gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / sdio.c
blob1f709b65c29b2bd40d5c3b8553728a4fedd014b3
1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2004-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com>
6 */
8 #include <linux/module.h>
9 #include <linux/mmc/card.h>
10 #include <linux/mmc/mmc.h>
11 #include <linux/mmc/host.h>
12 #include <linux/mmc/sdio_func.h>
13 #include <linux/mmc/sdio_ids.h>
14 #include <linux/mmc/sdio.h>
15 #include <linux/mmc/sd.h>
16 #include <linux/bitfield.h>
17 #include "core.h"
18 #include "bmi.h"
19 #include "debug.h"
20 #include "hif.h"
21 #include "htc.h"
22 #include "mac.h"
23 #include "targaddrs.h"
24 #include "trace.h"
25 #include "sdio.h"
27 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024)
29 /* inlined helper functions */
31 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
32 size_t len)
34 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
37 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
39 return (enum ath10k_htc_ep_id)pipe_id;
42 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
44 dev_kfree_skb(pkt->skb);
45 pkt->skb = NULL;
46 pkt->alloc_len = 0;
47 pkt->act_len = 0;
48 pkt->trailer_only = false;
51 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
52 size_t act_len, size_t full_len,
53 bool part_of_bundle,
54 bool last_in_bundle)
56 pkt->skb = dev_alloc_skb(full_len);
57 if (!pkt->skb)
58 return -ENOMEM;
60 pkt->act_len = act_len;
61 pkt->alloc_len = full_len;
62 pkt->part_of_bundle = part_of_bundle;
63 pkt->last_in_bundle = last_in_bundle;
64 pkt->trailer_only = false;
66 return 0;
69 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
71 bool trailer_only = false;
72 struct ath10k_htc_hdr *htc_hdr =
73 (struct ath10k_htc_hdr *)pkt->skb->data;
74 u16 len = __le16_to_cpu(htc_hdr->len);
76 if (len == htc_hdr->trailer_len)
77 trailer_only = true;
79 return trailer_only;
82 /* sdio/mmc functions */
84 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
85 unsigned int address,
86 unsigned char val)
88 *arg = FIELD_PREP(BIT(31), write) |
89 FIELD_PREP(BIT(27), raw) |
90 FIELD_PREP(BIT(26), 1) |
91 FIELD_PREP(GENMASK(25, 9), address) |
92 FIELD_PREP(BIT(8), 1) |
93 FIELD_PREP(GENMASK(7, 0), val);
96 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
97 unsigned int address,
98 unsigned char byte)
100 struct mmc_command io_cmd;
102 memset(&io_cmd, 0, sizeof(io_cmd));
103 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
104 io_cmd.opcode = SD_IO_RW_DIRECT;
105 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
107 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
110 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
111 unsigned int address,
112 unsigned char *byte)
114 struct mmc_command io_cmd;
115 int ret;
117 memset(&io_cmd, 0, sizeof(io_cmd));
118 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
119 io_cmd.opcode = SD_IO_RW_DIRECT;
120 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
122 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
123 if (!ret)
124 *byte = io_cmd.resp[0];
126 return ret;
129 static int ath10k_sdio_config(struct ath10k *ar)
131 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
132 struct sdio_func *func = ar_sdio->func;
133 unsigned char byte, asyncintdelay = 2;
134 int ret;
136 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
138 sdio_claim_host(func);
140 byte = 0;
141 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
142 SDIO_CCCR_DRIVE_STRENGTH,
143 &byte);
145 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
146 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
147 ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
149 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
150 SDIO_CCCR_DRIVE_STRENGTH,
151 byte);
153 byte = 0;
154 ret = ath10k_sdio_func0_cmd52_rd_byte(
155 func->card,
156 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
157 &byte);
159 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
160 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
161 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
163 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
165 byte);
166 if (ret) {
167 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
168 goto out;
171 byte = 0;
172 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
173 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
174 &byte);
176 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
178 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
179 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
180 byte);
181 if (ret) {
182 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
183 ret);
184 goto out;
187 byte = 0;
188 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
189 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
190 &byte);
192 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
193 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
195 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
196 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
197 byte);
199 /* give us some time to enable, in ms */
200 func->enable_timeout = 100;
202 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
203 if (ret) {
204 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
205 ar_sdio->mbox_info.block_size, ret);
206 goto out;
209 out:
210 sdio_release_host(func);
211 return ret;
214 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
216 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
217 struct sdio_func *func = ar_sdio->func;
218 int ret;
220 sdio_claim_host(func);
222 sdio_writel(func, val, addr, &ret);
223 if (ret) {
224 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
225 val, addr, ret);
226 goto out;
229 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
230 addr, val);
232 out:
233 sdio_release_host(func);
235 return ret;
238 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
240 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
241 struct sdio_func *func = ar_sdio->func;
242 __le32 *buf;
243 int ret;
245 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
246 if (!buf)
247 return -ENOMEM;
249 *buf = cpu_to_le32(val);
251 sdio_claim_host(func);
253 ret = sdio_writesb(func, addr, buf, sizeof(*buf));
254 if (ret) {
255 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
256 val, addr, ret);
257 goto out;
260 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
261 addr, val);
263 out:
264 sdio_release_host(func);
266 kfree(buf);
268 return ret;
271 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
273 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
274 struct sdio_func *func = ar_sdio->func;
275 int ret;
277 sdio_claim_host(func);
278 *val = sdio_readl(func, addr, &ret);
279 if (ret) {
280 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
281 addr, ret);
282 goto out;
285 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
286 addr, *val);
288 out:
289 sdio_release_host(func);
291 return ret;
294 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
296 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
297 struct sdio_func *func = ar_sdio->func;
298 int ret;
300 sdio_claim_host(func);
302 ret = sdio_memcpy_fromio(func, buf, addr, len);
303 if (ret) {
304 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
305 addr, ret);
306 goto out;
309 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
310 addr, buf, len);
311 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
313 out:
314 sdio_release_host(func);
316 return ret;
319 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
321 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
322 struct sdio_func *func = ar_sdio->func;
323 int ret;
325 sdio_claim_host(func);
327 /* For some reason toio() doesn't have const for the buffer, need
328 * an ugly hack to workaround that.
