1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 DEFINE_MUTEX(pci_slot_mutex
);
41 const char *pci_power_names
[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
44 EXPORT_SYMBOL_GPL(pci_power_names
);
46 int isa_dma_bridge_buggy
;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
50 EXPORT_SYMBOL(pci_pci_problems
);
52 unsigned int pci_pm_d3_delay
;
54 static void pci_pme_list_scan(struct work_struct
*work
);
56 static LIST_HEAD(pci_pme_list
);
57 static DEFINE_MUTEX(pci_pme_list_mutex
);
58 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
60 struct pci_pme_device
{
61 struct list_head list
;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
69 unsigned int delay
= dev
->d3_delay
;
71 if (delay
< pci_pm_d3_delay
)
72 delay
= pci_pm_d3_delay
;
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported
= 1;
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
86 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
98 unsigned long pci_hotplug_mmio_size
= DEFAULT_HOTPLUG_MMIO_SIZE
;
99 unsigned long pci_hotplug_mmio_pref_size
= DEFAULT_HOTPLUG_MMIO_PREF_SIZE
;
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
104 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
112 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
113 u8 pci_cache_line_size
;
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
119 unsigned int pcibios_max_latency
= 255;
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled
;
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled
;
127 /* If set, the PCI config space of each device is printed during boot. */
130 bool pci_ats_disabled(void)
132 return pcie_ats_disabled
;
134 EXPORT_SYMBOL_GPL(pci_ats_disabled
);
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable
;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force
;
141 static int __init
pcie_port_pm_setup(char *str
)
143 if (!strcmp(str
, "off"))
144 pci_bridge_d3_disable
= true;
145 else if (!strcmp(str
, "force"))
146 pci_bridge_d3_force
= true;
149 __setup("pcie_port_pm=", pcie_port_pm_setup
);
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
161 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
164 unsigned char max
, n
;
166 max
= bus
->busn_res
.end
;
167 list_for_each_entry(tmp
, &bus
->children
, node
) {
168 n
= pci_bus_max_busnr(tmp
);
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
180 * Returns error bits set in PCI_STATUS and clears them.
182 int pci_status_get_and_clear_errors(struct pci_dev
*pdev
)
187 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
188 if (ret
!= PCIBIOS_SUCCESSFUL
)
191 status
&= PCI_STATUS_ERROR_BITS
;
193 pci_write_config_word(pdev
, PCI_STATUS
, status
);
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors
);
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
202 struct resource
*res
= &pdev
->resource
[bar
];
205 * Make sure the BAR is actually a memory resource, not an IO resource
207 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
208 pci_warn(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
211 return ioremap(res
->start
, resource_size(res
));
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
215 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
218 * Make sure the BAR is actually a memory resource, not an IO resource
220 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
224 return ioremap_wc(pci_resource_start(pdev
, bar
),
225 pci_resource_len(pdev
, bar
));
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
249 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
253 int seg
, bus
, slot
, func
;
257 *endptr
= strchrnul(path
, ';');
259 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_KERNEL
);
264 p
= strrchr(wpath
, '/');
267 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
273 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
284 dev
= pci_upstream_bridge(dev
);
293 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
297 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
304 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
305 bus
== dev
->bus
->number
&&
306 dev
->devfn
== PCI_DEVFN(slot
, func
));
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
343 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
348 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
350 if (strncmp(p
, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
353 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
354 &subsystem_vendor
, &subsystem_device
, &count
);
356 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
360 subsystem_vendor
= 0;
361 subsystem_device
= 0;
366 if ((!vendor
|| vendor
== dev
->vendor
) &&
367 (!device
|| device
== dev
->device
) &&
368 (!subsystem_vendor
||
369 subsystem_vendor
== dev
->subsystem_vendor
) &&
370 (!subsystem_device
||
371 subsystem_device
== dev
->subsystem_device
))
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
378 ret
= pci_dev_str_match_path(dev
, p
, &p
);
393 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
394 u8 pos
, int cap
, int *ttl
)
399 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
405 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
417 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
420 int ttl
= PCI_FIND_CAP_TTL
;
422 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
425 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
427 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
428 pos
+ PCI_CAP_LIST_NEXT
, cap
);
430 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
432 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
433 unsigned int devfn
, u8 hdr_type
)
437 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
438 if (!(status
& PCI_STATUS_CAP_LIST
))
442 case PCI_HEADER_TYPE_NORMAL
:
443 case PCI_HEADER_TYPE_BRIDGE
:
444 return PCI_CAPABILITY_LIST
;
445 case PCI_HEADER_TYPE_CARDBUS
:
446 return PCI_CB_CAPABILITY_LIST
;
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
471 int pci_find_capability(struct pci_dev
*dev
, int cap
)
475 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
477 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
481 EXPORT_SYMBOL(pci_find_capability
);
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
496 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
501 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
503 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
505 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
509 EXPORT_SYMBOL(pci_bus_find_capability
);
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
522 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
526 int pos
= PCI_CFG_SPACE_SIZE
;
528 /* minimum 8 bytes per capability */
529 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
531 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
537 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
548 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
551 pos
= PCI_EXT_CAP_NEXT(header
);
552 if (pos
< PCI_CFG_SPACE_SIZE
)
555 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
577 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
579 return pci_find_next_ext_capability(dev
, 0, cap
);
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
590 * Returns the DSN, or zero if the capability does not exist.
592 u64
pci_get_dsn(struct pci_dev
*dev
)
598 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_DSN
);
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
608 pci_read_config_dword(dev
, pos
, &dword
);
610 pci_read_config_dword(dev
, pos
+ 4, &dword
);
611 dsn
|= ((u64
)dword
) << 32;
615 EXPORT_SYMBOL_GPL(pci_get_dsn
);
617 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
619 int rc
, ttl
= PCI_FIND_CAP_TTL
;
622 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
623 mask
= HT_3BIT_CAP_MASK
;
625 mask
= HT_5BIT_CAP_MASK
;
627 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
628 PCI_CAP_ID_HT
, &ttl
);
630 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
631 if (rc
!= PCIBIOS_SUCCESSFUL
)
634 if ((cap
& mask
) == ht_cap
)
637 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
638 pos
+ PCI_CAP_LIST_NEXT
,
639 PCI_CAP_ID_HT
, &ttl
);
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
657 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
659 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
674 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
678 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
680 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
687 * pci_find_parent_resource - return resource region of parent bus of given
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
695 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
696 struct resource
*res
)
698 const struct pci_bus
*bus
= dev
->bus
;
702 pci_bus_for_each_resource(bus
, r
, i
) {
705 if (resource_contains(r
, res
)) {
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
711 if (r
->flags
& IORESOURCE_PREFETCH
&&
712 !(res
->flags
& IORESOURCE_PREFETCH
))
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
728 EXPORT_SYMBOL(pci_find_parent_resource
);
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
739 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
743 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
744 struct resource
*r
= &dev
->resource
[i
];
746 if (r
->start
&& resource_contains(r
, res
))
752 EXPORT_SYMBOL(pci_find_resource
);
755 * pci_find_pcie_root_port - return PCIe Root Port
756 * @dev: PCI device to query
758 * Traverse up the parent chain and return the PCIe Root Port PCI Device
759 * for a given PCI Device.
761 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
763 struct pci_dev
*bridge
, *highest_pcie_bridge
= dev
;
765 bridge
= pci_upstream_bridge(dev
);
766 while (bridge
&& pci_is_pcie(bridge
)) {
767 highest_pcie_bridge
= bridge
;
768 bridge
= pci_upstream_bridge(bridge
);
771 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
774 return highest_pcie_bridge
;
776 EXPORT_SYMBOL(pci_find_pcie_root_port
);
779 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
780 * @dev: the PCI device to operate on
781 * @pos: config space offset of status word
782 * @mask: mask of bit(s) to care about in status word
784 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
786 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
790 /* Wait for Transaction Pending bit clean */
791 for (i
= 0; i
< 4; i
++) {
794 msleep((1 << (i
- 1)) * 100);
796 pci_read_config_word(dev
, pos
, &status
);
797 if (!(status
& mask
))
805 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
806 * @dev: PCI device to have its BARs restored
808 * Restore the BAR values for a given device, so as to make it
809 * accessible by its driver.
811 static void pci_restore_bars(struct pci_dev
*dev
)
815 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
816 pci_update_resource(dev
, i
);
819 static const struct pci_platform_pm_ops
*pci_platform_pm
;
821 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
823 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
824 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
826 pci_platform_pm
= ops
;
830 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
832 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
835 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
838 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
841 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
843 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
846 static inline void platform_pci_refresh_power_state(struct pci_dev
*dev
)
848 if (pci_platform_pm
&& pci_platform_pm
->refresh_state
)
849 pci_platform_pm
->refresh_state(dev
);
852 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
854 return pci_platform_pm
?
855 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
858 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
860 return pci_platform_pm
?
861 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
864 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
866 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
869 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
871 return pci_platform_pm
? pci_platform_pm
->bridge_d3(dev
) : false;
875 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
877 * @dev: PCI device to handle.
878 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
881 * -EINVAL if the requested state is invalid.
882 * -EIO if device does not support PCI PM or its PM capabilities register has a
883 * wrong version, or device doesn't support the requested state.
884 * 0 if device already is in the requested state.
885 * 0 if device's power state has been successfully changed.
887 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
890 bool need_restore
= false;
892 /* Check if we're already there */
893 if (dev
->current_state
== state
)
899 if (state
< PCI_D0
|| state
> PCI_D3hot
)
903 * Validate transition: We can enter D0 from any state, but if
904 * we're already in a low-power state, we can only go deeper. E.g.,
905 * we can go from D1 to D3, but we can't go directly from D3 to D1;
906 * we'd have to go from D3 to D0, then to D1.
908 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
909 && dev
->current_state
> state
) {
910 pci_err(dev
, "invalid power transition (from %s to %s)\n",
911 pci_power_name(dev
->current_state
),
912 pci_power_name(state
));
916 /* Check if this device supports the desired state */
917 if ((state
== PCI_D1
&& !dev
->d1_support
)
918 || (state
== PCI_D2
&& !dev
->d2_support
))
921 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
922 if (pmcsr
== (u16
) ~0) {
923 pci_err(dev
, "can't change power state from %s to %s (config space inaccessible)\n",
924 pci_power_name(dev
->current_state
),
925 pci_power_name(state
));
930 * If we're (effectively) in D3, force entire word to 0.
931 * This doesn't affect PME_Status, disables PME_En, and
932 * sets PowerState to 0.
934 switch (dev
->current_state
) {
938 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
943 case PCI_UNKNOWN
: /* Boot-up */
944 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
945 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
947 /* Fall-through - force to D0 */
953 /* Enter specified state */
954 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
957 * Mandatory power management transition delays; see PCI PM 1.1
960 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
961 pci_dev_d3_sleep(dev
);
962 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
963 msleep(PCI_PM_D2_DELAY
);
965 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
966 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
967 if (dev
->current_state
!= state
)
968 pci_info_ratelimited(dev
, "refused to change power state from %s to %s\n",
969 pci_power_name(dev
->current_state
),
970 pci_power_name(state
));
973 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
974 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
975 * from D3hot to D0 _may_ perform an internal reset, thereby
976 * going to "D0 Uninitialized" rather than "D0 Initialized".
977 * For example, at least some versions of the 3c905B and the
978 * 3c556B exhibit this behaviour.
980 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
981 * devices in a D3hot state at boot. Consequently, we need to
982 * restore at least the BARs so that the device will be
983 * accessible to its driver.
986 pci_restore_bars(dev
);
989 pcie_aspm_pm_state_change(dev
->bus
->self
);
995 * pci_update_current_state - Read power state of given device and cache it
996 * @dev: PCI device to handle.
997 * @state: State to cache in case the device doesn't have the PM capability
999 * The power state is read from the PMCSR register, which however is
1000 * inaccessible in D3cold. The platform firmware is therefore queried first
1001 * to detect accessibility of the register. In case the platform firmware
1002 * reports an incorrect state or the device isn't power manageable by the
1003 * platform at all, we try to detect D3cold by testing accessibility of the
1004 * vendor ID in config space.
1006 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
1008 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
1009 !pci_device_is_present(dev
)) {
1010 dev
->current_state
= PCI_D3cold
;
1011 } else if (dev
->pm_cap
) {
1014 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1015 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1017 dev
->current_state
= state
;
1022 * pci_refresh_power_state - Refresh the given device's power state data
1023 * @dev: Target PCI device.
1025 * Ask the platform to refresh the devices power state information and invoke
1026 * pci_update_current_state() to update its current PCI power state.
1028 void pci_refresh_power_state(struct pci_dev
*dev
)
1030 if (platform_pci_power_manageable(dev
))
1031 platform_pci_refresh_power_state(dev
);
1033 pci_update_current_state(dev
, dev
->current_state
);
1037 * pci_platform_power_transition - Use platform to change device power state
1038 * @dev: PCI device to handle.
1039 * @state: State to put the device into.
1041 int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1045 if (platform_pci_power_manageable(dev
)) {
1046 error
= platform_pci_set_power_state(dev
, state
);
1048 pci_update_current_state(dev
, state
);
1052 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
1053 dev
->current_state
= PCI_D0
;
1057 EXPORT_SYMBOL_GPL(pci_platform_power_transition
);
1060 * pci_wakeup - Wake up a PCI device
1061 * @pci_dev: Device to handle.
1062 * @ign: ignored parameter
1064 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
1066 pci_wakeup_event(pci_dev
);
1067 pm_request_resume(&pci_dev
->dev
);
1072 * pci_wakeup_bus - Walk given bus and wake up devices on it
1073 * @bus: Top bus of the subtree to walk.
1075 void pci_wakeup_bus(struct pci_bus
*bus
)
1078 pci_walk_bus(bus
, pci_wakeup
, NULL
);
1081 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
1087 * After reset, the device should not silently discard config
1088 * requests, but it may still indicate that it needs more time by
1089 * responding to them with CRS completions. The Root Port will
1090 * generally synthesize ~0 data to complete the read (except when
1091 * CRS SV is enabled and the read was for the Vendor ID; in that
1092 * case it synthesizes 0x0001 data).
1094 * Wait for the device to return a non-CRS completion. Read the
1095 * Command register instead of Vendor ID so we don't have to
1096 * contend with the CRS SV value.
1098 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
1100 if (delay
> timeout
) {
1101 pci_warn(dev
, "not ready %dms after %s; giving up\n",
1102 delay
- 1, reset_type
);
1107 pci_info(dev
, "not ready %dms after %s; waiting\n",
1108 delay
- 1, reset_type
);
1112 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
1116 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
1123 * pci_power_up - Put the given device into D0
1124 * @dev: PCI device to power up
1126 int pci_power_up(struct pci_dev
*dev
)
1128 pci_platform_power_transition(dev
, PCI_D0
);
1131 * Mandatory power management transition delays are handled in
1132 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1133 * corresponding bridge.
1135 if (dev
->runtime_d3cold
) {
1137 * When powering on a bridge from D3cold, the whole hierarchy
1138 * may be powered on into D0uninitialized state, resume them to
1139 * give them a chance to suspend again
1141 pci_wakeup_bus(dev
->subordinate
);
1144 return pci_raw_set_power_state(dev
, PCI_D0
);
1148 * __pci_dev_set_current_state - Set current state of a PCI device
1149 * @dev: Device to handle
1150 * @data: pointer to state to be set
1152 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1154 pci_power_t state
= *(pci_power_t
*)data
;
1156 dev
->current_state
= state
;
1161 * pci_bus_set_current_state - Walk given bus and set current state of devices
1162 * @bus: Top bus of the subtree to walk.
1163 * @state: state to be set
1165 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1168 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1172 * pci_set_power_state - Set the power state of a PCI device
1173 * @dev: PCI device to handle.
1174 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1176 * Transition a device to a new power state, using the platform firmware and/or
1177 * the device's PCI PM registers.
1180 * -EINVAL if the requested state is invalid.
1181 * -EIO if device does not support PCI PM or its PM capabilities register has a
1182 * wrong version, or device doesn't support the requested state.
1183 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1184 * 0 if device already is in the requested state.
1185 * 0 if the transition is to D3 but D3 is not supported.
1186 * 0 if device's power state has been successfully changed.
