gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / ptp / ptp_clock.c
blobacabbe72e55eb94a0049225aac7a5e405a6653c7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PTP 1588 clock support
5 * Copyright (C) 2010 OMICRON electronics GmbH
6 */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
20 #include "ptp_private.h"
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27 /* private globals */
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
32 static DEFINE_IDA(ptp_clocks_map);
34 /* time stamp event queue operations */
36 static inline int queue_free(struct timestamp_event_queue *q)
38 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 struct ptp_clock_event *src)
44 struct ptp_extts_event *dst;
45 unsigned long flags;
46 s64 seconds;
47 u32 remainder;
49 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51 spin_lock_irqsave(&queue->lock, flags);
53 dst = &queue->buf[queue->tail];
54 dst->index = src->index;
55 dst->t.sec = seconds;
56 dst->t.nsec = remainder;
58 if (!queue_free(queue))
59 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63 spin_unlock_irqrestore(&queue->lock, flags);
66 s32 scaled_ppm_to_ppb(long ppm)
69 * The 'freq' field in the 'struct timex' is in parts per
70 * million, but with a 16 bit binary fractional field.
72 * We want to calculate
74 * ppb = scaled_ppm * 1000 / 2^16
76 * which simplifies to
78 * ppb = scaled_ppm * 125 / 2^13
80 s64 ppb = 1 + ppm;
81 ppb *= 125;
82 ppb >>= 13;
83 return (s32) ppb;
85 EXPORT_SYMBOL(scaled_ppm_to_ppb);
87 /* posix clock implementation */
89 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
91 tp->tv_sec = 0;
92 tp->tv_nsec = 1;
93 return 0;
96 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
98 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
100 return ptp->info->settime64(ptp->info, tp);
103 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
105 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106 int err;
108 if (ptp->info->gettimex64)
109 err = ptp->info->gettimex64(ptp->info, tp, NULL);
110 else
111 err = ptp->info->gettime64(ptp->info, tp);
112 return err;
115 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
117 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118 struct ptp_clock_info *ops;
119 int err = -EOPNOTSUPP;
121 ops = ptp->info;
123 if (tx->modes & ADJ_SETOFFSET) {
124 struct timespec64 ts;
125 ktime_t kt;
126 s64 delta;
128 ts.tv_sec = tx->time.tv_sec;
129 ts.tv_nsec = tx->time.tv_usec;
131 if (!(tx->modes & ADJ_NANO))
132 ts.tv_nsec *= 1000;
134 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135 return -EINVAL;
137 kt = timespec64_to_ktime(ts);
138 delta = ktime_to_ns(kt);
139 err = ops->adjtime(ops, delta);
140 } else if (tx->modes & ADJ_FREQUENCY) {
141 s32 ppb = scaled_ppm_to_ppb(tx->freq);
142 if (ppb > ops->max_adj || ppb < -ops->max_adj)
143 return -ERANGE;
144 if (ops->adjfine)
145 err = ops->adjfine(ops, tx->freq);
146 else
147 err = ops->adjfreq(ops, ppb);
148 ptp->dialed_frequency = tx->freq;
149 } else if (tx->modes == 0) {
150 tx->freq = ptp->dialed_frequency;
151 err = 0;
154 return err;
157 static struct posix_clock_operations ptp_clock_ops = {
158 .owner = THIS_MODULE,
159 .clock_adjtime = ptp_clock_adjtime,
160 .clock_gettime = ptp_clock_gettime,
161 .clock_getres = ptp_clock_getres,
162 .clock_settime = ptp_clock_settime,
163 .ioctl = ptp_ioctl,
164 .open = ptp_open,
165 .poll = ptp_poll,
166 .read = ptp_read,
169 static void ptp_clock_release(struct device *dev)
171 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
173 ptp_cleanup_pin_groups(ptp);
174 mutex_destroy(&ptp->tsevq_mux);
175 mutex_destroy(&ptp->pincfg_mux);
176 ida_simple_remove(&ptp_clocks_map, ptp->index);
177 kfree(ptp);
180 static void ptp_aux_kworker(struct kthread_work *work)
182 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
183 aux_work.work);
184 struct ptp_clock_info *info = ptp->info;
185 long delay;
187 delay = info->do_aux_work(info);
189 if (delay >= 0)
190 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
193 /* public interface */
195 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
196 struct device *parent)
198 struct ptp_clock *ptp;
199 int err = 0, index, major = MAJOR(ptp_devt);
201 if (info->n_alarm > PTP_MAX_ALARMS)
202 return ERR_PTR(-EINVAL);
204 /* Initialize a clock structure. */
205 err = -ENOMEM;
206 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
207 if (ptp == NULL)
208 goto no_memory;
210 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
211 if (index < 0) {
212 err = index;
213 goto no_slot;
216 ptp->clock.ops = ptp_clock_ops;
217 ptp->info = info;
218 ptp->devid = MKDEV(major, index);
219 ptp->index = index;
220 spin_lock_init(&ptp->tsevq.lock);
221 mutex_init(&ptp->tsevq_mux);
222 mutex_init(&ptp->pincfg_mux);