330 ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
331 if (ret) {
332 ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
333 addr, ret);
334 goto out;
337 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
338 addr, buf, len);
339 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
341 out:
342 sdio_release_host(func);
344 return ret;
347 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
349 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
350 struct sdio_func *func = ar_sdio->func;
351 int ret;
353 sdio_claim_host(func);
355 len = round_down(len, ar_sdio->mbox_info.block_size);
357 ret = sdio_readsb(func, buf, addr, len);
358 if (ret) {
359 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
360 addr, ret);
361 goto out;
364 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
365 addr, buf, len);
366 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
368 out:
369 sdio_release_host(func);
371 return ret;
374 /* HIF mbox functions */
376 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
377 struct ath10k_sdio_rx_data *pkt,
378 u32 *lookaheads,
379 int *n_lookaheads)
381 struct ath10k_htc *htc = &ar->htc;
382 struct sk_buff *skb = pkt->skb;
383 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
384 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
385 enum ath10k_htc_ep_id eid;
386 u8 *trailer;
387 int ret;
389 if (trailer_present) {
390 trailer = skb->data + skb->len - htc_hdr->trailer_len;
392 eid = pipe_id_to_eid(htc_hdr->eid);
394 ret = ath10k_htc_process_trailer(htc,
395 trailer,
396 htc_hdr->trailer_len,
397 eid,
398 lookaheads,
399 n_lookaheads);
400 if (ret)
401 return ret;
403 if (is_trailer_only_msg(pkt))
404 pkt->trailer_only = true;
406 skb_trim(skb, skb->len - htc_hdr->trailer_len);
409 skb_pull(skb, sizeof(*htc_hdr));
411 return 0;
414 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
415 u32 lookaheads[],
416 int *n_lookahead)
418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
419 struct ath10k_htc *htc = &ar->htc;
420 struct ath10k_sdio_rx_data *pkt;
421 struct ath10k_htc_ep *ep;
422 struct ath10k_skb_rxcb *cb;
423 enum ath10k_htc_ep_id id;
424 int ret, i, *n_lookahead_local;
425 u32 *lookaheads_local;
426 int lookahead_idx = 0;
428 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
429 lookaheads_local = lookaheads;
430 n_lookahead_local = n_lookahead;
432 id = ((struct ath10k_htc_hdr *)
433 &lookaheads[lookahead_idx++])->eid;
435 if (id >= ATH10K_HTC_EP_COUNT) {
436 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
437 id);
438 ret = -ENOMEM;
439 goto out;
442 ep = &htc->endpoint[id];
444 if (ep->service_id == 0) {
445 ath10k_warn(ar, "ep %d is not connected\n", id);
446 ret = -ENOMEM;
447 goto out;
450 pkt = &ar_sdio->rx_pkts[i];
452 if (pkt->part_of_bundle && !pkt->last_in_bundle) {
453 /* Only read lookahead's from RX trailers
454 * for the last packet in a bundle.
456 lookahead_idx--;
457 lookaheads_local = NULL;
458 n_lookahead_local = NULL;
461 ret = ath10k_sdio_mbox_rx_process_packet(ar,
462 pkt,
463 lookaheads_local,
464 n_lookahead_local);
465 if (ret)
466 goto out;
468 if (!pkt->trailer_only) {
469 cb = ATH10K_SKB_RXCB(pkt->skb);
470 cb->eid = id;
472 skb_queue_tail(&ar_sdio->rx_head, pkt->skb);
473 queue_work(ar->workqueue_aux,
474 &ar_sdio->async_work_rx);
475 } else {
476 kfree_skb(pkt->skb);
479 /* The RX complete handler now owns the skb...*/
480 pkt->skb = NULL;
481 pkt->alloc_len = 0;
484 ret = 0;
486 out:
487 /* Free all packets that was not passed on to the RX completion
488 * handler...
490 for (; i < ar_sdio->n_rx_pkts; i++)
491 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
493 return ret;
496 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar,
497 struct ath10k_sdio_rx_data *rx_pkts,
498 struct ath10k_htc_hdr *htc_hdr,
499 size_t full_len, size_t act_len,
500 size_t *bndl_cnt)
502 int ret, i;
503 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle;
505 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags);
507 if (*bndl_cnt > max_msgs) {
508 ath10k_warn(ar,
509 "HTC bundle length %u exceeds maximum %u\n",
510 le16_to_cpu(htc_hdr->len),
511 max_msgs);
512 return -ENOMEM;
515 /* Allocate bndl_cnt extra skb's for the bundle.
516 * The package containing the
517 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
518 * in bndl_cnt. The skb for that packet will be
519 * allocated separately.
521 for (i = 0; i < *bndl_cnt; i++) {
522 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
523 act_len,
524 full_len,
525 true,
526 false);
527 if (ret)
528 return ret;
531 return 0;
534 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
535 u32 lookaheads[], int n_lookaheads)
537 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
538 struct ath10k_htc_hdr *htc_hdr;
539 size_t full_len, act_len;
540 bool last_in_bundle;
541 int ret, i;
542 int pkt_cnt = 0;
544 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
545 ath10k_warn(ar, "the total number of pkgs to be fetched (%u) exceeds maximum %u\n",
546 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS);
547 ret = -ENOMEM;
548 goto err;
551 for (i = 0; i < n_lookaheads; i++) {
552 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
553 last_in_bundle = false;
555 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
556 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n",
557 le16_to_cpu(htc_hdr->len),
558 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
559 ret = -ENOMEM;
560 goto err;
563 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
564 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
566 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
567 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
568 htc_hdr->eid, htc_hdr->flags,
569 le16_to_cpu(htc_hdr->len));
570 ret = -EINVAL;
571 goto err;
574 if (ath10k_htc_get_bundle_count(
575 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) {
576 /* HTC header indicates that every packet to follow
577 * has the same padded length so that it can be
578 * optimally fetched as a full bundle.
580 size_t bndl_cnt;
582 ret = ath10k_sdio_mbox_alloc_bundle(ar,
583 &ar_sdio->rx_pkts[pkt_cnt],
584 htc_hdr,
585 full_len,
586 act_len,
587 &bndl_cnt);
589 if (ret) {
590 ath10k_warn(ar, "failed to allocate a bundle: %d\n",
591 ret);
592 goto err;
595 pkt_cnt += bndl_cnt;
597 /* next buffer will be the last in the bundle */
598 last_in_bundle = true;
601 /* Allocate skb for packet. If the packet had the
602 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
603 * packet skb's have been allocated in the previous step.