1188 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1192 /* Bound the state we're entering */
1193 if (state
> PCI_D3cold
)
1195 else if (state
< PCI_D0
)
1197 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1200 * If the device or the parent bridge do not support PCI
1201 * PM, ignore the request if we're doing anything other
1202 * than putting it into D0 (which would only happen on
1207 /* Check if we're already there */
1208 if (dev
->current_state
== state
)
1211 if (state
== PCI_D0
)
1212 return pci_power_up(dev
);
1215 * This device is quirked not to be put into D3, so don't put it in
1218 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1222 * To put device in D3cold, we put device into D3hot in native
1223 * way, then put device into D3cold with platform ops
1225 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
1228 if (pci_platform_power_transition(dev
, state
))
1231 /* Powering off a bridge may power off the whole hierarchy */
1232 if (state
== PCI_D3cold
)
1233 pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
1237 EXPORT_SYMBOL(pci_set_power_state
);
1240 * pci_choose_state - Choose the power state of a PCI device
1241 * @dev: PCI device to be suspended
1242 * @state: target sleep state for the whole system. This is the value
1243 * that is passed to suspend() function.
1245 * Returns PCI power state suitable for given device and given system
1248 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
1255 ret
= platform_pci_choose_state(dev
);
1256 if (ret
!= PCI_POWER_ERROR
)
1259 switch (state
.event
) {
1262 case PM_EVENT_FREEZE
:
1263 case PM_EVENT_PRETHAW
:
1264 /* REVISIT both freeze and pre-thaw "should" use D0 */
1265 case PM_EVENT_SUSPEND
:
1266 case PM_EVENT_HIBERNATE
:
1269 pci_info(dev
, "unrecognized suspend event %d\n",
1275 EXPORT_SYMBOL(pci_choose_state
);
1277 #define PCI_EXP_SAVE_REGS 7
1279 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1280 u16 cap
, bool extended
)
1282 struct pci_cap_saved_state
*tmp
;
1284 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1285 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1291 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1293 return _pci_find_saved_cap(dev
, cap
, false);
1296 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1298 return _pci_find_saved_cap(dev
, cap
, true);
1301 static int pci_save_pcie_state(struct pci_dev
*dev
)
1304 struct pci_cap_saved_state
*save_state
;
1307 if (!pci_is_pcie(dev
))
1310 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1312 pci_err(dev
, "buffer not found in %s\n", __func__
);
1316 cap
= (u16
*)&save_state
->cap
.data
[0];
1317 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1318 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1319 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1320 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1321 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1322 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1323 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1328 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1331 struct pci_cap_saved_state
*save_state
;
1334 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1338 cap
= (u16
*)&save_state
->cap
.data
[0];
1339 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1340 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1341 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1342 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1343 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1344 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1345 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1348 static int pci_save_pcix_state(struct pci_dev
*dev
)
1351 struct pci_cap_saved_state
*save_state
;
1353 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1357 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1359 pci_err(dev
, "buffer not found in %s\n", __func__
);
1363 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1364 (u16
*)save_state
->cap
.data
);
1369 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1372 struct pci_cap_saved_state
*save_state
;
1375 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1376 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1377 if (!save_state
|| !pos
)
1379 cap
= (u16
*)&save_state
->cap
.data
[0];
1381 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1384 static void pci_save_ltr_state(struct pci_dev
*dev
)
1387 struct pci_cap_saved_state
*save_state
;
1390 if (!pci_is_pcie(dev
))
1393 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1397 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1399 pci_err(dev
, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1403 cap
= (u16
*)&save_state
->cap
.data
[0];
1404 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, cap
++);
1405 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, cap
++);
1408 static void pci_restore_ltr_state(struct pci_dev
*dev
)
1410 struct pci_cap_saved_state
*save_state
;
1414 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1415 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1416 if (!save_state
|| !ltr
)
1419 cap
= (u16
*)&save_state
->cap
.data
[0];
1420 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, *cap
++);
1421 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, *cap
++);
1425 * pci_save_state - save the PCI configuration space of a device before
1427 * @dev: PCI device that we're dealing with
1429 int pci_save_state(struct pci_dev
*dev
)
1432 /* XXX: 100% dword access ok here? */
1433 for (i
= 0; i
< 16; i
++) {
1434 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1435 pci_dbg(dev
, "saving config space at offset %#x (reading %#x)\n",
1436 i
* 4, dev
->saved_config_space
[i
]);
1438 dev
->state_saved
= true;
1440 i
= pci_save_pcie_state(dev
);
1444 i
= pci_save_pcix_state(dev
);
1448 pci_save_ltr_state(dev
);
1449 pci_save_dpc_state(dev
);
1450 pci_save_aer_state(dev
);
1451 return pci_save_vc_state(dev
);
1453 EXPORT_SYMBOL(pci_save_state
);
1455 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1456 u32 saved_val
, int retry
, bool force
)
1460 pci_read_config_dword(pdev
, offset
, &val
);
1461 if (!force
&& val
== saved_val
)
1465 pci_dbg(pdev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1466 offset
, val
, saved_val
);
1467 pci_write_config_dword(pdev
, offset
, saved_val
);
1471 pci_read_config_dword(pdev
, offset
, &val
);
1472 if (val
== saved_val
)
1479 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1480 int start
, int end
, int retry
,
1485 for (index
= end
; index
>= start
; index
--)
1486 pci_restore_config_dword(pdev
, 4 * index
,
1487 pdev
->saved_config_space
[index
],
1491 static void pci_restore_config_space(struct pci_dev
*pdev
)
1493 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1494 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1495 /* Restore BARs before the command register. */
1496 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1497 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1498 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1499 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1502 * Force rewriting of prefetch registers to avoid S3 resume
1503 * issues on Intel PCI bridges that occur when these
1504 * registers are not explicitly written.
1506 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1507 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1509 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1513 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1515 unsigned int pos
, nbars
, i
;
1518 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1522 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1523 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
1524 PCI_REBAR_CTRL_NBAR_SHIFT
;
1526 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1527 struct resource
*res
;
1530 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1531 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1532 res
= pdev
->resource
+ bar_idx
;
1533 size
= ilog2(resource_size(res
)) - 20;
1534 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1535 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
1536 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1541 * pci_restore_state - Restore the saved state of a PCI device
1542 * @dev: PCI device that we're dealing with
1544 void pci_restore_state(struct pci_dev
*dev
)
1546 if (!dev
->state_saved
)
1550 * Restore max latencies (in the LTR capability) before enabling
1551 * LTR itself (in the PCIe capability).
1553 pci_restore_ltr_state(dev
);
1555 pci_restore_pcie_state(dev
);
1556 pci_restore_pasid_state(dev
);
1557 pci_restore_pri_state(dev
);
1558 pci_restore_ats_state(dev
);
1559 pci_restore_vc_state(dev
);
1560 pci_restore_rebar_state(dev
);
1561 pci_restore_dpc_state(dev
);
1563 pci_aer_clear_status(dev
);
1564 pci_restore_aer_state(dev
);
1566 pci_restore_config_space(dev
);
1568 pci_restore_pcix_state(dev
);
1569 pci_restore_msi_state(dev
);
1571 /* Restore ACS and IOV configuration state */
1572 pci_enable_acs(dev
);
1573 pci_restore_iov_state(dev
);
1575 dev
->state_saved
= false;
1577 EXPORT_SYMBOL(pci_restore_state
);
1579 struct pci_saved_state
{
1580 u32 config_space
[16];
1581 struct pci_cap_saved_data cap
[0];
1585 * pci_store_saved_state - Allocate and return an opaque struct containing
1586 * the device saved state.
1587 * @dev: PCI device that we're dealing with
1589 * Return NULL if no state or error.
1591 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1593 struct pci_saved_state
*state
;
1594 struct pci_cap_saved_state
*tmp
;
1595 struct pci_cap_saved_data
*cap
;
1598 if (!dev
->state_saved
)
1601 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1603 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1604 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1606 state
= kzalloc(size
, GFP_KERNEL
);
1610 memcpy(state
->config_space
, dev
->saved_config_space
,
1611 sizeof(state
->config_space
));
1614 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1615 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1616 memcpy(cap
, &tmp
->cap
, len
);
1617 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1619 /* Empty cap_save terminates list */
1623 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1626 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1627 * @dev: PCI device that we're dealing with
1628 * @state: Saved state returned from pci_store_saved_state()
1630 int pci_load_saved_state(struct pci_dev
*dev
,
1631 struct pci_saved_state
*state
)
1633 struct pci_cap_saved_data
*cap
;
1635 dev
->state_saved
= false;
1640 memcpy(dev
->saved_config_space
, state
->config_space
,
1641 sizeof(state
->config_space
));
1645 struct pci_cap_saved_state
*tmp
;
1647 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1648 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1651 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1652 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1653 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1656 dev
->state_saved
= true;
1659 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1662 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1663 * and free the memory allocated for it.
1664 * @dev: PCI device that we're dealing with
1665 * @state: Pointer to saved state returned from pci_store_saved_state()
1667 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1668 struct pci_saved_state
**state
)
1670 int ret
= pci_load_saved_state(dev
, *state
);
1675 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1677 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1679 return pci_enable_resources(dev
, bars
);
1682 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1685 struct pci_dev
*bridge
;
1689 err
= pci_set_power_state(dev
, PCI_D0
);
1690 if (err
< 0 && err
!= -EIO
)
1693 bridge
= pci_upstream_bridge(dev
);
1695 pcie_aspm_powersave_config_link(bridge
);
1697 err
= pcibios_enable_device(dev
, bars
);
1700 pci_fixup_device(pci_fixup_enable
, dev
);
1702 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1705 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1707 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1708 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1709 pci_write_config_word(dev
, PCI_COMMAND
,
1710 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1717 * pci_reenable_device - Resume abandoned device
1718 * @dev: PCI device to be resumed
1720 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1721 * to be called by normal code, write proper resume handler and use it instead.
1723 int pci_reenable_device(struct pci_dev
*dev
)
1725 if (pci_is_enabled(dev
))
1726 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1729 EXPORT_SYMBOL(pci_reenable_device
);
1731 static void pci_enable_bridge(struct pci_dev
*dev
)
1733 struct pci_dev
*bridge
;
1736 bridge
= pci_upstream_bridge(dev
);
1738 pci_enable_bridge(bridge
);
1740 if (pci_is_enabled(dev
)) {
1741 if (!dev
->is_busmaster
)
1742 pci_set_master(dev
);
1746 retval
= pci_enable_device(dev
);
1748 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
1750 pci_set_master(dev
);
1753 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1755 struct pci_dev
*bridge
;
1760 * Power state could be unknown at this point, either due to a fresh
1761 * boot or a device removal call. So get the current power state
1762 * so that things like MSI message writing will behave as expected
1763 * (e.g. if the device really is in D0 at enable time).
1767 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1768 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1771 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1772 return 0; /* already enabled */
1774 bridge
= pci_upstream_bridge(dev
);
1776 pci_enable_bridge(bridge
);
1778 /* only skip sriov related */
1779 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1780 if (dev
->resource
[i
].flags
& flags
)
1782 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1783 if (dev
->resource
[i
].flags
& flags
)
1786 err
= do_pci_enable_device(dev
, bars
);
1788 atomic_dec(&dev
->enable_cnt
);
1793 * pci_enable_device_io - Initialize a device for use with IO space
1794 * @dev: PCI device to be initialized
1796 * Initialize device before it's used by a driver. Ask low-level code
1797 * to enable I/O resources. Wake up the device if it was suspended.
1798 * Beware, this function can fail.
1800 int pci_enable_device_io(struct pci_dev
*dev
)
1802 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1804 EXPORT_SYMBOL(pci_enable_device_io
);
1807 * pci_enable_device_mem - Initialize a device for use with Memory space
1808 * @dev: PCI device to be initialized
1810 * Initialize device before it's used by a driver. Ask low-level code
1811 * to enable Memory resources. Wake up the device if it was suspended.
1812 * Beware, this function can fail.
1814 int pci_enable_device_mem(struct pci_dev
*dev
)
1816 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1818 EXPORT_SYMBOL(pci_enable_device_mem
);
1821 * pci_enable_device - Initialize device before it's used by a driver.
1822 * @dev: PCI device to be initialized
1824 * Initialize device before it's used by a driver. Ask low-level code
1825 * to enable I/O and memory. Wake up the device if it was suspended.
1826 * Beware, this function can fail.
1828 * Note we don't actually enable the device many times if we call
1829 * this function repeatedly (we just increment the count).
1831 int pci_enable_device(struct pci_dev
*dev
)
1833 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1835 EXPORT_SYMBOL(pci_enable_device
);
1838 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1839 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1840 * there's no need to track it separately. pci_devres is initialized
1841 * when a device is enabled using managed PCI device enable interface.
1844 unsigned int enabled
:1;
1845 unsigned int pinned
:1;
1846 unsigned int orig_intx
:1;
1847 unsigned int restore_intx
:1;
1852 static void pcim_release(struct device
*gendev
, void *res
)
1854 struct pci_dev
*dev
= to_pci_dev(gendev
);
1855 struct pci_devres
*this = res
;
1858 if (dev
->msi_enabled
)
1859 pci_disable_msi(dev
);
1860 if (dev
->msix_enabled
)
1861 pci_disable_msix(dev
);
1863 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1864 if (this->region_mask
& (1 << i
))
1865 pci_release_region(dev
, i
);
1870 if (this->restore_intx
)
1871 pci_intx(dev
, this->orig_intx
);
1873 if (this->enabled
&& !this->pinned
)
1874 pci_disable_device(dev
);
1877 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1879 struct pci_devres
*dr
, *new_dr
;
1881 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1885 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1888 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1891 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1893 if (pci_is_managed(pdev
))
1894 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1899 * pcim_enable_device - Managed pci_enable_device()
1900 * @pdev: PCI device to be initialized
1902 * Managed pci_enable_device().
1904 int pcim_enable_device(struct pci_dev
*pdev
)
1906 struct pci_devres
*dr
;
1909 dr
= get_pci_dr(pdev
);
1915 rc
= pci_enable_device(pdev
);
1917 pdev
->is_managed
= 1;
1922 EXPORT_SYMBOL(pcim_enable_device
);
1925 * pcim_pin_device - Pin managed PCI device
1926 * @pdev: PCI device to pin
1928 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1929 * driver detach. @pdev must have been enabled with
1930 * pcim_enable_device().
1932 void pcim_pin_device(struct pci_dev
*pdev
)
1934 struct pci_devres
*dr
;
1936 dr
= find_pci_dr(pdev
);
1937 WARN_ON(!dr
|| !dr
->enabled
);
1941 EXPORT_SYMBOL(pcim_pin_device
);
1944 * pcibios_add_device - provide arch specific hooks when adding device dev
1945 * @dev: the PCI device being added
1947 * Permits the platform to provide architecture specific functionality when
1948 * devices are added. This is the default implementation. Architecture
1949 * implementations can override this.
1951 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1957 * pcibios_release_device - provide arch specific hooks when releasing
1959 * @dev: the PCI device being released
1961 * Permits the platform to provide architecture specific functionality when
1962 * devices are released. This is the default implementation. Architecture
1963 * implementations can override this.
1965 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1968 * pcibios_disable_device - disable arch specific PCI resources for device dev
1969 * @dev: the PCI device to disable
1971 * Disables architecture specific PCI resources for the device. This
1972 * is the default implementation. Architecture implementations can
1975 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1978 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1979 * @irq: ISA IRQ to penalize
1980 * @active: IRQ active or not
1982 * Permits the platform to provide architecture-specific functionality when
1983 * penalizing ISA IRQs. This is the default implementation. Architecture
1984 * implementations can override this.
1986 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1988 static void do_pci_disable_device(struct pci_dev
*dev
)
1992 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1993 if (pci_command
& PCI_COMMAND_MASTER
) {
1994 pci_command
&= ~PCI_COMMAND_MASTER
;
1995 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1998 pcibios_disable_device(dev
);
2002 * pci_disable_enabled_device - Disable device without updating enable_cnt
2003 * @dev: PCI device to disable
2005 * NOTE: This function is a backend of PCI power management routines and is
2006 * not supposed to be called drivers.
2008 void pci_disable_enabled_device(struct pci_dev
*dev
)
2010 if (pci_is_enabled(dev
))
2011 do_pci_disable_device(dev
);
2015 * pci_disable_device - Disable PCI device after use
2016 * @dev: PCI device to be disabled
2018 * Signal to the system that the PCI device is not in use by the system
2019 * anymore. This only involves disabling PCI bus-mastering, if active.
2021 * Note we don't actually disable the device until all callers of
2022 * pci_enable_device() have called pci_disable_device().
