gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
blobf883f2a724dd96bbc467c8437c791426233dfb00
1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6 */
8 #include "core.h"
9 #include "htc.h"
10 #include "htt.h"
11 #include "txrx.h"
12 #include "debug.h"
13 #include "trace.h"
14 #include "mac.h"
16 #include <linux/log2.h>
17 #include <linux/bitfield.h>
19 /* when under memory pressure rx ring refill may fail and needs a retry */
20 #define HTT_RX_RING_REFILL_RETRY_MS 50
22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
26 static struct sk_buff *
27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
29 struct ath10k_skb_rxcb *rxcb;
31 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
32 if (rxcb->paddr == paddr)
33 return ATH10K_RXCB_SKB(rxcb);
35 WARN_ON_ONCE(1);
36 return NULL;
39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
41 struct sk_buff *skb;
42 struct ath10k_skb_rxcb *rxcb;
43 struct hlist_node *n;
44 int i;
46 if (htt->rx_ring.in_ord_rx) {
47 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
48 skb = ATH10K_RXCB_SKB(rxcb);
49 dma_unmap_single(htt->ar->dev, rxcb->paddr,
50 skb->len + skb_tailroom(skb),
51 DMA_FROM_DEVICE);
52 hash_del(&rxcb->hlist);
53 dev_kfree_skb_any(skb);
55 } else {
56 for (i = 0; i < htt->rx_ring.size; i++) {
57 skb = htt->rx_ring.netbufs_ring[i];
58 if (!skb)
59 continue;
61 rxcb = ATH10K_SKB_RXCB(skb);
62 dma_unmap_single(htt->ar->dev, rxcb->paddr,
63 skb->len + skb_tailroom(skb),
64 DMA_FROM_DEVICE);
65 dev_kfree_skb_any(skb);
69 htt->rx_ring.fill_cnt = 0;
70 hash_init(htt->rx_ring.skb_table);
71 memset(htt->rx_ring.netbufs_ring, 0,
72 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
77 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
82 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
86 void *vaddr)
88 htt->rx_ring.paddrs_ring_32 = vaddr;
91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
92 void *vaddr)
94 htt->rx_ring.paddrs_ring_64 = vaddr;
97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
98 dma_addr_t paddr, int idx)
100 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
104 dma_addr_t paddr, int idx)
106 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
111 htt->rx_ring.paddrs_ring_32[idx] = 0;
114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
116 htt->rx_ring.paddrs_ring_64[idx] = 0;
119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
121 return (void *)htt->rx_ring.paddrs_ring_32;
124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
126 return (void *)htt->rx_ring.paddrs_ring_64;
129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
131 struct htt_rx_desc *rx_desc;
132 struct ath10k_skb_rxcb *rxcb;
133 struct sk_buff *skb;
134 dma_addr_t paddr;
135 int ret = 0, idx;
137 /* The Full Rx Reorder firmware has no way of telling the host
138 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
139 * To keep things simple make sure ring is always half empty. This
140 * guarantees there'll be no replenishment overruns possible.
142 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
144 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
145 while (num > 0) {
146 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
147 if (!skb) {
148 ret = -ENOMEM;
149 goto fail;
152 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
153 skb_pull(skb,
154 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
155 skb->data);
157 /* Clear rx_desc attention word before posting to Rx ring */
158 rx_desc = (struct htt_rx_desc *)skb->data;
159 rx_desc->attention.flags = __cpu_to_le32(0);
161 paddr = dma_map_single(htt->ar->dev, skb->data,
162 skb->len + skb_tailroom(skb),
163 DMA_FROM_DEVICE);
165 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
166 dev_kfree_skb_any(skb);
167 ret = -ENOMEM;
168 goto fail;
171 rxcb = ATH10K_SKB_RXCB(skb);
172 rxcb->paddr = paddr;
173 htt->rx_ring.netbufs_ring[idx] = skb;
174 ath10k_htt_set_paddrs_ring(htt, paddr, idx);
175 htt->rx_ring.fill_cnt++;
177 if (htt->rx_ring.in_ord_rx) {
178 hash_add(htt->rx_ring.skb_table,
179 &ATH10K_SKB_RXCB(skb)->hlist,
180 paddr);
183 num--;
184 idx++;
185 idx &= htt->rx_ring.size_mask;
188 fail:
190 * Make sure the rx buffer is updated before available buffer
191 * index to avoid any potential rx ring corruption.
193 mb();
194 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
195 return ret;
198 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
200 lockdep_assert_held(&htt->rx_ring.lock);
201 return __ath10k_htt_rx_ring_fill_n(htt, num);
204 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
206 int ret, num_deficit, num_to_fill;
208 /* Refilling the whole RX ring buffer proves to be a bad idea. The
209 * reason is RX may take up significant amount of CPU cycles and starve
210 * other tasks, e.g. TX on an ethernet device while acting as a bridge
211 * with ath10k wlan interface. This ended up with very poor performance
212 * once CPU the host system was overwhelmed with RX on ath10k.
214 * By limiting the number of refills the replenishing occurs
215 * progressively. This in turns makes use of the fact tasklets are
216 * processed in FIFO order. This means actual RX processing can starve
217 * out refilling. If there's not enough buffers on RX ring FW will not
218 * report RX until it is refilled with enough buffers. This
219 * automatically balances load wrt to CPU power.
221 * This probably comes at a cost of lower maximum throughput but
222 * improves the average and stability.
224 spin_lock_bh(&htt->rx_ring.lock);
225 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
226 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
227 num_deficit -= num_to_fill;
228 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
229 if (ret == -ENOMEM) {
231 * Failed to fill it to the desired level -
232 * we'll start a timer and try again next time.
233 * As long as enough buffers are left in the ring for
234 * another A-MPDU rx, no special recovery is needed.
236 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
237 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
238 } else if (num_deficit > 0) {
239 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
240 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
242 spin_unlock_bh(&htt->rx_ring.lock);
245 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
247 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
249 ath10k_htt_rx_msdu_buff_replenish(htt);
252 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
254 struct ath10k_htt *htt = &ar->htt;
255 int ret;
257 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
258 return 0;
260 spin_lock_bh(&htt->rx_ring.lock);
261 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
262 htt->rx_ring.fill_cnt));
264 if (ret)
265 ath10k_htt_rx_ring_free(htt);
267 spin_unlock_bh(&htt->rx_ring.lock);
269 return ret;
272 void ath10k_htt_rx_free(struct ath10k_htt *htt)
274 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
275 return;
277 del_timer_sync(&htt->rx_ring.refill_retry_timer);
279 skb_queue_purge(&htt->rx_msdus_q);
280 skb_queue_purge(&htt->rx_in_ord_compl_q);
281 skb_queue_purge(&htt->tx_fetch_ind_q);
283 spin_lock_bh(&htt->rx_ring.lock);
284 ath10k_htt_rx_ring_free(htt);
285 spin_unlock_bh(&htt->rx_ring.lock);
287 dma_free_coherent(htt->ar->dev,
288 ath10k_htt_get_rx_ring_size(htt),
289 ath10k_htt_get_vaddr_ring(htt),
290 htt->rx_ring.base_paddr);
292 dma_free_coherent(htt->ar->dev,
293 sizeof(*htt->rx_ring.alloc_idx.vaddr),
294 htt->rx_ring.alloc_idx.vaddr,
295 htt->rx_ring.alloc_idx.paddr);
297 kfree(htt->rx_ring.netbufs_ring);
300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
302 struct ath10k *ar = htt->ar;
303 int idx;
304 struct sk_buff *msdu;
306 lockdep_assert_held(&htt->rx_ring.lock);
308 if (htt->rx_ring.fill_cnt == 0) {
309 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
310 return NULL;
313 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
314 msdu = htt->rx_ring.netbufs_ring[idx];
315 htt->rx_ring.netbufs_ring[idx] = NULL;
316 ath10k_htt_reset_paddrs_ring(htt, idx);
318 idx++;
319 idx &= htt->rx_ring.size_mask;
320 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
321 htt->rx_ring.fill_cnt--;
323 dma_unmap_single(htt->ar->dev,
324 ATH10K_SKB_RXCB(msdu)->paddr,
325 msdu->len + skb_tailroom(msdu),
326 DMA_FROM_DEVICE);
327 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
328 msdu->data, msdu->len + skb_tailroom(msdu));
330 return msdu;
333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
335 struct sk_buff_head *amsdu)
337 struct ath10k *ar = htt->ar;
338 int msdu_len, msdu_chaining = 0;
339 struct sk_buff *msdu;
340 struct htt_rx_desc *rx_desc;
342 lockdep_assert_held(&htt->rx_ring.lock);
344 for (;;) {
345 int last_msdu, msdu_len_invalid, msdu_chained;
347 msdu = ath10k_htt_rx_netbuf_pop(htt);
348 if (!msdu) {
349 __skb_queue_purge(amsdu);
350 return -ENOENT;
353 __skb_queue_tail(amsdu, msdu);
355 rx_desc = (struct htt_rx_desc *)msdu->data;
357 /* FIXME: we must report msdu payload since this is what caller
358 * expects now
360 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
361 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
364 * Sanity check - confirm the HW is finished filling in the
365 * rx data.
366 * If the HW and SW are working correctly, then it's guaranteed
367 * that the HW's MAC DMA is done before this point in the SW.
368 * To prevent the case that we handle a stale Rx descriptor,
369 * just assert for now until we have a way to recover.
371 if (!(__le32_to_cpu(rx_desc->attention.flags)
372 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
373 __skb_queue_purge(amsdu);
374 return -EIO;
377 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
378 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
379 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
380 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
381 RX_MSDU_START_INFO0_MSDU_LENGTH);
382 msdu_chained = rx_desc->frag_info.ring2_more_count;
384 if (msdu_len_invalid)
385 msdu_len = 0;
387 skb_trim(msdu, 0);
388 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
389 msdu_len -= msdu->len;
391 /* Note: Chained buffers do not contain rx descriptor */
392 while (msdu_chained--) {
393 msdu = ath10k_htt_rx_netbuf_pop(htt);
394 if (!msdu) {
395 __skb_queue_purge(amsdu);
396 return -ENOENT;
399 __skb_queue_tail(amsdu, msdu);
400 skb_trim(msdu, 0);
401 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
402 msdu_len -= msdu->len;
403 msdu_chaining = 1;
406 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
407 RX_MSDU_END_INFO0_LAST_MSDU;
409 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
410 sizeof(*rx_desc) - sizeof(u32));
412 if (last_msdu)
413 break;
416 if (skb_queue_empty(amsdu))
417 msdu_chaining = -1;
420 * Don't refill the ring yet.
422 * First, the elements popped here are still in use - it is not
423 * safe to overwrite them until the matching call to
424 * mpdu_desc_list_next. Second, for efficiency it is preferable to
425 * refill the rx ring with 1 PPDU's worth of rx buffers (something
426 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
427 * (something like 3 buffers). Consequently, we'll rely on the txrx
428 * SW to tell us when it is done pulling all the PPDU's rx buffers
429 * out of the rx ring, and then refill it just once.