605 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
606 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
608 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt],
609 act_len,
610 full_len,
611 last_in_bundle,
612 last_in_bundle);
613 if (ret) {
614 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret);
615 goto err;
618 pkt_cnt++;
621 ar_sdio->n_rx_pkts = pkt_cnt;
623 return 0;
625 err:
626 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
627 if (!ar_sdio->rx_pkts[i].alloc_len)
628 break;
629 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
632 return ret;
635 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
637 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
638 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0];
639 struct sk_buff *skb = pkt->skb;
640 struct ath10k_htc_hdr *htc_hdr;
641 int ret;
643 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
644 skb->data, pkt->alloc_len);
645 if (ret)
646 goto err;
648 htc_hdr = (struct ath10k_htc_hdr *)skb->data;
649 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
651 if (pkt->act_len > pkt->alloc_len) {
652 ret = -EINVAL;
653 goto err;
656 skb_put(skb, pkt->act_len);
657 return 0;
659 err:
660 ar_sdio->n_rx_pkts = 0;
661 ath10k_sdio_mbox_free_rx_pkt(pkt);
663 return ret;
666 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar)
668 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
669 struct ath10k_sdio_rx_data *pkt;
670 struct ath10k_htc_hdr *htc_hdr;
671 int ret, i;
672 u32 pkt_offset, virt_pkt_len;
674 virt_pkt_len = 0;
675 for (i = 0; i < ar_sdio->n_rx_pkts; i++)
676 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len;
678 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) {
679 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len);
680 ret = -E2BIG;
681 goto err;
684 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
685 ar_sdio->vsg_buffer, virt_pkt_len);
686 if (ret) {
687 ath10k_warn(ar, "failed to read bundle packets: %d", ret);
688 goto err;
691 pkt_offset = 0;
692 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
693 pkt = &ar_sdio->rx_pkts[i];
694 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset);
695 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
697 if (pkt->act_len > pkt->alloc_len) {
698 ret = -EINVAL;
699 goto err;
702 skb_put_data(pkt->skb, htc_hdr, pkt->act_len);
703 pkt_offset += pkt->alloc_len;
706 return 0;
708 err:
709 /* Free all packets that was not successfully fetched. */
710 for (i = 0; i < ar_sdio->n_rx_pkts; i++)
711 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
713 ar_sdio->n_rx_pkts = 0;
715 return ret;
718 /* This is the timeout for mailbox processing done in the sdio irq
719 * handler. The timeout is deliberately set quite high since SDIO dump logs
720 * over serial port can/will add a substantial overhead to the processing
721 * (if enabled).
723 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
725 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
726 u32 msg_lookahead, bool *done)
728 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
729 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
730 int n_lookaheads = 1;
731 unsigned long timeout;
732 int ret;
734 *done = true;
736 /* Copy the lookahead obtained from the HTC register table into our
737 * temp array as a start value.
739 lookaheads[0] = msg_lookahead;
741 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
742 do {
743 /* Try to allocate as many HTC RX packets indicated by
744 * n_lookaheads.
746 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
747 n_lookaheads);
748 if (ret)
749 break;
751 if (ar_sdio->n_rx_pkts >= 2)
752 /* A recv bundle was detected, force IRQ status
753 * re-check again.
755 *done = false;
757 if (ar_sdio->n_rx_pkts > 1)
758 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar);
759 else
760 ret = ath10k_sdio_mbox_rx_fetch(ar);
762 /* Process fetched packets. This will potentially update
763 * n_lookaheads depending on if the packets contain lookahead
764 * reports.
766 n_lookaheads = 0;
767 ret = ath10k_sdio_mbox_rx_process_packets(ar,
768 lookaheads,
769 &n_lookaheads);
771 if (!n_lookaheads || ret)
772 break;
774 /* For SYNCH processing, if we get here, we are running
775 * through the loop again due to updated lookaheads. Set
776 * flag that we should re-check IRQ status registers again
777 * before leaving IRQ processing, this can net better
778 * performance in high throughput situations.
780 *done = false;
781 } while (time_before(jiffies, timeout));
783 if (ret && (ret != -ECANCELED))
784 ath10k_warn(ar, "failed to get pending recv messages: %d\n",
785 ret);
787 return ret;
790 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
792 u32 val;
793 int ret;
795 /* TODO: Add firmware crash handling */
796 ath10k_warn(ar, "firmware crashed\n");
798 /* read counter to clear the interrupt, the debug error interrupt is
799 * counter 0.
801 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
802 if (ret)
803 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
805 return ret;
808 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
810 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
811 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
812 u8 counter_int_status;
813 int ret;
815 mutex_lock(&irq_data->mtx);
816 counter_int_status = irq_data->irq_proc_reg->counter_int_status &
817 irq_data->irq_en_reg->cntr_int_status_en;
819 /* NOTE: other modules like GMBOX may use the counter interrupt for
820 * credit flow control on other counters, we only need to check for
821 * the debug assertion counter interrupt.
823 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
824 ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
825 else
826 ret = 0;
828 mutex_unlock(&irq_data->mtx);
830 return ret;
833 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
835 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
836 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
837 u8 error_int_status;
838 int ret;
840 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
842 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
843 if (!error_int_status) {
844 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
845 error_int_status);
846 return -EIO;
849 ath10k_dbg(ar, ATH10K_DBG_SDIO,
850 "sdio error_int_status 0x%x\n", error_int_status);
852 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
853 error_int_status))
854 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
856 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
857 error_int_status))
858 ath10k_warn(ar, "rx underflow interrupt error\n");
860 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
861 error_int_status))
862 ath10k_warn(ar, "tx overflow interrupt error\n");
864 /* Clear the interrupt */
865 irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
867 /* set W1C value to clear the interrupt, this hits the register first */
868 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
869 error_int_status);
870 if (ret) {
871 ath10k_warn(ar, "unable to write to error int status address: %d\n",
872 ret);
873 return ret;
876 return 0;
879 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
881 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
882 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
883 u8 cpu_int_status;
884 int ret;
886 mutex_lock(&irq_data->mtx);
887 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
888 irq_data->irq_en_reg->cpu_int_status_en;
889 if (!cpu_int_status) {
890 ath10k_warn(ar, "CPU interrupt status is zero\n");
891 ret = -EIO;
892 goto out;
895 /* Clear the interrupt */
896 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
898 /* Set up the register transfer buffer to hit the register 4 times,
899 * this is done to make the access 4-byte aligned to mitigate issues
900 * with host bus interconnects that restrict bus transfer lengths to
901 * be a multiple of 4-bytes.
903 * Set W1C value to clear the interrupt, this hits the register first.
905 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
906 cpu_int_status);
907 if (ret) {
908 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
909 ret);
910 goto out;
913 out:
914 mutex_unlock(&irq_data->mtx);
915 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) {
916 ath10k_err(ar, "firmware crashed!\n");
917 queue_work(ar->workqueue, &ar->restart_work);
919 return ret;
922 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
923 u8 *host_int_status,
924 u32 *lookahead)
926 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
927 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
928 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
929 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
930 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
931 int ret;
933 mutex_lock(&irq_data->mtx);
935 *lookahead = 0;
936 *host_int_status = 0;
938 /* int_status_en is supposed to be non zero, otherwise interrupts
939 * shouldn't be enabled. There is however a short time frame during
940 * initialization between the irq register and int_status_en init
941 * where this can happen.
942 * We silently ignore this condition.
944 if (!irq_en_reg->int_status_en) {
945 ret = 0;
946 goto out;
949 /* Read the first sizeof(struct ath10k_irq_proc_registers)
950 * bytes of the HTC register table. This
951 * will yield us the value of different int status
952 * registers and the lookahead registers.