2024 void pci_disable_device(struct pci_dev
*dev
)
2026 struct pci_devres
*dr
;
2028 dr
= find_pci_dr(dev
);
2032 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
2033 "disabling already-disabled device");
2035 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
2038 do_pci_disable_device(dev
);
2040 dev
->is_busmaster
= 0;
2042 EXPORT_SYMBOL(pci_disable_device
);
2045 * pcibios_set_pcie_reset_state - set reset state for device dev
2046 * @dev: the PCIe device reset
2047 * @state: Reset state to enter into
2049 * Set the PCIe reset state for the device. This is the default
2050 * implementation. Architecture implementations can override this.
2052 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
2053 enum pcie_reset_state state
)
2059 * pci_set_pcie_reset_state - set reset state for device dev
2060 * @dev: the PCIe device reset
2061 * @state: Reset state to enter into
2063 * Sets the PCI reset state for the device.
2065 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
2067 return pcibios_set_pcie_reset_state(dev
, state
);
2069 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
2072 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2073 * @dev: PCIe root port or event collector.
2075 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
2077 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
2081 * pci_check_pme_status - Check if given device has generated PME.
2082 * @dev: Device to check.
2084 * Check the PME status of the device and if set, clear it and clear PME enable
2085 * (if set). Return 'true' if PME status and PME enable were both set or
2086 * 'false' otherwise.
2088 bool pci_check_pme_status(struct pci_dev
*dev
)
2097 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
2098 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
2099 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
2102 /* Clear PME status. */
2103 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2104 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
2105 /* Disable PME to avoid interrupt flood. */
2106 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2110 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
2116 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2117 * @dev: Device to handle.
2118 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2120 * Check if @dev has generated PME and queue a resume request for it in that
2123 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
2125 if (pme_poll_reset
&& dev
->pme_poll
)
2126 dev
->pme_poll
= false;
2128 if (pci_check_pme_status(dev
)) {
2129 pci_wakeup_event(dev
);
2130 pm_request_resume(&dev
->dev
);
2136 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2137 * @bus: Top bus of the subtree to walk.
2139 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
2142 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
2147 * pci_pme_capable - check the capability of PCI device to generate PME#
2148 * @dev: PCI device to handle.
2149 * @state: PCI state from which device will issue PME#.
2151 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
2156 return !!(dev
->pme_support
& (1 << state
));
2158 EXPORT_SYMBOL(pci_pme_capable
);
2160 static void pci_pme_list_scan(struct work_struct
*work
)
2162 struct pci_pme_device
*pme_dev
, *n
;
2164 mutex_lock(&pci_pme_list_mutex
);
2165 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2166 if (pme_dev
->dev
->pme_poll
) {
2167 struct pci_dev
*bridge
;
2169 bridge
= pme_dev
->dev
->bus
->self
;
2171 * If bridge is in low power state, the
2172 * configuration space of subordinate devices
2173 * may be not accessible
2175 if (bridge
&& bridge
->current_state
!= PCI_D0
)
2178 * If the device is in D3cold it should not be
2181 if (pme_dev
->dev
->current_state
== PCI_D3cold
)
2184 pci_pme_wakeup(pme_dev
->dev
, NULL
);
2186 list_del(&pme_dev
->list
);
2190 if (!list_empty(&pci_pme_list
))
2191 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2192 msecs_to_jiffies(PME_TIMEOUT
));
2193 mutex_unlock(&pci_pme_list_mutex
);
2196 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2200 if (!dev
->pme_support
)
2203 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2204 /* Clear PME_Status by writing 1 to it and enable PME# */
2205 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2207 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2209 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2213 * pci_pme_restore - Restore PME configuration after config space restore.
2214 * @dev: PCI device to update.
2216 void pci_pme_restore(struct pci_dev
*dev
)
2220 if (!dev
->pme_support
)
2223 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2224 if (dev
->wakeup_prepared
) {
2225 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2226 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2228 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2229 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2231 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2235 * pci_pme_active - enable or disable PCI device's PME# function
2236 * @dev: PCI device to handle.
2237 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2239 * The caller must verify that the device is capable of generating PME# before
2240 * calling this function with @enable equal to 'true'.
2242 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2244 __pci_pme_active(dev
, enable
);
2247 * PCI (as opposed to PCIe) PME requires that the device have
2248 * its PME# line hooked up correctly. Not all hardware vendors
2249 * do this, so the PME never gets delivered and the device
2250 * remains asleep. The easiest way around this is to
2251 * periodically walk the list of suspended devices and check
2252 * whether any have their PME flag set. The assumption is that
2253 * we'll wake up often enough anyway that this won't be a huge
2254 * hit, and the power savings from the devices will still be a
2257 * Although PCIe uses in-band PME message instead of PME# line
2258 * to report PME, PME does not work for some PCIe devices in
2259 * reality. For example, there are devices that set their PME
2260 * status bits, but don't really bother to send a PME message;
2261 * there are PCI Express Root Ports that don't bother to
2262 * trigger interrupts when they receive PME messages from the
2263 * devices below. So PME poll is used for PCIe devices too.
2266 if (dev
->pme_poll
) {
2267 struct pci_pme_device
*pme_dev
;
2269 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2272 pci_warn(dev
, "can't enable PME#\n");
2276 mutex_lock(&pci_pme_list_mutex
);
2277 list_add(&pme_dev
->list
, &pci_pme_list
);
2278 if (list_is_singular(&pci_pme_list
))
2279 queue_delayed_work(system_freezable_wq
,
2281 msecs_to_jiffies(PME_TIMEOUT
));
2282 mutex_unlock(&pci_pme_list_mutex
);
2284 mutex_lock(&pci_pme_list_mutex
);
2285 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2286 if (pme_dev
->dev
== dev
) {
2287 list_del(&pme_dev
->list
);
2292 mutex_unlock(&pci_pme_list_mutex
);
2296 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2298 EXPORT_SYMBOL(pci_pme_active
);
2301 * __pci_enable_wake - enable PCI device as wakeup event source
2302 * @dev: PCI device affected
2303 * @state: PCI state from which device will issue wakeup events
2304 * @enable: True to enable event generation; false to disable
2306 * This enables the device as a wakeup event source, or disables it.
2307 * When such events involves platform-specific hooks, those hooks are
2308 * called automatically by this routine.
2310 * Devices with legacy power management (no standard PCI PM capabilities)
2311 * always require such platform hooks.
2314 * 0 is returned on success
2315 * -EINVAL is returned if device is not supposed to wake up the system
2316 * Error code depending on the platform is returned if both the platform and
2317 * the native mechanism fail to enable the generation of wake-up events
2319 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2324 * Bridges that are not power-manageable directly only signal
2325 * wakeup on behalf of subordinate devices which is set up
2326 * elsewhere, so skip them. However, bridges that are
2327 * power-manageable may signal wakeup for themselves (for example,
2328 * on a hotplug event) and they need to be covered here.
2330 if (!pci_power_manageable(dev
))
2333 /* Don't do the same thing twice in a row for one device. */
2334 if (!!enable
== !!dev
->wakeup_prepared
)
2338 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2339 * Anderson we should be doing PME# wake enable followed by ACPI wake
2340 * enable. To disable wake-up we call the platform first, for symmetry.
2346 if (pci_pme_capable(dev
, state
))
2347 pci_pme_active(dev
, true);
2350 error
= platform_pci_set_wakeup(dev
, true);
2354 dev
->wakeup_prepared
= true;
2356 platform_pci_set_wakeup(dev
, false);
2357 pci_pme_active(dev
, false);
2358 dev
->wakeup_prepared
= false;
2365 * pci_enable_wake - change wakeup settings for a PCI device
2366 * @pci_dev: Target device
2367 * @state: PCI state from which device will issue wakeup events
2368 * @enable: Whether or not to enable event generation
2370 * If @enable is set, check device_may_wakeup() for the device before calling
2371 * __pci_enable_wake() for it.
2373 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2375 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2378 return __pci_enable_wake(pci_dev
, state
, enable
);
2380 EXPORT_SYMBOL(pci_enable_wake
);
2383 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2384 * @dev: PCI device to prepare
2385 * @enable: True to enable wake-up event generation; false to disable
2387 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2388 * and this function allows them to set that up cleanly - pci_enable_wake()
2389 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2390 * ordering constraints.
2392 * This function only returns error code if the device is not allowed to wake
2393 * up the system from sleep or it is not capable of generating PME# from both
2394 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2396 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2398 return pci_pme_capable(dev
, PCI_D3cold
) ?
2399 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2400 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2402 EXPORT_SYMBOL(pci_wake_from_d3
);
2405 * pci_target_state - find an appropriate low power state for a given PCI dev
2407 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2409 * Use underlying platform code to find a supported low power state for @dev.
2410 * If the platform can't manage @dev, return the deepest state from which it
2411 * can generate wake events, based on any available PME info.
2413 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2415 pci_power_t target_state
= PCI_D3hot
;
2417 if (platform_pci_power_manageable(dev
)) {
2419 * Call the platform to find the target state for the device.
2421 pci_power_t state
= platform_pci_choose_state(dev
);
2424 case PCI_POWER_ERROR
:
2429 if (pci_no_d1d2(dev
))
2431 /* else, fall through */
2433 target_state
= state
;
2436 return target_state
;
2440 target_state
= PCI_D0
;
2443 * If the device is in D3cold even though it's not power-manageable by
2444 * the platform, it may have been powered down by non-standard means.
2445 * Best to let it slumber.
2447 if (dev
->current_state
== PCI_D3cold
)
2448 target_state
= PCI_D3cold
;
2452 * Find the deepest state from which the device can generate
2455 if (dev
->pme_support
) {
2457 && !(dev
->pme_support
& (1 << target_state
)))
2462 return target_state
;
2466 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2467 * into a sleep state
2468 * @dev: Device to handle.
2470 * Choose the power state appropriate for the device depending on whether
2471 * it can wake up the system and/or is power manageable by the platform
2472 * (PCI_D3hot is the default) and put the device into that state.
2474 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2476 bool wakeup
= device_may_wakeup(&dev
->dev
);
2477 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2480 if (target_state
== PCI_POWER_ERROR
)
2483 pci_enable_wake(dev
, target_state
, wakeup
);
2485 error
= pci_set_power_state(dev
, target_state
);
2488 pci_enable_wake(dev
, target_state
, false);
2492 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2495 * pci_back_from_sleep - turn PCI device on during system-wide transition
2496 * into working state
2497 * @dev: Device to handle.
2499 * Disable device's system wake-up capability and put it into D0.
2501 int pci_back_from_sleep(struct pci_dev
*dev
)
2503 pci_enable_wake(dev
, PCI_D0
, false);
2504 return pci_set_power_state(dev
, PCI_D0
);
2506 EXPORT_SYMBOL(pci_back_from_sleep
);
2509 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2510 * @dev: PCI device being suspended.
2512 * Prepare @dev to generate wake-up events at run time and put it into a low
2515 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2517 pci_power_t target_state
;
2520 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2521 if (target_state
== PCI_POWER_ERROR
)
2524 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2526 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2528 error
= pci_set_power_state(dev
, target_state
);
2531 pci_enable_wake(dev
, target_state
, false);
2532 dev
->runtime_d3cold
= false;
2539 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2540 * @dev: Device to check.
2542 * Return true if the device itself is capable of generating wake-up events
2543 * (through the platform or using the native PCIe PME) or if the device supports
2544 * PME and one of its upstream bridges can generate wake-up events.
2546 bool pci_dev_run_wake(struct pci_dev
*dev
)
2548 struct pci_bus
*bus
= dev
->bus
;
2550 if (!dev
->pme_support
)
2553 /* PME-capable in principle, but not from the target power state */
2554 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2557 if (device_can_wakeup(&dev
->dev
))
2560 while (bus
->parent
) {
2561 struct pci_dev
*bridge
= bus
->self
;
2563 if (device_can_wakeup(&bridge
->dev
))
2569 /* We have reached the root bus. */
2571 return device_can_wakeup(bus
->bridge
);
2575 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2578 * pci_dev_need_resume - Check if it is necessary to resume the device.
2579 * @pci_dev: Device to check.
2581 * Return 'true' if the device is not runtime-suspended or it has to be
2582 * reconfigured due to wakeup settings difference between system and runtime
2583 * suspend, or the current power state of it is not suitable for the upcoming
2584 * (system-wide) transition.
2586 bool pci_dev_need_resume(struct pci_dev
*pci_dev
)
2588 struct device
*dev
= &pci_dev
->dev
;
2589 pci_power_t target_state
;
2591 if (!pm_runtime_suspended(dev
) || platform_pci_need_resume(pci_dev
))
2594 target_state
= pci_target_state(pci_dev
, device_may_wakeup(dev
));
2597 * If the earlier platform check has not triggered, D3cold is just power
2598 * removal on top of D3hot, so no need to resume the device in that
2601 return target_state
!= pci_dev
->current_state
&&
2602 target_state
!= PCI_D3cold
&&
2603 pci_dev
->current_state
!= PCI_D3hot
;
2607 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2608 * @pci_dev: Device to check.
2610 * If the device is suspended and it is not configured for system wakeup,
2611 * disable PME for it to prevent it from waking up the system unnecessarily.
2613 * Note that if the device's power state is D3cold and the platform check in
2614 * pci_dev_need_resume() has not triggered, the device's configuration need not
2617 void pci_dev_adjust_pme(struct pci_dev
*pci_dev
)
2619 struct device
*dev
= &pci_dev
->dev
;
2621 spin_lock_irq(&dev
->power
.lock
);
2623 if (pm_runtime_suspended(dev
) && !device_may_wakeup(dev
) &&
2624 pci_dev
->current_state
< PCI_D3cold
)
2625 __pci_pme_active(pci_dev
, false);
2627 spin_unlock_irq(&dev
->power
.lock
);
2631 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2632 * @pci_dev: Device to handle.
2634 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2635 * it might have been disabled during the prepare phase of system suspend if
2636 * the device was not configured for system wakeup.
2638 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2640 struct device
*dev
= &pci_dev
->dev
;
2642 if (!pci_dev_run_wake(pci_dev
))
2645 spin_lock_irq(&dev
->power
.lock
);
2647 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2648 __pci_pme_active(pci_dev
, true);
2650 spin_unlock_irq(&dev
->power
.lock
);
2653 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2655 struct device
*dev
= &pdev
->dev
;
2656 struct device
*parent
= dev
->parent
;
2659 pm_runtime_get_sync(parent
);
2660 pm_runtime_get_noresume(dev
);
2662 * pdev->current_state is set to PCI_D3cold during suspending,
2663 * so wait until suspending completes
2665 pm_runtime_barrier(dev
);
2667 * Only need to resume devices in D3cold, because config
2668 * registers are still accessible for devices suspended but
2671 if (pdev
->current_state
== PCI_D3cold
)
2672 pm_runtime_resume(dev
);
2675 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2677 struct device
*dev
= &pdev
->dev
;
2678 struct device
*parent
= dev
->parent
;
2680 pm_runtime_put(dev
);
2682 pm_runtime_put_sync(parent
);
2685 static const struct dmi_system_id bridge_d3_blacklist
[] = {
2689 * Gigabyte X299 root port is not marked as hotplug capable
2690 * which allows Linux to power manage it. However, this
2691 * confuses the BIOS SMI handler so don't power manage root
2692 * ports on that system.
2694 .ident
= "X299 DESIGNARE EX-CF",
2696 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co., Ltd."),
2697 DMI_MATCH(DMI_BOARD_NAME
, "X299 DESIGNARE EX-CF"),
2705 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2706 * @bridge: Bridge to check
2708 * This function checks if it is possible to move the bridge to D3.
2709 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2711 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2713 if (!pci_is_pcie(bridge
))
2716 switch (pci_pcie_type(bridge
)) {
2717 case PCI_EXP_TYPE_ROOT_PORT
:
2718 case PCI_EXP_TYPE_UPSTREAM
:
2719 case PCI_EXP_TYPE_DOWNSTREAM
:
2720 if (pci_bridge_d3_disable
)
2724 * Hotplug ports handled by firmware in System Management Mode
2725 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2727 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
2730 if (pci_bridge_d3_force
)
2733 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2734 if (bridge
->is_thunderbolt
)
2737 /* Platform might know better if the bridge supports D3 */
2738 if (platform_pci_bridge_d3(bridge
))
2742 * Hotplug ports handled natively by the OS were not validated
2743 * by vendors for runtime D3 at least until 2018 because there
2744 * was no OS support.