432 return msdu_chaining;
435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
436 u64 paddr)
438 struct ath10k *ar = htt->ar;
439 struct ath10k_skb_rxcb *rxcb;
440 struct sk_buff *msdu;
442 lockdep_assert_held(&htt->rx_ring.lock);
444 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
445 if (!msdu)
446 return NULL;
448 rxcb = ATH10K_SKB_RXCB(msdu);
449 hash_del(&rxcb->hlist);
450 htt->rx_ring.fill_cnt--;
452 dma_unmap_single(htt->ar->dev, rxcb->paddr,
453 msdu->len + skb_tailroom(msdu),
454 DMA_FROM_DEVICE);
455 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
456 msdu->data, msdu->len + skb_tailroom(msdu));
458 return msdu;
461 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
462 struct sk_buff *frag_list,
463 unsigned int frag_len)
465 skb_shinfo(skb_head)->frag_list = frag_list;
466 skb_head->data_len = frag_len;
467 skb_head->len += skb_head->data_len;
470 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
471 struct sk_buff *msdu,
472 struct htt_rx_in_ord_msdu_desc **msdu_desc)
474 struct ath10k *ar = htt->ar;
475 u32 paddr;
476 struct sk_buff *frag_buf;
477 struct sk_buff *prev_frag_buf;
478 u8 last_frag;
479 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
480 struct htt_rx_desc *rxd;
481 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
483 rxd = (void *)msdu->data;
484 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
486 skb_put(msdu, sizeof(struct htt_rx_desc));
487 skb_pull(msdu, sizeof(struct htt_rx_desc));
488 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
489 amsdu_len -= msdu->len;
491 last_frag = ind_desc->reserved;
492 if (last_frag) {
493 if (amsdu_len) {
494 ath10k_warn(ar, "invalid amsdu len %u, left %d",
495 __le16_to_cpu(ind_desc->msdu_len),
496 amsdu_len);
498 return 0;
501 ind_desc++;
502 paddr = __le32_to_cpu(ind_desc->msdu_paddr);
503 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
504 if (!frag_buf) {
505 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
506 return -ENOENT;
509 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
510 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
512 amsdu_len -= frag_buf->len;
513 prev_frag_buf = frag_buf;
514 last_frag = ind_desc->reserved;
515 while (!last_frag) {
516 ind_desc++;
517 paddr = __le32_to_cpu(ind_desc->msdu_paddr);
518 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
519 if (!frag_buf) {
520 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
521 paddr);
522 prev_frag_buf->next = NULL;
523 return -ENOENT;
526 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
527 last_frag = ind_desc->reserved;
528 amsdu_len -= frag_buf->len;
530 prev_frag_buf->next = frag_buf;
531 prev_frag_buf = frag_buf;
534 if (amsdu_len) {
535 ath10k_warn(ar, "invalid amsdu len %u, left %d",
536 __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
539 *msdu_desc = ind_desc;
541 prev_frag_buf->next = NULL;
542 return 0;
545 static int
546 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
547 struct sk_buff *msdu,
548 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
550 struct ath10k *ar = htt->ar;
551 u64 paddr;
552 struct sk_buff *frag_buf;
553 struct sk_buff *prev_frag_buf;
554 u8 last_frag;
555 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
556 struct htt_rx_desc *rxd;
557 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
559 rxd = (void *)msdu->data;
560 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
562 skb_put(msdu, sizeof(struct htt_rx_desc));
563 skb_pull(msdu, sizeof(struct htt_rx_desc));
564 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
565 amsdu_len -= msdu->len;
567 last_frag = ind_desc->reserved;
568 if (last_frag) {
569 if (amsdu_len) {
570 ath10k_warn(ar, "invalid amsdu len %u, left %d",
571 __le16_to_cpu(ind_desc->msdu_len),
572 amsdu_len);
574 return 0;
577 ind_desc++;
578 paddr = __le64_to_cpu(ind_desc->msdu_paddr);
579 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
580 if (!frag_buf) {
581 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
582 return -ENOENT;
585 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
586 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
588 amsdu_len -= frag_buf->len;
589 prev_frag_buf = frag_buf;
590 last_frag = ind_desc->reserved;
591 while (!last_frag) {
592 ind_desc++;
593 paddr = __le64_to_cpu(ind_desc->msdu_paddr);
594 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
595 if (!frag_buf) {
596 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
597 paddr);
598 prev_frag_buf->next = NULL;
599 return -ENOENT;
602 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
603 last_frag = ind_desc->reserved;
604 amsdu_len -= frag_buf->len;
606 prev_frag_buf->next = frag_buf;
607 prev_frag_buf = frag_buf;
610 if (amsdu_len) {
611 ath10k_warn(ar, "invalid amsdu len %u, left %d",
612 __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
615 *msdu_desc = ind_desc;
617 prev_frag_buf->next = NULL;
618 return 0;
621 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
622 struct htt_rx_in_ord_ind *ev,
623 struct sk_buff_head *list)
625 struct ath10k *ar = htt->ar;
626 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
627 struct htt_rx_desc *rxd;
628 struct sk_buff *msdu;
629 int msdu_count, ret;
630 bool is_offload;
631 u32 paddr;
633 lockdep_assert_held(&htt->rx_ring.lock);
635 msdu_count = __le16_to_cpu(ev->msdu_count);
636 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
638 while (msdu_count--) {
639 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
641 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
642 if (!msdu) {
643 __skb_queue_purge(list);
644 return -ENOENT;
647 if (!is_offload && ar->monitor_arvif) {
648 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
649 &msdu_desc);
650 if (ret) {
651 __skb_queue_purge(list);
652 return ret;
654 __skb_queue_tail(list, msdu);
655 msdu_desc++;
656 continue;
659 __skb_queue_tail(list, msdu);
661 if (!is_offload) {
662 rxd = (void *)msdu->data;
664 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
666 skb_put(msdu, sizeof(*rxd));
667 skb_pull(msdu, sizeof(*rxd));
668 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
670 if (!(__le32_to_cpu(rxd->attention.flags) &
671 RX_ATTENTION_FLAGS_MSDU_DONE)) {
672 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
673 return -EIO;
677 msdu_desc++;
680 return 0;
683 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
684 struct htt_rx_in_ord_ind *ev,
685 struct sk_buff_head *list)
687 struct ath10k *ar = htt->ar;
688 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
689 struct htt_rx_desc *rxd;
690 struct sk_buff *msdu;
691 int msdu_count, ret;
692 bool is_offload;
693 u64 paddr;
695 lockdep_assert_held(&htt->rx_ring.lock);
697 msdu_count = __le16_to_cpu(ev->msdu_count);
698 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
700 while (msdu_count--) {
701 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
702 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
703 if (!msdu) {
704 __skb_queue_purge(list);
705 return -ENOENT;
708 if (!is_offload && ar->monitor_arvif) {
709 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
710 &msdu_desc);
711 if (ret) {
712 __skb_queue_purge(list);
713 return ret;
715 __skb_queue_tail(list, msdu);
716 msdu_desc++;
717 continue;
720 __skb_queue_tail(list, msdu);
722 if (!is_offload) {
723 rxd = (void *)msdu->data;
725 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
727 skb_put(msdu, sizeof(*rxd));
728 skb_pull(msdu, sizeof(*rxd));
729 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
731 if (!(__le32_to_cpu(rxd->attention.flags) &
732 RX_ATTENTION_FLAGS_MSDU_DONE)) {
733 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
734 return -EIO;
738 msdu_desc++;
741 return 0;
744 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
746 struct ath10k *ar = htt->ar;
747 dma_addr_t paddr;
748 void *vaddr, *vaddr_ring;
749 size_t size;
750 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
752 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
753 return 0;
755 htt->rx_confused = false;
757 /* XXX: The fill level could be changed during runtime in response to
758 * the host processing latency. Is this really worth it?
760 htt->rx_ring.size = HTT_RX_RING_SIZE;
761 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
762 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
764 if (!is_power_of_2(htt->rx_ring.size)) {
765 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
766 return -EINVAL;
769 htt->rx_ring.netbufs_ring =
770 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
771 GFP_KERNEL);
772 if (!htt->rx_ring.netbufs_ring)
773 goto err_netbuf;
775 size = ath10k_htt_get_rx_ring_size(htt);
777 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
778 if (!vaddr_ring)
779 goto err_dma_ring;
781 ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
782 htt->rx_ring.base_paddr = paddr;
784 vaddr = dma_alloc_coherent(htt->ar->dev,
785 sizeof(*htt->rx_ring.alloc_idx.vaddr),
786 &paddr, GFP_KERNEL);
787 if (!vaddr)
788 goto err_dma_idx;
790 htt->rx_ring.alloc_idx.vaddr = vaddr;
791 htt->rx_ring.alloc_idx.paddr = paddr;
792 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
793 *htt->rx_ring.alloc_idx.vaddr = 0;
795 /* Initialize the Rx refill retry timer */
796 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
798 spin_lock_init(&htt->rx_ring.lock);
800 htt->rx_ring.fill_cnt = 0;
801 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
802 hash_init(htt->rx_ring.skb_table);
804 skb_queue_head_init(&htt->rx_msdus_q);
805 skb_queue_head_init(&htt->rx_in_ord_compl_q);
806 skb_queue_head_init(&htt->tx_fetch_ind_q);
807 atomic_set(&htt->num_mpdus_ready, 0);
809 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
810 htt->rx_ring.size, htt->rx_ring.fill_level);
811 return 0;
813 err_dma_idx:
814 dma_free_coherent(htt->ar->dev,
815 ath10k_htt_get_rx_ring_size(htt),
816 vaddr_ring,
817 htt->rx_ring.base_paddr);
818 err_dma_ring:
819 kfree(htt->rx_ring.netbufs_ring);
820 err_netbuf:
821 return -ENOMEM;
824 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
825 enum htt_rx_mpdu_encrypt_type type)
827 switch (type) {
828 case HTT_RX_MPDU_ENCRYPT_NONE:
829 return 0;
830 case HTT_RX_MPDU_ENCRYPT_WEP40:
831 case HTT_RX_MPDU_ENCRYPT_WEP104:
832 return IEEE80211_WEP_IV_LEN;
833 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
834 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
835 return IEEE80211_TKIP_IV_LEN;
836 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
837 return IEEE80211_CCMP_HDR_LEN;
838 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
839 return IEEE80211_CCMP_256_HDR_LEN;
840 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
841 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
842 return IEEE80211_GCMP_HDR_LEN;
843 case HTT_RX_MPDU_ENCRYPT_WEP128:
844 case HTT_RX_MPDU_ENCRYPT_WAPI:
845 break;
848 ath10k_warn(ar, "unsupported encryption type %d\n", type);
849 return 0;
852 #define MICHAEL_MIC_LEN 8
854 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
855 enum htt_rx_mpdu_encrypt_type type)
857 switch (type) {
858 case HTT_RX_MPDU_ENCRYPT_NONE:
859 case HTT_RX_MPDU_ENCRYPT_WEP40:
860 case HTT_RX_MPDU_ENCRYPT_WEP104:
861 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
862 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
863 return 0;
864 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
865 return IEEE80211_CCMP_MIC_LEN;
866 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
867 return IEEE80211_CCMP_256_MIC_LEN;
868 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
869 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
870 return IEEE80211_GCMP_MIC_LEN;
871 case HTT_RX_MPDU_ENCRYPT_WEP128:
872 case HTT_RX_MPDU_ENCRYPT_WAPI:
873 break;
876 ath10k_warn(ar, "unsupported encryption type %d\n", type);
877 return 0;
880 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
881 enum htt_rx_mpdu_encrypt_type type)
883 switch (type) {
884 case HTT_RX_MPDU_ENCRYPT_NONE:
885 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
886 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
887 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
888 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
889 return 0;
890 case HTT_RX_MPDU_ENCRYPT_WEP40:
891 case HTT_RX_MPDU_ENCRYPT_WEP104:
892 return IEEE80211_WEP_ICV_LEN;
893 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
894 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
895 return IEEE80211_TKIP_ICV_LEN;
896 case HTT_RX_MPDU_ENCRYPT_WEP128:
897 case HTT_RX_MPDU_ENCRYPT_WAPI:
898 break;
901 ath10k_warn(ar, "unsupported encryption type %d\n", type);
902 return 0;
905 struct amsdu_subframe_hdr {
906 u8 dst[ETH_ALEN];
907 u8 src[ETH_ALEN];
908 __be16 len;
909 } __packed;
911 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
913 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
915 u8 ret = 0;
917 switch (bw) {
918 case 0:
919 ret = RATE_INFO_BW_20;
920 break;
921 case 1:
922 ret = RATE_INFO_BW_40;
923 break;
924 case 2:
925 ret = RATE_INFO_BW_80;
926 break;
927 case 3:
928 ret = RATE_INFO_BW_160;
929 break;
932 return ret;
935 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
936 struct ieee80211_rx_status *status,
937 struct htt_rx_desc *rxd)
939 struct ieee80211_supported_band *sband;
940 u8 cck, rate, bw, sgi, mcs, nss;
941 u8 preamble = 0;
942 u8 group_id;
943 u32 info1, info2, info3;
945 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
946 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
947 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
949 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
951 switch (preamble) {
952 case HTT_RX_LEGACY:
953 /* To get legacy rate index band is required. Since band can't
954 * be undefined check if freq is non-zero.
956 if (!status->freq)
957 return;
959 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
960 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
961 rate &= ~RX_PPDU_START_RATE_FLAG;
963 sband = &ar->mac.sbands[status->band];
964 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
965 break;
966 case HTT_RX_HT:
967 case HTT_RX_HT_WITH_TXBF:
968 /* HT-SIG - Table 20-11 in info2 and info3 */
969 mcs = info2 & 0x1F;
970 nss = mcs >> 3;
971 bw = (info2 >> 7) & 1;
972 sgi = (info3 >> 7) & 1;
974 status->rate_idx = mcs;
975 status->encoding = RX_ENC_HT;
976 if (sgi)
977 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
978 if (bw)
979 status->bw = RATE_INFO_BW_40;
980 break;
981 case HTT_RX_VHT:
982 case HTT_RX_VHT_WITH_TXBF:
983 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
984 * TODO check this
986 bw = info2 & 3;
987 sgi = info3 & 1;
988 group_id = (info2 >> 4) & 0x3F;
990 if (GROUP_ID_IS_SU_MIMO(group_id)) {
991 mcs = (info3 >> 4) & 0x0F;
992 nss = ((info2 >> 10) & 0x07) + 1;
993 } else {
994 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
995 * so it's impossible to decode MCS. Also since
996 * firmware consumes Group Id Management frames host
997 * has no knowledge regarding group/user position
998 * mapping so it's impossible to pick the correct Nsts
999 * from VHT-SIG-A1.
1001 * Bandwidth and SGI are valid so report the rateinfo
1002 * on best-effort basis.