954 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
955 irq_proc_reg, sizeof(*irq_proc_reg));
956 if (ret) {
957 queue_work(ar->workqueue, &ar->restart_work);
958 ath10k_warn(ar, "read int status fail, start recovery\n");
959 goto out;
962 /* Update only those registers that are enabled */
963 *host_int_status = irq_proc_reg->host_int_status &
964 irq_en_reg->int_status_en;
966 /* Look at mbox status */
967 if (!(*host_int_status & htc_mbox)) {
968 *lookahead = 0;
969 ret = 0;
970 goto out;
973 /* Mask out pending mbox value, we use look ahead as
974 * the real flag for mbox processing.
976 *host_int_status &= ~htc_mbox;
977 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
978 *lookahead = le32_to_cpu(
979 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
980 if (!*lookahead)
981 ath10k_warn(ar, "sdio mbox lookahead is zero\n");
984 out:
985 mutex_unlock(&irq_data->mtx);
986 return ret;
989 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
990 bool *done)
992 u8 host_int_status;
993 u32 lookahead;
994 int ret;
996 /* NOTE: HIF implementation guarantees that the context of this
997 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
998 * sleep or call any API that can block or switch thread/task
999 * contexts. This is a fully schedulable context.
1002 ret = ath10k_sdio_mbox_read_int_status(ar,
1003 &host_int_status,
1004 &lookahead);
1005 if (ret) {
1006 *done = true;
1007 goto out;
1010 if (!host_int_status && !lookahead) {
1011 ret = 0;
1012 *done = true;
1013 goto out;
1016 if (lookahead) {
1017 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1018 "sdio pending mailbox msg lookahead 0x%08x\n",
1019 lookahead);
1021 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
1022 lookahead,
1023 done);
1024 if (ret)
1025 goto out;
1028 /* now, handle the rest of the interrupts */
1029 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1030 "sdio host_int_status 0x%x\n", host_int_status);
1032 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
1033 /* CPU Interrupt */
1034 ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
1035 if (ret)
1036 goto out;
1039 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
1040 /* Error Interrupt */
1041 ret = ath10k_sdio_mbox_proc_err_intr(ar);
1042 if (ret)
1043 goto out;
1046 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
1047 /* Counter Interrupt */
1048 ret = ath10k_sdio_mbox_proc_counter_intr(ar);
1050 ret = 0;
1052 out:
1053 /* An optimization to bypass reading the IRQ status registers
1054 * unecessarily which can re-wake the target, if upper layers
1055 * determine that we are in a low-throughput mode, we can rely on
1056 * taking another interrupt rather than re-checking the status
1057 * registers which can re-wake the target.
1059 * NOTE : for host interfaces that makes use of detecting pending
1060 * mbox messages at hif can not use this optimization due to
1061 * possible side effects, SPI requires the host to drain all
1062 * messages from the mailbox before exiting the ISR routine.
1065 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1066 "sdio pending irqs done %d status %d",
1067 *done, ret);
1069 return ret;
1072 static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
1074 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1075 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1076 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
1078 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
1079 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
1080 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
1081 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
1082 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
1084 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
1086 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device);
1087 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device);
1088 switch (dev_id_base) {
1089 case QCA_MANUFACTURER_ID_AR6005_BASE:
1090 if (dev_id_chiprev < 4)
1091 mbox_info->ext_info[0].htc_ext_sz =
1092 ATH10K_HIF_MBOX0_EXT_WIDTH;
1093 else
1094 /* from QCA6174 2.0(0x504), the width has been extended
1095 * to 56K
1097 mbox_info->ext_info[0].htc_ext_sz =
1098 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1099 break;
1100 case QCA_MANUFACTURER_ID_QCA9377_BASE:
1101 mbox_info->ext_info[0].htc_ext_sz =
1102 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1103 break;
1104 default:
1105 mbox_info->ext_info[0].htc_ext_sz =
1106 ATH10K_HIF_MBOX0_EXT_WIDTH;
1109 mbox_info->ext_info[1].htc_ext_addr =
1110 mbox_info->ext_info[0].htc_ext_addr +
1111 mbox_info->ext_info[0].htc_ext_sz +
1112 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
1113 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
1116 /* BMI functions */
1118 static int ath10k_sdio_bmi_credits(struct ath10k *ar)
1120 u32 addr, cmd_credits;
1121 unsigned long timeout;
1122 int ret;
1124 /* Read the counter register to get the command credits */
1125 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
1126 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1127 cmd_credits = 0;
1129 while (time_before(jiffies, timeout) && !cmd_credits) {
1130 /* Hit the credit counter with a 4-byte access, the first byte
1131 * read will hit the counter and cause a decrement, while the
1132 * remaining 3 bytes has no effect. The rationale behind this
1133 * is to make all HIF accesses 4-byte aligned.
1135 ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
1136 if (ret) {
1137 ath10k_warn(ar,
1138 "unable to decrement the command credit count register: %d\n",
1139 ret);
1140 return ret;
1143 /* The counter is only 8 bits.
1144 * Ignore anything in the upper 3 bytes
1146 cmd_credits &= 0xFF;
1149 if (!cmd_credits) {
1150 ath10k_warn(ar, "bmi communication timeout\n");
1151 return -ETIMEDOUT;
1154 return 0;
1157 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
1159 unsigned long timeout;
1160 u32 rx_word;
1161 int ret;
1163 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1164 rx_word = 0;
1166 while ((time_before(jiffies, timeout)) && !rx_word) {
1167 ret = ath10k_sdio_read32(ar,
1168 MBOX_HOST_INT_STATUS_ADDRESS,
1169 &rx_word);
1170 if (ret) {
1171 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
1172 return ret;
1175 /* all we really want is one bit */
1176 rx_word &= 1;
1179 if (!rx_word) {
1180 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
1181 return -EINVAL;
1184 return ret;
1187 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
1188 void *req, u32 req_len,
1189 void *resp, u32 *resp_len)
1191 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1192 u32 addr;
1193 int ret;
1195 if (req) {
1196 ret = ath10k_sdio_bmi_credits(ar);
1197 if (ret)
1198 return ret;
1200 addr = ar_sdio->mbox_info.htc_addr;
1202 memcpy(ar_sdio->bmi_buf, req, req_len);
1203 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
1204 if (ret) {
1205 ath10k_warn(ar,
1206 "unable to send the bmi data to the device: %d\n",
1207 ret);
1208 return ret;
1212 if (!resp || !resp_len)
1213 /* No response expected */
1214 return 0;
1216 /* During normal bootup, small reads may be required.
1217 * Rather than issue an HIF Read and then wait as the Target
1218 * adds successive bytes to the FIFO, we wait here until
1219 * we know that response data is available.
1221 * This allows us to cleanly timeout on an unexpected
1222 * Target failure rather than risk problems at the HIF level.
1223 * In particular, this avoids SDIO timeouts and possibly garbage
1224 * data on some host controllers. And on an interconnect
1225 * such as Compact Flash (as well as some SDIO masters) which
1226 * does not provide any indication on data timeout, it avoids
1227 * a potential hang or garbage response.