2746 if (bridge
->is_hotplug_bridge
)
2749 if (dmi_check_system(bridge_d3_blacklist
))
2753 * It should be safe to put PCIe ports from 2015 or newer
2756 if (dmi_get_bios_year() >= 2015)
2764 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2766 bool *d3cold_ok
= data
;
2768 if (/* The device needs to be allowed to go D3cold ... */
2769 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2771 /* ... and if it is wakeup capable to do so from D3cold. */
2772 (device_may_wakeup(&dev
->dev
) &&
2773 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2775 /* If it is a bridge it must be allowed to go to D3. */
2776 !pci_power_manageable(dev
))
2784 * pci_bridge_d3_update - Update bridge D3 capabilities
2785 * @dev: PCI device which is changed
2787 * Update upstream bridge PM capabilities accordingly depending on if the
2788 * device PM configuration was changed or the device is being removed. The
2789 * change is also propagated upstream.
2791 void pci_bridge_d3_update(struct pci_dev
*dev
)
2793 bool remove
= !device_is_registered(&dev
->dev
);
2794 struct pci_dev
*bridge
;
2795 bool d3cold_ok
= true;
2797 bridge
= pci_upstream_bridge(dev
);
2798 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2802 * If D3 is currently allowed for the bridge, removing one of its
2803 * children won't change that.
2805 if (remove
&& bridge
->bridge_d3
)
2809 * If D3 is currently allowed for the bridge and a child is added or
2810 * changed, disallowance of D3 can only be caused by that child, so
2811 * we only need to check that single device, not any of its siblings.
2813 * If D3 is currently not allowed for the bridge, checking the device
2814 * first may allow us to skip checking its siblings.
2817 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2820 * If D3 is currently not allowed for the bridge, this may be caused
2821 * either by the device being changed/removed or any of its siblings,
2822 * so we need to go through all children to find out if one of them
2823 * continues to block D3.
2825 if (d3cold_ok
&& !bridge
->bridge_d3
)
2826 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2829 if (bridge
->bridge_d3
!= d3cold_ok
) {
2830 bridge
->bridge_d3
= d3cold_ok
;
2831 /* Propagate change to upstream bridges */
2832 pci_bridge_d3_update(bridge
);
2837 * pci_d3cold_enable - Enable D3cold for device
2838 * @dev: PCI device to handle
2840 * This function can be used in drivers to enable D3cold from the device
2841 * they handle. It also updates upstream PCI bridge PM capabilities
2844 void pci_d3cold_enable(struct pci_dev
*dev
)
2846 if (dev
->no_d3cold
) {
2847 dev
->no_d3cold
= false;
2848 pci_bridge_d3_update(dev
);
2851 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2854 * pci_d3cold_disable - Disable D3cold for device
2855 * @dev: PCI device to handle
2857 * This function can be used in drivers to disable D3cold from the device
2858 * they handle. It also updates upstream PCI bridge PM capabilities
2861 void pci_d3cold_disable(struct pci_dev
*dev
)
2863 if (!dev
->no_d3cold
) {
2864 dev
->no_d3cold
= true;
2865 pci_bridge_d3_update(dev
);
2868 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2871 * pci_pm_init - Initialize PM functions of given PCI device
2872 * @dev: PCI device to handle.
2874 void pci_pm_init(struct pci_dev
*dev
)
2880 pm_runtime_forbid(&dev
->dev
);
2881 pm_runtime_set_active(&dev
->dev
);
2882 pm_runtime_enable(&dev
->dev
);
2883 device_enable_async_suspend(&dev
->dev
);
2884 dev
->wakeup_prepared
= false;
2887 dev
->pme_support
= 0;
2889 /* find PCI PM capability in list */
2890 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2893 /* Check device's ability to generate PME# */
2894 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2896 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2897 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
2898 pmc
& PCI_PM_CAP_VER_MASK
);
2903 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2904 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2905 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2906 dev
->d3cold_allowed
= true;
2908 dev
->d1_support
= false;
2909 dev
->d2_support
= false;
2910 if (!pci_no_d1d2(dev
)) {
2911 if (pmc
& PCI_PM_CAP_D1
)
2912 dev
->d1_support
= true;
2913 if (pmc
& PCI_PM_CAP_D2
)
2914 dev
->d2_support
= true;
2916 if (dev
->d1_support
|| dev
->d2_support
)
2917 pci_info(dev
, "supports%s%s\n",
2918 dev
->d1_support
? " D1" : "",
2919 dev
->d2_support
? " D2" : "");
2922 pmc
&= PCI_PM_CAP_PME_MASK
;
2924 pci_info(dev
, "PME# supported from%s%s%s%s%s\n",
2925 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2926 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2927 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2928 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2929 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2930 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2931 dev
->pme_poll
= true;
2933 * Make device's PM flags reflect the wake-up capability, but
2934 * let the user space enable it to wake up the system as needed.
2936 device_set_wakeup_capable(&dev
->dev
, true);
2937 /* Disable the PME# generation functionality */
2938 pci_pme_active(dev
, false);
2941 pci_read_config_word(dev
, PCI_STATUS
, &status
);
2942 if (status
& PCI_STATUS_IMM_READY
)
2946 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2948 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2952 case PCI_EA_P_VF_MEM
:
2953 flags
|= IORESOURCE_MEM
;
2955 case PCI_EA_P_MEM_PREFETCH
:
2956 case PCI_EA_P_VF_MEM_PREFETCH
:
2957 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2960 flags
|= IORESOURCE_IO
;
2969 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2972 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2973 return &dev
->resource
[bei
];
2974 #ifdef CONFIG_PCI_IOV
2975 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2976 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2977 return &dev
->resource
[PCI_IOV_RESOURCES
+
2978 bei
- PCI_EA_BEI_VF_BAR0
];
2980 else if (bei
== PCI_EA_BEI_ROM
)
2981 return &dev
->resource
[PCI_ROM_RESOURCE
];
2986 /* Read an Enhanced Allocation (EA) entry */
2987 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2989 struct resource
*res
;
2990 int ent_size
, ent_offset
= offset
;
2991 resource_size_t start
, end
;
2992 unsigned long flags
;
2993 u32 dw0
, bei
, base
, max_offset
;
2995 bool support_64
= (sizeof(resource_size_t
) >= 8);
2997 pci_read_config_dword(dev
, ent_offset
, &dw0
);
3000 /* Entry size field indicates DWORDs after 1st */
3001 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
3003 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
3006 bei
= (dw0
& PCI_EA_BEI
) >> 4;
3007 prop
= (dw0
& PCI_EA_PP
) >> 8;
3010 * If the Property is in the reserved range, try the Secondary
3013 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
3014 prop
= (dw0
& PCI_EA_SP
) >> 16;
3015 if (prop
> PCI_EA_P_BRIDGE_IO
)
3018 res
= pci_ea_get_resource(dev
, bei
, prop
);
3020 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
3024 flags
= pci_ea_flags(dev
, prop
);
3026 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
3031 pci_read_config_dword(dev
, ent_offset
, &base
);
3032 start
= (base
& PCI_EA_FIELD_MASK
);
3035 /* Read MaxOffset */
3036 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
3039 /* Read Base MSBs (if 64-bit entry) */
3040 if (base
& PCI_EA_IS_64
) {
3043 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
3046 flags
|= IORESOURCE_MEM_64
;
3048 /* entry starts above 32-bit boundary, can't use */
3049 if (!support_64
&& base_upper
)
3053 start
|= ((u64
)base_upper
<< 32);
3056 end
= start
+ (max_offset
| 0x03);
3058 /* Read MaxOffset MSBs (if 64-bit entry) */
3059 if (max_offset
& PCI_EA_IS_64
) {
3060 u32 max_offset_upper
;
3062 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
3065 flags
|= IORESOURCE_MEM_64
;
3067 /* entry too big, can't use */
3068 if (!support_64
&& max_offset_upper
)
3072 end
+= ((u64
)max_offset_upper
<< 32);
3076 pci_err(dev
, "EA Entry crosses address boundary\n");
3080 if (ent_size
!= ent_offset
- offset
) {
3081 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
3082 ent_size
, ent_offset
- offset
);
3086 res
->name
= pci_name(dev
);
3091 if (bei
<= PCI_EA_BEI_BAR5
)
3092 pci_info(dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3094 else if (bei
== PCI_EA_BEI_ROM
)
3095 pci_info(dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3097 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
3098 pci_info(dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3099 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
3101 pci_info(dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3105 return offset
+ ent_size
;
3108 /* Enhanced Allocation Initialization */
3109 void pci_ea_init(struct pci_dev
*dev
)
3116 /* find PCI EA capability in list */
3117 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
3121 /* determine the number of entries */
3122 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
3124 num_ent
&= PCI_EA_NUM_ENT_MASK
;
3126 offset
= ea
+ PCI_EA_FIRST_ENT
;
3128 /* Skip DWORD 2 for type 1 functions */
3129 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
3132 /* parse each EA entry */
3133 for (i
= 0; i
< num_ent
; ++i
)
3134 offset
= pci_ea_read(dev
, offset
);
3137 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
3138 struct pci_cap_saved_state
*new_cap
)
3140 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
3144 * _pci_add_cap_save_buffer - allocate buffer for saving given
3145 * capability registers
3146 * @dev: the PCI device
3147 * @cap: the capability to allocate the buffer for
3148 * @extended: Standard or Extended capability ID
3149 * @size: requested size of the buffer
3151 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
3152 bool extended
, unsigned int size
)
3155 struct pci_cap_saved_state
*save_state
;
3158 pos
= pci_find_ext_capability(dev
, cap
);
3160 pos
= pci_find_capability(dev
, cap
);
3165 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
3169 save_state
->cap
.cap_nr
= cap
;
3170 save_state
->cap
.cap_extended
= extended
;
3171 save_state
->cap
.size
= size
;
3172 pci_add_saved_cap(dev
, save_state
);
3177 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
3179 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
3182 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
3184 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
3188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3189 * @dev: the PCI device
3191 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
3195 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
3196 PCI_EXP_SAVE_REGS
* sizeof(u16
));
3198 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
3200 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
3202 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3204 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_LTR
,
3207 pci_err(dev
, "unable to allocate suspend buffer for LTR\n");
3209 pci_allocate_vc_save_buffers(dev
);
3212 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3214 struct pci_cap_saved_state
*tmp
;
3215 struct hlist_node
*n
;
3217 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3222 * pci_configure_ari - enable or disable ARI forwarding
3223 * @dev: the PCI device
3225 * If @dev and its upstream bridge both support ARI, enable ARI in the
3226 * bridge. Otherwise, disable ARI in the bridge.
3228 void pci_configure_ari(struct pci_dev
*dev
)
3231 struct pci_dev
*bridge
;
3233 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3236 bridge
= dev
->bus
->self
;
3240 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3241 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3244 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3245 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3246 PCI_EXP_DEVCTL2_ARI
);
3247 bridge
->ari_enabled
= 1;
3249 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3250 PCI_EXP_DEVCTL2_ARI
);
3251 bridge
->ari_enabled
= 0;
3255 static int pci_acs_enable
;
3258 * pci_request_acs - ask for ACS to be enabled if supported
3260 void pci_request_acs(void)
3265 static const char *disable_acs_redir_param
;
3268 * pci_disable_acs_redir - disable ACS redirect capabilities
3269 * @dev: the PCI device
3271 * For only devices specified in the disable_acs_redir parameter.
3273 static void pci_disable_acs_redir(struct pci_dev
*dev
)
3280 if (!disable_acs_redir_param
)
3283 p
= disable_acs_redir_param
;
3285 ret
= pci_dev_str_match(dev
, p
, &p
);
3287 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3288 disable_acs_redir_param
);
3291 } else if (ret
== 1) {
3296 if (*p
!= ';' && *p
!= ',') {
3297 /* End of param or invalid format */
3306 if (!pci_dev_specific_disable_acs_redir(dev
))
3309 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3311 pci_warn(dev
, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3315 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3317 /* P2P Request & Completion Redirect */
3318 ctrl
&= ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
);
3320 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3322 pci_info(dev
, "disabled ACS redirect\n");
3326 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3327 * @dev: the PCI device
3329 static void pci_std_enable_acs(struct pci_dev
*dev
)
3335 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3339 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
3340 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3342 /* Source Validation */
3343 ctrl
|= (cap
& PCI_ACS_SV
);
3345 /* P2P Request Redirect */
3346 ctrl
|= (cap
& PCI_ACS_RR
);
3348 /* P2P Completion Redirect */
3349 ctrl
|= (cap
& PCI_ACS_CR
);
3351 /* Upstream Forwarding */
3352 ctrl
|= (cap
& PCI_ACS_UF
);
3354 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3358 * pci_enable_acs - enable ACS if hardware support it
3359 * @dev: the PCI device
3361 void pci_enable_acs(struct pci_dev
*dev
)
3363 if (!pci_acs_enable
)
3364 goto disable_acs_redir
;
3366 if (!pci_dev_specific_enable_acs(dev
))
3367 goto disable_acs_redir
;
3369 pci_std_enable_acs(dev
);
3373 * Note: pci_disable_acs_redir() must be called even if ACS was not
3374 * enabled by the kernel because it may have been enabled by
3375 * platform firmware. So if we are told to disable it, we should
3376 * always disable it after setting the kernel's default
3379 pci_disable_acs_redir(dev
);
3382 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3387 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
3392 * Except for egress control, capabilities are either required
3393 * or only required if controllable. Features missing from the
3394 * capability field can therefore be assumed as hard-wired enabled.
3396 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3397 acs_flags
&= (cap
| PCI_ACS_EC
);
3399 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3400 return (ctrl
& acs_flags
) == acs_flags
;
3404 * pci_acs_enabled - test ACS against required flags for a given device
3405 * @pdev: device to test
3406 * @acs_flags: required PCI ACS flags
3408 * Return true if the device supports the provided flags. Automatically
3409 * filters out flags that are not implemented on multifunction devices.
3411 * Note that this interface checks the effective ACS capabilities of the
3412 * device rather than the actual capabilities. For instance, most single
3413 * function endpoints are not required to support ACS because they have no
3414 * opportunity for peer-to-peer access. We therefore return 'true'
3415 * regardless of whether the device exposes an ACS capability. This makes
3416 * it much easier for callers of this function to ignore the actual type
3417 * or topology of the device when testing ACS support.
3419 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3423 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3428 * Conventional PCI and PCI-X devices never support ACS, either
3429 * effectively or actually. The shared bus topology implies that
3430 * any device on the bus can receive or snoop DMA.
3432 if (!pci_is_pcie(pdev
))
3435 switch (pci_pcie_type(pdev
)) {
3437 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3438 * but since their primary interface is PCI/X, we conservatively
3439 * handle them as we would a non-PCIe device.
3441 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3443 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3444 * applicable... must never implement an ACS Extended Capability...".
3445 * This seems arbitrary, but we take a conservative interpretation
3446 * of this statement.
3448 case PCI_EXP_TYPE_PCI_BRIDGE
:
3449 case PCI_EXP_TYPE_RC_EC
:
3452 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3453 * implement ACS in order to indicate their peer-to-peer capabilities,
3454 * regardless of whether they are single- or multi-function devices.
3456 case PCI_EXP_TYPE_DOWNSTREAM
:
3457 case PCI_EXP_TYPE_ROOT_PORT
:
3458 return pci_acs_flags_enabled(pdev
, acs_flags
);
3460 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3461 * implemented by the remaining PCIe types to indicate peer-to-peer
3462 * capabilities, but only when they are part of a multifunction
3463 * device. The footnote for section 6.12 indicates the specific
3464 * PCIe types included here.
3466 case PCI_EXP_TYPE_ENDPOINT
:
3467 case PCI_EXP_TYPE_UPSTREAM
:
3468 case PCI_EXP_TYPE_LEG_END
:
3469 case PCI_EXP_TYPE_RC_END
:
3470 if (!pdev
->multifunction
)
3473 return pci_acs_flags_enabled(pdev
, acs_flags
);
3477 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3478 * to single function devices with the exception of downstream ports.
3484 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3485 * @start: starting downstream device
3486 * @end: ending upstream device or NULL to search to the root bus
3487 * @acs_flags: required flags
3489 * Walk up a device tree from start to end testing PCI ACS support. If
3490 * any step along the way does not support the required flags, return false.
3492 bool pci_acs_path_enabled(struct pci_dev
*start
,
3493 struct pci_dev
*end
, u16 acs_flags
)
3495 struct pci_dev
*pdev
, *parent
= start
;
3500 if (!pci_acs_enabled(pdev
, acs_flags
))
3503 if (pci_is_root_bus(pdev
->bus
))
3504 return (end
== NULL
);
3506 parent
= pdev
->bus
->self
;
3507 } while (pdev
!= end
);
3513 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3517 * Helper to find the position of the ctrl register for a BAR.
