_lock(&lp->mii_bus->mdio_lock);
1654 axienet_mdio_disable(lp);
1655 __axienet_device_reset(lp);
1656 axienet_mdio_enable(lp);
1657 mutex_unlock(&lp->mii_bus->mdio_lock);
1659 for (i = 0; i < lp->tx_bd_num; i++) {
1660 cur_p = &lp->tx_bd_v[i];
1661 if (cur_p->cntrl) {
1662 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1664 dma_unmap_single(ndev->dev.parent, addr,
1665 (cur_p->cntrl &
1666 XAXIDMA_BD_CTRL_LENGTH_MASK),
1667 DMA_TO_DEVICE);
1669 if (cur_p->skb)
1670 dev_kfree_skb_irq(cur_p->skb);
1671 cur_p->phys = 0;
1672 cur_p->phys_msb = 0;
1673 cur_p->cntrl = 0;
1674 cur_p->status = 0;
1675 cur_p->app0 = 0;
1676 cur_p->app1 = 0;
1677 cur_p->app2 = 0;
1678 cur_p->app3 = 0;
1679 cur_p->app4 = 0;
1680 cur_p->skb = NULL;
1683 for (i = 0; i < lp->rx_bd_num; i++) {
1684 cur_p = &lp->rx_bd_v[i];
1685 cur_p->status = 0;
1686 cur_p->app0 = 0;
1687 cur_p->app1 = 0;
1688 cur_p->app2 = 0;
1689 cur_p->app3 = 0;
1690 cur_p->app4 = 0;
1693 lp->tx_bd_ci = 0;
1694 lp->tx_bd_tail = 0;
1695 lp->rx_bd_ci = 0;
1697 /* Start updating the Rx channel control register */
1698 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1699 /* Update the interrupt coalesce count */
1700 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1701 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1702 /* Update the delay timer count */
1703 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1704 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1705 /* Enable coalesce, delay timer and error interrupts */
1706 cr |= XAXIDMA_IRQ_ALL_MASK;
1707 /* Finally write to the Rx channel control register */
1708 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1710 /* Start updating the Tx channel control register */
1711 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1712 /* Update the interrupt coalesce count */
1713 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1714 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1715 /* Update the delay timer count */
1716 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1717 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1718 /* Enable coalesce, delay timer and error interrupts */
1719 cr |= XAXIDMA_IRQ_ALL_MASK;
1720 /* Finally write to the Tx channel control register */
1721 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1723 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1724 * halted state. This will make the Rx side ready for reception.
1726 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1727 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1728 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1729 cr | XAXIDMA_CR_RUNSTOP_MASK);
1730 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1731 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1733 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1734 * Tx channel is now ready to run. But only after we write to the
1735 * tail pointer register that the Tx channel will start transmitting
1737 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1738 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1739 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1740 cr | XAXIDMA_CR_RUNSTOP_MASK);
1742 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1743 axienet_status &= ~XAE_RCW1_RX_MASK;
1744 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1746 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1747 if (axienet_status & XAE_INT_RXRJECT_MASK)
1748 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1749 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1750 XAE_INT_RECV_ERROR_MASK : 0);
1751 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1753 /* Sync default options with HW but leave receiver and
1754 * transmitter disabled.
1756 axienet_setoptions(ndev, lp->options &
1757 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1758 axienet_set_mac_address(ndev, NULL);
1759 axienet_set_multicast_list(ndev);
1760 axienet_setoptions(ndev, lp->options);
1764 * axienet_probe - Axi Ethernet probe function.
1765 * @pdev: Pointer to platform device structure.
1767 * Return: 0, on success
1768 * Non-zero error value on failure.
1770 * This is the probe routine for Axi Ethernet driver. This is called before
1771 * any other driver routines are invoked. It allocates and sets up the Ethernet
1772 * device. Parses through device tree and populates fields of
1773 * axienet_local. It registers the Ethernet device.