1229 * Synchronization is more difficult for reads larger than the
1230 * size of the MBOX FIFO (128B), because the Target is unable
1231 * to push the 129th byte of data until AFTER the Host posts an
1232 * HIF Read and removes some FIFO data. So for large reads the
1233 * Host proceeds to post an HIF Read BEFORE all the data is
1234 * actually available to read. Fortunately, large BMI reads do
1235 * not occur in practice -- they're supported for debug/development.
1237 * So Host/Target BMI synchronization is divided into these cases:
1238 * CASE 1: length < 4
1239 * Should not happen
1241 * CASE 2: 4 <= length <= 128
1242 * Wait for first 4 bytes to be in FIFO
1243 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1244 * a BMI command credit, which indicates that the ENTIRE
1245 * response is available in the the FIFO
1247 * CASE 3: length > 128
1248 * Wait for the first 4 bytes to be in FIFO
1250 * For most uses, a small timeout should be sufficient and we will
1251 * usually see a response quickly; but there may be some unusual
1252 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1253 * For now, we use an unbounded busy loop while waiting for
1254 * BMI_EXECUTE.
1256 * If BMI_EXECUTE ever needs to support longer-latency execution,
1257 * especially in production, this code needs to be enhanced to sleep
1258 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1259 * a function of Host processor speed.
1261 ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
1262 if (ret)
1263 return ret;
1265 /* We always read from the start of the mbox address */
1266 addr = ar_sdio->mbox_info.htc_addr;
1267 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
1268 if (ret) {
1269 ath10k_warn(ar,
1270 "unable to read the bmi data from the device: %d\n",
1271 ret);
1272 return ret;
1275 memcpy(resp, ar_sdio->bmi_buf, *resp_len);
1277 return 0;
1280 /* sdio async handling functions */
1282 static struct ath10k_sdio_bus_request
1283 *ath10k_sdio_alloc_busreq(struct ath10k *ar)
1285 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1286 struct ath10k_sdio_bus_request *bus_req;
1288 spin_lock_bh(&ar_sdio->lock);
1290 if (list_empty(&ar_sdio->bus_req_freeq)) {
1291 bus_req = NULL;
1292 goto out;
1295 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
1296 struct ath10k_sdio_bus_request, list);
1297 list_del(&bus_req->list);
1299 out:
1300 spin_unlock_bh(&ar_sdio->lock);
1301 return bus_req;
1304 static void ath10k_sdio_free_bus_req(struct ath10k *ar,
1305 struct ath10k_sdio_bus_request *bus_req)
1307 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1309 memset(bus_req, 0, sizeof(*bus_req));
1311 spin_lock_bh(&ar_sdio->lock);
1312 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
1313 spin_unlock_bh(&ar_sdio->lock);
1316 static void __ath10k_sdio_write_async(struct ath10k *ar,
1317 struct ath10k_sdio_bus_request *req)
1319 struct ath10k_htc_ep *ep;
1320 struct sk_buff *skb;
1321 int ret;
1323 skb = req->skb;
1324 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
1325 if (ret)
1326 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
1327 req->address, ret);
1329 if (req->htc_msg) {
1330 ep = &ar->htc.endpoint[req->eid];
1331 ath10k_htc_notify_tx_completion(ep, skb);
1332 } else if (req->comp) {
1333 complete(req->comp);
1336 ath10k_sdio_free_bus_req(ar, req);
1339 /* To improve throughput use workqueue to deliver packets to HTC layer,
1340 * this way SDIO bus is utilised much better.
1342 static void ath10k_rx_indication_async_work(struct work_struct *work)
1344 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1345 async_work_rx);
1346 struct ath10k *ar = ar_sdio->ar;
1347 struct ath10k_htc_ep *ep;
1348 struct ath10k_skb_rxcb *cb;
1349 struct sk_buff *skb;
1351 while (true) {
1352 skb = skb_dequeue(&ar_sdio->rx_head);
1353 if (!skb)
1354 break;
1355 cb = ATH10K_SKB_RXCB(skb);
1356 ep = &ar->htc.endpoint[cb->eid];
1357 ep->ep_ops.ep_rx_complete(ar, skb);
1360 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags))
1361 napi_schedule(&ar->napi);
1364 static void ath10k_sdio_write_async_work(struct work_struct *work)
1366 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1367 wr_async_work);
1368 struct ath10k *ar = ar_sdio->ar;
1369 struct ath10k_sdio_bus_request *req, *tmp_req;
1371 spin_lock_bh(&ar_sdio->wr_async_lock);
1373 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1374 list_del(&req->list);
1375 spin_unlock_bh(&ar_sdio->wr_async_lock);
1376 __ath10k_sdio_write_async(ar, req);
1377 spin_lock_bh(&ar_sdio->wr_async_lock);
1380 spin_unlock_bh(&ar_sdio->wr_async_lock);
1383 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
1384 struct sk_buff *skb,
1385 struct completion *comp,
1386 bool htc_msg, enum ath10k_htc_ep_id eid)
1388 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1389 struct ath10k_sdio_bus_request *bus_req;
1391 /* Allocate a bus request for the message and queue it on the
1392 * SDIO workqueue.
1394 bus_req = ath10k_sdio_alloc_busreq(ar);
1395 if (!bus_req) {
1396 ath10k_warn(ar,
1397 "unable to allocate bus request for async request\n");
1398 return -ENOMEM;
1401 bus_req->skb = skb;
1402 bus_req->eid = eid;
1403 bus_req->address = addr;
1404 bus_req->htc_msg = htc_msg;
1405 bus_req->comp = comp;
1407 spin_lock_bh(&ar_sdio->wr_async_lock);
1408 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
1409 spin_unlock_bh(&ar_sdio->wr_async_lock);
1411 return 0;
1414 /* IRQ handler */
1416 static void ath10k_sdio_irq_handler(struct sdio_func *func)
1418 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
1419 struct ath10k *ar = ar_sdio->ar;
1420 unsigned long timeout;
1421 bool done = false;
1422 int ret;
1424 /* Release the host during interrupts so we can pick it back up when
1425 * we process commands.