3518 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3519 * Returns -ENOENT if no ctrl register for the BAR could be found.
3521 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3523 unsigned int pos
, nbars
, i
;
3526 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3530 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3531 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
3532 PCI_REBAR_CTRL_NBAR_SHIFT
;
3534 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3537 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3538 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
3547 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3549 * @bar: BAR to query
3551 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3552 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3554 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3559 pos
= pci_rebar_find_pos(pdev
, bar
);
3563 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3564 return (cap
& PCI_REBAR_CAP_SIZES
) >> 4;
3568 * pci_rebar_get_current_size - get the current size of a BAR
3570 * @bar: BAR to set size to
3572 * Read the size of a BAR from the resizable BAR config.
3573 * Returns size if found or negative error code.
3575 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3580 pos
= pci_rebar_find_pos(pdev
, bar
);
3584 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3585 return (ctrl
& PCI_REBAR_CTRL_BAR_SIZE
) >> PCI_REBAR_CTRL_BAR_SHIFT
;
3589 * pci_rebar_set_size - set a new size for a BAR
3591 * @bar: BAR to set size to
3592 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3594 * Set the new size of a BAR as defined in the spec.
3595 * Returns zero if resizing was successful, error code otherwise.
3597 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3602 pos
= pci_rebar_find_pos(pdev
, bar
);
3606 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3607 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3608 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
3609 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3614 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3615 * @dev: the PCI device
3616 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3618 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3619 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3621 * Return 0 if all upstream bridges support AtomicOp routing, egress
3622 * blocking is disabled on all upstream ports, and the root port supports
3623 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3624 * AtomicOp completion), or negative otherwise.
3626 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3628 struct pci_bus
*bus
= dev
->bus
;
3629 struct pci_dev
*bridge
;
3632 if (!pci_is_pcie(dev
))
3636 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3637 * AtomicOp requesters. For now, we only support endpoints as
3638 * requesters and root ports as completers. No endpoints as
3639 * completers, and no peer-to-peer.
3642 switch (pci_pcie_type(dev
)) {
3643 case PCI_EXP_TYPE_ENDPOINT
:
3644 case PCI_EXP_TYPE_LEG_END
:
3645 case PCI_EXP_TYPE_RC_END
:
3651 while (bus
->parent
) {
3654 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3656 switch (pci_pcie_type(bridge
)) {
3657 /* Ensure switch ports support AtomicOp routing */
3658 case PCI_EXP_TYPE_UPSTREAM
:
3659 case PCI_EXP_TYPE_DOWNSTREAM
:
3660 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3664 /* Ensure root port supports all the sizes we care about */
3665 case PCI_EXP_TYPE_ROOT_PORT
:
3666 if ((cap
& cap_mask
) != cap_mask
)
3671 /* Ensure upstream ports don't block AtomicOps on egress */
3672 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_UPSTREAM
) {
3673 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3675 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3682 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3683 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3686 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3689 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3690 * @dev: the PCI device
3691 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3693 * Perform INTx swizzling for a device behind one level of bridge. This is
3694 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3695 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3696 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3697 * the PCI Express Base Specification, Revision 2.1)
3699 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
3703 if (pci_ari_enabled(dev
->bus
))
3706 slot
= PCI_SLOT(dev
->devfn
);
3708 return (((pin
- 1) + slot
) % 4) + 1;
3711 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
3719 while (!pci_is_root_bus(dev
->bus
)) {
3720 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3721 dev
= dev
->bus
->self
;
3728 * pci_common_swizzle - swizzle INTx all the way to root bridge
3729 * @dev: the PCI device
3730 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3732 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3733 * bridges all the way up to a PCI root bus.
3735 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3739 while (!pci_is_root_bus(dev
->bus
)) {
3740 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3741 dev
= dev
->bus
->self
;
3744 return PCI_SLOT(dev
->devfn
);
3746 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3749 * pci_release_region - Release a PCI bar
3750 * @pdev: PCI device whose resources were previously reserved by
3751 * pci_request_region()
3752 * @bar: BAR to release
3754 * Releases the PCI I/O and memory resources previously reserved by a
3755 * successful call to pci_request_region(). Call this function only
3756 * after all use of the PCI regions has ceased.
3758 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3760 struct pci_devres
*dr
;
3762 if (pci_resource_len(pdev
, bar
) == 0)
3764 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3765 release_region(pci_resource_start(pdev
, bar
),
3766 pci_resource_len(pdev
, bar
));
3767 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3768 release_mem_region(pci_resource_start(pdev
, bar
),
3769 pci_resource_len(pdev
, bar
));
3771 dr
= find_pci_dr(pdev
);
3773 dr
->region_mask
&= ~(1 << bar
);
3775 EXPORT_SYMBOL(pci_release_region
);
3778 * __pci_request_region - Reserved PCI I/O and memory resource
3779 * @pdev: PCI device whose resources are to be reserved
3780 * @bar: BAR to be reserved
3781 * @res_name: Name to be associated with resource.
3782 * @exclusive: whether the region access is exclusive or not
3784 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3785 * being reserved by owner @res_name. Do not access any
3786 * address inside the PCI regions unless this call returns
3789 * If @exclusive is set, then the region is marked so that userspace
3790 * is explicitly not allowed to map the resource via /dev/mem or
3791 * sysfs MMIO access.
3793 * Returns 0 on success, or %EBUSY on error. A warning
3794 * message is also printed on failure.
3796 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3797 const char *res_name
, int exclusive
)
3799 struct pci_devres
*dr
;
3801 if (pci_resource_len(pdev
, bar
) == 0)
3804 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3805 if (!request_region(pci_resource_start(pdev
, bar
),
3806 pci_resource_len(pdev
, bar
), res_name
))
3808 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3809 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3810 pci_resource_len(pdev
, bar
), res_name
,
3815 dr
= find_pci_dr(pdev
);
3817 dr
->region_mask
|= 1 << bar
;
3822 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3823 &pdev
->resource
[bar
]);
3828 * pci_request_region - Reserve PCI I/O and memory resource
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @bar: BAR to be reserved
3831 * @res_name: Name to be associated with resource
3833 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3834 * being reserved by owner @res_name. Do not access any
3835 * address inside the PCI regions unless this call returns
3838 * Returns 0 on success, or %EBUSY on error. A warning
3839 * message is also printed on failure.
3841 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3843 return __pci_request_region(pdev
, bar
, res_name
, 0);
3845 EXPORT_SYMBOL(pci_request_region
);
3848 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3849 * @pdev: PCI device whose resources were previously reserved
3850 * @bars: Bitmask of BARs to be released
3852 * Release selected PCI I/O and memory resources previously reserved.
3853 * Call this function only after all use of the PCI regions has ceased.
3855 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3859 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
3860 if (bars
& (1 << i
))
3861 pci_release_region(pdev
, i
);
3863 EXPORT_SYMBOL(pci_release_selected_regions
);
3865 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3866 const char *res_name
, int excl
)
3870 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
3871 if (bars
& (1 << i
))
3872 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3878 if (bars
& (1 << i
))
3879 pci_release_region(pdev
, i
);
3886 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3887 * @pdev: PCI device whose resources are to be reserved
3888 * @bars: Bitmask of BARs to be requested
3889 * @res_name: Name to be associated with resource
3891 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3892 const char *res_name
)
3894 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3896 EXPORT_SYMBOL(pci_request_selected_regions
);
3898 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3899 const char *res_name
)
3901 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3902 IORESOURCE_EXCLUSIVE
);
3904 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3907 * pci_release_regions - Release reserved PCI I/O and memory resources
3908 * @pdev: PCI device whose resources were previously reserved by
3909 * pci_request_regions()
3911 * Releases all PCI I/O and memory resources previously reserved by a
3912 * successful call to pci_request_regions(). Call this function only
3913 * after all use of the PCI regions has ceased.
3916 void pci_release_regions(struct pci_dev
*pdev
)
3918 pci_release_selected_regions(pdev
, (1 << PCI_STD_NUM_BARS
) - 1);
3920 EXPORT_SYMBOL(pci_release_regions
);
3923 * pci_request_regions - Reserve PCI I/O and memory resources
3924 * @pdev: PCI device whose resources are to be reserved
3925 * @res_name: Name to be associated with resource.
3927 * Mark all PCI regions associated with PCI device @pdev as
3928 * being reserved by owner @res_name. Do not access any
3929 * address inside the PCI regions unless this call returns
3932 * Returns 0 on success, or %EBUSY on error. A warning
3933 * message is also printed on failure.
3935 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3937 return pci_request_selected_regions(pdev
,
3938 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
3940 EXPORT_SYMBOL(pci_request_regions
);
3943 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3944 * @pdev: PCI device whose resources are to be reserved
3945 * @res_name: Name to be associated with resource.
3947 * Mark all PCI regions associated with PCI device @pdev as being reserved
3948 * by owner @res_name. Do not access any address inside the PCI regions
3949 * unless this call returns successfully.
3951 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3952 * and the sysfs MMIO access will not be allowed.
3954 * Returns 0 on success, or %EBUSY on error. A warning message is also
3955 * printed on failure.
3957 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3959 return pci_request_selected_regions_exclusive(pdev
,
3960 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
3962 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3965 * Record the PCI IO range (expressed as CPU physical address + size).
3966 * Return a negative value if an error has occurred, zero otherwise
3968 int pci_register_io_range(struct fwnode_handle
*fwnode
, phys_addr_t addr
,
3969 resource_size_t size
)
3973 struct logic_pio_hwaddr
*range
;
3975 if (!size
|| addr
+ size
< addr
)
3978 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3982 range
->fwnode
= fwnode
;
3984 range
->hw_start
= addr
;
3985 range
->flags
= LOGIC_PIO_CPU_MMIO
;
3987 ret
= logic_pio_register_range(range
);
3995 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3997 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
4000 if (pio
>= MMIO_UPPER_LIMIT
)
4003 address
= logic_pio_to_hwaddr(pio
);
4009 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
4012 return logic_pio_trans_cpuaddr(address
);
4014 if (address
> IO_SPACE_LIMIT
)
4015 return (unsigned long)-1;
4017 return (unsigned long) address
;
4022 * pci_remap_iospace - Remap the memory mapped I/O space
4023 * @res: Resource describing the I/O space
4024 * @phys_addr: physical address of range to be mapped
4026 * Remap the memory mapped I/O space described by the @res and the CPU
4027 * physical address @phys_addr into virtual address space. Only
4028 * architectures that have memory mapped IO functions defined (and the
4029 * PCI_IOBASE value defined) should call this function.
4031 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
4033 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4034 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4036 if (!(res
->flags
& IORESOURCE_IO
))
4039 if (res
->end
> IO_SPACE_LIMIT
)
4042 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
4043 pgprot_device(PAGE_KERNEL
));
4046 * This architecture does not have memory mapped I/O space,
4047 * so this function should never be called
4049 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4053 EXPORT_SYMBOL(pci_remap_iospace
);
4056 * pci_unmap_iospace - Unmap the memory mapped I/O space
4057 * @res: resource to be unmapped
4059 * Unmap the CPU virtual address @res from virtual address space. Only
4060 * architectures that have memory mapped IO functions defined (and the
4061 * PCI_IOBASE value defined) should call this function.
4063 void pci_unmap_iospace(struct resource
*res
)
4065 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4066 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4068 unmap_kernel_range(vaddr
, resource_size(res
));
4071 EXPORT_SYMBOL(pci_unmap_iospace
);
4073 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
4075 struct resource
**res
= ptr
;
4077 pci_unmap_iospace(*res
);
4081 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4082 * @dev: Generic device to remap IO address for
4083 * @res: Resource describing the I/O space
4084 * @phys_addr: physical address of range to be mapped
4086 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4089 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
4090 phys_addr_t phys_addr
)
4092 const struct resource
**ptr
;
4095 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
4099 error
= pci_remap_iospace(res
, phys_addr
);
4104 devres_add(dev
, ptr
);
4109 EXPORT_SYMBOL(devm_pci_remap_iospace
);
4112 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4113 * @dev: Generic device to remap IO address for
4114 * @offset: Resource address to map
4115 * @size: Size of map
4117 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4120 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
4121 resource_size_t offset
,
4122 resource_size_t size
)
4124 void __iomem
**ptr
, *addr
;
4126 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
4130 addr
= pci_remap_cfgspace(offset
, size
);
4133 devres_add(dev
, ptr
);
4139 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
4142 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4143 * @dev: generic device to handle the resource for
4144 * @res: configuration space resource to be handled
4146 * Checks that a resource is a valid memory region, requests the memory
4147 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4148 * proper PCI configuration space memory attributes are guaranteed.
4150 * All operations are managed and will be undone on driver detach.
4152 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4153 * on failure. Usage example::
4155 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4156 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4158 * return PTR_ERR(base);
4160 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
4161 struct resource
*res
)
4163 resource_size_t size
;
4165 void __iomem
*dest_ptr
;
4169 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
4170 dev_err(dev
, "invalid resource\n");
4171 return IOMEM_ERR_PTR(-EINVAL
);
4174 size
= resource_size(res
);
4175 name
= res
->name
?: dev_name(dev
);
4177 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
4178 dev_err(dev
, "can't request region for resource %pR\n", res
);
4179 return IOMEM_ERR_PTR(-EBUSY
);
4182 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
4184 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
4185 devm_release_mem_region(dev
, res
->start
, size
);
4186 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
4191 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
4193 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4197 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4199 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4201 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4202 if (cmd
!= old_cmd
) {
4203 pci_dbg(dev
, "%s bus mastering\n",
4204 enable
? "enabling" : "disabling");
4205 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4207 dev
->is_busmaster
= enable
;
4211 * pcibios_setup - process "pci=" kernel boot arguments
4212 * @str: string used to pass in "pci=" kernel boot arguments
4214 * Process kernel boot arguments. This is the default implementation.
4215 * Architecture specific implementations can override this as necessary.
4217 char * __weak __init
pcibios_setup(char *str
)
4223 * pcibios_set_master - enable PCI bus-mastering for device dev
4224 * @dev: the PCI device to enable
4226 * Enables PCI bus-mastering for the device. This is the default
4227 * implementation. Architecture specific implementations can override
4228 * this if necessary.
4230 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4234 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4235 if (pci_is_pcie(dev
))
4238 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4240 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4241 else if (lat
> pcibios_max_latency
)
4242 lat
= pcibios_max_latency
;
4246 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4250 * pci_set_master - enables bus-mastering for device dev
4251 * @dev: the PCI device to enable
4253 * Enables bus-mastering on the device and calls pcibios_set_master()
4254 * to do the needed arch specific settings.
4256 void pci_set_master(struct pci_dev
*dev
)
4258 __pci_set_master(dev
, true);
4259 pcibios_set_master(dev
);
4261 EXPORT_SYMBOL(pci_set_master
);
4264 * pci_clear_master - disables bus-mastering for device dev
4265 * @dev: the PCI device to disable
4267 void pci_clear_master(struct pci_dev
*dev
)
4269 __pci_set_master(dev
, false);
4271 EXPORT_SYMBOL(pci_clear_master
);
4274 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4275 * @dev: the PCI device for which MWI is to be enabled
4277 * Helper function for pci_set_mwi.
4278 * Originally copied from drivers/net/acenic.c.
4279 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4281 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4283 int pci_set_cacheline_size(struct pci_dev
*dev
)
4287 if (!pci_cache_line_size
)
4290 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4291 equal to or multiple of the right value. */
4292 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4293 if (cacheline_size
>= pci_cache_line_size
&&
4294 (cacheline_size
% pci_cache_line_size
) == 0)
4297 /* Write the correct value. */
4298 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4300 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4301 if (cacheline_size
== pci_cache_line_size
)
4304 pci_info(dev
, "cache line size of %d is not supported\n",
4305 pci_cache_line_size
<< 2);
4309 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4312 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4313 * @dev: the PCI device for which MWI is enabled
4315 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4317 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4319 int pci_set_mwi(struct pci_dev
*dev
)
4321 #ifdef PCI_DISABLE_MWI
4327 rc
= pci_set_cacheline_size(dev
);
4331 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4332 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4333 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4334 cmd
|= PCI_COMMAND_INVALIDATE
;
4335 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4340 EXPORT_SYMBOL(pci_set_mwi
);
4343 * pcim_set_mwi - a device-managed pci_set_mwi()
4344 * @dev: the PCI device for which MWI is enabled
4346 * Managed pci_set_mwi().