1004 mcs = 0;
1005 nss = 1;
1008 if (mcs > 0x09) {
1009 ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1010 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1011 __le32_to_cpu(rxd->attention.flags),
1012 __le32_to_cpu(rxd->mpdu_start.info0),
1013 __le32_to_cpu(rxd->mpdu_start.info1),
1014 __le32_to_cpu(rxd->msdu_start.common.info0),
1015 __le32_to_cpu(rxd->msdu_start.common.info1),
1016 rxd->ppdu_start.info0,
1017 __le32_to_cpu(rxd->ppdu_start.info1),
1018 __le32_to_cpu(rxd->ppdu_start.info2),
1019 __le32_to_cpu(rxd->ppdu_start.info3),
1020 __le32_to_cpu(rxd->ppdu_start.info4));
1022 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1023 __le32_to_cpu(rxd->msdu_end.common.info0),
1024 __le32_to_cpu(rxd->mpdu_end.info0));
1026 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1027 "rx desc msdu payload: ",
1028 rxd->msdu_payload, 50);
1031 status->rate_idx = mcs;
1032 status->nss = nss;
1034 if (sgi)
1035 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1037 status->bw = ath10k_bw_to_mac80211_bw(bw);
1038 status->encoding = RX_ENC_VHT;
1039 break;
1040 default:
1041 break;
1045 static struct ieee80211_channel *
1046 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1048 struct ath10k_peer *peer;
1049 struct ath10k_vif *arvif;
1050 struct cfg80211_chan_def def;
1051 u16 peer_id;
1053 lockdep_assert_held(&ar->data_lock);
1055 if (!rxd)
1056 return NULL;
1058 if (rxd->attention.flags &
1059 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1060 return NULL;
1062 if (!(rxd->msdu_end.common.info0 &
1063 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1064 return NULL;
1066 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1067 RX_MPDU_START_INFO0_PEER_IDX);
1069 peer = ath10k_peer_find_by_id(ar, peer_id);
1070 if (!peer)
1071 return NULL;
1073 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1074 if (WARN_ON_ONCE(!arvif))
1075 return NULL;
1077 if (ath10k_mac_vif_chan(arvif->vif, &def))
1078 return NULL;
1080 return def.chan;
1083 static struct ieee80211_channel *
1084 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1086 struct ath10k_vif *arvif;
1087 struct cfg80211_chan_def def;
1089 lockdep_assert_held(&ar->data_lock);
1091 list_for_each_entry(arvif, &ar->arvifs, list) {
1092 if (arvif->vdev_id == vdev_id &&
1093 ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1094 return def.chan;
1097 return NULL;
1100 static void
1101 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1102 struct ieee80211_chanctx_conf *conf,
1103 void *data)
1105 struct cfg80211_chan_def *def = data;
1107 *def = conf->def;
1110 static struct ieee80211_channel *
1111 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1113 struct cfg80211_chan_def def = {};
1115 ieee80211_iter_chan_contexts_atomic(ar->hw,
1116 ath10k_htt_rx_h_any_chan_iter,
1117 &def);
1119 return def.chan;
1122 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1123 struct ieee80211_rx_status *status,
1124 struct htt_rx_desc *rxd,
1125 u32 vdev_id)
1127 struct ieee80211_channel *ch;
1129 spin_lock_bh(&ar->data_lock);
1130 ch = ar->scan_channel;
1131 if (!ch)
1132 ch = ar->rx_channel;
1133 if (!ch)
1134 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1135 if (!ch)
1136 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1137 if (!ch)
1138 ch = ath10k_htt_rx_h_any_channel(ar);
1139 if (!ch)
1140 ch = ar->tgt_oper_chan;
1141 spin_unlock_bh(&ar->data_lock);
1143 if (!ch)
1144 return false;
1146 status->band = ch->band;
1147 status->freq = ch->center_freq;
1149 return true;
1152 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1153 struct ieee80211_rx_status *status,
1154 struct htt_rx_desc *rxd)
1156 int i;
1158 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1159 status->chains &= ~BIT(i);
1161 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
1162 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1163 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
1165 status->chains |= BIT(i);
1169 /* FIXME: Get real NF */
1170 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1171 rxd->ppdu_start.rssi_comb;
1172 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1175 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1176 struct ieee80211_rx_status *status,
1177 struct htt_rx_desc *rxd)
1179 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1180 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1181 * TSF. Is it worth holding frames until end of PPDU is known?
1183 * FIXME: Can we get/compute 64bit TSF?
1185 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1186 status->flag |= RX_FLAG_MACTIME_END;
1189 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1190 struct sk_buff_head *amsdu,
1191 struct ieee80211_rx_status *status,
1192 u32 vdev_id)
1194 struct sk_buff *first;
1195 struct htt_rx_desc *rxd;
1196 bool is_first_ppdu;
1197 bool is_last_ppdu;
1199 if (skb_queue_empty(amsdu))
1200 return;
1202 first = skb_peek(amsdu);
1203 rxd = (void *)first->data - sizeof(*rxd);
1205 is_first_ppdu = !!(rxd->attention.flags &
1206 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1207 is_last_ppdu = !!(rxd->attention.flags &
1208 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1210 if (is_first_ppdu) {
1211 /* New PPDU starts so clear out the old per-PPDU status. */
1212 status->freq = 0;
1213 status->rate_idx = 0;
1214 status->nss = 0;
1215 status->encoding = RX_ENC_LEGACY;
1216 status->bw = RATE_INFO_BW_20;
1218 status->flag &= ~RX_FLAG_MACTIME_END;
1219 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1221 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1222 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1223 status->ampdu_reference = ar->ampdu_reference;
1225 ath10k_htt_rx_h_signal(ar, status, rxd);
1226 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1227 ath10k_htt_rx_h_rates(ar, status, rxd);
1230 if (is_last_ppdu) {
1231 ath10k_htt_rx_h_mactime(ar, status, rxd);
1233 /* set ampdu last segment flag */
1234 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1235 ar->ampdu_reference++;
1239 static const char * const tid_to_ac[] = {
1240 "BE",
1241 "BK",
1242 "BK",
1243 "BE",
1244 "VI",
1245 "VI",
1246 "VO",
1247 "VO",
1250 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1252 u8 *qc;
1253 int tid;
1255 if (!ieee80211_is_data_qos(hdr->frame_control))
1256 return "";
1258 qc = ieee80211_get_qos_ctl(hdr);
1259 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1260 if (tid < 8)
1261 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1262 else
1263 snprintf(out, size, "tid %d", tid);
1265 return out;
1268 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1269 struct ieee80211_rx_status *rx_status,
1270 struct sk_buff *skb)
1272 struct ieee80211_rx_status *status;
1274 status = IEEE80211_SKB_RXCB(skb);
1275 *status = *rx_status;
1277 skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1280 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1282 struct ieee80211_rx_status *status;
1283 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1284 char tid[32];
1286 status = IEEE80211_SKB_RXCB(skb);
1288 if (!(ar->filter_flags & FIF_FCSFAIL) &&
1289 status->flag & RX_FLAG_FAILED_FCS_CRC) {
1290 ar->stats.rx_crc_err_drop++;
1291 dev_kfree_skb_any(skb);
1292 return;
1295 ath10k_dbg(ar, ATH10K_DBG_DATA,
1296 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1297 skb,
1298 skb->len,
1299 ieee80211_get_SA(hdr),
1300 ath10k_get_tid(hdr, tid, sizeof(tid)),
1301 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1302 "mcast" : "ucast",
1303 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1304 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1305 (status->encoding == RX_ENC_HT) ? "ht" : "",
1306 (status->encoding == RX_ENC_VHT) ? "vht" : "",
1307 (status->bw == RATE_INFO_BW_40) ? "40" : "",
1308 (status->bw == RATE_INFO_BW_80) ? "80" : "",
1309 (status->bw == RATE_INFO_BW_160) ? "160" : "",
1310 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1311 status->rate_idx,
1312 status->nss,
1313 status->freq,
1314 status->band, status->flag,
1315 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1316 !!(status->flag & RX_FLAG_MMIC_ERROR),
1317 !!(status->flag & RX_FLAG_AMSDU_MORE));
1318 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1319 skb->data, skb->len);
1320 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1321 trace_ath10k_rx_payload(ar, skb->data, skb->len);
1323 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1326 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1327 struct ieee80211_hdr *hdr)
1329 int len = ieee80211_hdrlen(hdr->frame_control);
1331 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1332 ar->running_fw->fw_file.fw_features))
1333 len = round_up(len, 4);
1335 return len;
1338 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1339 struct sk_buff *msdu,
1340 struct ieee80211_rx_status *status,
1341 enum htt_rx_mpdu_encrypt_type enctype,
1342 bool is_decrypted,
1343 const u8 first_hdr[64])
1345 struct ieee80211_hdr *hdr;
1346 struct htt_rx_desc *rxd;
1347 size_t hdr_len;
1348 size_t crypto_len;
1349 bool is_first;
1350 bool is_last;
1351 bool msdu_limit_err;
1352 int bytes_aligned = ar->hw_params.decap_align_bytes;
1353 u8 *qos;
1355 rxd = (void *)msdu->data - sizeof(*rxd);
1356 is_first = !!(rxd->msdu_end.common.info0 &
1357 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1358 is_last = !!(rxd->msdu_end.common.info0 &
1359 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1361 /* Delivered decapped frame:
1362 * [802.11 header]
1363 * [crypto param] <-- can be trimmed if !fcs_err &&
1364 * !decrypt_err && !peer_idx_invalid
1365 * [amsdu header] <-- only if A-MSDU
1366 * [rfc1042/llc]
1367 * [payload]
1368 * [FCS] <-- at end, needs to be trimmed
1371 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1372 * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1373 * error packets. If limit exceeds, hw sends all remaining MSDUs as
1374 * a single last MSDU with this msdu limit error set.
1376 msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
1378 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1379 * without first MSDU is expected in that case, and handled later here.
1381 /* This probably shouldn't happen but warn just in case */
1382 if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1383 return;
1385 /* This probably shouldn't happen but warn just in case */
1386 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1387 return;
1389 skb_trim(msdu, msdu->len - FCS_LEN);
1391 /* Push original 80211 header */
1392 if (unlikely(msdu_limit_err)) {
1393 hdr = (struct ieee80211_hdr *)first_hdr;
1394 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1395 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1397 if (ieee80211_is_data_qos(hdr->frame_control)) {
1398 qos = ieee80211_get_qos_ctl(hdr);
1399 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1402 if (crypto_len)
1403 memcpy(skb_push(msdu, crypto_len),
1404 (void *)hdr + round_up(hdr_len, bytes_aligned),
1405 crypto_len);
1407 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1410 /* In most cases this will be true for sniffed frames. It makes sense
1411 * to deliver them as-is without stripping the crypto param. This is
1412 * necessary for software based decryption.
1414 * If there's no error then the frame is decrypted. At least that is
1415 * the case for frames that come in via fragmented rx indication.
1417 if (!is_decrypted)
1418 return;
1420 /* The payload is decrypted so strip crypto params. Start from tail
1421 * since hdr is used to compute some stuff.
1424 hdr = (void *)msdu->data;
1426 /* Tail */
1427 if (status->flag & RX_FLAG_IV_STRIPPED) {
1428 skb_trim(msdu, msdu->len -
1429 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1431 skb_trim(msdu, msdu->len -
1432 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1433 } else {
1434 /* MIC */
1435 if (status->flag & RX_FLAG_MIC_STRIPPED)
1436 skb_trim(msdu, msdu->len -
1437 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1439 /* ICV */
1440 if (status->flag & RX_FLAG_ICV_STRIPPED)
1441 skb_trim(msdu, msdu->len -
1442 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1445 /* MMIC */
1446 if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1447 !ieee80211_has_morefrags(hdr->frame_control) &&
1448 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1449 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1451 /* Head */
1452 if (status->flag & RX_FLAG_IV_STRIPPED) {
1453 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1454 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1456 memmove((void *)msdu->data + crypto_len,
1457 (void *)msdu->data, hdr_len);
1458 skb_pull(msdu, crypto_len);
1462 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1463 struct sk_buff *msdu,
1464 struct ieee80211_rx_status *status,
1465 const u8 first_hdr[64],
1466 enum htt_rx_mpdu_encrypt_type enctype)
1468 struct ieee80211_hdr *hdr;
1469 struct htt_rx_desc *rxd;
1470 size_t hdr_len;
1471 u8 da[ETH_ALEN];
1472 u8 sa[ETH_ALEN];
1473 int l3_pad_bytes;
1474 int bytes_aligned = ar->hw_params.decap_align_bytes;
1476 /* Delivered decapped frame:
1477 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1478 * [rfc1042/llc]
1480 * Note: The nwifi header doesn't have QoS Control and is
1481 * (always?) a 3addr frame.
1483 * Note2: There's no A-MSDU subframe header. Even if it's part
1484 * of an A-MSDU.