1427 sdio_release_host(ar_sdio->func);
1429 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
1430 do {
1431 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
1432 if (ret)
1433 break;
1434 } while (time_before(jiffies, timeout) && !done);
1436 ath10k_mac_tx_push_pending(ar);
1438 sdio_claim_host(ar_sdio->func);
1440 if (ret && ret != -ECANCELED)
1441 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
1442 ret);
1445 /* sdio HIF functions */
1447 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar)
1449 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1450 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1451 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1452 int ret;
1454 mutex_lock(&irq_data->mtx);
1456 memset(regs, 0, sizeof(*regs));
1457 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1458 &regs->int_status_en, sizeof(*regs));
1459 if (ret)
1460 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
1462 mutex_unlock(&irq_data->mtx);
1464 return ret;
1467 static int ath10k_sdio_hif_power_up(struct ath10k *ar,
1468 enum ath10k_firmware_mode fw_mode)
1470 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1471 struct sdio_func *func = ar_sdio->func;
1472 int ret;
1474 if (!ar_sdio->is_disabled)
1475 return 0;
1477 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
1479 ret = ath10k_sdio_config(ar);
1480 if (ret) {
1481 ath10k_err(ar, "failed to config sdio: %d\n", ret);
1482 return ret;
1485 sdio_claim_host(func);
1487 ret = sdio_enable_func(func);
1488 if (ret) {
1489 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
1490 sdio_release_host(func);
1491 return ret;
1494 sdio_release_host(func);
1496 /* Wait for hardware to initialise. It should take a lot less than
1497 * 20 ms but let's be conservative here.
1499 msleep(20);
1501 ar_sdio->is_disabled = false;
1503 ret = ath10k_sdio_hif_disable_intrs(ar);
1504 if (ret)
1505 return ret;
1507 return 0;
1510 static void ath10k_sdio_hif_power_down(struct ath10k *ar)
1512 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1513 int ret;
1515 if (ar_sdio->is_disabled)
1516 return;
1518 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
1520 /* Disable the card */
1521 sdio_claim_host(ar_sdio->func);
1523 ret = sdio_disable_func(ar_sdio->func);
1524 if (ret) {
1525 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
1526 sdio_release_host(ar_sdio->func);
1527 return;
1530 ret = mmc_hw_reset(ar_sdio->func->card->host);
1531 if (ret)
1532 ath10k_warn(ar, "unable to reset sdio: %d\n", ret);
1534 sdio_release_host(ar_sdio->func);
1536 ar_sdio->is_disabled = true;
1539 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1540 struct ath10k_hif_sg_item *items, int n_items)
1542 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1543 enum ath10k_htc_ep_id eid;
1544 struct sk_buff *skb;
1545 int ret, i;
1547 eid = pipe_id_to_eid(pipe_id);
1549 for (i = 0; i < n_items; i++) {
1550 size_t padded_len;
1551 u32 address;
1553 skb = items[i].transfer_context;
1554 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
1555 skb->len);
1556 skb_trim(skb, padded_len);
1558 /* Write TX data to the end of the mbox address space */
1559 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
1560 skb->len;
1561 ret = ath10k_sdio_prep_async_req(ar, address, skb,
1562 NULL, true, eid);
1563 if (ret)
1564 return ret;
1567 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1569 return 0;
1572 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar)
1574 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1575 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1576 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1577 int ret;
1579 mutex_lock(&irq_data->mtx);
1581 /* Enable all but CPU interrupts */
1582 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
1583 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
1584 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
1586 /* NOTE: There are some cases where HIF can do detection of
1587 * pending mbox messages which is disabled now.
1589 regs->int_status_en |=
1590 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
1592 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0
1593 * #0 is used for report assertion from target
1595 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1);
1597 /* Set up the Error Interrupt status Register */
1598 regs->err_int_status_en =
1599 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
1600 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
1602 /* Enable Counter interrupt status register to get fatal errors for
1603 * debugging.
1605 regs->cntr_int_status_en =
1606 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
1607 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
1609 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1610 &regs->int_status_en, sizeof(*regs));
1611 if (ret)
1612 ath10k_warn(ar,
1613 "failed to update mbox interrupt status register : %d\n",
1614 ret);
1616 mutex_unlock(&irq_data->mtx);
1617 return ret;
1620 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
1622 u32 val;
1623 int ret;
1625 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
1626 if (ret) {
1627 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
1628 ret);
1629 return ret;
1632 if (enable_sleep)
1633 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
1634 else
1635 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
1637 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
1638 if (ret) {
1639 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
1640 ret);
1641 return ret;
1644 return 0;
1647 /* HIF diagnostics */
1649 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1650 size_t buf_len)
1652 int ret;
1653 void *mem;
1655 mem = kzalloc(buf_len, GFP_KERNEL);
1656 if (!mem)
1657 return -ENOMEM;
1659 /* set window register to start read cycle */
1660 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
1661 if (ret) {
1662 ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
1663 goto out;
1666 /* read the data */
1667 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len);
1668 if (ret) {
1669 ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
1670 ret);
1671 goto out;
1674 memcpy(buf, mem, buf_len);
1676 out:
1677 kfree(mem);
1679 return ret;
1682 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address,
1683 u32 *value)
1685 __le32 *val;
1686 int ret;
1688 val = kzalloc(sizeof(*val), GFP_KERNEL);
1689 if (!val)
1690 return -ENOMEM;
1692 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
1693 if (ret)
1694 goto out;
1696 *value = __le32_to_cpu(*val);
1698 out:
1699 kfree(val);
1701 return ret;
1704 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
1705 const void *data, int nbytes)
1707 int ret;
1709 /* set write data */
1710 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
1711 if (ret) {
1712 ath10k_warn(ar,
1713 "failed to write 0x%p to mbox window data address: %d\n",
1714 data, ret);
1715 return ret;
1718 /* set window register, which starts the write cycle */
1719 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
1720 if (ret) {
1721 ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
1722 return ret;
1725 return 0;
1728 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar)
1730 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1731 u32 addr, val;
1732 int ret = 0;
1734 addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1736 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val);
1737 if (ret) {
1738 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret);
1739 return ret;
1742 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
1743 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1744 "sdio mailbox swap service enabled\n");
1745 ar_sdio->swap_mbox = true;
1746 } else {
1747 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1748 "sdio mailbox swap service disabled\n");
1749 ar_sdio->swap_mbox = false;
1752 return 0;
1755 /* HIF start/stop */
1757 static int ath10k_sdio_hif_start(struct ath10k *ar)
1759 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1760 int ret;
1762 napi_enable(&ar->napi);
1764 /* Sleep 20 ms before HIF interrupts are disabled.
1765 * This will give target plenty of time to process the BMI done
1766 * request before interrupts are disabled.
1768 msleep(20);
1769 ret = ath10k_sdio_hif_disable_intrs(ar);
1770 if (ret)
1771 return ret;
1773 /* eid 0 always uses the lower part of the extended mailbox address
1774 * space (ext_info[0].htc_ext_addr).