4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4350 int pcim_set_mwi(struct pci_dev
*dev
)
4352 struct pci_devres
*dr
;
4354 dr
= find_pci_dr(dev
);
4359 return pci_set_mwi(dev
);
4361 EXPORT_SYMBOL(pcim_set_mwi
);
4364 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4365 * @dev: the PCI device for which MWI is enabled
4367 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4368 * Callers are not required to check the return value.
4370 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4372 int pci_try_set_mwi(struct pci_dev
*dev
)
4374 #ifdef PCI_DISABLE_MWI
4377 return pci_set_mwi(dev
);
4380 EXPORT_SYMBOL(pci_try_set_mwi
);
4383 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4384 * @dev: the PCI device to disable
4386 * Disables PCI Memory-Write-Invalidate transaction on the device
4388 void pci_clear_mwi(struct pci_dev
*dev
)
4390 #ifndef PCI_DISABLE_MWI
4393 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4394 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4395 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4396 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4400 EXPORT_SYMBOL(pci_clear_mwi
);
4403 * pci_intx - enables/disables PCI INTx for device dev
4404 * @pdev: the PCI device to operate on
4405 * @enable: boolean: whether to enable or disable PCI INTx
4407 * Enables/disables PCI INTx for device @pdev
4409 void pci_intx(struct pci_dev
*pdev
, int enable
)
4411 u16 pci_command
, new;
4413 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4416 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4418 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4420 if (new != pci_command
) {
4421 struct pci_devres
*dr
;
4423 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4425 dr
= find_pci_dr(pdev
);
4426 if (dr
&& !dr
->restore_intx
) {
4427 dr
->restore_intx
= 1;
4428 dr
->orig_intx
= !enable
;
4432 EXPORT_SYMBOL_GPL(pci_intx
);
4434 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
4436 struct pci_bus
*bus
= dev
->bus
;
4437 bool mask_updated
= true;
4438 u32 cmd_status_dword
;
4439 u16 origcmd
, newcmd
;
4440 unsigned long flags
;
4444 * We do a single dword read to retrieve both command and status.
4445 * Document assumptions that make this possible.
4447 BUILD_BUG_ON(PCI_COMMAND
% 4);
4448 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
4450 raw_spin_lock_irqsave(&pci_lock
, flags
);
4452 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
4454 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
4457 * Check interrupt status register to see whether our device
4458 * triggered the interrupt (when masking) or the next IRQ is
4459 * already pending (when unmasking).
4461 if (mask
!= irq_pending
) {
4462 mask_updated
= false;
4466 origcmd
= cmd_status_dword
;
4467 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
4469 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
4470 if (newcmd
!= origcmd
)
4471 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
4474 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
4476 return mask_updated
;
4480 * pci_check_and_mask_intx - mask INTx on pending interrupt
4481 * @dev: the PCI device to operate on
4483 * Check if the device dev has its INTx line asserted, mask it and return
4484 * true in that case. False is returned if no interrupt was pending.
4486 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
4488 return pci_check_and_set_intx_mask(dev
, true);
4490 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
4493 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4494 * @dev: the PCI device to operate on
4496 * Check if the device dev has its INTx line asserted, unmask it if not and
4497 * return true. False is returned and the mask remains active if there was
4498 * still an interrupt pending.
4500 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
4502 return pci_check_and_set_intx_mask(dev
, false);
4504 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
4507 * pci_wait_for_pending_transaction - wait for pending transaction
4508 * @dev: the PCI device to operate on
4510 * Return 0 if transaction is pending 1 otherwise.
4512 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4514 if (!pci_is_pcie(dev
))
4517 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4518 PCI_EXP_DEVSTA_TRPND
);
4520 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4523 * pcie_has_flr - check if a device supports function level resets
4524 * @dev: device to check
4526 * Returns true if the device advertises support for PCIe function level
4529 bool pcie_has_flr(struct pci_dev
*dev
)
4533 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4536 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
4537 return cap
& PCI_EXP_DEVCAP_FLR
;
4539 EXPORT_SYMBOL_GPL(pcie_has_flr
);
4542 * pcie_flr - initiate a PCIe function level reset
4543 * @dev: device to reset
4545 * Initiate a function level reset on @dev. The caller should ensure the
4546 * device supports FLR before calling this function, e.g. by using the
4547 * pcie_has_flr() helper.
4549 int pcie_flr(struct pci_dev
*dev
)
4551 if (!pci_wait_for_pending_transaction(dev
))
4552 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4554 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4560 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4561 * 100ms, but may silently discard requests while the FLR is in
4562 * progress. Wait 100ms before trying to access the device.
4566 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4568 EXPORT_SYMBOL_GPL(pcie_flr
);
4570 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
4575 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4579 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4582 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4583 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4590 * Wait for Transaction Pending bit to clear. A word-aligned test
4591 * is used, so we use the control offset rather than status and shift
4592 * the test bit to match.
4594 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4595 PCI_AF_STATUS_TP
<< 8))
4596 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4598 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4604 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4605 * updated 27 July 2006; a device must complete an FLR within
4606 * 100ms, but may silently discard requests while the FLR is in
4607 * progress. Wait 100ms before trying to access the device.
4611 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4615 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4616 * @dev: Device to reset.
4617 * @probe: If set, only check if the device can be reset this way.
4619 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4620 * unset, it will be reinitialized internally when going from PCI_D3hot to
4621 * PCI_D0. If that's the case and the device is not in a low-power state
4622 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4624 * NOTE: This causes the caller to sleep for twice the device power transition
4625 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4626 * by default (i.e. unless the @dev's d3_delay field has a different value).
4627 * Moreover, only devices in D0 can be reset by this function.
4629 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
4633 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4636 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4637 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4643 if (dev
->current_state
!= PCI_D0
)
4646 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4648 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4649 pci_dev_d3_sleep(dev
);
4651 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4653 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4654 pci_dev_d3_sleep(dev
);
4656 return pci_dev_wait(dev
, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS
);
4660 * pcie_wait_for_link_delay - Wait until link is active or inactive
4661 * @pdev: Bridge device
4662 * @active: waiting for active or inactive?
4663 * @delay: Delay to wait after link has become active (in ms)
4665 * Use this to wait till link becomes active or inactive.
4667 static bool pcie_wait_for_link_delay(struct pci_dev
*pdev
, bool active
,
4675 * Some controllers might not implement link active reporting. In this
4676 * case, we wait for 1000 + 100 ms.
4678 if (!pdev
->link_active_reporting
) {
4684 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4685 * after which we should expect an link active if the reset was
4686 * successful. If so, software must wait a minimum 100ms before sending
4687 * configuration requests to devices downstream this port.
4689 * If the link fails to activate, either the device was physically
4690 * removed or the link is permanently failed.
4695 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnk_status
);
4696 ret
= !!(lnk_status
& PCI_EXP_LNKSTA_DLLLA
);
4706 else if (ret
!= active
)
4707 pci_info(pdev
, "Data Link Layer Link Active not %s in 1000 msec\n",
4708 active
? "set" : "cleared");
4709 return ret
== active
;
4713 * pcie_wait_for_link - Wait until link is active or inactive
4714 * @pdev: Bridge device
4715 * @active: waiting for active or inactive?
4717 * Use this to wait till link becomes active or inactive.
4719 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4721 return pcie_wait_for_link_delay(pdev
, active
, 100);
4725 * Find maximum D3cold delay required by all the devices on the bus. The
4726 * spec says 100 ms, but firmware can lower it and we allow drivers to
4727 * increase it as well.
4729 * Called with @pci_bus_sem locked for reading.
4731 static int pci_bus_max_d3cold_delay(const struct pci_bus
*bus
)
4733 const struct pci_dev
*pdev
;
4734 int min_delay
= 100;
4737 list_for_each_entry(pdev
, &bus
->devices
, bus_list
) {
4738 if (pdev
->d3cold_delay
< min_delay
)
4739 min_delay
= pdev
->d3cold_delay
;
4740 if (pdev
->d3cold_delay
> max_delay
)
4741 max_delay
= pdev
->d3cold_delay
;
4744 return max(min_delay
, max_delay
);
4748 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4751 * Handle necessary delays before access to the devices on the secondary
4752 * side of the bridge are permitted after D3cold to D0 transition.
4754 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4755 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4758 void pci_bridge_wait_for_secondary_bus(struct pci_dev
*dev
)
4760 struct pci_dev
*child
;
4763 if (pci_dev_is_disconnected(dev
))
4766 if (!pci_is_bridge(dev
) || !dev
->bridge_d3
)
4769 down_read(&pci_bus_sem
);
4772 * We only deal with devices that are present currently on the bus.
4773 * For any hot-added devices the access delay is handled in pciehp
4774 * board_added(). In case of ACPI hotplug the firmware is expected
4775 * to configure the devices before OS is notified.
4777 if (!dev
->subordinate
|| list_empty(&dev
->subordinate
->devices
)) {
4778 up_read(&pci_bus_sem
);
4782 /* Take d3cold_delay requirements into account */
4783 delay
= pci_bus_max_d3cold_delay(dev
->subordinate
);
4785 up_read(&pci_bus_sem
);
4789 child
= list_first_entry(&dev
->subordinate
->devices
, struct pci_dev
,
4791 up_read(&pci_bus_sem
);
4794 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4795 * accessing the device after reset (that is 1000 ms + 100 ms). In
4796 * practice this should not be needed because we don't do power
4797 * management for them (see pci_bridge_d3_possible()).
4799 if (!pci_is_pcie(dev
)) {
4800 pci_dbg(dev
, "waiting %d ms for secondary bus\n", 1000 + delay
);
4801 msleep(1000 + delay
);
4806 * For PCIe downstream and root ports that do not support speeds
4807 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4808 * speeds (gen3) we need to wait first for the data link layer to
4811 * However, 100 ms is the minimum and the PCIe spec says the
4812 * software must allow at least 1s before it can determine that the
4813 * device that did not respond is a broken device. There is
4814 * evidence that 100 ms is not always enough, for example certain
4815 * Titan Ridge xHCI controller does not always respond to
4816 * configuration requests if we only wait for 100 ms (see
4817 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4819 * Therefore we wait for 100 ms and check for the device presence.
4820 * If it is still not present give it an additional 100 ms.
4822 if (!pcie_downstream_port(dev
))
4825 if (pcie_get_speed_cap(dev
) <= PCIE_SPEED_5_0GT
) {
4826 pci_dbg(dev
, "waiting %d ms for downstream link\n", delay
);
4829 pci_dbg(dev
, "waiting %d ms for downstream link, after activation\n",
4831 if (!pcie_wait_for_link_delay(dev
, true, delay
)) {
4832 /* Did not train, no need to wait any further */
4837 if (!pci_device_is_present(child
)) {
4838 pci_dbg(child
, "waiting additional %d ms to become accessible\n", delay
);
4843 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4847 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4848 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4849 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4852 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4853 * this to 2ms to ensure that we meet the minimum requirement.
4857 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4858 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4861 * Trhfa for conventional PCI is 2^25 clock cycles.
4862 * Assuming a minimum 33MHz clock this results in a 1s
4863 * delay before we can consider subordinate devices to
4864 * be re-initialized. PCIe has some ways to shorten this,
4865 * but we don't make use of them yet.
4870 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4872 pci_reset_secondary_bus(dev
);
4876 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4877 * @dev: Bridge device
4879 * Use the bridge control register to assert reset on the secondary bus.
4880 * Devices on the secondary bus are left in power-on state.
4882 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4884 pcibios_reset_secondary_bus(dev
);
4886 return pci_dev_wait(dev
, "bus reset", PCIE_RESET_READY_POLL_MS
);
4888 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4890 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4892 struct pci_dev
*pdev
;
4894 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4895 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4898 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4905 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
4908 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4912 if (!hotplug
|| !try_module_get(hotplug
->owner
))
4915 if (hotplug
->ops
->reset_slot
)
4916 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4918 module_put(hotplug
->owner
);
4923 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4925 struct pci_dev
*pdev
;
4927 if (dev
->subordinate
|| !dev
->slot
||
4928 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4931 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4932 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4935 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4938 static void pci_dev_lock(struct pci_dev
*dev
)
4940 pci_cfg_access_lock(dev
);
4941 /* block PM suspend, driver probe, etc. */
4942 device_lock(&dev
->dev
);
4945 /* Return 1 on successful lock, 0 on contention */
4946 static int pci_dev_trylock(struct pci_dev
*dev
)
4948 if (pci_cfg_access_trylock(dev
)) {
4949 if (device_trylock(&dev
->dev
))
4951 pci_cfg_access_unlock(dev
);
4957 static void pci_dev_unlock(struct pci_dev
*dev
)
4959 device_unlock(&dev
->dev
);
4960 pci_cfg_access_unlock(dev
);
4963 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4965 const struct pci_error_handlers
*err_handler
=
4966 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4969 * dev->driver->err_handler->reset_prepare() is protected against
4970 * races with ->remove() by the device lock, which must be held by
4973 if (err_handler
&& err_handler
->reset_prepare
)
4974 err_handler
->reset_prepare(dev
);
4977 * Wake-up device prior to save. PM registers default to D0 after
4978 * reset and a simple register restore doesn't reliably return
4979 * to a non-D0 state anyway.
4981 pci_set_power_state(dev
, PCI_D0
);
4983 pci_save_state(dev
);
4985 * Disable the device by clearing the Command register, except for
4986 * INTx-disable which is set. This not only disables MMIO and I/O port
4987 * BARs, but also prevents the device from being Bus Master, preventing
4988 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4989 * compliant devices, INTx-disable prevents legacy interrupts.
4991 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4994 static void pci_dev_restore(struct pci_dev
*dev
)
4996 const struct pci_error_handlers
*err_handler
=
4997 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4999 pci_restore_state(dev
);
5002 * dev->driver->err_handler->reset_done() is protected against
5003 * races with ->remove() by the device lock, which must be held by
5006 if (err_handler
&& err_handler
->reset_done
)
5007 err_handler
->reset_done(dev
);
5011 * __pci_reset_function_locked - reset a PCI device function while holding
5012 * the @dev mutex lock.
5013 * @dev: PCI device to reset
5015 * Some devices allow an individual function to be reset without affecting
5016 * other functions in the same device. The PCI device must be responsive
5017 * to PCI config space in order to use this function.
5019 * The device function is presumed to be unused and the caller is holding
5020 * the device mutex lock when this function is called.
5022 * Resetting the device will make the contents of PCI configuration space
5023 * random, so any caller of this must be prepared to reinitialise the
5024 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5027 * Returns 0 if the device function was successfully reset or negative if the
5028 * device doesn't support resetting a single function.
5030 int __pci_reset_function_locked(struct pci_dev
*dev
)
5037 * A reset method returns -ENOTTY if it doesn't support this device
5038 * and we should try the next method.
5040 * If it returns 0 (success), we're finished. If it returns any
5041 * other error, we're also finished: this indicates that further
5042 * reset mechanisms might be broken on the device.
5044 rc
= pci_dev_specific_reset(dev
, 0);
5047 if (pcie_has_flr(dev
)) {
5052 rc
= pci_af_flr(dev
, 0);
5055 rc
= pci_pm_reset(dev
, 0);
5058 rc
= pci_dev_reset_slot_function(dev
, 0);
5061 return pci_parent_bus_reset(dev
, 0);
5063 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
5066 * pci_probe_reset_function - check whether the device can be safely reset
5067 * @dev: PCI device to reset
5069 * Some devices allow an individual function to be reset without affecting
5070 * other functions in the same device. The PCI device must be responsive
5071 * to PCI config space in order to use this function.
5073 * Returns 0 if the device function can be reset or negative if the
5074 * device doesn't support resetting a single function.
5076 int pci_probe_reset_function(struct pci_dev
*dev
)
5082 rc
= pci_dev_specific_reset(dev
, 1);
5085 if (pcie_has_flr(dev
))
5087 rc
= pci_af_flr(dev
, 1);
5090 rc
= pci_pm_reset(dev
, 1);
5093 rc
= pci_dev_reset_slot_function(dev
, 1);
5097 return pci_parent_bus_reset(dev
, 1);
5101 * pci_reset_function - quiesce and reset a PCI device function
5102 * @dev: PCI device to reset
5104 * Some devices allow an individual function to be reset without affecting
5105 * other functions in the same device. The PCI device must be responsive
5106 * to PCI config space in order to use this function.
5108 * This function does not just reset the PCI portion of a device, but
5109 * clears all the state associated with the device. This function differs
5110 * from __pci_reset_function_locked() in that it saves and restores device state
5111 * over the reset and takes the PCI device lock.
5113 * Returns 0 if the device function was successfully reset or negative if the
5114 * device doesn't support resetting a single function.