1487 /* pull decapped header and copy SA & DA */
1488 rxd = (void *)msdu->data - sizeof(*rxd);
1490 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1491 skb_put(msdu, l3_pad_bytes);
1493 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1495 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1496 ether_addr_copy(da, ieee80211_get_DA(hdr));
1497 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1498 skb_pull(msdu, hdr_len);
1500 /* push original 802.11 header */
1501 hdr = (struct ieee80211_hdr *)first_hdr;
1502 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1504 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1505 memcpy(skb_push(msdu,
1506 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1507 (void *)hdr + round_up(hdr_len, bytes_aligned),
1508 ath10k_htt_rx_crypto_param_len(ar, enctype));
1511 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1513 /* original 802.11 header has a different DA and in
1514 * case of 4addr it may also have different SA
1516 hdr = (struct ieee80211_hdr *)msdu->data;
1517 ether_addr_copy(ieee80211_get_DA(hdr), da);
1518 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1521 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1522 struct sk_buff *msdu,
1523 enum htt_rx_mpdu_encrypt_type enctype)
1525 struct ieee80211_hdr *hdr;
1526 struct htt_rx_desc *rxd;
1527 size_t hdr_len, crypto_len;
1528 void *rfc1042;
1529 bool is_first, is_last, is_amsdu;
1530 int bytes_aligned = ar->hw_params.decap_align_bytes;
1532 rxd = (void *)msdu->data - sizeof(*rxd);
1533 hdr = (void *)rxd->rx_hdr_status;
1535 is_first = !!(rxd->msdu_end.common.info0 &
1536 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1537 is_last = !!(rxd->msdu_end.common.info0 &
1538 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1539 is_amsdu = !(is_first && is_last);
1541 rfc1042 = hdr;
1543 if (is_first) {
1544 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1545 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1547 rfc1042 += round_up(hdr_len, bytes_aligned) +
1548 round_up(crypto_len, bytes_aligned);
1551 if (is_amsdu)
1552 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1554 return rfc1042;
1557 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1558 struct sk_buff *msdu,
1559 struct ieee80211_rx_status *status,
1560 const u8 first_hdr[64],
1561 enum htt_rx_mpdu_encrypt_type enctype)
1563 struct ieee80211_hdr *hdr;
1564 struct ethhdr *eth;
1565 size_t hdr_len;
1566 void *rfc1042;
1567 u8 da[ETH_ALEN];
1568 u8 sa[ETH_ALEN];
1569 int l3_pad_bytes;
1570 struct htt_rx_desc *rxd;
1571 int bytes_aligned = ar->hw_params.decap_align_bytes;
1573 /* Delivered decapped frame:
1574 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1575 * [payload]
1578 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1579 if (WARN_ON_ONCE(!rfc1042))
1580 return;
1582 rxd = (void *)msdu->data - sizeof(*rxd);
1583 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1584 skb_put(msdu, l3_pad_bytes);
1585 skb_pull(msdu, l3_pad_bytes);
1587 /* pull decapped header and copy SA & DA */
1588 eth = (struct ethhdr *)msdu->data;
1589 ether_addr_copy(da, eth->h_dest);
1590 ether_addr_copy(sa, eth->h_source);
1591 skb_pull(msdu, sizeof(struct ethhdr));
1593 /* push rfc1042/llc/snap */
1594 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1595 sizeof(struct rfc1042_hdr));
1597 /* push original 802.11 header */
1598 hdr = (struct ieee80211_hdr *)first_hdr;
1599 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1601 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1602 memcpy(skb_push(msdu,
1603 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1604 (void *)hdr + round_up(hdr_len, bytes_aligned),
1605 ath10k_htt_rx_crypto_param_len(ar, enctype));
1608 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1610 /* original 802.11 header has a different DA and in
1611 * case of 4addr it may also have different SA
1613 hdr = (struct ieee80211_hdr *)msdu->data;
1614 ether_addr_copy(ieee80211_get_DA(hdr), da);
1615 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1618 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1619 struct sk_buff *msdu,
1620 struct ieee80211_rx_status *status,
1621 const u8 first_hdr[64],
1622 enum htt_rx_mpdu_encrypt_type enctype)
1624 struct ieee80211_hdr *hdr;
1625 size_t hdr_len;
1626 int l3_pad_bytes;
1627 struct htt_rx_desc *rxd;
1628 int bytes_aligned = ar->hw_params.decap_align_bytes;
1630 /* Delivered decapped frame:
1631 * [amsdu header] <-- replaced with 802.11 hdr
1632 * [rfc1042/llc]
1633 * [payload]
1636 rxd = (void *)msdu->data - sizeof(*rxd);
1637 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1639 skb_put(msdu, l3_pad_bytes);
1640 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1642 hdr = (struct ieee80211_hdr *)first_hdr;
1643 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1645 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1646 memcpy(skb_push(msdu,
1647 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1648 (void *)hdr + round_up(hdr_len, bytes_aligned),
1649 ath10k_htt_rx_crypto_param_len(ar, enctype));
1652 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1655 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1656 struct sk_buff *msdu,
1657 struct ieee80211_rx_status *status,
1658 u8 first_hdr[64],
1659 enum htt_rx_mpdu_encrypt_type enctype,
1660 bool is_decrypted)
1662 struct htt_rx_desc *rxd;
1663 enum rx_msdu_decap_format decap;
1665 /* First msdu's decapped header:
1666 * [802.11 header] <-- padded to 4 bytes long
1667 * [crypto param] <-- padded to 4 bytes long
1668 * [amsdu header] <-- only if A-MSDU
1669 * [rfc1042/llc]
1671 * Other (2nd, 3rd, ..) msdu's decapped header:
1672 * [amsdu header] <-- only if A-MSDU
1673 * [rfc1042/llc]
1676 rxd = (void *)msdu->data - sizeof(*rxd);
1677 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1678 RX_MSDU_START_INFO1_DECAP_FORMAT);
1680 switch (decap) {
1681 case RX_MSDU_DECAP_RAW:
1682 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1683 is_decrypted, first_hdr);
1684 break;
1685 case RX_MSDU_DECAP_NATIVE_WIFI:
1686 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1687 enctype);
1688 break;
1689 case RX_MSDU_DECAP_ETHERNET2_DIX:
1690 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1691 break;
1692 case RX_MSDU_DECAP_8023_SNAP_LLC:
1693 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1694 enctype);
1695 break;
1699 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1701 struct htt_rx_desc *rxd;
1702 u32 flags, info;
1703 bool is_ip4, is_ip6;
1704 bool is_tcp, is_udp;
1705 bool ip_csum_ok, tcpudp_csum_ok;
1707 rxd = (void *)skb->data - sizeof(*rxd);
1708 flags = __le32_to_cpu(rxd->attention.flags);
1709 info = __le32_to_cpu(rxd->msdu_start.common.info1);
1711 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1712 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1713 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1714 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1715 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1716 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1718 if (!is_ip4 && !is_ip6)
1719 return CHECKSUM_NONE;
1720 if (!is_tcp && !is_udp)
1721 return CHECKSUM_NONE;
1722 if (!ip_csum_ok)
1723 return CHECKSUM_NONE;
1724 if (!tcpudp_csum_ok)
1725 return CHECKSUM_NONE;
1727 return CHECKSUM_UNNECESSARY;
1730 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1732 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1735 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1736 struct sk_buff_head *amsdu,
1737 struct ieee80211_rx_status *status,
1738 bool fill_crypt_header,
1739 u8 *rx_hdr,
1740 enum ath10k_pkt_rx_err *err)
1742 struct sk_buff *first;
1743 struct sk_buff *last;
1744 struct sk_buff *msdu;
1745 struct htt_rx_desc *rxd;
1746 struct ieee80211_hdr *hdr;
1747 enum htt_rx_mpdu_encrypt_type enctype;
1748 u8 first_hdr[64];
1749 u8 *qos;
1750 bool has_fcs_err;
1751 bool has_crypto_err;
1752 bool has_tkip_err;
1753 bool has_peer_idx_invalid;
1754 bool is_decrypted;
1755 bool is_mgmt;
1756 u32 attention;
1758 if (skb_queue_empty(amsdu))
1759 return;
1761 first = skb_peek(amsdu);
1762 rxd = (void *)first->data - sizeof(*rxd);
1764 is_mgmt = !!(rxd->attention.flags &
1765 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1767 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1768 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1770 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1771 * decapped header. It'll be used for undecapping of each MSDU.
1773 hdr = (void *)rxd->rx_hdr_status;
1774 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1776 if (rx_hdr)
1777 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1779 /* Each A-MSDU subframe will use the original header as the base and be
1780 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1782 hdr = (void *)first_hdr;
1784 if (ieee80211_is_data_qos(hdr->frame_control)) {
1785 qos = ieee80211_get_qos_ctl(hdr);
1786 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1789 /* Some attention flags are valid only in the last MSDU. */
1790 last = skb_peek_tail(amsdu);
1791 rxd = (void *)last->data - sizeof(*rxd);
1792 attention = __le32_to_cpu(rxd->attention.flags);
1794 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1795 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1796 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1797 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1799 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1800 * e.g. due to fcs error, missing peer or invalid key data it will
1801 * report the frame as raw.
1803 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1804 !has_fcs_err &&
1805 !has_crypto_err &&
1806 !has_peer_idx_invalid);
1808 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1809 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1810 RX_FLAG_MMIC_ERROR |
1811 RX_FLAG_DECRYPTED |
1812 RX_FLAG_IV_STRIPPED |
1813 RX_FLAG_ONLY_MONITOR |
1814 RX_FLAG_MMIC_STRIPPED);
1816 if (has_fcs_err)
1817 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1819 if (has_tkip_err)
1820 status->flag |= RX_FLAG_MMIC_ERROR;
1822 if (err) {
1823 if (has_fcs_err)
1824 *err = ATH10K_PKT_RX_ERR_FCS;
1825 else if (has_tkip_err)
1826 *err = ATH10K_PKT_RX_ERR_TKIP;
1827 else if (has_crypto_err)
1828 *err = ATH10K_PKT_RX_ERR_CRYPT;
1829 else if (has_peer_idx_invalid)
1830 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1833 /* Firmware reports all necessary management frames via WMI already.
1834 * They are not reported to monitor interfaces at all so pass the ones
1835 * coming via HTT to monitor interfaces instead. This simplifies
1836 * matters a lot.
1838 if (is_mgmt)
1839 status->flag |= RX_FLAG_ONLY_MONITOR;
1841 if (is_decrypted) {
1842 status->flag |= RX_FLAG_DECRYPTED;
1844 if (likely(!is_mgmt))
1845 status->flag |= RX_FLAG_MMIC_STRIPPED;
1847 if (fill_crypt_header)
1848 status->flag |= RX_FLAG_MIC_STRIPPED |
1849 RX_FLAG_ICV_STRIPPED;
1850 else
1851 status->flag |= RX_FLAG_IV_STRIPPED;
1854 skb_queue_walk(amsdu, msdu) {
1855 ath10k_htt_rx_h_csum_offload(msdu);
1856 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1857 is_decrypted);
1859 /* Undecapping involves copying the original 802.11 header back
1860 * to sk_buff. If frame is protected and hardware has decrypted
1861 * it then remove the protected bit.
1863 if (!is_decrypted)
1864 continue;
1865 if (is_mgmt)
1866 continue;
1868 if (fill_crypt_header)
1869 continue;
1871 hdr = (void *)msdu->data;
1872 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1876 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1877 struct sk_buff_head *amsdu,
1878 struct ieee80211_rx_status *status)
1880 struct sk_buff *msdu;
1881 struct sk_buff *first_subframe;
1883 first_subframe = skb_peek(amsdu);
1885 while ((msdu = __skb_dequeue(amsdu))) {
1886 /* Setup per-MSDU flags */
1887 if (skb_queue_empty(amsdu))
1888 status->flag &= ~RX_FLAG_AMSDU_MORE;
1889 else
1890 status->flag |= RX_FLAG_AMSDU_MORE;
1892 if (msdu == first_subframe) {
1893 first_subframe = NULL;
1894 status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1895 } else {
1896 status->flag |= RX_FLAG_ALLOW_SAME_PN;
1899 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1903 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1904 unsigned long *unchain_cnt)
1906 struct sk_buff *skb, *first;
1907 int space;
1908 int total_len = 0;
1909 int amsdu_len = skb_queue_len(amsdu);
1911 /* TODO: Might could optimize this by using
1912 * skb_try_coalesce or similar method to
1913 * decrease copying, or maybe get mac80211 to
1914 * provide a way to just receive a list of
1915 * skb?
1918 first = __skb_dequeue(amsdu);
1920 /* Allocate total length all at once. */
1921 skb_queue_walk(amsdu, skb)
1922 total_len += skb->len;
1924 space = total_len - skb_tailroom(first);
1925 if ((space > 0) &&
1926 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1927 /* TODO: bump some rx-oom error stat */
1928 /* put it back together so we can free the
1929 * whole list at once.
1931 __skb_queue_head(amsdu, first);
1932 return -1;
1935 /* Walk list again, copying contents into
1936 * msdu_head
1938 while ((skb = __skb_dequeue(amsdu))) {
1939 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1940 skb->len);
1941 dev_kfree_skb_any(skb);
1944 __skb_queue_head(amsdu, first);
1946 *unchain_cnt += amsdu_len - 1;
1948 return 0;
1951 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1952 struct sk_buff_head *amsdu,
1953 unsigned long *drop_cnt,
1954 unsigned long *unchain_cnt)
1956 struct sk_buff *first;
1957 struct htt_rx_desc *rxd;
1958 enum rx_msdu_decap_format decap;
1960 first = skb_peek(amsdu);
1961 rxd = (void *)first->data - sizeof(*rxd);
1962 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1963 RX_MSDU_START_INFO1_DECAP_FORMAT);
1965 /* FIXME: Current unchaining logic can only handle simple case of raw
1966 * msdu chaining. If decapping is other than raw the chaining may be
1967 * more complex and this isn't handled by the current code. Don't even
1968 * try re-constructing such frames - it'll be pretty much garbage.
1970 if (decap != RX_MSDU_DECAP_RAW ||
1971 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1972 *drop_cnt += skb_queue_len(amsdu);
1973 __skb_queue_purge(amsdu);
1974 return;
1977 ath10k_unchain_msdu(amsdu, unchain_cnt);
1980 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1981 struct sk_buff_head *amsdu,
1982 struct ieee80211_rx_status *rx_status)
1984 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1985 * invalid/dangerous frames.
1988 if (!rx_status->freq) {
1989 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1990 return false;
1993 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1994 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1995 return false;
1998 return true;
2001 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
2002 struct sk_buff_head *amsdu,
2003 struct ieee80211_rx_status *rx_status,
2004 unsigned long *drop_cnt)
2006 if (skb_queue_empty(amsdu))
2007 return;
2009 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2010 return;
2012 if (drop_cnt)
2013 *drop_cnt += skb_queue_len(amsdu);
2015 __skb_queue_purge(amsdu);
2018 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2020 struct ath10k *ar = htt->ar;
2021 struct ieee80211_rx_status *rx_status = &htt->rx_status;
2022 struct sk_buff_head amsdu;
2023 int ret;
2024 unsigned long drop_cnt = 0;
2025 unsigned long unchain_cnt = 0;
2026 unsigned long drop_cnt_filter = 0;
2027 unsigned long msdus_to_queue, num_msdus;
2028 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2029 u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2031 __skb_queue_head_init(&amsdu);
2033 spin_lock_bh(&htt->rx_ring.lock);
2034 if (htt->rx_confused) {
2035 spin_unlock_bh(&htt->rx_ring.lock);
2036 return -EIO;
2038 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2039 spin_unlock_bh(&htt->rx_ring.lock);
2041 if (ret < 0) {
2042 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2043 __skb_queue_purge(&amsdu);
2044 /* FIXME: It's probably a good idea to reboot the
2045 * device instead of leaving it inoperable.
