gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_elf_loader.c
blob16e2c496fd45a21274c8c9b0809aa030a2006191
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework Elf loader
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 * Sjur Brændeland <sjur.brandeland@stericsson.com>
18 #define pr_fmt(fmt) "%s: " fmt, __func__
20 #include <linux/module.h>
21 #include <linux/firmware.h>
22 #include <linux/remoteproc.h>
23 #include <linux/elf.h>
25 #include "remoteproc_internal.h"
26 #include "remoteproc_elf_helpers.h"
28 /**
29 * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image
30 * @rproc: the remote processor handle
31 * @fw: the ELF firmware image
33 * Make sure this fw image is sane (ie a correct ELF32/ELF64 file).
35 int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw)
37 const char *name = rproc->firmware;
38 struct device *dev = &rproc->dev;
40 * Elf files are beginning with the same structure. Thus, to simplify
41 * header parsing, we can use the elf32_hdr one for both elf64 and
42 * elf32.
44 struct elf32_hdr *ehdr;
45 u32 elf_shdr_get_size;
46 u64 phoff, shoff;
47 char class;
48 u16 phnum;
50 if (!fw) {
51 dev_err(dev, "failed to load %s\n", name);
52 return -EINVAL;
55 if (fw->size < sizeof(struct elf32_hdr)) {
56 dev_err(dev, "Image is too small\n");
57 return -EINVAL;
60 ehdr = (struct elf32_hdr *)fw->data;
62 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
63 dev_err(dev, "Image is corrupted (bad magic)\n");
64 return -EINVAL;
67 class = ehdr->e_ident[EI_CLASS];
68 if (class != ELFCLASS32 && class != ELFCLASS64) {
69 dev_err(dev, "Unsupported class: %d\n", class);
70 return -EINVAL;
73 if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) {
74 dev_err(dev, "elf64 header is too small\n");
75 return -EINVAL;
78 /* We assume the firmware has the same endianness as the host */
79 # ifdef __LITTLE_ENDIAN
80 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
81 # else /* BIG ENDIAN */
82 if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
83 # endif
84 dev_err(dev, "Unsupported firmware endianness\n");
85 return -EINVAL;
88 phoff = elf_hdr_get_e_phoff(class, fw->data);
89 shoff = elf_hdr_get_e_shoff(class, fw->data);
90 phnum = elf_hdr_get_e_phnum(class, fw->data);
91 elf_shdr_get_size = elf_size_of_shdr(class);
93 if (fw->size < shoff + elf_shdr_get_size) {
94 dev_err(dev, "Image is too small\n");
95 return -EINVAL;
98 if (phnum == 0) {
99 dev_err(dev, "No loadable segments\n");
100 return -EINVAL;
103 if (phoff > fw->size) {
104 dev_err(dev, "Firmware size is too small\n");
105 return -EINVAL;
108 dev_dbg(dev, "Firmware is an elf%d file\n",
109 class == ELFCLASS32 ? 32 : 64);
111 return 0;
113 EXPORT_SYMBOL(rproc_elf_sanity_check);
116 * rproc_elf_sanity_check() - Sanity Check ELF32 firmware image
117 * @rproc: the remote processor handle
118 * @fw: the ELF32 firmware image
120 * Make sure this fw image is sane.
122 int rproc_elf32_sanity_check(struct rproc *rproc, const struct firmware *fw)
124 int ret = rproc_elf_sanity_check(rproc, fw);
126 if (ret)
127 return ret;
129 if (fw_elf_get_class(fw) == ELFCLASS32)
130 return 0;
132 return -EINVAL;
134 EXPORT_SYMBOL(rproc_elf32_sanity_check);
137 * rproc_elf_get_boot_addr() - Get rproc's boot address.
138 * @rproc: the remote processor handle
139 * @fw: the ELF firmware image
141 * This function returns the entry point address of the ELF
142 * image.
144 * Note that the boot address is not a configurable property of all remote
145 * processors. Some will always boot at a specific hard-coded address.