1775 static int axienet_probe(struct platform_device *pdev)
1777 int ret;
1778 struct device_node *np;
1779 struct axienet_local *lp;
1780 struct net_device *ndev;
1781 const void *mac_addr;
1782 struct resource *ethres;
1783 int addr_width = 32;
1784 u32 value;
1786 ndev = alloc_etherdev(sizeof(*lp));
1787 if (!ndev)
1788 return -ENOMEM;
1790 platform_set_drvdata(pdev, ndev);
1792 SET_NETDEV_DEV(ndev, &pdev->dev);
1793 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1794 ndev->features = NETIF_F_SG;
1795 ndev->netdev_ops = &axienet_netdev_ops;
1796 ndev->ethtool_ops = &axienet_ethtool_ops;
1798 /* MTU range: 64 - 9000 */
1799 ndev->min_mtu = 64;
1800 ndev->max_mtu = XAE_JUMBO_MTU;
1802 lp = netdev_priv(ndev);
1803 lp->ndev = ndev;
1804 lp->dev = &pdev->dev;
1805 lp->options = XAE_OPTION_DEFAULTS;
1806 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1807 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1808 /* Map device registers */
1809 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1810 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1811 if (IS_ERR(lp->regs)) {
1812 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1813 ret = PTR_ERR(lp->regs);
1814 goto free_netdev;
1816 lp->regs_start = ethres->start;
1818 /* Setup checksum offload, but default to off if not specified */
1819 lp->features = 0;
1821 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1822 if (!ret) {
1823 switch (value) {
1824 case 1:
1825 lp->csum_offload_on_tx_path =
1826 XAE_FEATURE_PARTIAL_TX_CSUM;
1827 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1828 /* Can checksum TCP/UDP over IPv4. */
1829 ndev->features |= NETIF_F_IP_CSUM;
1830 break;
1831 case 2:
1832 lp->csum_offload_on_tx_path =
1833 XAE_FEATURE_FULL_TX_CSUM;
1834 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1835 /* Can checksum TCP/UDP over IPv4. */
1836 ndev->features |= NETIF_F_IP_CSUM;
1837 break;
1838 default:
1839 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1842 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1843 if (!ret) {
1844 switch (value) {
1845 case 1:
1846 lp->csum_offload_on_rx_path =
1847 XAE_FEATURE_PARTIAL_RX_CSUM;
1848 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1849 break;
1850 case 2:
1851 lp->csum_offload_on_rx_path =
1852 XAE_FEATURE_FULL_RX_CSUM;
1853 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1854 break;
1855 default:
1856 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1859 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1860 * a larger Rx/Tx Memory. Typically, the size must be large so that
1861 * we can enable jumbo option and start supporting jumbo frames.
1862 * Here we check for memory allocated for Rx/Tx in the hardware from
1863 * the device-tree and accordingly set flags.
1865 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1867 /* Start with the proprietary, and broken phy_type */
1868 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1869 if (!ret) {
1870 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1871 switch (value) {
1872 case XAE_PHY_TYPE_MII:
1873 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1874 break;
1875 case XAE_PHY_TYPE_GMII:
1876 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1877 break;
1878 case XAE_PHY_TYPE_RGMII_2_0:
1879 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1880 break;
1881 case XAE_PHY_TYPE_SGMII:
1882 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1883 break;
1884 case XAE_PHY_TYPE_1000BASE_X:
1885 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1886 break;
1887 default:
1888 ret = -EINVAL;
1889 goto free_netdev;
1891 } else {
1892 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1893 if (ret)
1894 goto free_netdev;
1897 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1898 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1899 if (np) {
1900 struct resource dmares;
1902 ret = of_address_to_resource(np, 0, &dmares);
1903 if (ret) {
1904 dev_err(&pdev->dev,
1905 "unable to get DMA resource\n");
1906 of_node_put(np);
1907 goto free_netdev;
1909 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1910 &dmares);
1911 lp->rx_irq = irq_of_parse_and_map(np, 1);
1912 lp->tx_irq = irq_of_parse_and_map(np, 0);
1913 of_node_put(np);
1914 lp->eth_irq = platform_get_irq_optional(pdev, 0);
1915 } else {
1916 /* Check for these resources directly on the Ethernet node. */
1917 struct resource *res = platform_get_resource(pdev,
1918 IORESOURCE_MEM, 1);
1919 lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1920 lp->rx_irq = platform_get_irq(pdev, 1);
1921 lp->tx_irq = platform_get_irq(pdev, 0);
1922 lp->eth_irq = platform_get_irq_optional(pdev, 2);
1924 if (IS_ERR(lp->dma_regs)) {
1925 dev_err(&pdev->dev, "could not map DMA regs\n");
1926 ret = PTR_ERR(lp->dma_regs);
1927 goto free_netdev;
1929 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1930 dev_err(&pdev->dev, "could not determine irqs\n");
1931 ret = -ENOMEM;
1932 goto free_netdev;
1935 /* Autodetect the need for 64-bit DMA pointers.