2047 htt->rx_confused = true;
2048 return ret;
2051 num_msdus = skb_queue_len(&amsdu);
2053 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2055 /* only for ret = 1 indicates chained msdus */
2056 if (ret > 0)
2057 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2059 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2060 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
2061 msdus_to_queue = skb_queue_len(&amsdu);
2062 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2064 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2065 unchain_cnt, drop_cnt, drop_cnt_filter,
2066 msdus_to_queue);
2068 return 0;
2071 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc,
2072 union htt_rx_pn_t *pn,
2073 int pn_len_bits)
2075 switch (pn_len_bits) {
2076 case 48:
2077 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) +
2078 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32);
2079 break;
2080 case 24:
2081 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0);
2082 break;
2086 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn,
2087 union htt_rx_pn_t *old_pn)
2089 return ((new_pn->pn48 & 0xffffffffffffULL) <=
2090 (old_pn->pn48 & 0xffffffffffffULL));
2093 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar,
2094 struct ath10k_peer *peer,
2095 struct htt_rx_indication_hl *rx)
2097 bool last_pn_valid, pn_invalid = false;
2098 enum htt_txrx_sec_cast_type sec_index;
2099 enum htt_security_types sec_type;
2100 union htt_rx_pn_t new_pn = {0};
2101 struct htt_hl_rx_desc *rx_desc;
2102 union htt_rx_pn_t *last_pn;
2103 u32 rx_desc_info, tid;
2104 int num_mpdu_ranges;
2106 lockdep_assert_held(&ar->data_lock);
2108 if (!peer)
2109 return false;
2111 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU))
2112 return false;
2114 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2115 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2117 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2118 rx_desc_info = __le32_to_cpu(rx_desc->info);
2120 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED))
2121 return false;
2123 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2124 last_pn_valid = peer->tids_last_pn_valid[tid];
2125 last_pn = &peer->tids_last_pn[tid];
2127 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2128 sec_index = HTT_TXRX_SEC_MCAST;
2129 else
2130 sec_index = HTT_TXRX_SEC_UCAST;
2132 sec_type = peer->rx_pn[sec_index].sec_type;
2133 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2135 if (sec_type != HTT_SECURITY_AES_CCMP &&
2136 sec_type != HTT_SECURITY_TKIP &&
2137 sec_type != HTT_SECURITY_TKIP_NOMIC)
2138 return false;
2140 if (last_pn_valid)
2141 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn);
2142 else
2143 peer->tids_last_pn_valid[tid] = true;
2145 if (!pn_invalid)
2146 last_pn->pn48 = new_pn.pn48;
2148 return pn_invalid;
2151 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2152 struct htt_rx_indication_hl *rx,
2153 struct sk_buff *skb,
2154 enum htt_rx_pn_check_type check_pn_type,
2155 enum htt_rx_tkip_demic_type tkip_mic_type)
2157 struct ath10k *ar = htt->ar;
2158 struct ath10k_peer *peer;
2159 struct htt_rx_indication_mpdu_range *mpdu_ranges;
2160 struct fw_rx_desc_hl *fw_desc;
2161 enum htt_txrx_sec_cast_type sec_index;
2162 enum htt_security_types sec_type;
2163 union htt_rx_pn_t new_pn = {0};
2164 struct htt_hl_rx_desc *rx_desc;
2165 struct ieee80211_hdr *hdr;
2166 struct ieee80211_rx_status *rx_status;
2167 u16 peer_id;
2168 u8 rx_desc_len;
2169 int num_mpdu_ranges;
2170 size_t tot_hdr_len;
2171 struct ieee80211_channel *ch;
2172 bool pn_invalid, qos, first_msdu;
2173 u32 tid, rx_desc_info;
2175 peer_id = __le16_to_cpu(rx->hdr.peer_id);
2176 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2178 spin_lock_bh(&ar->data_lock);
2179 peer = ath10k_peer_find_by_id(ar, peer_id);
2180 spin_unlock_bh(&ar->data_lock);
2181 if (!peer && peer_id != HTT_INVALID_PEERID)
2182 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2184 if (!peer)
2185 return true;
2187 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2188 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2189 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2190 fw_desc = &rx->fw_desc;
2191 rx_desc_len = fw_desc->len;
2193 /* I have not yet seen any case where num_mpdu_ranges > 1.
2194 * qcacld does not seem handle that case either, so we introduce the
2195 * same limitiation here as well.
2197 if (num_mpdu_ranges > 1)
2198 ath10k_warn(ar,
2199 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2200 num_mpdu_ranges);
2202 if (mpdu_ranges->mpdu_range_status !=
2203 HTT_RX_IND_MPDU_STATUS_OK &&
2204 mpdu_ranges->mpdu_range_status !=
2205 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) {
2206 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n",
2207 mpdu_ranges->mpdu_range_status);
2208 goto err;
2211 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2212 rx_desc_info = __le32_to_cpu(rx_desc->info);
2214 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2215 sec_index = HTT_TXRX_SEC_MCAST;
2216 else
2217 sec_index = HTT_TXRX_SEC_UCAST;
2219 sec_type = peer->rx_pn[sec_index].sec_type;
2220 first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU;
2222 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2224 if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) {
2225 spin_lock_bh(&ar->data_lock);
2226 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx);
2227 spin_unlock_bh(&ar->data_lock);
2229 if (pn_invalid)
2230 goto err;
2233 /* Strip off all headers before the MAC header before delivery to
2234 * mac80211
2236 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2237 sizeof(rx->ppdu) + sizeof(rx->prefix) +
2238 sizeof(rx->fw_desc) +
2239 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2241 skb_pull(skb, tot_hdr_len);
2243 hdr = (struct ieee80211_hdr *)skb->data;
2244 qos = ieee80211_is_data_qos(hdr->frame_control);
2246 rx_status = IEEE80211_SKB_RXCB(skb);
2247 memset(rx_status, 0, sizeof(*rx_status));
2249 if (rx->ppdu.combined_rssi == 0) {
2250 /* SDIO firmware does not provide signal */
2251 rx_status->signal = 0;
2252 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2253 } else {
2254 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2255 rx->ppdu.combined_rssi;
2256 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2259 spin_lock_bh(&ar->data_lock);
2260 ch = ar->scan_channel;
2261 if (!ch)
2262 ch = ar->rx_channel;
2263 if (!ch)
2264 ch = ath10k_htt_rx_h_any_channel(ar);
2265 if (!ch)
2266 ch = ar->tgt_oper_chan;
2267 spin_unlock_bh(&ar->data_lock);
2269 if (ch) {
2270 rx_status->band = ch->band;
2271 rx_status->freq = ch->center_freq;
2273 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2274 rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2275 else
2276 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2278 /* Not entirely sure about this, but all frames from the chipset has
2279 * the protected flag set even though they have already been decrypted.
2280 * Unmasking this flag is necessary in order for mac80211 not to drop
2281 * the frame.
2282 * TODO: Verify this is always the case or find out a way to check
2283 * if there has been hw decryption.
2285 if (ieee80211_has_protected(hdr->frame_control)) {
2286 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2287 rx_status->flag |= RX_FLAG_DECRYPTED |
2288 RX_FLAG_IV_STRIPPED |
2289 RX_FLAG_MMIC_STRIPPED;
2291 if (tid < IEEE80211_NUM_TIDS &&
2292 first_msdu &&
2293 check_pn_type == HTT_RX_PN_CHECK &&
2294 (sec_type == HTT_SECURITY_AES_CCMP ||
2295 sec_type == HTT_SECURITY_TKIP ||
2296 sec_type == HTT_SECURITY_TKIP_NOMIC)) {
2297 u8 offset, *ivp, i;
2298 s8 keyidx = 0;
2299 __le64 pn48 = cpu_to_le64(new_pn.pn48);
2301 hdr = (struct ieee80211_hdr *)skb->data;
2302 offset = ieee80211_hdrlen(hdr->frame_control);
2303 hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2304 rx_status->flag &= ~RX_FLAG_IV_STRIPPED;
2306 memmove(skb->data - IEEE80211_CCMP_HDR_LEN,
2307 skb->data, offset);
2308 skb_push(skb, IEEE80211_CCMP_HDR_LEN);
2309 ivp = skb->data + offset;
2310 memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN);
2311 /* Ext IV */
2312 ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV;
2314 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
2315 if (peer->keys[i] &&
2316 peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE)
2317 keyidx = peer->keys[i]->keyidx;
2320 /* Key ID */
2321 ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6;
2323 if (sec_type == HTT_SECURITY_AES_CCMP) {
2324 rx_status->flag |= RX_FLAG_MIC_STRIPPED;
2325 /* pn 0, pn 1 */
2326 memcpy(skb->data + offset, &pn48, 2);
2327 /* pn 1, pn 3 , pn 34 , pn 5 */
2328 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2329 } else {
2330 rx_status->flag |= RX_FLAG_ICV_STRIPPED;
2331 /* TSC 0 */
2332 memcpy(skb->data + offset + 2, &pn48, 1);
2333 /* TSC 1 */
2334 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1);
2335 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/
2336 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2341 if (tkip_mic_type == HTT_RX_TKIP_MIC)
2342 rx_status->flag &= ~RX_FLAG_IV_STRIPPED &
2343 ~RX_FLAG_MMIC_STRIPPED;
2345 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR)
2346 rx_status->flag |= RX_FLAG_MMIC_ERROR;
2348 if (!qos && tid < IEEE80211_NUM_TIDS) {
2349 u8 offset;
2350 __le16 qos_ctrl = 0;
2352 hdr = (struct ieee80211_hdr *)skb->data;
2353 offset = ieee80211_hdrlen(hdr->frame_control);
2355 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
2356 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset);
2357 skb_push(skb, IEEE80211_QOS_CTL_LEN);
2358 qos_ctrl = cpu_to_le16(tid);
2359 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN);
2362 if (ar->napi.dev)
2363 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
2364 else
2365 ieee80211_rx_ni(ar->hw, skb);
2367 /* We have delivered the skb to the upper layers (mac80211) so we
2368 * must not free it.
2370 return false;
2371 err:
2372 /* Tell the caller that it must free the skb since we have not
2373 * consumed it
2375 return true;
2378 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb,
2379 u16 head_len,
2380 u16 hdr_len)
2382 u8 *ivp, *orig_hdr;
2384 orig_hdr = skb->data;
2385 ivp = orig_hdr + hdr_len + head_len;
2387 /* the ExtIV bit is always set to 1 for TKIP */
2388 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2389 return -EINVAL;
2391 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2392 skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2393 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN);
2394 return 0;
2397 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb,
2398 u16 head_len,
2399 u16 hdr_len)
2401 u8 *ivp, *orig_hdr;
2403 orig_hdr = skb->data;
2404 ivp = orig_hdr + hdr_len + head_len;
2406 /* the ExtIV bit is always set to 1 for TKIP */
2407 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2408 return -EINVAL;
2410 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2411 skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2412 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
2413 return 0;
2416 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb,
2417 u16 head_len,
2418 u16 hdr_len)
2420 u8 *ivp, *orig_hdr;
2422 orig_hdr = skb->data;
2423 ivp = orig_hdr + hdr_len + head_len;
2425 /* the ExtIV bit is always set to 1 for CCMP */
2426 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2427 return -EINVAL;
2429 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN);
2430 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len);
2431 skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
2432 return 0;
2435 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb,
2436 u16 head_len,
2437 u16 hdr_len)
2439 u8 *orig_hdr;
2441 orig_hdr = skb->data;
2443 memmove(orig_hdr + IEEE80211_WEP_IV_LEN,
2444 orig_hdr, head_len + hdr_len);
2445 skb_pull(skb, IEEE80211_WEP_IV_LEN);
2446 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
2447 return 0;
2450 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt,
2451 struct htt_rx_fragment_indication *rx,
2452 struct sk_buff *skb)
2454 struct ath10k *ar = htt->ar;
2455 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC;
2456 enum htt_txrx_sec_cast_type sec_index;
2457 struct htt_rx_indication_hl *rx_hl;
2458 enum htt_security_types sec_type;
2459 u32 tid, frag, seq, rx_desc_info;
2460 union htt_rx_pn_t new_pn = {0};
2461 struct htt_hl_rx_desc *rx_desc;
2462 u16 peer_id, sc, hdr_space;
2463 union htt_rx_pn_t *last_pn;
2464 struct ieee80211_hdr *hdr;
2465 int ret, num_mpdu_ranges;
2466 struct ath10k_peer *peer;
2467 struct htt_resp *resp;
2468 size_t tot_hdr_len;
2470 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2471 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2472 skb_trim(skb, skb->len - FCS_LEN);
2474 peer_id = __le16_to_cpu(rx->peer_id);
2475 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl);
2477 spin_lock_bh(&ar->data_lock);
2478 peer = ath10k_peer_find_by_id(ar, peer_id);
2479 if (!peer) {
2480 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id);
2481 goto err;
2484 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1),
2485 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2487 tot_hdr_len = sizeof(struct htt_resp_hdr) +
2488 sizeof(rx_hl->hdr) +
2489 sizeof(rx_hl->ppdu) +
2490 sizeof(rx_hl->prefix) +
2491 sizeof(rx_hl->fw_desc) +
2492 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges;
2494 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2495 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len);
2496 rx_desc_info = __le32_to_cpu(rx_desc->info);
2498 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) {
2499 spin_unlock_bh(&ar->data_lock);
2500 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2501 HTT_RX_NON_PN_CHECK,
2502 HTT_RX_NON_TKIP_MIC);
2505 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len);
2507 if (ieee80211_has_retry(hdr->frame_control))
2508 goto err;
2510 hdr_space = ieee80211_hdrlen(hdr->frame_control);
2511 sc = __le16_to_cpu(hdr->seq_ctrl);
2512 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2513 frag = sc & IEEE80211_SCTL_FRAG;
2515 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ?