223 init_waitqueue_head(&ptp->tsev_wq);
225 if (ptp->info->do_aux_work) {
226 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228 if (IS_ERR(ptp->kworker)) {
229 err = PTR_ERR(ptp->kworker);
230 pr_err("failed to create ptp aux_worker %d\n", err);
231 goto kworker_err;
235 err = ptp_populate_pin_groups(ptp);
236 if (err)
237 goto no_pin_groups;
239 /* Register a new PPS source. */
240 if (info->pps) {
241 struct pps_source_info pps;
242 memset(&pps, 0, sizeof(pps));
243 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
244 pps.mode = PTP_PPS_MODE;
245 pps.owner = info->owner;
246 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
247 if (IS_ERR(ptp->pps_source)) {
248 err = PTR_ERR(ptp->pps_source);
249 pr_err("failed to register pps source\n");
250 goto no_pps;
254 /* Initialize a new device of our class in our clock structure. */
255 device_initialize(&ptp->dev);
256 ptp->dev.devt = ptp->devid;
257 ptp->dev.class = ptp_class;
258 ptp->dev.parent = parent;
259 ptp->dev.groups = ptp->pin_attr_groups;
260 ptp->dev.release = ptp_clock_release;
261 dev_set_drvdata(&ptp->dev, ptp);
262 dev_set_name(&ptp->dev, "ptp%d", ptp->index);
264 /* Create a posix clock and link it to the device. */
265 err = posix_clock_register(&ptp->clock, &ptp->dev);
266 if (err) {
267 pr_err("failed to create posix clock\n");
268 goto no_clock;
271 return ptp;
273 no_clock:
274 if (ptp->pps_source)
275 pps_unregister_source(ptp->pps_source);
276 no_pps:
277 ptp_cleanup_pin_groups(ptp);
278 no_pin_groups:
279 if (ptp->kworker)
280 kthread_destroy_worker(ptp->kworker);
281 kworker_err:
282 mutex_destroy(&ptp->tsevq_mux);
283 mutex_destroy(&ptp->pincfg_mux);
284 ida_simple_remove(&ptp_clocks_map, index);
285 no_slot:
286 kfree(ptp);
287 no_memory:
288 return ERR_PTR(err);
290 EXPORT_SYMBOL(ptp_clock_register);
292 int ptp_clock_unregister(struct ptp_clock *ptp)
294 ptp->defunct = 1;
295 wake_up_interruptible(&ptp->tsev_wq);
297 if (ptp->kworker) {
298 kthread_cancel_delayed_work_sync(&ptp->aux_work);
299 kthread_destroy_worker(ptp->kworker);
302 /* Release the clock's resources. */
303 if (ptp->pps_source)
304 pps_unregister_source(ptp->pps_source);
306 posix_clock_unregister(&ptp->clock);
308 return 0;
310 EXPORT_SYMBOL(ptp_clock_unregister);
312 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
314 struct pps_event_time evt;
316 switch (event->type) {
318 case PTP_CLOCK_ALARM:
319 break;
321 case PTP_CLOCK_EXTTS:
322 enqueue_external_timestamp(&ptp->tsevq, event);
323 wake_up_interruptible(&ptp->tsev_wq);
324 break;
326 case PTP_CLOCK_PPS:
327 pps_get_ts(&evt);
328 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
329 break;
331 case PTP_CLOCK_PPSUSR:
332 pps_event(ptp->pps_source, &event->pps_times,
333 PTP_PPS_EVENT, NULL);
334 break;
337 EXPORT_SYMBOL(ptp_clock_event);
339 int ptp_clock_index(struct ptp_clock *ptp)
341 return ptp->index;
343 EXPORT_SYMBOL(ptp_clock_index);
345 int ptp_find_pin(struct ptp_clock *ptp,
346 enum ptp_pin_function func, unsigned int chan)
348 struct ptp_pin_desc *pin = NULL;
349 int i;
351 for (i = 0; i < ptp->info->n_pins; i++) {
352 if (ptp->info->pin_config[i].func == func &&
353 ptp->info->pin_config[i].chan == chan) {
354 pin = &ptp->info->pin_config[i];
355 break;
359 return pin ? i : -1;
361 EXPORT_SYMBOL(ptp_find_pin);
363 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
364 enum ptp_pin_function func, unsigned int chan)
366 int result;
368 mutex_lock(&ptp->pincfg_mux);
370 result = ptp_find_pin(ptp, func, chan);
372 mutex_unlock(&ptp->pincfg_mux);
374 return result;
376 EXPORT_SYMBOL(ptp_find_pin_unlocked);
378 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
380 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
382 EXPORT_SYMBOL(ptp_schedule_worker);
384 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
386 kthread_cancel_delayed_work_sync(&ptp->aux_work);
388 EXPORT_SYMBOL(ptp_cancel_worker_sync);
390 /* module operations */
392 static void __exit ptp_exit(void)
394 class_destroy(ptp_class);
395 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
396 ida_destroy(&ptp_clocks_map);
399 static int __init ptp_init(void)
401 int err;
403 ptp_class = class_create(THIS_MODULE, "ptp");
404 if (IS_ERR(ptp_class)) {
405 pr_err("ptp: failed to allocate class\n");
406 return PTR_ERR(ptp_class);
409 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
410 if (err < 0) {
411 pr_err("ptp: failed to allocate device region\n");
412 goto no_region;
415 ptp_class->dev_groups = ptp_groups;
416 pr_info("PTP clock support registered\n");
417 return 0;
419 no_region:
420 class_destroy(ptp_class);
421 return err;
424 subsys_initcall(ptp_init);
425 module_exit(ptp_exit);
427 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
428 MODULE_DESCRIPTION("PTP clocks support");
429 MODULE_LICENSE("GPL");