1936 * When the IP is configured for a bus width bigger than 32 bits,
1937 * writing the MSB registers is mandatory, even if they are all 0.
1938 * We can detect this case by writing all 1's to one such register
1939 * and see if that sticks: when the IP is configured for 32 bits
1940 * only, those registers are RES0.
1941 * Those MSB registers were introduced in IP v7.1, which we check first.
1943 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
1944 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
1946 iowrite32(0x0, desc);
1947 if (ioread32(desc) == 0) { /* sanity check */
1948 iowrite32(0xffffffff, desc);
1949 if (ioread32(desc) > 0) {
1950 lp->features |= XAE_FEATURE_DMA_64BIT;
1951 addr_width = 64;
1952 dev_info(&pdev->dev,
1953 "autodetected 64-bit DMA range\n");
1955 iowrite32(0x0, desc);
1959 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
1960 if (ret) {
1961 dev_err(&pdev->dev, "No suitable DMA available\n");
1962 goto free_netdev;
1965 /* Check for Ethernet core IRQ (optional) */
1966 if (lp->eth_irq <= 0)
1967 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
1969 /* Retrieve the MAC address */
1970 mac_addr = of_get_mac_address(pdev->dev.of_node);
1971 if (IS_ERR(mac_addr)) {
1972 dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
1973 PTR_ERR(mac_addr));
1974 mac_addr = NULL;
1976 axienet_set_mac_address(ndev, mac_addr);
1978 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1979 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1981 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1982 if (lp->phy_node) {
1983 lp->clk = devm_clk_get(&pdev->dev, NULL);
1984 if (IS_ERR(lp->clk)) {
1985 dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
1986 PTR_ERR(lp->clk));
1987 lp->clk = NULL;
1988 } else {
1989 ret = clk_prepare_enable(lp->clk);
1990 if (ret) {
1991 dev_err(&pdev->dev, "Unable to enable clock: %d\n",
1992 ret);
1993 goto free_netdev;
1997 ret = axienet_mdio_setup(lp);
1998 if (ret)
1999 dev_warn(&pdev->dev,
2000 "error registering MDIO bus: %d\n", ret);
2003 lp->phylink_config.dev = &ndev->dev;
2004 lp->phylink_config.type = PHYLINK_NETDEV;
2006 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2007 lp->phy_mode,
2008 &axienet_phylink_ops);
2009 if (IS_ERR(lp->phylink)) {
2010 ret = PTR_ERR(lp->phylink);
2011 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2012 goto free_netdev;
2015 ret = register_netdev(lp->ndev);
2016 if (ret) {
2017 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2018 goto free_netdev;
2021 return 0;
2023 free_netdev:
2024 free_netdev(ndev);
2026 return ret;
2029 static int axienet_remove(struct platform_device *pdev)
2031 struct net_device *ndev = platform_get_drvdata(pdev);
2032 struct axienet_local *lp = netdev_priv(ndev);
2034 unregister_netdev(ndev);
2036 if (lp->phylink)
2037 phylink_destroy(lp->phylink);
2039 axienet_mdio_teardown(lp);
2041 if (lp->clk)
2042 clk_disable_unprepare(lp->clk);
2044 of_node_put(lp->phy_node);
2045 lp->phy_node = NULL;
2047 free_netdev(ndev);
2049 return 0;
2052 static void axienet_shutdown(struct platform_device *pdev)
2054 struct net_device *ndev = platform_get_drvdata(pdev);
2056 rtnl_lock();
2057 netif_device_detach(ndev);
2059 if (netif_running(ndev))
2060 dev_close(ndev);
2062 rtnl_unlock();
2065 static struct platform_driver axienet_driver = {
2066 .probe = axienet_probe,
2067 .remove = axienet_remove,
2068 .shutdown = axienet_shutdown,
2069 .driver = {
2070 .name = "xilinx_axienet",
2071 .of_match_table = axienet_of_match,
2075 module_platform_driver(axienet_driver);
2077 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2078 MODULE_AUTHOR("Xilinx");
2079 MODULE_LICENSE("GPL");