2516 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST;
2517 sec_type = peer->rx_pn[sec_index].sec_type;
2518 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2520 switch (sec_type) {
2521 case HTT_SECURITY_TKIP:
2522 tkip_mic = HTT_RX_TKIP_MIC;
2523 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb,
2524 tot_hdr_len +
2525 rx_hl->fw_desc.len,
2526 hdr_space);
2527 if (ret)
2528 goto err;
2529 break;
2530 case HTT_SECURITY_TKIP_NOMIC:
2531 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb,
2532 tot_hdr_len +
2533 rx_hl->fw_desc.len,
2534 hdr_space);
2535 if (ret)
2536 goto err;
2537 break;
2538 case HTT_SECURITY_AES_CCMP:
2539 ret = ath10k_htt_rx_frag_ccmp_decap(skb,
2540 tot_hdr_len + rx_hl->fw_desc.len,
2541 hdr_space);
2542 if (ret)
2543 goto err;
2544 break;
2545 case HTT_SECURITY_WEP128:
2546 case HTT_SECURITY_WEP104:
2547 case HTT_SECURITY_WEP40:
2548 ret = ath10k_htt_rx_frag_wep_decap(skb,
2549 tot_hdr_len + rx_hl->fw_desc.len,
2550 hdr_space);
2551 if (ret)
2552 goto err;
2553 break;
2554 default:
2555 break;
2558 resp = (struct htt_resp *)(skb->data);
2560 if (sec_type != HTT_SECURITY_AES_CCMP &&
2561 sec_type != HTT_SECURITY_TKIP &&
2562 sec_type != HTT_SECURITY_TKIP_NOMIC) {
2563 spin_unlock_bh(&ar->data_lock);
2564 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2565 HTT_RX_NON_PN_CHECK,
2566 HTT_RX_NON_TKIP_MIC);
2569 last_pn = &peer->frag_tids_last_pn[tid];
2571 if (frag == 0) {
2572 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl))
2573 goto err;
2575 last_pn->pn48 = new_pn.pn48;
2576 peer->frag_tids_seq[tid] = seq;
2577 } else if (sec_type == HTT_SECURITY_AES_CCMP) {
2578 if (seq != peer->frag_tids_seq[tid])
2579 goto err;
2581 if (new_pn.pn48 != last_pn->pn48 + 1)
2582 goto err;
2584 last_pn->pn48 = new_pn.pn48;
2585 last_pn = &peer->tids_last_pn[tid];
2586 last_pn->pn48 = new_pn.pn48;
2589 spin_unlock_bh(&ar->data_lock);
2591 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2592 HTT_RX_NON_PN_CHECK, tkip_mic);
2594 err:
2595 spin_unlock_bh(&ar->data_lock);
2597 /* Tell the caller that it must free the skb since we have not
2598 * consumed it
2600 return true;
2603 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2604 struct htt_rx_indication *rx)
2606 struct ath10k *ar = htt->ar;
2607 struct htt_rx_indication_mpdu_range *mpdu_ranges;
2608 int num_mpdu_ranges;
2609 int i, mpdu_count = 0;
2610 u16 peer_id;
2611 u8 tid;
2613 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2614 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2615 peer_id = __le16_to_cpu(rx->hdr.peer_id);
2616 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2618 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2620 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2621 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges));
2623 for (i = 0; i < num_mpdu_ranges; i++)
2624 mpdu_count += mpdu_ranges[i].mpdu_count;
2626 atomic_add(mpdu_count, &htt->num_mpdus_ready);
2628 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2629 num_mpdu_ranges);
2632 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2633 struct sk_buff *skb)
2635 struct ath10k_htt *htt = &ar->htt;
2636 struct htt_resp *resp = (struct htt_resp *)skb->data;
2637 struct htt_tx_done tx_done = {};
2638 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2639 __le16 msdu_id, *msdus;
2640 bool rssi_enabled = false;
2641 u8 msdu_count = 0, num_airtime_records, tid;
2642 int i, htt_pad = 0;
2643 struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2644 struct ath10k_peer *peer;
2645 u16 ppdu_info_offset = 0, peer_id;
2646 u32 tx_duration;
2648 switch (status) {
2649 case HTT_DATA_TX_STATUS_NO_ACK:
2650 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2651 break;
2652 case HTT_DATA_TX_STATUS_OK:
2653 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2654 break;
2655 case HTT_DATA_TX_STATUS_DISCARD:
2656 case HTT_DATA_TX_STATUS_POSTPONE:
2657 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2658 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2659 break;
2660 default:
2661 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2662 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2663 break;
2666 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2667 resp->data_tx_completion.num_msdus);
2669 msdu_count = resp->data_tx_completion.num_msdus;
2670 msdus = resp->data_tx_completion.msdus;
2671 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
2673 if (rssi_enabled)
2674 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
2675 resp);
2677 for (i = 0; i < msdu_count; i++) {
2678 msdu_id = msdus[i];
2679 tx_done.msdu_id = __le16_to_cpu(msdu_id);
2681 if (rssi_enabled) {
2682 /* Total no of MSDUs should be even,
2683 * if odd MSDUs are sent firmware fills
2684 * last msdu id with 0xffff
2686 if (msdu_count & 0x01) {
2687 msdu_id = msdus[msdu_count + i + 1 + htt_pad];
2688 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2689 } else {
2690 msdu_id = msdus[msdu_count + i + htt_pad];
2691 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2695 /* kfifo_put: In practice firmware shouldn't fire off per-CE
2696 * interrupt and main interrupt (MSI/-X range case) for the same
2697 * HTC service so it should be safe to use kfifo_put w/o lock.
2699 * From kfifo_put() documentation:
2700 * Note that with only one concurrent reader and one concurrent
2701 * writer, you don't need extra locking to use these macro.
2703 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
2704 ath10k_txrx_tx_unref(htt, &tx_done);
2705 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2706 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2707 tx_done.msdu_id, tx_done.status);
2708 ath10k_txrx_tx_unref(htt, &tx_done);
2712 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
2713 return;
2715 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
2717 if (rssi_enabled)
2718 ppdu_info_offset += ppdu_info_offset;
2720 if (resp->data_tx_completion.flags2 &
2721 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
2722 ppdu_info_offset += 2;
2724 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
2725 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
2726 __le32_to_cpu(ppdu_info->info0));
2728 for (i = 0; i < num_airtime_records; i++) {
2729 struct htt_data_tx_ppdu_dur *ppdu_dur;
2730 u32 info0;
2732 ppdu_dur = &ppdu_info->ppdu_dur[i];
2733 info0 = __le32_to_cpu(ppdu_dur->info0);
2735 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
2736 info0);
2737 rcu_read_lock();
2738 spin_lock_bh(&ar->data_lock);
2740 peer = ath10k_peer_find_by_id(ar, peer_id);
2741 if (!peer || !peer->sta) {
2742 spin_unlock_bh(&ar->data_lock);
2743 rcu_read_unlock();
2744 continue;
2747 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) &
2748 IEEE80211_QOS_CTL_TID_MASK;
2749 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
2751 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
2753 spin_unlock_bh(&ar->data_lock);
2754 rcu_read_unlock();
2758 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2760 struct htt_rx_addba *ev = &resp->rx_addba;
2761 struct ath10k_peer *peer;
2762 struct ath10k_vif *arvif;
2763 u16 info0, tid, peer_id;
2765 info0 = __le16_to_cpu(ev->info0);
2766 tid = MS(info0, HTT_RX_BA_INFO0_TID);
2767 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2769 ath10k_dbg(ar, ATH10K_DBG_HTT,
2770 "htt rx addba tid %hu peer_id %hu size %hhu\n",
2771 tid, peer_id, ev->window_size);
2773 spin_lock_bh(&ar->data_lock);
2774 peer = ath10k_peer_find_by_id(ar, peer_id);
2775 if (!peer) {
2776 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2777 peer_id);
2778 spin_unlock_bh(&ar->data_lock);
2779 return;
2782 arvif = ath10k_get_arvif(ar, peer->vdev_id);
2783 if (!arvif) {
2784 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2785 peer->vdev_id);
2786 spin_unlock_bh(&ar->data_lock);
2787 return;
2790 ath10k_dbg(ar, ATH10K_DBG_HTT,
2791 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2792 peer->addr, tid, ev->window_size);
2794 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2795 spin_unlock_bh(&ar->data_lock);
2798 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2800 struct htt_rx_delba *ev = &resp->rx_delba;
2801 struct ath10k_peer *peer;
2802 struct ath10k_vif *arvif;
2803 u16 info0, tid, peer_id;
2805 info0 = __le16_to_cpu(ev->info0);
2806 tid = MS(info0, HTT_RX_BA_INFO0_TID);
2807 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2809 ath10k_dbg(ar, ATH10K_DBG_HTT,
2810 "htt rx delba tid %hu peer_id %hu\n",
2811 tid, peer_id);
2813 spin_lock_bh(&ar->data_lock);
2814 peer = ath10k_peer_find_by_id(ar, peer_id);
2815 if (!peer) {
2816 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2817 peer_id);
2818 spin_unlock_bh(&ar->data_lock);
2819 return;
2822 arvif = ath10k_get_arvif(ar, peer->vdev_id);
2823 if (!arvif) {
2824 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2825 peer->vdev_id);
2826 spin_unlock_bh(&ar->data_lock);
2827 return;
2830 ath10k_dbg(ar, ATH10K_DBG_HTT,
2831 "htt rx stop rx ba session sta %pM tid %hu\n",
2832 peer->addr, tid);
2834 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2835 spin_unlock_bh(&ar->data_lock);
2838 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2839 struct sk_buff_head *amsdu)
2841 struct sk_buff *msdu;
2842 struct htt_rx_desc *rxd;
2844 if (skb_queue_empty(list))
2845 return -ENOBUFS;
2847 if (WARN_ON(!skb_queue_empty(amsdu)))
2848 return -EINVAL;
2850 while ((msdu = __skb_dequeue(list))) {
2851 __skb_queue_tail(amsdu, msdu);
2853 rxd = (void *)msdu->data - sizeof(*rxd);
2854 if (rxd->msdu_end.common.info0 &
2855 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2856 break;
2859 msdu = skb_peek_tail(amsdu);
2860 rxd = (void *)msdu->data - sizeof(*rxd);
2861 if (!(rxd->msdu_end.common.info0 &
2862 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2863 skb_queue_splice_init(amsdu, list);
2864 return -EAGAIN;
2867 return 0;
2870 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2871 struct sk_buff *skb)
2873 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2875 if (!ieee80211_has_protected(hdr->frame_control))
2876 return;
2878 /* Offloaded frames are already decrypted but firmware insists they are
2879 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
2880 * will drop the frame.
2883 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2884 status->flag |= RX_FLAG_DECRYPTED |
2885 RX_FLAG_IV_STRIPPED |
2886 RX_FLAG_MMIC_STRIPPED;
2889 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2890 struct sk_buff_head *list)
2892 struct ath10k_htt *htt = &ar->htt;
2893 struct ieee80211_rx_status *status = &htt->rx_status;
2894 struct htt_rx_offload_msdu *rx;
2895 struct sk_buff *msdu;
2896 size_t offset;
2898 while ((msdu = __skb_dequeue(list))) {
2899 /* Offloaded frames don't have Rx descriptor. Instead they have
2900 * a short meta information header.
2903 rx = (void *)msdu->data;
2905 skb_put(msdu, sizeof(*rx));
2906 skb_pull(msdu, sizeof(*rx));
2908 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2909 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2910 dev_kfree_skb_any(msdu);
2911 continue;
2914 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2916 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2917 * actual payload is unaligned. Align the frame. Otherwise
2918 * mac80211 complains. This shouldn't reduce performance much
2919 * because these offloaded frames are rare.
2921 offset = 4 - ((unsigned long)msdu->data & 3);
2922 skb_put(msdu, offset);
2923 memmove(msdu->data + offset, msdu->data, msdu->len);
2924 skb_pull(msdu, offset);
2926 /* FIXME: The frame is NWifi. Re-construct QoS Control
2927 * if possible later.
2930 memset(status, 0, sizeof(*status));
2931 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2933 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2934 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2935 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2939 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2941 struct ath10k_htt *htt = &ar->htt;
2942 struct htt_resp *resp = (void *)skb->data;
2943 struct ieee80211_rx_status *status = &htt->rx_status;
2944 struct sk_buff_head list;
2945 struct sk_buff_head amsdu;
2946 u16 peer_id;
2947 u16 msdu_count;
2948 u8 vdev_id;
2949 u8 tid;
2950 bool offload;
2951 bool frag;
2952 int ret;
2954 lockdep_assert_held(&htt->rx_ring.lock);
2956 if (htt->rx_confused)
2957 return -EIO;
2959 skb_pull(skb, sizeof(resp->hdr));
2960 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2962 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2963 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2964 vdev_id = resp->rx_in_ord_ind.vdev_id;
2965 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2966 offload = !!(resp->rx_in_ord_ind.info &
2967 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2968 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2970 ath10k_dbg(ar, ATH10K_DBG_HTT,
2971 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2972 vdev_id, peer_id, tid, offload, frag, msdu_count);
2974 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2975 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2976 return -EINVAL;
2979 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2980 * extracted and processed.
2982 __skb_queue_head_init(&list);
2983 if (ar->hw_params.target_64bit)
2984 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2985 &list);
2986 else
2987 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2988 &list);
2990 if (ret < 0) {
2991 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2992 htt->rx_confused = true;
2993 return -EIO;
2996 /* Offloaded frames are very different and need to be handled
2997 * separately.
2999 if (offload)
3000 ath10k_htt_rx_h_rx_offload(ar, &list);
3002 while (!skb_queue_empty(&list)) {
3003 __skb_queue_head_init(&amsdu);
3004 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
3005 switch (ret) {
3006 case 0:
3007 /* Note: The in-order indication may report interleaved
3008 * frames from different PPDUs meaning reported rx rate
3009 * to mac80211 isn't accurate/reliable. It's still
3010 * better to report something than nothing though. This
3011 * should still give an idea about rx rate to the user.