5116 int pci_reset_function(struct pci_dev
*dev
)
5124 pci_dev_save_and_disable(dev
);
5126 rc
= __pci_reset_function_locked(dev
);
5128 pci_dev_restore(dev
);
5129 pci_dev_unlock(dev
);
5133 EXPORT_SYMBOL_GPL(pci_reset_function
);
5136 * pci_reset_function_locked - quiesce and reset a PCI device function
5137 * @dev: PCI device to reset
5139 * Some devices allow an individual function to be reset without affecting
5140 * other functions in the same device. The PCI device must be responsive
5141 * to PCI config space in order to use this function.
5143 * This function does not just reset the PCI portion of a device, but
5144 * clears all the state associated with the device. This function differs
5145 * from __pci_reset_function_locked() in that it saves and restores device state
5146 * over the reset. It also differs from pci_reset_function() in that it
5147 * requires the PCI device lock to be held.
5149 * Returns 0 if the device function was successfully reset or negative if the
5150 * device doesn't support resetting a single function.
5152 int pci_reset_function_locked(struct pci_dev
*dev
)
5159 pci_dev_save_and_disable(dev
);
5161 rc
= __pci_reset_function_locked(dev
);
5163 pci_dev_restore(dev
);
5167 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
5170 * pci_try_reset_function - quiesce and reset a PCI device function
5171 * @dev: PCI device to reset
5173 * Same as above, except return -EAGAIN if unable to lock device.
5175 int pci_try_reset_function(struct pci_dev
*dev
)
5182 if (!pci_dev_trylock(dev
))
5185 pci_dev_save_and_disable(dev
);
5186 rc
= __pci_reset_function_locked(dev
);
5187 pci_dev_restore(dev
);
5188 pci_dev_unlock(dev
);
5192 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
5194 /* Do any devices on or below this bus prevent a bus reset? */
5195 static bool pci_bus_resetable(struct pci_bus
*bus
)
5197 struct pci_dev
*dev
;
5200 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5203 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5204 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5205 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5212 /* Lock devices from the top of the tree down */
5213 static void pci_bus_lock(struct pci_bus
*bus
)
5215 struct pci_dev
*dev
;
5217 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5219 if (dev
->subordinate
)
5220 pci_bus_lock(dev
->subordinate
);
5224 /* Unlock devices from the bottom of the tree up */
5225 static void pci_bus_unlock(struct pci_bus
*bus
)
5227 struct pci_dev
*dev
;
5229 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5230 if (dev
->subordinate
)
5231 pci_bus_unlock(dev
->subordinate
);
5232 pci_dev_unlock(dev
);
5236 /* Return 1 on successful lock, 0 on contention */
5237 static int pci_bus_trylock(struct pci_bus
*bus
)
5239 struct pci_dev
*dev
;
5241 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5242 if (!pci_dev_trylock(dev
))
5244 if (dev
->subordinate
) {
5245 if (!pci_bus_trylock(dev
->subordinate
)) {
5246 pci_dev_unlock(dev
);
5254 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
5255 if (dev
->subordinate
)
5256 pci_bus_unlock(dev
->subordinate
);
5257 pci_dev_unlock(dev
);
5262 /* Do any devices on or below this slot prevent a bus reset? */
5263 static bool pci_slot_resetable(struct pci_slot
*slot
)
5265 struct pci_dev
*dev
;
5267 if (slot
->bus
->self
&&
5268 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5271 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5272 if (!dev
->slot
|| dev
->slot
!= slot
)
5274 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5275 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5282 /* Lock devices from the top of the tree down */
5283 static void pci_slot_lock(struct pci_slot
*slot
)
5285 struct pci_dev
*dev
;
5287 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5288 if (!dev
->slot
|| dev
->slot
!= slot
)
5291 if (dev
->subordinate
)
5292 pci_bus_lock(dev
->subordinate
);
5296 /* Unlock devices from the bottom of the tree up */
5297 static void pci_slot_unlock(struct pci_slot
*slot
)
5299 struct pci_dev
*dev
;
5301 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5302 if (!dev
->slot
|| dev
->slot
!= slot
)
5304 if (dev
->subordinate
)
5305 pci_bus_unlock(dev
->subordinate
);
5306 pci_dev_unlock(dev
);
5310 /* Return 1 on successful lock, 0 on contention */
5311 static int pci_slot_trylock(struct pci_slot
*slot
)
5313 struct pci_dev
*dev
;
5315 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5316 if (!dev
->slot
|| dev
->slot
!= slot
)
5318 if (!pci_dev_trylock(dev
))
5320 if (dev
->subordinate
) {
5321 if (!pci_bus_trylock(dev
->subordinate
)) {
5322 pci_dev_unlock(dev
);
5330 list_for_each_entry_continue_reverse(dev
,
5331 &slot
->bus
->devices
, bus_list
) {
5332 if (!dev
->slot
|| dev
->slot
!= slot
)
5334 if (dev
->subordinate
)
5335 pci_bus_unlock(dev
->subordinate
);
5336 pci_dev_unlock(dev
);
5342 * Save and disable devices from the top of the tree down while holding
5343 * the @dev mutex lock for the entire tree.
5345 static void pci_bus_save_and_disable_locked(struct pci_bus
*bus
)
5347 struct pci_dev
*dev
;
5349 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5350 pci_dev_save_and_disable(dev
);
5351 if (dev
->subordinate
)
5352 pci_bus_save_and_disable_locked(dev
->subordinate
);
5357 * Restore devices from top of the tree down while holding @dev mutex lock
5358 * for the entire tree. Parent bridges need to be restored before we can
5359 * get to subordinate devices.
5361 static void pci_bus_restore_locked(struct pci_bus
*bus
)
5363 struct pci_dev
*dev
;
5365 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5366 pci_dev_restore(dev
);
5367 if (dev
->subordinate
)
5368 pci_bus_restore_locked(dev
->subordinate
);
5373 * Save and disable devices from the top of the tree down while holding
5374 * the @dev mutex lock for the entire tree.
5376 static void pci_slot_save_and_disable_locked(struct pci_slot
*slot
)
5378 struct pci_dev
*dev
;
5380 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5381 if (!dev
->slot
|| dev
->slot
!= slot
)
5383 pci_dev_save_and_disable(dev
);
5384 if (dev
->subordinate
)
5385 pci_bus_save_and_disable_locked(dev
->subordinate
);
5390 * Restore devices from top of the tree down while holding @dev mutex lock
5391 * for the entire tree. Parent bridges need to be restored before we can
5392 * get to subordinate devices.
5394 static void pci_slot_restore_locked(struct pci_slot
*slot
)
5396 struct pci_dev
*dev
;
5398 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5399 if (!dev
->slot
|| dev
->slot
!= slot
)
5401 pci_dev_restore(dev
);
5402 if (dev
->subordinate
)
5403 pci_bus_restore_locked(dev
->subordinate
);
5407 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
5411 if (!slot
|| !pci_slot_resetable(slot
))
5415 pci_slot_lock(slot
);
5419 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5422 pci_slot_unlock(slot
);
5428 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5429 * @slot: PCI slot to probe
5431 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5433 int pci_probe_reset_slot(struct pci_slot
*slot
)
5435 return pci_slot_reset(slot
, 1);
5437 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5440 * __pci_reset_slot - Try to reset a PCI slot
5441 * @slot: PCI slot to reset
5443 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5444 * independent of other slots. For instance, some slots may support slot power
5445 * control. In the case of a 1:1 bus to slot architecture, this function may
5446 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5447 * Generally a slot reset should be attempted before a bus reset. All of the
5448 * function of the slot and any subordinate buses behind the slot are reset
5449 * through this function. PCI config space of all devices in the slot and
5450 * behind the slot is saved before and restored after reset.
5452 * Same as above except return -EAGAIN if the slot cannot be locked
5454 static int __pci_reset_slot(struct pci_slot
*slot
)
5458 rc
= pci_slot_reset(slot
, 1);
5462 if (pci_slot_trylock(slot
)) {
5463 pci_slot_save_and_disable_locked(slot
);
5465 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
5466 pci_slot_restore_locked(slot
);
5467 pci_slot_unlock(slot
);
5474 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
5478 if (!bus
->self
|| !pci_bus_resetable(bus
))
5488 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5490 pci_bus_unlock(bus
);
5496 * pci_bus_error_reset - reset the bridge's subordinate bus
5497 * @bridge: The parent device that connects to the bus to reset
5499 * This function will first try to reset the slots on this bus if the method is
5500 * available. If slot reset fails or is not available, this will fall back to a
5501 * secondary bus reset.
5503 int pci_bus_error_reset(struct pci_dev
*bridge
)
5505 struct pci_bus
*bus
= bridge
->subordinate
;
5506 struct pci_slot
*slot
;
5511 mutex_lock(&pci_slot_mutex
);
5512 if (list_empty(&bus
->slots
))
5515 list_for_each_entry(slot
, &bus
->slots
, list
)
5516 if (pci_probe_reset_slot(slot
))
5519 list_for_each_entry(slot
, &bus
->slots
, list
)
5520 if (pci_slot_reset(slot
, 0))
5523 mutex_unlock(&pci_slot_mutex
);
5526 mutex_unlock(&pci_slot_mutex
);
5527 return pci_bus_reset(bridge
->subordinate
, 0);
5531 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5532 * @bus: PCI bus to probe
5534 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5536 int pci_probe_reset_bus(struct pci_bus
*bus
)
5538 return pci_bus_reset(bus
, 1);
5540 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5543 * __pci_reset_bus - Try to reset a PCI bus
5544 * @bus: top level PCI bus to reset
5546 * Same as above except return -EAGAIN if the bus cannot be locked
5548 static int __pci_reset_bus(struct pci_bus
*bus
)
5552 rc
= pci_bus_reset(bus
, 1);
5556 if (pci_bus_trylock(bus
)) {
5557 pci_bus_save_and_disable_locked(bus
);
5559 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5560 pci_bus_restore_locked(bus
);
5561 pci_bus_unlock(bus
);
5569 * pci_reset_bus - Try to reset a PCI bus
5570 * @pdev: top level PCI device to reset via slot/bus
5572 * Same as above except return -EAGAIN if the bus cannot be locked
5574 int pci_reset_bus(struct pci_dev
*pdev
)
5576 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5577 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5579 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5582 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5583 * @dev: PCI device to query
5585 * Returns mmrbc: maximum designed memory read count in bytes or
5586 * appropriate error value.
5588 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5593 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5597 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5600 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
5602 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5605 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5606 * @dev: PCI device to query
5608 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5611 int pcix_get_mmrbc(struct pci_dev
*dev
)
5616 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5620 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5623 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
5625 EXPORT_SYMBOL(pcix_get_mmrbc
);
5628 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5629 * @dev: PCI device to query
5630 * @mmrbc: maximum memory read count in bytes
5631 * valid values are 512, 1024, 2048, 4096
5633 * If possible sets maximum memory read byte count, some bridges have errata
5634 * that prevent this.
5636 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5642 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5645 v
= ffs(mmrbc
) - 10;
5647 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5651 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5654 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
5657 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5660 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
5662 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
5665 cmd
&= ~PCI_X_CMD_MAX_READ
;
5667 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
5672 EXPORT_SYMBOL(pcix_set_mmrbc
);
5675 * pcie_get_readrq - get PCI Express read request size
5676 * @dev: PCI device to query
5678 * Returns maximum memory read request in bytes or appropriate error value.
5680 int pcie_get_readrq(struct pci_dev
*dev
)
5684 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5686 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5688 EXPORT_SYMBOL(pcie_get_readrq
);
5691 * pcie_set_readrq - set PCI Express maximum memory read request
5692 * @dev: PCI device to query
5693 * @rq: maximum memory read count in bytes
5694 * valid values are 128, 256, 512, 1024, 2048, 4096
5696 * If possible sets maximum memory read request in bytes
5698 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
5702 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
5706 * If using the "performance" PCIe config, we clamp the read rq
5707 * size to the max packet size to keep the host bridge from
5708 * generating requests larger than we can cope with.
5710 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
5711 int mps
= pcie_get_mps(dev
);
5717 v
= (ffs(rq
) - 8) << 12;
5719 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5720 PCI_EXP_DEVCTL_READRQ
, v
);
5722 EXPORT_SYMBOL(pcie_set_readrq
);
5725 * pcie_get_mps - get PCI Express maximum payload size
5726 * @dev: PCI device to query
5728 * Returns maximum payload size in bytes
5730 int pcie_get_mps(struct pci_dev
*dev
)
5734 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5736 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5738 EXPORT_SYMBOL(pcie_get_mps
);
5741 * pcie_set_mps - set PCI Express maximum payload size
5742 * @dev: PCI device to query
5743 * @mps: maximum payload size in bytes
5744 * valid values are 128, 256, 512, 1024, 2048, 4096
5746 * If possible sets maximum payload size
5748 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
5752 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
5756 if (v
> dev
->pcie_mpss
)
5760 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5761 PCI_EXP_DEVCTL_PAYLOAD
, v
);
5763 EXPORT_SYMBOL(pcie_set_mps
);
5766 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5767 * device and its bandwidth limitation
5768 * @dev: PCI device to query
5769 * @limiting_dev: storage for device causing the bandwidth limitation
5770 * @speed: storage for speed of limiting device
5771 * @width: storage for width of limiting device
5773 * Walk up the PCI device chain and find the point where the minimum
5774 * bandwidth is available. Return the bandwidth available there and (if
5775 * limiting_dev, speed, and width pointers are supplied) information about
5776 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5779 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
5780 enum pci_bus_speed
*speed
,
5781 enum pcie_link_width
*width
)
5784 enum pci_bus_speed next_speed
;
5785 enum pcie_link_width next_width
;
5789 *speed
= PCI_SPEED_UNKNOWN
;
5791 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
5796 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
5798 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
5799 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
5800 PCI_EXP_LNKSTA_NLW_SHIFT
;
5802 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
5804 /* Check if current device limits the total bandwidth */
5805 if (!bw
|| next_bw
<= bw
) {
5809 *limiting_dev
= dev
;
5811 *speed
= next_speed
;
5813 *width
= next_width
;
5816 dev
= pci_upstream_bridge(dev
);
5821 EXPORT_SYMBOL(pcie_bandwidth_available
);
5824 * pcie_get_speed_cap - query for the PCI device's link speed capability
5825 * @dev: PCI device to query
5827 * Query the PCI device speed capability. Return the maximum link speed
5828 * supported by the device.
5830 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
5832 u32 lnkcap2
, lnkcap
;
5835 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5836 * implementation note there recommends using the Supported Link
5837 * Speeds Vector in Link Capabilities 2 when supported.
5839 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5840 * should use the Supported Link Speeds field in Link Capabilities,
5841 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5843 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
5845 /* PCIe r3.0-compliant */
5847 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2
);
5849 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5850 if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_5_0GB
)
5851 return PCIE_SPEED_5_0GT
;
5852 else if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_2_5GB
)
5853 return PCIE_SPEED_2_5GT
;
5855 return PCI_SPEED_UNKNOWN
;
5857 EXPORT_SYMBOL(pcie_get_speed_cap
);
5860 * pcie_get_width_cap - query for the PCI device's link width capability
5861 * @dev: PCI device to query
5863 * Query the PCI device width capability. Return the maximum link width
5864 * supported by the device.
5866 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
5870 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5872 return (lnkcap
& PCI_EXP_LNKCAP_MLW
) >> 4;
5874 return PCIE_LNK_WIDTH_UNKNOWN
;
5876 EXPORT_SYMBOL(pcie_get_width_cap
);
5879 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5881 * @speed: storage for link speed
5882 * @width: storage for link width
5884 * Calculate a PCI device's link bandwidth by querying for its link speed
5885 * and width, multiplying them, and applying encoding overhead. The result
5886 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5888 u32
pcie_bandwidth_capable(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
5889 enum pcie_link_width
*width
)
5891 *speed
= pcie_get_speed_cap(dev
);
5892 *width
= pcie_get_width_cap(dev
);
5894 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
5897 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
5901 * __pcie_print_link_status - Report the PCI device's link speed and width
5902 * @dev: PCI device to query
5903 * @verbose: Print info even when enough bandwidth is available
5905 * If the available bandwidth at the device is less than the device is
5906 * capable of, report the device's maximum possible bandwidth and the
5907 * upstream link that limits its performance. If @verbose, always print
5908 * the available bandwidth, even if the device isn't constrained.