1776 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1777 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1779 sdio_claim_host(ar_sdio->func);
1781 /* Register the isr */
1782 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
1783 if (ret) {
1784 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
1785 sdio_release_host(ar_sdio->func);
1786 return ret;
1789 sdio_release_host(ar_sdio->func);
1791 ret = ath10k_sdio_hif_enable_intrs(ar);
1792 if (ret)
1793 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
1795 /* Enable sleep and then disable it again */
1796 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true);
1797 if (ret)
1798 return ret;
1800 /* Wait for 20ms for the written value to take effect */
1801 msleep(20);
1803 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false);
1804 if (ret)
1805 return ret;
1807 return 0;
1810 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
1812 static void ath10k_sdio_irq_disable(struct ath10k *ar)
1814 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1815 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1816 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1817 struct sk_buff *skb;
1818 struct completion irqs_disabled_comp;
1819 int ret;
1821 skb = dev_alloc_skb(sizeof(*regs));
1822 if (!skb)
1823 return;
1825 mutex_lock(&irq_data->mtx);
1827 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
1828 memcpy(skb->data, regs, sizeof(*regs));
1829 skb_put(skb, sizeof(*regs));
1831 mutex_unlock(&irq_data->mtx);
1833 init_completion(&irqs_disabled_comp);
1834 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1835 skb, &irqs_disabled_comp, false, 0);
1836 if (ret)
1837 goto out;
1839 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1841 /* Wait for the completion of the IRQ disable request.
1842 * If there is a timeout we will try to disable irq's anyway.
1844 ret = wait_for_completion_timeout(&irqs_disabled_comp,
1845 SDIO_IRQ_DISABLE_TIMEOUT_HZ);
1846 if (!ret)
1847 ath10k_warn(ar, "sdio irq disable request timed out\n");
1849 sdio_claim_host(ar_sdio->func);
1851 ret = sdio_release_irq(ar_sdio->func);
1852 if (ret)
1853 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
1855 sdio_release_host(ar_sdio->func);
1857 out:
1858 kfree_skb(skb);
1861 static void ath10k_sdio_hif_stop(struct ath10k *ar)
1863 struct ath10k_sdio_bus_request *req, *tmp_req;
1864 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1866 ath10k_sdio_irq_disable(ar);
1868 cancel_work_sync(&ar_sdio->wr_async_work);
1870 spin_lock_bh(&ar_sdio->wr_async_lock);
1872 /* Free all bus requests that have not been handled */
1873 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1874 struct ath10k_htc_ep *ep;
1876 list_del(&req->list);
1878 if (req->htc_msg) {
1879 ep = &ar->htc.endpoint[req->eid];
1880 ath10k_htc_notify_tx_completion(ep, req->skb);
1881 } else if (req->skb) {
1882 kfree_skb(req->skb);
1884 ath10k_sdio_free_bus_req(ar, req);
1887 spin_unlock_bh(&ar_sdio->wr_async_lock);
1889 napi_synchronize(&ar->napi);
1890 napi_disable(&ar->napi);
1893 #ifdef CONFIG_PM
1895 static int ath10k_sdio_hif_suspend(struct ath10k *ar)
1897 return 0;
1900 static int ath10k_sdio_hif_resume(struct ath10k *ar)
1902 switch (ar->state) {
1903 case ATH10K_STATE_OFF:
1904 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1905 "sdio resume configuring sdio\n");
1907 /* need to set sdio settings after power is cut from sdio */
1908 ath10k_sdio_config(ar);
1909 break;
1911 case ATH10K_STATE_ON:
1912 default:
1913 break;
1916 return 0;
1918 #endif
1920 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
1921 u16 service_id,
1922 u8 *ul_pipe, u8 *dl_pipe)
1924 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1925 struct ath10k_htc *htc = &ar->htc;
1926 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
1927 enum ath10k_htc_ep_id eid;
1928 bool ep_found = false;
1929 int i;
1931 /* For sdio, we are interested in the mapping between eid
1932 * and pipeid rather than service_id to pipe_id.
1933 * First we find out which eid has been allocated to the
1934 * service...
1936 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
1937 if (htc->endpoint[i].service_id == service_id) {
1938 eid = htc->endpoint[i].eid;
1939 ep_found = true;
1940 break;
1944 if (!ep_found)
1945 return -EINVAL;
1947 /* Then we create the simplest mapping possible between pipeid
1948 * and eid
1950 *ul_pipe = *dl_pipe = (u8)eid;
1952 /* Normally, HTT will use the upper part of the extended
1953 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
1954 * the lower part (ext_info[0].htc_ext_addr).
1955 * If fw wants swapping of mailbox addresses, the opposite is true.
1957 if (ar_sdio->swap_mbox) {
1958 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1959 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1960 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1961 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1962 } else {
1963 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1964 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1965 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1966 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1969 switch (service_id) {
1970 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1971 /* HTC ctrl ep mbox address has already been setup in
1972 * ath10k_sdio_hif_start
1974 break;
1975 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1976 ar_sdio->mbox_addr[eid] = wmi_addr;
1977 ar_sdio->mbox_size[eid] = wmi_mbox_size;
1978 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1979 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
1980 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1981 break;
1982 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1983 ar_sdio->mbox_addr[eid] = htt_addr;
1984 ar_sdio->mbox_size[eid] = htt_mbox_size;
1985 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1986 "sdio htt data mbox_addr 0x%x mbox_size %d\n",
1987 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1988 break;
1989 default:
1990 ath10k_warn(ar, "unsupported HTC service id: %d\n",
1991 service_id);
1992 return -EINVAL;
1995 return 0;
1998 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
1999 u8 *ul_pipe, u8 *dl_pipe)
2001 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
2003 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
2004 * case) == 0
2006 *ul_pipe = 0;
2007 *dl_pipe = 0;
2010 /* This op is currently only used by htc_wait_target if the HTC ready
2011 * message times out. It is not applicable for SDIO since there is nothing
2012 * we can do if the HTC ready message does not arrive in time.
2013 * TODO: Make this op non mandatory by introducing a NULL check in the
2014 * hif op wrapper.
2016 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar,
2017 u8 pipe, int force)
2021 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
2022 .tx_sg = ath10k_sdio_hif_tx_sg,
2023 .diag_read = ath10k_sdio_hif_diag_read,
2024 .diag_write = ath10k_sdio_hif_diag_write_mem,
2025 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg,
2026 .start = ath10k_sdio_hif_start,
2027 .stop = ath10k_sdio_hif_stop,
2028 .swap_mailbox = ath10k_sdio_hif_swap_mailbox,
2029 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe,
2030 .get_default_pipe = ath10k_sdio_hif_get_default_pipe,
2031 .send_complete_check = ath10k_sdio_hif_send_complete_check,
2032 .power_up = ath10k_sdio_hif_power_up,
2033 .power_down = ath10k_sdio_hif_power_down,
2034 #ifdef CONFIG_PM
2035 .suspend = ath10k_sdio_hif_suspend,
2036 .resume = ath10k_sdio_hif_resume,
2037 #endif
2040 #ifdef CONFIG_PM_SLEEP
2042 /* Empty handlers so that mmc subsystem doesn't remove us entirely during
2043 * suspend. We instead follow cfg80211 suspend/resume handlers.