3013 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
3014 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
3015 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
3016 NULL);
3017 ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
3018 break;
3019 case -EAGAIN:
3020 /* fall through */
3021 default:
3022 /* Should not happen. */
3023 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
3024 htt->rx_confused = true;
3025 __skb_queue_purge(&list);
3026 return -EIO;
3029 return ret;
3032 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
3033 const __le32 *resp_ids,
3034 int num_resp_ids)
3036 int i;
3037 u32 resp_id;
3039 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
3040 num_resp_ids);
3042 for (i = 0; i < num_resp_ids; i++) {
3043 resp_id = le32_to_cpu(resp_ids[i]);
3045 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
3046 resp_id);
3048 /* TODO: free resp_id */
3052 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
3054 struct ieee80211_hw *hw = ar->hw;
3055 struct ieee80211_txq *txq;
3056 struct htt_resp *resp = (struct htt_resp *)skb->data;
3057 struct htt_tx_fetch_record *record;
3058 size_t len;
3059 size_t max_num_bytes;
3060 size_t max_num_msdus;
3061 size_t num_bytes;
3062 size_t num_msdus;
3063 const __le32 *resp_ids;
3064 u16 num_records;
3065 u16 num_resp_ids;
3066 u16 peer_id;
3067 u8 tid;
3068 int ret;
3069 int i;
3070 bool may_tx;
3072 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
3074 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
3075 if (unlikely(skb->len < len)) {
3076 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
3077 return;
3080 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
3081 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
3083 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
3084 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
3086 if (unlikely(skb->len < len)) {
3087 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
3088 return;
3091 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
3092 num_records, num_resp_ids,
3093 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
3095 if (!ar->htt.tx_q_state.enabled) {
3096 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
3097 return;
3100 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
3101 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
3102 return;
3105 rcu_read_lock();
3107 for (i = 0; i < num_records; i++) {
3108 record = &resp->tx_fetch_ind.records[i];
3109 peer_id = MS(le16_to_cpu(record->info),
3110 HTT_TX_FETCH_RECORD_INFO_PEER_ID);
3111 tid = MS(le16_to_cpu(record->info),
3112 HTT_TX_FETCH_RECORD_INFO_TID);
3113 max_num_msdus = le16_to_cpu(record->num_msdus);
3114 max_num_bytes = le32_to_cpu(record->num_bytes);
3116 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
3117 i, peer_id, tid, max_num_msdus, max_num_bytes);
3119 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3120 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3121 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3122 peer_id, tid);
3123 continue;
3126 spin_lock_bh(&ar->data_lock);
3127 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3128 spin_unlock_bh(&ar->data_lock);
3130 /* It is okay to release the lock and use txq because RCU read
3131 * lock is held.
3134 if (unlikely(!txq)) {
3135 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3136 peer_id, tid);
3137 continue;
3140 num_msdus = 0;
3141 num_bytes = 0;
3143 ieee80211_txq_schedule_start(hw, txq->ac);
3144 may_tx = ieee80211_txq_may_transmit(hw, txq);
3145 while (num_msdus < max_num_msdus &&
3146 num_bytes < max_num_bytes) {
3147 if (!may_tx)
3148 break;
3150 ret = ath10k_mac_tx_push_txq(hw, txq);
3151 if (ret < 0)
3152 break;
3154 num_msdus++;
3155 num_bytes += ret;
3157 ieee80211_return_txq(hw, txq, false);
3158 ieee80211_txq_schedule_end(hw, txq->ac);
3160 record->num_msdus = cpu_to_le16(num_msdus);
3161 record->num_bytes = cpu_to_le32(num_bytes);
3163 ath10k_htt_tx_txq_recalc(hw, txq);
3166 rcu_read_unlock();
3168 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
3169 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
3171 ret = ath10k_htt_tx_fetch_resp(ar,
3172 resp->tx_fetch_ind.token,
3173 resp->tx_fetch_ind.fetch_seq_num,
3174 resp->tx_fetch_ind.records,
3175 num_records);
3176 if (unlikely(ret)) {
3177 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
3178 le32_to_cpu(resp->tx_fetch_ind.token), ret);
3179 /* FIXME: request fw restart */
3182 ath10k_htt_tx_txq_sync(ar);
3185 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
3186 struct sk_buff *skb)
3188 const struct htt_resp *resp = (void *)skb->data;
3189 size_t len;
3190 int num_resp_ids;
3192 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
3194 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
3195 if (unlikely(skb->len < len)) {
3196 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
3197 return;
3200 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
3201 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
3203 if (unlikely(skb->len < len)) {
3204 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
3205 return;
3208 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
3209 resp->tx_fetch_confirm.resp_ids,
3210 num_resp_ids);
3213 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
3214 struct sk_buff *skb)
3216 const struct htt_resp *resp = (void *)skb->data;
3217 const struct htt_tx_mode_switch_record *record;
3218 struct ieee80211_txq *txq;
3219 struct ath10k_txq *artxq;
3220 size_t len;
3221 size_t num_records;
3222 enum htt_tx_mode_switch_mode mode;
3223 bool enable;
3224 u16 info0;
3225 u16 info1;
3226 u16 threshold;
3227 u16 peer_id;
3228 u8 tid;
3229 int i;
3231 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
3233 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
3234 if (unlikely(skb->len < len)) {
3235 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
3236 return;
3239 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
3240 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
3242 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
3243 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3244 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
3245 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3247 ath10k_dbg(ar, ATH10K_DBG_HTT,
3248 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
3249 info0, info1, enable, num_records, mode, threshold);
3251 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
3253 if (unlikely(skb->len < len)) {
3254 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
3255 return;
3258 switch (mode) {
3259 case HTT_TX_MODE_SWITCH_PUSH:
3260 case HTT_TX_MODE_SWITCH_PUSH_PULL:
3261 break;
3262 default:
3263 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
3264 mode);
3265 return;
3268 if (!enable)
3269 return;
3271 ar->htt.tx_q_state.enabled = enable;
3272 ar->htt.tx_q_state.mode = mode;
3273 ar->htt.tx_q_state.num_push_allowed = threshold;
3275 rcu_read_lock();
3277 for (i = 0; i < num_records; i++) {
3278 record = &resp->tx_mode_switch_ind.records[i];
3279 info0 = le16_to_cpu(record->info0);
3280 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
3281 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
3283 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3284 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3285 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3286 peer_id, tid);
3287 continue;
3290 spin_lock_bh(&ar->data_lock);
3291 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3292 spin_unlock_bh(&ar->data_lock);
3294 /* It is okay to release the lock and use txq because RCU read
3295 * lock is held.
3298 if (unlikely(!txq)) {
3299 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3300 peer_id, tid);
3301 continue;
3304 spin_lock_bh(&ar->htt.tx_lock);
3305 artxq = (void *)txq->drv_priv;
3306 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
3307 spin_unlock_bh(&ar->htt.tx_lock);
3310 rcu_read_unlock();
3312 ath10k_mac_tx_push_pending(ar);
3315 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3317 bool release;
3319 release = ath10k_htt_t2h_msg_handler(ar, skb);
3321 /* Free the indication buffer */
3322 if (release)
3323 dev_kfree_skb_any(skb);
3326 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
3328 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
3329 18, 24, 36, 48, 54};
3330 int i;
3332 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
3333 if (rate == legacy_rates[i])
3334 return i;
3337 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
3338 return -EINVAL;
3341 static void
3342 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
3343 struct ath10k_sta *arsta,
3344 struct ath10k_per_peer_tx_stats *pstats,
3345 s8 legacy_rate_idx)
3347 struct rate_info *txrate = &arsta->txrate;
3348 struct ath10k_htt_tx_stats *tx_stats;
3349 int idx, ht_idx, gi, mcs, bw, nss;
3350 unsigned long flags;
3352 if (!arsta->tx_stats)
3353 return;
3355 tx_stats = arsta->tx_stats;
3356 flags = txrate->flags;
3357 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
3358 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
3359 bw = txrate->bw;
3360 nss = txrate->nss;
3361 ht_idx = mcs + (nss - 1) * 8;
3362 idx = mcs * 8 + 8 * 10 * (nss - 1);
3363 idx += bw * 2 + gi;
3365 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
3367 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) {
3368 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
3369 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
3370 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
3371 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
3372 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
3373 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
3374 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3375 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
3376 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
3377 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
3378 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
3379 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
3380 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
3381 } else {
3382 mcs = legacy_rate_idx;
3384 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
3385 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
3386 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
3387 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
3388 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
3389 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
3392 if (ATH10K_HW_AMPDU(pstats->flags)) {
3393 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
3395 if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3396 STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
3397 pstats->succ_bytes + pstats->retry_bytes;
3398 STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
3399 pstats->succ_pkts + pstats->retry_pkts;
3400 } else {
3401 STATS_OP_FMT(AMPDU).vht[0][mcs] +=
3402 pstats->succ_bytes + pstats->retry_bytes;
3403 STATS_OP_FMT(AMPDU).vht[1][mcs] +=
3404 pstats->succ_pkts + pstats->retry_pkts;
3406 STATS_OP_FMT(AMPDU).bw[0][bw] +=
3407 pstats->succ_bytes + pstats->retry_bytes;
3408 STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
3409 pstats->succ_bytes + pstats->retry_bytes;
3410 STATS_OP_FMT(AMPDU).gi[0][gi] +=
3411 pstats->succ_bytes + pstats->retry_bytes;
3412 STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
3413 pstats->succ_bytes + pstats->retry_bytes;
3414 STATS_OP_FMT(AMPDU).bw[1][bw] +=
3415 pstats->succ_pkts + pstats->retry_pkts;
3416 STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
3417 pstats->succ_pkts + pstats->retry_pkts;
3418 STATS_OP_FMT(AMPDU).gi[1][gi] +=
3419 pstats->succ_pkts + pstats->retry_pkts;
3420 STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
3421 pstats->succ_pkts + pstats->retry_pkts;
3422 } else {
3423 tx_stats->ack_fails +=
3424 ATH10K_HW_BA_FAIL(pstats->flags);
3427 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
3428 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
3429 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
3431 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
3432 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
3433 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
3435 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3436 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
3437 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3439 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3440 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
3441 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3443 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3444 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
3445 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3447 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3448 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
3449 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3451 if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3452 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3453 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3454 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3455 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3456 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3457 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3460 tx_stats->tx_duration += pstats->duration;
3463 static void
3464 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3465 struct ieee80211_sta *sta,
3466 struct ath10k_per_peer_tx_stats *peer_stats)
3468 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3469 struct ieee80211_chanctx_conf *conf = NULL;
3470 u8 rate = 0, sgi;
3471 s8 rate_idx = 0;
3472 bool skip_auto_rate;
3473 struct rate_info txrate;
3475 lockdep_assert_held(&ar->data_lock);
3477 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3478 txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3479 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3480 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3481 sgi = ATH10K_HW_GI(peer_stats->flags);
3482 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3484 /* Firmware's rate control skips broadcast/management frames,
3485 * if host has configure fixed rates and in some other special cases.