147 u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw)
149 return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data);
151 EXPORT_SYMBOL(rproc_elf_get_boot_addr);
154 * rproc_elf_load_segments() - load firmware segments to memory
155 * @rproc: remote processor which will be booted using these fw segments
156 * @fw: the ELF firmware image
158 * This function loads the firmware segments to memory, where the remote
159 * processor expects them.
161 * Some remote processors will expect their code and data to be placed
162 * in specific device addresses, and can't have them dynamically assigned.
164 * We currently support only those kind of remote processors, and expect
165 * the program header's paddr member to contain those addresses. We then go
166 * through the physically contiguous "carveout" memory regions which we
167 * allocated (and mapped) earlier on behalf of the remote processor,
168 * and "translate" device address to kernel addresses, so we can copy the
169 * segments where they are expected.
171 * Currently we only support remote processors that required carveout
172 * allocations and got them mapped onto their iommus. Some processors
173 * might be different: they might not have iommus, and would prefer to
174 * directly allocate memory for every segment/resource. This is not yet
175 * supported, though.
177 int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
179 struct device *dev = &rproc->dev;
180 const void *ehdr, *phdr;
181 int i, ret = 0;
182 u16 phnum;
183 const u8 *elf_data = fw->data;
184 u8 class = fw_elf_get_class(fw);
185 u32 elf_phdr_get_size = elf_size_of_phdr(class);
187 ehdr = elf_data;
188 phnum = elf_hdr_get_e_phnum(class, ehdr);
189 phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr);
191 /* go through the available ELF segments */
192 for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) {
193 u64 da = elf_phdr_get_p_paddr(class, phdr);
194 u64 memsz = elf_phdr_get_p_memsz(class, phdr);
195 u64 filesz = elf_phdr_get_p_filesz(class, phdr);
196 u64 offset = elf_phdr_get_p_offset(class, phdr);
197 u32 type = elf_phdr_get_p_type(class, phdr);
198 void *ptr;
200 if (type != PT_LOAD)
201 continue;
203 dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n",
204 type, da, memsz, filesz);
206 if (filesz > memsz) {
207 dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n",
208 filesz, memsz);
209 ret = -EINVAL;
210 break;
213 if (offset + filesz > fw->size) {
214 dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n",
215 offset + filesz, fw->size);
216 ret = -EINVAL;
217 break;
220 if (!rproc_u64_fit_in_size_t(memsz)) {
221 dev_err(dev, "size (%llx) does not fit in size_t type\n",
222 memsz);
223 ret = -EOVERFLOW;
224 break;
227 /* grab the kernel address for this device address */
228 ptr = rproc_da_to_va(rproc, da, memsz);
229 if (!ptr) {
230 dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da,
231 memsz);
232 ret = -EINVAL;
233 break;
236 /* put the segment where the remote processor expects it */
237 if (filesz)
238 memcpy(ptr, elf_data + offset, filesz);
241 * Zero out remaining memory for this segment.
243 * This isn't strictly required since dma_alloc_coherent already
244 * did this for us. albeit harmless, we may consider removing
245 * this.