2045 static int ath10k_sdio_pm_suspend(struct device *device)
2047 struct sdio_func *func = dev_to_sdio_func(device);
2048 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2049 struct ath10k *ar = ar_sdio->ar;
2050 mmc_pm_flag_t pm_flag, pm_caps;
2051 int ret;
2053 if (!device_may_wakeup(ar->dev))
2054 return 0;
2056 pm_flag = MMC_PM_KEEP_POWER;
2058 ret = sdio_set_host_pm_flags(func, pm_flag);
2059 if (ret) {
2060 pm_caps = sdio_get_host_pm_caps(func);
2061 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n",
2062 pm_flag, pm_caps, ret);
2063 return ret;
2066 return ret;
2069 static int ath10k_sdio_pm_resume(struct device *device)
2071 return 0;
2074 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
2075 ath10k_sdio_pm_resume);
2077 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
2079 #else
2081 #define ATH10K_SDIO_PM_OPS NULL
2083 #endif /* CONFIG_PM_SLEEP */
2085 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget)
2087 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2088 int done;
2090 done = ath10k_htt_rx_hl_indication(ar, budget);
2091 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget);
2093 if (done < budget)
2094 napi_complete_done(ctx, done);
2096 return done;
2099 static int ath10k_sdio_probe(struct sdio_func *func,
2100 const struct sdio_device_id *id)
2102 struct ath10k_sdio *ar_sdio;
2103 struct ath10k *ar;
2104 enum ath10k_hw_rev hw_rev;
2105 u32 dev_id_base;
2106 struct ath10k_bus_params bus_params = {};
2107 int ret, i;
2109 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
2110 * If there will be newer chipsets that does not use the hw reg
2111 * setup as defined in qca6174_regs and qca6174_values, this
2112 * assumption is no longer valid and hw_rev must be setup differently
2113 * depending on chipset.
2115 hw_rev = ATH10K_HW_QCA6174;
2117 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
2118 hw_rev, &ath10k_sdio_hif_ops);
2119 if (!ar) {
2120 dev_err(&func->dev, "failed to allocate core\n");
2121 return -ENOMEM;
2124 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll,
2125 ATH10K_NAPI_BUDGET);
2127 ath10k_dbg(ar, ATH10K_DBG_BOOT,
2128 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
2129 func->num, func->vendor, func->device,
2130 func->max_blksize, func->cur_blksize);
2132 ar_sdio = ath10k_sdio_priv(ar);
2134 ar_sdio->irq_data.irq_proc_reg =
2135 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
2136 GFP_KERNEL);
2137 if (!ar_sdio->irq_data.irq_proc_reg) {
2138 ret = -ENOMEM;
2139 goto err_core_destroy;
2142 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL);
2143 if (!ar_sdio->vsg_buffer) {
2144 ret = -ENOMEM;
2145 goto err_core_destroy;
2148 ar_sdio->irq_data.irq_en_reg =
2149 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
2150 GFP_KERNEL);
2151 if (!ar_sdio->irq_data.irq_en_reg) {
2152 ret = -ENOMEM;
2153 goto err_core_destroy;
2156 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL);
2157 if (!ar_sdio->bmi_buf) {
2158 ret = -ENOMEM;
2159 goto err_core_destroy;
2162 ar_sdio->func = func;
2163 sdio_set_drvdata(func, ar_sdio);
2165 ar_sdio->is_disabled = true;
2166 ar_sdio->ar = ar;
2168 spin_lock_init(&ar_sdio->lock);
2169 spin_lock_init(&ar_sdio->wr_async_lock);
2170 mutex_init(&ar_sdio->irq_data.mtx);
2172 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
2173 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
2175 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
2176 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
2177 if (!ar_sdio->workqueue) {
2178 ret = -ENOMEM;
2179 goto err_core_destroy;
2182 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
2183 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
2185 skb_queue_head_init(&ar_sdio->rx_head);
2186 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work);
2188 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device);
2189 switch (dev_id_base) {
2190 case QCA_MANUFACTURER_ID_AR6005_BASE:
2191 case QCA_MANUFACTURER_ID_QCA9377_BASE:
2192 ar->dev_id = QCA9377_1_0_DEVICE_ID;
2193 break;
2194 default:
2195 ret = -ENODEV;
2196 ath10k_err(ar, "unsupported device id %u (0x%x)\n",
2197 dev_id_base, id->device);
2198 goto err_free_wq;
2201 ar->id.vendor = id->vendor;
2202 ar->id.device = id->device;
2204 ath10k_sdio_set_mbox_info(ar);
2206 bus_params.dev_type = ATH10K_DEV_TYPE_HL;
2207 /* TODO: don't know yet how to get chip_id with SDIO */
2208 bus_params.chip_id = 0;
2209 bus_params.hl_msdu_ids = true;
2211 ar->hw->max_mtu = ETH_DATA_LEN;
2213 ret = ath10k_core_register(ar, &bus_params);
2214 if (ret) {
2215 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2216 goto err_free_wq;
2219 return 0;
2221 err_free_wq:
2222 destroy_workqueue(ar_sdio->workqueue);
2223 err_core_destroy:
2224 ath10k_core_destroy(ar);
2226 return ret;
2229 static void ath10k_sdio_remove(struct sdio_func *func)
2231 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2232 struct ath10k *ar = ar_sdio->ar;
2234 ath10k_dbg(ar, ATH10K_DBG_BOOT,
2235 "sdio removed func %d vendor 0x%x device 0x%x\n",
2236 func->num, func->vendor, func->device);
2238 ath10k_core_unregister(ar);
2240 netif_napi_del(&ar->napi);
2242 ath10k_core_destroy(ar);
2244 flush_workqueue(ar_sdio->workqueue);
2245 destroy_workqueue(ar_sdio->workqueue);
2248 static const struct sdio_device_id ath10k_sdio_devices[] = {
2249 {SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2250 (QCA_SDIO_ID_AR6005_BASE | 0xA))},
2251 {SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2252 (QCA_SDIO_ID_QCA9377_BASE | 0x1))},
2256 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
2258 static struct sdio_driver ath10k_sdio_driver = {
2259 .name = "ath10k_sdio",
2260 .id_table = ath10k_sdio_devices,
2261 .probe = ath10k_sdio_probe,
2262 .remove = ath10k_sdio_remove,
2263 .drv = {
2264 .owner = THIS_MODULE,
2265 .pm = ATH10K_SDIO_PM_OPS,
2269 static int __init ath10k_sdio_init(void)
2271 int ret;
2273 ret = sdio_register_driver(&ath10k_sdio_driver);
2274 if (ret)
2275 pr_err("sdio driver registration failed: %d\n", ret);
2277 return ret;
2280 static void __exit ath10k_sdio_exit(void)
2282 sdio_unregister_driver(&ath10k_sdio_driver);
2285 module_init(ath10k_sdio_init);
2286 module_exit(ath10k_sdio_exit);
2288 MODULE_AUTHOR("Qualcomm Atheros");
2289 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
2290 MODULE_LICENSE("Dual BSD/GPL");