3487 if (skip_auto_rate)
3488 return;
3490 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3491 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs);
3492 return;
3495 if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3496 (txrate.mcs > 7 || txrate.nss < 1)) {
3497 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
3498 txrate.mcs, txrate.nss);
3499 return;
3502 memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3503 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3504 if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3505 txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3506 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3507 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3508 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3509 rate = 5;
3510 rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3511 if (rate_idx < 0)
3512 return;
3513 arsta->txrate.legacy = rate;
3514 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3515 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3516 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3517 } else {
3518 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3519 arsta->txrate.mcs = txrate.mcs;
3522 switch (txrate.flags) {
3523 case WMI_RATE_PREAMBLE_OFDM:
3524 if (arsta->arvif && arsta->arvif->vif)
3525 conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
3526 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3527 arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3528 break;
3529 case WMI_RATE_PREAMBLE_CCK:
3530 arsta->tx_info.status.rates[0].idx = rate_idx;
3531 if (sgi)
3532 arsta->tx_info.status.rates[0].flags |=
3533 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3534 IEEE80211_TX_RC_SHORT_GI);
3535 break;
3536 case WMI_RATE_PREAMBLE_HT:
3537 arsta->tx_info.status.rates[0].idx =
3538 txrate.mcs + ((txrate.nss - 1) * 8);
3539 if (sgi)
3540 arsta->tx_info.status.rates[0].flags |=
3541 IEEE80211_TX_RC_SHORT_GI;
3542 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3543 break;
3544 case WMI_RATE_PREAMBLE_VHT:
3545 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3546 txrate.mcs, txrate.nss);
3547 if (sgi)
3548 arsta->tx_info.status.rates[0].flags |=
3549 IEEE80211_TX_RC_SHORT_GI;
3550 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3551 break;
3554 arsta->txrate.nss = txrate.nss;
3555 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3556 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3557 if (sgi)
3558 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3560 switch (arsta->txrate.bw) {
3561 case RATE_INFO_BW_40:
3562 arsta->tx_info.status.rates[0].flags |=
3563 IEEE80211_TX_RC_40_MHZ_WIDTH;
3564 break;
3565 case RATE_INFO_BW_80:
3566 arsta->tx_info.status.rates[0].flags |=
3567 IEEE80211_TX_RC_80_MHZ_WIDTH;
3568 break;
3571 if (peer_stats->succ_pkts) {
3572 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3573 arsta->tx_info.status.rates[0].count = 1;
3574 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3577 if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3578 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3579 rate_idx);
3582 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3583 struct sk_buff *skb)
3585 struct htt_resp *resp = (struct htt_resp *)skb->data;
3586 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3587 struct htt_per_peer_tx_stats_ind *tx_stats;
3588 struct ieee80211_sta *sta;
3589 struct ath10k_peer *peer;
3590 int peer_id, i;
3591 u8 ppdu_len, num_ppdu;
3593 num_ppdu = resp->peer_tx_stats.num_ppdu;
3594 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3596 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3597 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3598 return;
3601 tx_stats = (struct htt_per_peer_tx_stats_ind *)
3602 (resp->peer_tx_stats.payload);
3603 peer_id = __le16_to_cpu(tx_stats->peer_id);
3605 rcu_read_lock();
3606 spin_lock_bh(&ar->data_lock);
3607 peer = ath10k_peer_find_by_id(ar, peer_id);
3608 if (!peer || !peer->sta) {
3609 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3610 peer_id);
3611 goto out;
3614 sta = peer->sta;
3615 for (i = 0; i < num_ppdu; i++) {
3616 tx_stats = (struct htt_per_peer_tx_stats_ind *)
3617 (resp->peer_tx_stats.payload + i * ppdu_len);
3619 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3620 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3621 p_tx_stats->failed_bytes =
3622 __le32_to_cpu(tx_stats->failed_bytes);
3623 p_tx_stats->ratecode = tx_stats->ratecode;
3624 p_tx_stats->flags = tx_stats->flags;
3625 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3626 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3627 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3628 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3630 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3633 out:
3634 spin_unlock_bh(&ar->data_lock);
3635 rcu_read_unlock();
3638 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3640 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3641 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3642 struct ath10k_10_2_peer_tx_stats *tx_stats;
3643 struct ieee80211_sta *sta;
3644 struct ath10k_peer *peer;
3645 u16 log_type = __le16_to_cpu(hdr->log_type);
3646 u32 peer_id = 0, i;
3648 if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3649 return;
3651 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3652 ATH10K_10_2_TX_STATS_OFFSET);
3654 if (!tx_stats->tx_ppdu_cnt)
3655 return;
3657 peer_id = tx_stats->peer_id;
3659 rcu_read_lock();
3660 spin_lock_bh(&ar->data_lock);
3661 peer = ath10k_peer_find_by_id(ar, peer_id);
3662 if (!peer || !peer->sta) {
3663 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
3664 peer_id);
3665 goto out;
3668 sta = peer->sta;
3669 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
3670 p_tx_stats->succ_bytes =
3671 __le16_to_cpu(tx_stats->success_bytes[i]);
3672 p_tx_stats->retry_bytes =
3673 __le16_to_cpu(tx_stats->retry_bytes[i]);
3674 p_tx_stats->failed_bytes =
3675 __le16_to_cpu(tx_stats->failed_bytes[i]);
3676 p_tx_stats->ratecode = tx_stats->ratecode[i];
3677 p_tx_stats->flags = tx_stats->flags[i];
3678 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
3679 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
3680 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
3682 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3684 spin_unlock_bh(&ar->data_lock);
3685 rcu_read_unlock();
3687 return;
3689 out:
3690 spin_unlock_bh(&ar->data_lock);
3691 rcu_read_unlock();
3694 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type)
3696 switch (sec_type) {
3697 case HTT_SECURITY_TKIP:
3698 case HTT_SECURITY_TKIP_NOMIC:
3699 case HTT_SECURITY_AES_CCMP:
3700 return 48;
3701 default:
3702 return 0;
3706 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar,
3707 struct htt_security_indication *ev)
3709 enum htt_txrx_sec_cast_type sec_index;
3710 enum htt_security_types sec_type;
3711 struct ath10k_peer *peer;
3713 spin_lock_bh(&ar->data_lock);
3715 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id));
3716 if (!peer) {
3717 ath10k_warn(ar, "failed to find peer id %d for security indication",
3718 __le16_to_cpu(ev->peer_id));
3719 goto out;
3722 sec_type = MS(ev->flags, HTT_SECURITY_TYPE);
3724 if (ev->flags & HTT_SECURITY_IS_UNICAST)
3725 sec_index = HTT_TXRX_SEC_UCAST;
3726 else
3727 sec_index = HTT_TXRX_SEC_MCAST;
3729 peer->rx_pn[sec_index].sec_type = sec_type;
3730 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type);
3732 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid));
3733 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn));
3735 out:
3736 spin_unlock_bh(&ar->data_lock);
3739 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3741 struct ath10k_htt *htt = &ar->htt;
3742 struct htt_resp *resp = (struct htt_resp *)skb->data;
3743 enum htt_t2h_msg_type type;
3745 /* confirm alignment */
3746 if (!IS_ALIGNED((unsigned long)skb->data, 4))
3747 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
3749 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
3750 resp->hdr.msg_type);
3752 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
3753 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
3754 resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
3755 return true;
3757 type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
3759 switch (type) {
3760 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
3761 htt->target_version_major = resp->ver_resp.major;
3762 htt->target_version_minor = resp->ver_resp.minor;
3763 complete(&htt->target_version_received);
3764 break;
3766 case HTT_T2H_MSG_TYPE_RX_IND:
3767 if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) {
3768 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
3769 } else {
3770 skb_queue_tail(&htt->rx_indication_head, skb);
3771 return false;
3773 break;
3774 case HTT_T2H_MSG_TYPE_PEER_MAP: {
3775 struct htt_peer_map_event ev = {
3776 .vdev_id = resp->peer_map.vdev_id,
3777 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
3779 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
3780 ath10k_peer_map_event(htt, &ev);
3781 break;
3783 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
3784 struct htt_peer_unmap_event ev = {
3785 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
3787 ath10k_peer_unmap_event(htt, &ev);
3788 break;
3790 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
3791 struct htt_tx_done tx_done = {};
3792 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
3793 int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
3795 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
3797 switch (status) {
3798 case HTT_MGMT_TX_STATUS_OK:
3799 tx_done.status = HTT_TX_COMPL_STATE_ACK;
3800 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
3801 ar->wmi.svc_map) &&
3802 (resp->mgmt_tx_completion.flags &
3803 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
3804 tx_done.ack_rssi =
3805 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
3806 info);
3808 break;
3809 case HTT_MGMT_TX_STATUS_RETRY:
3810 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
3811 break;
3812 case HTT_MGMT_TX_STATUS_DROP:
3813 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
3814 break;
3817 status = ath10k_txrx_tx_unref(htt, &tx_done);
3818 if (!status) {
3819 spin_lock_bh(&htt->tx_lock);
3820 ath10k_htt_tx_mgmt_dec_pending(htt);
3821 spin_unlock_bh(&htt->tx_lock);
3823 break;
3825 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3826 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3827 break;
3828 case HTT_T2H_MSG_TYPE_SEC_IND: {
3829 struct ath10k *ar = htt->ar;
3830 struct htt_security_indication *ev = &resp->security_indication;
3832 ath10k_htt_rx_sec_ind_handler(ar, ev);
3833 ath10k_dbg(ar, ATH10K_DBG_HTT,
3834 "sec ind peer_id %d unicast %d type %d\n",
3835 __le16_to_cpu(ev->peer_id),
3836 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3837 MS(ev->flags, HTT_SECURITY_TYPE));
3838 complete(&ar->install_key_done);
3839 break;
3841 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3842 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3843 skb->data, skb->len);
3844 atomic_inc(&htt->num_mpdus_ready);
3846 return ath10k_htt_rx_proc_rx_frag_ind(htt,
3847 &resp->rx_frag_ind,
3848 skb);
3849 break;
3851 case HTT_T2H_MSG_TYPE_TEST:
3852 break;
3853 case HTT_T2H_MSG_TYPE_STATS_CONF:
3854 trace_ath10k_htt_stats(ar, skb->data, skb->len);
3855 break;
3856 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3857 /* Firmware can return tx frames if it's unable to fully
3858 * process them and suspects host may be able to fix it. ath10k
3859 * sends all tx frames as already inspected so this shouldn't
3860 * happen unless fw has a bug.
3862 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3863 break;
3864 case HTT_T2H_MSG_TYPE_RX_ADDBA:
3865 ath10k_htt_rx_addba(ar, resp);
3866 break;
3867 case HTT_T2H_MSG_TYPE_RX_DELBA:
3868 ath10k_htt_rx_delba(ar, resp);
3869 break;
3870 case HTT_T2H_MSG_TYPE_PKTLOG: {
3871 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3872 skb->len -
3873 offsetof(struct htt_resp,
3874 pktlog_msg.payload));
3876 if (ath10k_peer_stats_enabled(ar))
3877 ath10k_fetch_10_2_tx_stats(ar,
3878 resp->pktlog_msg.payload);
3879 break;
3881 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3882 /* Ignore this event because mac80211 takes care of Rx
3883 * aggregation reordering.
3885 break;
3887 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3888 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3889 return false;
3891 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3892 break;
3893 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3894 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3895 u32 freq = __le32_to_cpu(resp->chan_change.freq);
3897 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3898 ath10k_dbg(ar, ATH10K_DBG_HTT,
3899 "htt chan change freq %u phymode %s\n",
3900 freq, ath10k_wmi_phymode_str(phymode));
3901 break;
3903 case HTT_T2H_MSG_TYPE_AGGR_CONF:
3904 break;
3905 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3906 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3908 if (!tx_fetch_ind) {
3909 ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3910 break;
3912 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3913 break;
3915 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3916 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3917 break;
3918 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3919 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3920 break;
3921 case HTT_T2H_MSG_TYPE_PEER_STATS:
3922 ath10k_htt_fetch_peer_stats(ar, skb);
3923 break;
3924 case HTT_T2H_MSG_TYPE_EN_STATS:
3925 default:
3926 ath10k_warn(ar, "htt event (%d) not handled\n",
3927 resp->hdr.msg_type);
3928 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3929 skb->data, skb->len);
3930 break;
3932 return true;
3934 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3936 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3937 struct sk_buff *skb)
3939 trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3940 dev_kfree_skb_any(skb);
3942 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3944 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3946 struct sk_buff *skb;
3948 while (quota < budget) {
3949 if (skb_queue_empty(&ar->htt.rx_msdus_q))
3950 break;
3952 skb = skb_dequeue(&ar->htt.rx_msdus_q);
3953 if (!skb)
3954 break;
3955 ath10k_process_rx(ar, skb);
3956 quota++;
3959 return quota;
3962 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget)
3964 struct htt_resp *resp;
3965 struct ath10k_htt *htt = &ar->htt;
3966 struct sk_buff *skb;
3967 bool release;
3968 int quota;
3970 for (quota = 0; quota < budget; quota++) {
3971 skb = skb_dequeue(&htt->rx_indication_head);
3972 if (!skb)
3973 break;
3975 resp = (struct htt_resp *)skb->data;
3977 release = ath10k_htt_rx_proc_rx_ind_hl(htt,
3978 &resp->rx_ind_hl,
3979 skb,
3980 HTT_RX_PN_CHECK,
3981 HTT_RX_NON_TKIP_MIC);
3983 if (release)
3984 dev_kfree_skb_any(skb);
3986 ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n",
3987 skb_queue_len(&htt->rx_indication_head));
3989 return quota;
3991 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication);
3993 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3995 struct ath10k_htt *htt = &ar->htt;
3996 struct htt_tx_done tx_done = {};
3997 struct sk_buff_head tx_ind_q;
3998 struct sk_buff *skb;
3999 unsigned long flags;
4000 int quota = 0, done, ret;
4001 bool resched_napi = false;
4003 __skb_queue_head_init(&tx_ind_q);
4005 /* Process pending frames before dequeuing more data
4006 * from hardware.
4008 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4009 if (quota == budget) {
4010 resched_napi = true;
4011 goto exit;
4014 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
4015 spin_lock_bh(&htt->rx_ring.lock);
4016 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
4017 spin_unlock_bh(&htt->rx_ring.lock);
4019 dev_kfree_skb_any(skb);
4020 if (ret == -EIO) {
4021 resched_napi = true;
4022 goto exit;
4026 while (atomic_read(&htt->num_mpdus_ready)) {
4027 ret = ath10k_htt_rx_handle_amsdu(htt);
4028 if (ret == -EIO) {
4029 resched_napi = true;
4030 goto exit;
4032 atomic_dec(&htt->num_mpdus_ready);
4035 /* Deliver received data after processing data from hardware */
4036 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4038 /* From NAPI documentation:
4039 * The napi poll() function may also process TX completions, in which
4040 * case if it processes the entire TX ring then it should count that
4041 * work as the rest of the budget.
4043 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
4044 quota = budget;
4046 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
4047 * From kfifo_get() documentation:
4048 * Note that with only one concurrent reader and one concurrent writer,
4049 * you don't need extra locking to use these macro.
4051 while (kfifo_get(&htt->txdone_fifo, &tx_done))
4052 ath10k_txrx_tx_unref(htt, &tx_done);
4054 ath10k_mac_tx_push_pending(ar);
4056 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
4057 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
4058 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
4060 while ((skb = __skb_dequeue(&tx_ind_q))) {
4061 ath10k_htt_rx_tx_fetch_ind(ar, skb);
4062 dev_kfree_skb_any(skb);
4065 exit:
4066 ath10k_htt_rx_msdu_buff_replenish(htt);
4067 /* In case of rx failure or more data to read, report budget
4068 * to reschedule NAPI poll
4070 done = resched_napi ? budget : quota;
4072 return done;
4074 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
4076 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
4077 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
4078 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
4079 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
4080 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
4081 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
4084 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
4085 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
4086 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
4087 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
4088 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
4089 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
4092 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
4093 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl,
4096 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
4098 struct ath10k *ar = htt->ar;
4100 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
4101 htt->rx_ops = &htt_rx_ops_hl;
4102 else if (ar->hw_params.target_64bit)
4103 htt->rx_ops = &htt_rx_ops_64;
4104 else
4105 htt->rx_ops = &htt_rx_ops_32;