247 if (memsz > filesz)
248 memset(ptr + filesz, 0, memsz - filesz);
251 if (ret == 0)
252 rproc->elf_class = class;
254 return ret;
256 EXPORT_SYMBOL(rproc_elf_load_segments);
258 static const void *
259 find_table(struct device *dev, const struct firmware *fw)
261 const void *shdr, *name_table_shdr;
262 int i;
263 const char *name_table;
264 struct resource_table *table = NULL;
265 const u8 *elf_data = (void *)fw->data;
266 u8 class = fw_elf_get_class(fw);
267 size_t fw_size = fw->size;
268 const void *ehdr = elf_data;
269 u16 shnum = elf_hdr_get_e_shnum(class, ehdr);
270 u32 elf_shdr_get_size = elf_size_of_shdr(class);
271 u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr);
273 /* look for the resource table and handle it */
274 /* First, get the section header according to the elf class */
275 shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr);
276 /* Compute name table section header entry in shdr array */
277 name_table_shdr = shdr + (shstrndx * elf_shdr_get_size);
278 /* Finally, compute the name table section address in elf */
279 name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr);
281 for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) {
282 u64 size = elf_shdr_get_sh_size(class, shdr);
283 u64 offset = elf_shdr_get_sh_offset(class, shdr);
284 u32 name = elf_shdr_get_sh_name(class, shdr);
286 if (strcmp(name_table + name, ".resource_table"))
287 continue;
289 table = (struct resource_table *)(elf_data + offset);
291 /* make sure we have the entire table */
292 if (offset + size > fw_size || offset + size < size) {
293 dev_err(dev, "resource table truncated\n");
294 return NULL;
297 /* make sure table has at least the header */
298 if (sizeof(struct resource_table) > size) {
299 dev_err(dev, "header-less resource table\n");
300 return NULL;
303 /* we don't support any version beyond the first */
304 if (table->ver != 1) {
305 dev_err(dev, "unsupported fw ver: %d\n", table->ver);
306 return NULL;
309 /* make sure reserved bytes are zeroes */
310 if (table->reserved[0] || table->reserved[1]) {
311 dev_err(dev, "non zero reserved bytes\n");
312 return NULL;
315 /* make sure the offsets array isn't truncated */
316 if (struct_size(table, offset, table->num) > size) {
317 dev_err(dev, "resource table incomplete\n");
318 return NULL;
321 return shdr;
324 return NULL;
328 * rproc_elf_load_rsc_table() - load the resource table
329 * @rproc: the rproc handle
330 * @fw: the ELF firmware image
332 * This function finds the resource table inside the remote processor's
333 * firmware, load it into the @cached_table and update @table_ptr.
335 * Return: 0 on success, negative errno on failure.
337 int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw)
339 const void *shdr;
340 struct device *dev = &rproc->dev;
341 struct resource_table *table = NULL;
342 const u8 *elf_data = fw->data;
343 size_t tablesz;
344 u8 class = fw_elf_get_class(fw);
345 u64 sh_offset;
347 shdr = find_table(dev, fw);
348 if (!shdr)
349 return -EINVAL;
351 sh_offset = elf_shdr_get_sh_offset(class, shdr);
352 table = (struct resource_table *)(elf_data + sh_offset);
353 tablesz = elf_shdr_get_sh_size(class, shdr);
356 * Create a copy of the resource table. When a virtio device starts
357 * and calls vring_new_virtqueue() the address of the allocated vring
358 * will be stored in the cached_table. Before the device is started,
359 * cached_table will be copied into device memory.
361 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
362 if (!rproc->cached_table)
363 return -ENOMEM;
365 rproc->table_ptr = rproc->cached_table;
366 rproc->table_sz = tablesz;
368 return 0;
370 EXPORT_SYMBOL(rproc_elf_load_rsc_table);
373 * rproc_elf_find_loaded_rsc_table() - find the loaded resource table
374 * @rproc: the rproc handle
375 * @fw: the ELF firmware image
377 * This function finds the location of the loaded resource table. Don't
378 * call this function if the table wasn't loaded yet - it's a bug if you do.
380 * Returns the pointer to the resource table if it is found or NULL otherwise.
381 * If the table wasn't loaded yet the result is unspecified.
383 struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc,
384 const struct firmware *fw)
386 const void *shdr;
387 u64 sh_addr, sh_size;
388 u8 class = fw_elf_get_class(fw);
389 struct device *dev = &rproc->dev;
391 shdr = find_table(&rproc->dev, fw);
392 if (!shdr)
393 return NULL;
395 sh_addr = elf_shdr_get_sh_addr(class, shdr);
396 sh_size = elf_shdr_get_sh_size(class, shdr);
398 if (!rproc_u64_fit_in_size_t(sh_size)) {
399 dev_err(dev, "size (%llx) does not fit in size_t type\n",
400 sh_size);
401 return NULL;
404 return rproc_da_to_va(rproc, sh_addr, sh_size);
406 EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table);