5910 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
5912 enum pcie_link_width width
, width_cap
;
5913 enum pci_bus_speed speed
, speed_cap
;
5914 struct pci_dev
*limiting_dev
= NULL
;
5915 u32 bw_avail
, bw_cap
;
5917 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
5918 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
5920 if (bw_avail
>= bw_cap
&& verbose
)
5921 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5922 bw_cap
/ 1000, bw_cap
% 1000,
5923 pci_speed_string(speed_cap
), width_cap
);
5924 else if (bw_avail
< bw_cap
)
5925 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5926 bw_avail
/ 1000, bw_avail
% 1000,
5927 pci_speed_string(speed
), width
,
5928 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
5929 bw_cap
/ 1000, bw_cap
% 1000,
5930 pci_speed_string(speed_cap
), width_cap
);
5934 * pcie_print_link_status - Report the PCI device's link speed and width
5935 * @dev: PCI device to query
5937 * Report the available bandwidth at the device.
5939 void pcie_print_link_status(struct pci_dev
*dev
)
5941 __pcie_print_link_status(dev
, true);
5943 EXPORT_SYMBOL(pcie_print_link_status
);
5946 * pci_select_bars - Make BAR mask from the type of resource
5947 * @dev: the PCI device for which BAR mask is made
5948 * @flags: resource type mask to be selected
5950 * This helper routine makes bar mask from the type of resource.
5952 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
5955 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
5956 if (pci_resource_flags(dev
, i
) & flags
)
5960 EXPORT_SYMBOL(pci_select_bars
);
5962 /* Some architectures require additional programming to enable VGA */
5963 static arch_set_vga_state_t arch_set_vga_state
;
5965 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
5967 arch_set_vga_state
= func
; /* NULL disables */
5970 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
5971 unsigned int command_bits
, u32 flags
)
5973 if (arch_set_vga_state
)
5974 return arch_set_vga_state(dev
, decode
, command_bits
,
5980 * pci_set_vga_state - set VGA decode state on device and parents if requested
5981 * @dev: the PCI device
5982 * @decode: true = enable decoding, false = disable decoding
5983 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5984 * @flags: traverse ancestors and change bridges
5985 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5987 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
5988 unsigned int command_bits
, u32 flags
)
5990 struct pci_bus
*bus
;
5991 struct pci_dev
*bridge
;
5995 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
5997 /* ARCH specific VGA enables */
5998 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
6002 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
6003 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
6005 cmd
|= command_bits
;
6007 cmd
&= ~command_bits
;
6008 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
6011 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
6018 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6021 cmd
|= PCI_BRIDGE_CTL_VGA
;
6023 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
6024 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6033 bool pci_pr3_present(struct pci_dev
*pdev
)
6035 struct acpi_device
*adev
;
6040 adev
= ACPI_COMPANION(&pdev
->dev
);
6044 return adev
->power
.flags
.power_resources
&&
6045 acpi_has_method(adev
->handle
, "_PR3");
6047 EXPORT_SYMBOL_GPL(pci_pr3_present
);
6051 * pci_add_dma_alias - Add a DMA devfn alias for a device
6052 * @dev: the PCI device for which alias is added
6053 * @devfn_from: alias slot and function
6054 * @nr_devfns: number of subsequent devfns to alias
6056 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6057 * which is used to program permissible bus-devfn source addresses for DMA
6058 * requests in an IOMMU. These aliases factor into IOMMU group creation
6059 * and are useful for devices generating DMA requests beyond or different
6060 * from their logical bus-devfn. Examples include device quirks where the
6061 * device simply uses the wrong devfn, as well as non-transparent bridges
6062 * where the alias may be a proxy for devices in another domain.
6064 * IOMMU group creation is performed during device discovery or addition,
6065 * prior to any potential DMA mapping and therefore prior to driver probing
6066 * (especially for userspace assigned devices where IOMMU group definition
6067 * cannot be left as a userspace activity). DMA aliases should therefore
6068 * be configured via quirks, such as the PCI fixup header quirk.
6070 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn_from
, unsigned nr_devfns
)
6074 nr_devfns
= min(nr_devfns
, (unsigned) MAX_NR_DEVFNS
- devfn_from
);
6075 devfn_to
= devfn_from
+ nr_devfns
- 1;
6077 if (!dev
->dma_alias_mask
)
6078 dev
->dma_alias_mask
= bitmap_zalloc(MAX_NR_DEVFNS
, GFP_KERNEL
);
6079 if (!dev
->dma_alias_mask
) {
6080 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
6084 bitmap_set(dev
->dma_alias_mask
, devfn_from
, nr_devfns
);
6087 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
6088 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
));
6089 else if (nr_devfns
> 1)
6090 pci_info(dev
, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6091 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
),
6092 PCI_SLOT(devfn_to
), PCI_FUNC(devfn_to
));
6095 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
6097 return (dev1
->dma_alias_mask
&&
6098 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
6099 (dev2
->dma_alias_mask
&&
6100 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
)) ||
6101 pci_real_dma_dev(dev1
) == dev2
||
6102 pci_real_dma_dev(dev2
) == dev1
;
6105 bool pci_device_is_present(struct pci_dev
*pdev
)
6109 if (pci_dev_is_disconnected(pdev
))
6111 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
6113 EXPORT_SYMBOL_GPL(pci_device_is_present
);
6115 void pci_ignore_hotplug(struct pci_dev
*dev
)
6117 struct pci_dev
*bridge
= dev
->bus
->self
;
6119 dev
->ignore_hotplug
= 1;
6120 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6122 bridge
->ignore_hotplug
= 1;
6124 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
6127 * pci_real_dma_dev - Get PCI DMA device for PCI device
6128 * @dev: the PCI device that may have a PCI DMA alias
6130 * Permits the platform to provide architecture-specific functionality to
6131 * devices needing to alias DMA to another PCI device on another PCI bus. If
6132 * the PCI device is on the same bus, it is recommended to use
6133 * pci_add_dma_alias(). This is the default implementation. Architecture
6134 * implementations can override this.
6136 struct pci_dev __weak
*pci_real_dma_dev(struct pci_dev
*dev
)
6141 resource_size_t __weak
pcibios_default_alignment(void)
6147 * Arches that don't want to expose struct resource to userland as-is in
6148 * sysfs and /proc can implement their own pci_resource_to_user().
6150 void __weak
pci_resource_to_user(const struct pci_dev
*dev
, int bar
,
6151 const struct resource
*rsrc
,
6152 resource_size_t
*start
, resource_size_t
*end
)
6154 *start
= rsrc
->start
;
6158 static char *resource_alignment_param
;
6159 static DEFINE_SPINLOCK(resource_alignment_lock
);
6162 * pci_specified_resource_alignment - get resource alignment specified by user.
6163 * @dev: the PCI device to get
6164 * @resize: whether or not to change resources' size when reassigning alignment
6166 * RETURNS: Resource alignment if it is specified.
6167 * Zero if it is not specified.
6169 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
6172 int align_order
, count
;
6173 resource_size_t align
= pcibios_default_alignment();
6177 spin_lock(&resource_alignment_lock
);
6178 p
= resource_alignment_param
;
6181 if (pci_has_flag(PCI_PROBE_ONLY
)) {
6183 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6189 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
6196 ret
= pci_dev_str_match(dev
, p
, &p
);
6199 if (align_order
== -1)
6202 align
= 1 << align_order
;
6204 } else if (ret
< 0) {
6205 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6210 if (*p
!= ';' && *p
!= ',') {
6211 /* End of param or invalid format */
6217 spin_unlock(&resource_alignment_lock
);
6221 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
6222 resource_size_t align
, bool resize
)
6224 struct resource
*r
= &dev
->resource
[bar
];
6225 resource_size_t size
;
6227 if (!(r
->flags
& IORESOURCE_MEM
))
6230 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
6231 pci_info(dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
6232 bar
, r
, (unsigned long long)align
);
6236 size
= resource_size(r
);
6241 * Increase the alignment of the resource. There are two ways we
6244 * 1) Increase the size of the resource. BARs are aligned on their
6245 * size, so when we reallocate space for this resource, we'll
6246 * allocate it with the larger alignment. This also prevents
6247 * assignment of any other BARs inside the alignment region, so
6248 * if we're requesting page alignment, this means no other BARs
6249 * will share the page.
6251 * The disadvantage is that this makes the resource larger than
6252 * the hardware BAR, which may break drivers that compute things
6253 * based on the resource size, e.g., to find registers at a
6254 * fixed offset before the end of the BAR.
6256 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6257 * set r->start to the desired alignment. By itself this
6258 * doesn't prevent other BARs being put inside the alignment
6259 * region, but if we realign *every* resource of every device in
6260 * the system, none of them will share an alignment region.
6262 * When the user has requested alignment for only some devices via
6263 * the "pci=resource_alignment" argument, "resize" is true and we
6264 * use the first method. Otherwise we assume we're aligning all
6265 * devices and we use the second.
6268 pci_info(dev
, "BAR%d %pR: requesting alignment to %#llx\n",
6269 bar
, r
, (unsigned long long)align
);
6275 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
6276 r
->flags
|= IORESOURCE_STARTALIGN
;
6278 r
->end
= r
->start
+ size
- 1;
6280 r
->flags
|= IORESOURCE_UNSET
;
6284 * This function disables memory decoding and releases memory resources
6285 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6286 * It also rounds up size to specified alignment.
6287 * Later on, the kernel will assign page-aligned memory resource back
6290 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
6294 resource_size_t align
;
6296 bool resize
= false;
6299 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6300 * 3.4.1.11. Their resources are allocated from the space
6301 * described by the VF BARx register in the PF's SR-IOV capability.
6302 * We can't influence their alignment here.
6307 /* check if specified PCI is target device to reassign */
6308 align
= pci_specified_resource_alignment(dev
, &resize
);
6312 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
6313 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
6314 pci_warn(dev
, "Can't reassign resources to host bridge\n");
6318 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
6319 command
&= ~PCI_COMMAND_MEMORY
;
6320 pci_write_config_word(dev
, PCI_COMMAND
, command
);
6322 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
6323 pci_request_resource_alignment(dev
, i
, align
, resize
);
6326 * Need to disable bridge's resource window,
6327 * to enable the kernel to reassign new resource
6330 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
6331 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6332 r
= &dev
->resource
[i
];
6333 if (!(r
->flags
& IORESOURCE_MEM
))
6335 r
->flags
|= IORESOURCE_UNSET
;
6336 r
->end
= resource_size(r
) - 1;
6339 pci_disable_bridge_window(dev
);
6343 static ssize_t
resource_alignment_show(struct bus_type
*bus
, char *buf
)
6347 spin_lock(&resource_alignment_lock
);
6348 if (resource_alignment_param
)
6349 count
= snprintf(buf
, PAGE_SIZE
, "%s", resource_alignment_param
);
6350 spin_unlock(&resource_alignment_lock
);
6353 * When set by the command line, resource_alignment_param will not
6354 * have a trailing line feed, which is ugly. So conditionally add
6357 if (count
>= 2 && buf
[count
- 2] != '\n' && count
< PAGE_SIZE
- 1) {
6358 buf
[count
- 1] = '\n';
6365 static ssize_t
resource_alignment_store(struct bus_type
*bus
,
6366 const char *buf
, size_t count
)
6368 char *param
= kstrndup(buf
, count
, GFP_KERNEL
);
6373 spin_lock(&resource_alignment_lock
);
6374 kfree(resource_alignment_param
);
6375 resource_alignment_param
= param
;
6376 spin_unlock(&resource_alignment_lock
);
6380 static BUS_ATTR_RW(resource_alignment
);
6382 static int __init
pci_resource_alignment_sysfs_init(void)
6384 return bus_create_file(&pci_bus_type
,
6385 &bus_attr_resource_alignment
);
6387 late_initcall(pci_resource_alignment_sysfs_init
);
6389 static void pci_no_domains(void)
6391 #ifdef CONFIG_PCI_DOMAINS
6392 pci_domains_supported
= 0;
6396 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6397 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
6399 static int pci_get_new_domain_nr(void)
6401 return atomic_inc_return(&__domain_nr
);
6404 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6406 static int use_dt_domains
= -1;
6410 domain
= of_get_pci_domain_nr(parent
->of_node
);
6413 * Check DT domain and use_dt_domains values.
6415 * If DT domain property is valid (domain >= 0) and
6416 * use_dt_domains != 0, the DT assignment is valid since this means
6417 * we have not previously allocated a domain number by using
6418 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6419 * 1, to indicate that we have just assigned a domain number from
6422 * If DT domain property value is not valid (ie domain < 0), and we
6423 * have not previously assigned a domain number from DT
6424 * (use_dt_domains != 1) we should assign a domain number by
6427 * pci_get_new_domain_nr()
6429 * API and update the use_dt_domains value to keep track of method we
6430 * are using to assign domain numbers (use_dt_domains = 0).
6432 * All other combinations imply we have a platform that is trying
6433 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6434 * which is a recipe for domain mishandling and it is prevented by
6435 * invalidating the domain value (domain = -1) and printing a
6436 * corresponding error.
6438 if (domain
>= 0 && use_dt_domains
) {
6440 } else if (domain
< 0 && use_dt_domains
!= 1) {
6442 domain
= pci_get_new_domain_nr();
6445 pr_err("Node %pOF has ", parent
->of_node
);
6446 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6453 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6455 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6456 acpi_pci_bus_find_domain_nr(bus
);
6461 * pci_ext_cfg_avail - can we access extended PCI config space?
6463 * Returns 1 if we can access PCI extended config space (offsets
6464 * greater than 0xff). This is the default implementation. Architecture
6465 * implementations can override this.
6467 int __weak
pci_ext_cfg_avail(void)
6472 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6475 EXPORT_SYMBOL(pci_fixup_cardbus
);
6477 static int __init
pci_setup(char *str
)
6480 char *k
= strchr(str
, ',');
6483 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6484 if (!strcmp(str
, "nomsi")) {
6486 } else if (!strncmp(str
, "noats", 5)) {
6487 pr_info("PCIe: ATS is disabled\n");
6488 pcie_ats_disabled
= true;
6489 } else if (!strcmp(str
, "noaer")) {
6491 } else if (!strcmp(str
, "earlydump")) {
6492 pci_early_dump
= true;
6493 } else if (!strncmp(str
, "realloc=", 8)) {
6494 pci_realloc_get_opt(str
+ 8);
6495 } else if (!strncmp(str
, "realloc", 7)) {
6496 pci_realloc_get_opt("on");
6497 } else if (!strcmp(str
, "nodomains")) {
6499 } else if (!strncmp(str
, "noari", 5)) {
6500 pcie_ari_disabled
= true;
6501 } else if (!strncmp(str
, "cbiosize=", 9)) {
6502 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6503 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6504 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6505 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6506 resource_alignment_param
= str
+ 19;
6507 } else if (!strncmp(str
, "ecrc=", 5)) {
6508 pcie_ecrc_get_policy(str
+ 5);
6509 } else if (!strncmp(str
, "hpiosize=", 9)) {
6510 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6511 } else if (!strncmp(str
, "hpmmiosize=", 11)) {
6512 pci_hotplug_mmio_size
= memparse(str
+ 11, &str
);
6513 } else if (!strncmp(str
, "hpmmioprefsize=", 15)) {
6514 pci_hotplug_mmio_pref_size
= memparse(str
+ 15, &str
);
6515 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6516 pci_hotplug_mmio_size
= memparse(str
+ 10, &str
);
6517 pci_hotplug_mmio_pref_size
= pci_hotplug_mmio_size
;
6518 } else if (!strncmp(str
, "hpbussize=", 10)) {
6519 pci_hotplug_bus_size
=
6520 simple_strtoul(str
+ 10, &str
, 0);
6521 if (pci_hotplug_bus_size
> 0xff)
6522 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6523 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6524 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6525 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6526 pcie_bus_config
= PCIE_BUS_SAFE
;
6527 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6528 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6529 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6530 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6531 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6532 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6533 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6534 disable_acs_redir_param
= str
+ 18;
6536 pr_err("PCI: Unknown option `%s'\n", str
);
6543 early_param("pci", pci_setup
);
6546 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6547 * in pci_setup(), above, to point to data in the __initdata section which
6548 * will be freed after the init sequence is complete. We can't allocate memory
6549 * in pci_setup() because some architectures do not have any memory allocation
6550 * service available during an early_param() call. So we allocate memory and
6551 * copy the variable here before the init section is freed.
6554 static int __init
pci_realloc_setup_params(void)
6556 resource_alignment_param
= kstrdup(resource_alignment_param
,
6558 disable_acs_redir_param
= kstrdup(disable_acs_redir_param
, GFP_KERNEL
);
6562 pure_initcall(pci_realloc_setup_params
);